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ABSTRACT Precoding algorithms are used in massive multiple-input multiple-output (mMIMO) com-
munication systems to ensure effective signal transmission. The zero-forcing (ZF) is one of the most
common linear precoding algorithms used in MIMO and mMIMO systems. ZF precoding is complex
to implement because it requires direct matrix inversion of the gram matrix. Iterative algorithms have
been proposed for approximating matrix inversions. However, iterative algorithms require initial conditions
and pre-computations to converge to the optimal transmitted signal vector. This paper proposes a new
improved iterative algorithm that guarantees convergence under any circumstances without dependency on
any optimized initial parameter or condition. The proposed algorithm is based on a three-step iterative
and iterative generalized inverse matrix approximation algorithm. The proposed algorithm was verified
using a new correlated channel model that included mutual coupling effects and gain and phase variances
caused by radio frequency elements at a base station (BS). The computational complexity of the proposed
algorithm was then computed. This study analyzes and compares the bit error rate (BER) performance of
the proposed algorithm with that of prominent existing algorithms. Moreover, the sum-rate performance of
the proposed algorithm was analyzed. Simulations were performed under both correlated and uncorrelated
channel conditions, for comparison and analysis. The simulation results demonstrate that the proposed
algorithm outperforms the compared algorithms in terms of the convergence and convergence rates.
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INDEX TERMS Adaptive antenna system, approximate matrix inversion, iterative algorithms, massive
MIMO, ZF precoding.

I. INTRODUCTION19

In wireless communication systems, the demand for high-20

speed data access or transmission is inevitably growing21

with the exponentially increasing number of users. Fifth-22

generation (5G) communication systems are expected to23

provide an improved communication quality with extended24

coverage. Massive multiple-input multiple-output (mMIMO)25

technology is considered a key factor that enables people26

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

to use fifth-generation communication systems [1] and 27

thing-to-thing prospective sixth-generation (6G) systems [2]. 28

To simultaneously serve many users at the same time, 29

mMIMO systems consist of a large number of antennas. 30

The densely numbered antenna structure of mMIMO sys- 31

tems provides high transmission rate, spectral efficiency, and 32

power efficiency [3], [4], [5]. However, a large number of 33

antennas have drawbacks that must be carefully considered, 34

such as pilot-signal contamination and interference at the 35

base station (BS) and user equipment (UE) [1], [4], [6]. 36

In mMIMO systems, precoding algorithms are used to 37
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provide seamless signal transmission and interference38

cancellation [7].39

Massive MIMO systems track the instantaneous state of40

a channel by using pilot signals. In this sense, channel state41

information (CSI) is used to mitigate channel impairments42

to optimize signal transmission at the BS through precod-43

ing. Precoding algorithms are classified as linear or non-44

linear. In terms of capacity, nonlinear precoding algorithms45

are superior to linear ones [8]. However, their complexities46

are considerably higher and their hardware implementation47

is costly. Thus, mMIMO systems generally employ linear48

precoding algorithms [5]. There are many linear precoding49

algorithms in the literature, the most prominent of which are50

the matched filter (MF), zero-forcing (ZF), regularized zero-51

forcing (RZF), and minimum mean square error (MMSE).52

The linear precoding algorithms ZF, RZF, and MMSE53

provide optimal detection performance; however, these algo-54

rithms involve high-dimensional matrix inversion [9], [10].55

Fast matrix inversion is required because the channel state56

changes rapidly, constantly adding or removing users from57

the system and processing them in a short time. However,58

the computational complexity of the direct inverse channel59

correlation matrix increases significantly as the number of60

antennas and users increases; hence, a fast matrix inversion61

becomes critical. Inverse matrix approximation algorithms62

are commonly used in linear precoding to provide simple and63

accurate implementation of precoding algorithms. Finally,64

there are two prominent approximation algorithms for com-65

puting inverse matrix calculations: truncated number series66

algorithms based on polynomial expansion, and iterative67

algorithms. The most widely used truncated number series68

algorithm is the Neumann [11] series, because it has a69

very simple hardware implementation. Although the Neuman70

series is favorable in terms of complexity, its convergence and71

accuracy are insufficient. On the other hand, the Taylor [12]72

andKapteyn series [13] have better convergence and accuracy73

but at the cost of higher complexity. In addition, rapid matrix74

inversion updates are required to maintain an accurate seam-75

less transmission when a user is added to or removed from76

the system [14]. However, the inverse matrix update slows77

down as the polynomial terms of the truncated number series78

increase. Moreover, the computation of the optimal coeffi-79

cients of the matrix polynomial with the smallest possible80

number of terms places a higher burden on hardware [10].81

However, iterative algorithms are less complex, have a faster82

convergence rate, and have fair accuracy; therefore, they83

are considered to be more efficient than linear precoding84

algorithms. In terms of approaches to the problem, iterative85

algorithms can generally be classified into three categories:86

approximate matrix inversion algorithms (AMIA), iterative87

approaches for solving linear equations (IASLE), and itera-88

tive algorithms for minimizing the residual norm (IMRN) [9].89

To calculate the required approximate matrix inversion,90

AMIA is derived from a truncated number series, such91

as Newton-Schulz iteration (NI) and Chebyshev iteration92

(CI) [15], [16]. The IASLE algorithm approaches the matrix93

inversion problem by solving the system equation, and the 94

optimal transmitted signal vector is calculated by applying 95

iterative processes to decomposed matrix elements, such as 96

the Gauss-Seidel (GS) algorithm and its derivative succes- 97

sive over-relaxation (SOR) algorithm [7]. Finally, IMRN 98

algorithms focus on the minimization of the resid- 99

ual norm application order to bypass the approximate 100

matrix inversion operations and directly find the transmitted 101

signal vector, such as the conjugate residual (CR) algori- 102

thm (further improvement of the conjugate gradient 103

algorithm) [17] and generalized minimal residual (GMRES) 104

algorithm [18]. Moreover, iterative algorithms can be 105

obtained by combining two or more algorithms, such as 106

the joint CI and Neumann series (CI-NS) algorithms and 107

the SOR-based approximate matrix inversion (SOR-AMI) 108

algorithm [15]. Among the three types of iterative algorithms, 109

the AMIA is the most inefficient. As the dimensions of the 110

channel matrix increase, the number of polynomial terms 111

or iterations increases to maintain the accuracy. Hence, the 112

computational complexity of the algorithm increases signifi- 113

cantly. It should be noted that the implementation complexity 114

and computational complexity are different. Iterative algo- 115

rithms have a tradeoff between implementation complexity 116

and convergence, as shown in Fig. 1. However, under inap- 117

propriate initial conditions, such as when the channel matrix 118

is nonsymmetric, positive, definitive, and strictly diagonally 119

dominant, many IASLE and IMRN algorithms fail to con- 120

verge to a proper solution [9]. 121

FIGURE 1. Trade-off between implementation complexity and
convergence of iterative algorithms.

The three aforementioned types of algorithms require pre- 122

computations for the optimal initial parameters to guar- 123

antee convergence. The advantages and disadvantages of 124

iterative algorithms can be found in [7] and with brief 125

descriptions. 126

In general, one algorithm alone is not sufficient to sat- 127

isfy the convergence, fast convergence rate, and accuracy 128

requirements. However, most algorithms proposed in the lit- 129

erature require initial conditions and an appropriate initial 130

matrix, known as the precondition matrix to guarantee con- 131

vergence. Hence, in this study, we propose a new improved 132

method based on the combination of Homeier’s cubically 133
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TABLE 1. Comparison of iterative Algorithms [7].

iterative method [19] and the Karush Kuhn–Tucker (KKT)134

constraint, [20] resulting in an approach different from Xia’s135

iterative method [21]. Thus, the proposed method converges136

globally. The proposed method is globally convergent, with-137

out the need for any preconditions, can use any square matrix138

without symmetry, and the initial matrix can be diagonally139

dominant. Hence, there is no need for any preconditions, and140

pre-computation is discarded. The proposed algorithm was141

divided into two parts. The first part computes the initial142

approximation, whereas the second part processes the iter-143

ative generalized inverse matrix approach. The two parts are144

described as follows:145

– The first part of the algorithm was a three-step iterative146

method based on Homeier’s method. However, in the147

third step, a secant approach was adopted to keep the148

polynomial order low to avoid a higher computational149

complexity [22]. After one iteration, the output of the150

three-step iterative method was passed as an input to the151

second iterative method. The second method is based on152

iteratively approximating the generalized inverse using153

the KKT conditions [21]. If the KKT conditions hold for154

a problem, optimality is guaranteed [23]. The advantage155

of this method is that no initial condition is needed156

for convergence because the Moore-Penrose rules hold157

for KKT [24]. Thus, nonsymmetric diagonally dom-158

inant matrix inverses can be computed more accu-159

rately without pre-computation to optimize the initial160

values.161

– In the second part, there is typically a need for direct162

inversion of the acceleration scheme, as proposed163

in [21]. Otherwise, the convergence rate degrades as164

the dimensions of the input matrix increase. Hence,165

we replaced the direct inversion with a highly accurate166

iterative estimation method. The need for a proper pre-167

condition matrix to guarantee the convergence of the168

iterative algorithm based on Homeier’s method in the169

literature is discarded here by applying KKT conditions,170

as in [21]. Thus, the proposed algorithm can be catego- 171

rized as AMIA-type. 172

In the ZF precoding algorithm, interference is forced to 173

zero. In this study, ZF precoding was selected because inter- 174

ference, rather than additive noise, is the dominant factor 175

when the number of antennas at the BS increases [15]. The 176

bit error rate (BER) and sum rate of the proposed algorithm 177

were evaluated using both the correlated and uncorrelated 178

channel models. One of the main focuses of this study was to 179

evaluate and analyze the proposed algorithm under realistic 180

conditions; thus, a new correlated channel model was con- 181

sidered. Referring to the channel model, a mutual coupling 182

channel model [3] was used in this study, including array 183

manifolds, which were modeled as in, [25] and extended to 184

mMIMO. Array manifolds include manufacturing tolerances, 185

active radio frequency (RF) element gain, phase variations, 186

and mutual coupling, which are modeled using the k-nearest 187

neighbor approach, as explained in detail in [25]. By contrast, 188

the Rayleigh fading channel model was used for a simpler 189

evaluation of the performance of the proposed algorithm. 190

In addition, some of the most prominent iterative algorithms, 191

such as the CI, SOR, CR, and GMRES algorithms, were 192

investigated for a performance comparison with the proposed 193

algorithm. The main contributions of this study are summa- 194

rized as follows: 195

– First, we propose a channel model that produces cor- 196

related channels, including mutual coupling, gain, and 197

phase variances, caused by RF component errors and 198

manufacturing tolerances. A model was developed to 199

evaluate the performance of the proposed algorithm 200

under realistic conditions. 201

– Second, we propose an improved approximate matrix 202

inversion algorithm for the ZF precoding. The proposed 203

algorithm always converges without depending on any 204

initial conditions, and is suitable for correlated channel 205

conditions. 206
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– Finally, the performance of the proposed method was207

evaluated with respect to different criteria, and its per-208

formance was compared with that of various iterative209

methods in the literature, as summarized in Table 1.210

Based on these results, the effectiveness of the proposed211

algorithm was discussed.212

The remainder of this paper is organized as follows.213

In Section II, the system model and the ZF precoding214

matrix are described. In Section III, the investigated itera-215

tive algorithms and the proposed algorithms are described.216

In Section IV, a computational complexity analysis of the217

investigated iterative algorithms and proposed algorithms is218

presented. Simulations to demonstrate the performance of219

the proposed algorithm are presented in Section V. Finally,220

Section VI concludes this paper.221

Notations: Upper-case and lower-case boldface letters222

denote the matrices and vectors, respectively. (.)T , (.)H ,223

(.)−1, represent the transpose, conjugate transpose (Hermi-224

tian), and inversion, respectively. IK is an identity matrix of225

size K .226

II. SYSTEM MODEL227

This section describes the system model used in this study.228

We consider a downlink mMIMO system in which M trans-229

mit antennas at the BS are employed to serve K single UEs.230

In our model, an encoder digitally modulates the transmitted231

signal s, and a precoder weights the information stream x,232

at the BS. Fig. 2 shows the mMIMO system employed in this233

study.234

FIGURE 2. Block diagram of mMIMO system model with encoder and
precoder.

In this study, we consider a mutual coupling channel model235

that includes an array manifold to create a more realistic236

channel model. The estimated imperfect channel between the237

antenna transmitter array and users is modeled as Ĥ ∈ CK×M
238

and can be expressed as239

Ĥ =
√
1− τ 2H̃+ τv (1)240

where τ ∈ [0, 1] is a scalar parameter denoting the imper-241

fection of channel estimation. When τ= 0, perfect channel242

estimation is obtained. The estimated channel noise v ∈243

C1×M is independent and identically distributed over the244

real channel matrix H̃ =
[
h̃1, h̃2, . . . , h̃K

]
which follows245

a Gaussian distribution with a zero mean and unit variance. 246

The correlation coefficients of the real channel matrix H̃ are 247

obtained according to the correlation channel model and can 248

be expressed as 249

h̃k = αAH
M, k = 1, 2, . . . ,K (2) 250

where α = [α1, α2 . . . , αL] denotes the complex gains, which 251

are i.i.d. complex Gaussian distributions with zero mean and 252

unit variance, and L denotes the number of propagation paths 253

of the incoming signals to the BS. AM ∈ CM×L is the 254

array steering matrix of the BS antenna array and is given 255

as follows: 256

AM =
[
a
(
θM,1, ϕM,1

)
, a
(
θM,2, ϕM,2

)
, . . . , 257

a
(
θM,L, ϕM,L

)]
(3) 258

where (θM, ϕM) are the L scattered i.i.d. uniformly dis- 259

tributed angles of arrival, with an angular spread of 5◦, The 260

BS steering vectors A (θ, ϕ) can be calculated as follows: 261

a (θ, ϕ) =
1
√
M
e−j

2π
λ (xm sin θ cosϕ+ym sin θ sinϕ), 262

m = 1 . . .M (4) 263

where xm and ym are the m-th antenna coordinates in the 264

x-y plane, λ is the wavelength of the carrier frequency, and 265

M is the number of antennas in the antenna array. 266

To obtain a more realistic channel model, array manifolds 267

including a coupling matrix were included in this study. The 268

array manifold channel model H ∈ CK×M is expressed as 269

follows: 270

H = H̃1M (5) 271

where 1M ∈ CM×M denotes the BS antenna array manifold, 272

and, which considers the mutual coupling matrix. The array 273

manifold matrix 1(θ, ϕ) is given [25] by: 274

1 (θ, ϕ) = C (1GRF1G (θ, ϕ)1A (θ, ϕ)) 275

·GRF (g (θ, ϕ) a (θ, ϕ)) (6) 276

where GRF , 1GRF , 1A (θ, ϕ) and 1G (θ, ϕ) are M × M 277

diagonal matrices with complex elements representing each 278

(θ, ϕ), is the gain of the RF circuit, and the effect of the gain 279

and phase uncertainty sources owing to the active antenna 280

array components and antenna elements, respectively [25], 281

[26]. In addition, g (θ, ϕ) ∈ CM×1 denotes the amplitude and 282

phase of the m-th element, and a (θ, ϕ) ∈ CM×1 denotes the 283

ideal steering vector of the array containing the information 284

for each (θ, ϕ) [25]. The mutual coupling matrix C ∈ CM×M
285

consists of the amplitude and phase coupling coefficients 286

Cm,k , k is the k-th neighbor of the antenna element m. 287

The coefficient of mutual coupling C can be calculated as 288

follows:. 289

Cm,k = 1+ e−j
2π
λ (xm sin θ cosϕ+ym sin θ sinϕ)

·

(
aT0 s(m)

)
(7) 290

where a0 is the steering vector that contains all the 291

k-neighboring antenna elements ofm-th antenna element, and 292
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s(m) = [Sm1, . . . , Skm] is the 1 × k vector of the scattering293

coefficients of the m-th antenna element.294

The received complex baseband signal y ∈ CK×1 is given295

as296

y =
√
ρHx+ n (8)297

where ρ is the normalized average transmit symbol energy by298

the number of transmit antennas, which denotes the signal-299

to-noise power ratio (SNR); n ∈ C1×K denotes the additive300

white Gaussian vector; and x ∈ CM×1 represents the trans-301

mitted signal vector after precoding and can be expressed as302

x = Gs (9)303

where s ∈ CK×1 is the symbol vector of the constellation304

symbols to be transmitted and G ∈ CM×K is the precoding305

matrix, which can be expressed as306

G = βĤH
(
ĤĤH

)−1
(10)307

where the scalar β is chosen to satisfy the equation ‖G‖2F =308

tr
(
GGH

)
= P. P is the total transmitted power. The BER309

and sum rate were considered as criteria for measuring the310

performance of the precoding algorithms.311

After precoding, the sum-rate capacity [5] of the mMIMO312

system can be calculated as313

C =
K∑
k=1

log2 (1+ γk) (11)314

where γk = ρ
/
K |gkk |

2, and gkk is the k-th row and k-th315

column of matrix G.316

III. ITERATIVE ALGORITHMS317

A. THE APPROXIMATE MATRIX INVERSION ALGORTIHMS318

Approximate matrix inversion algorithms are based on num-319

ber series. These algorithms are derived from the higher-order320

recursions [27] in (12), which can be expressed as:321

Xi+1 = Xi

(
IK + (IK −WXi)+ · · · + (IK −WXi)

p−1
)

322

(12)323

where i is the number of iterations, p is the order of the324

polynomial series,Xi ∈ CK×K is the estimated inversematrix325

and when i = 0, X0 is defined as the preconditioning matrix326

when i = 0.327

Newton Iteration and Chebyshev Iteration Algorithms:328

The Newton iteration algorithm converges to the inverse329

matrix when p = 2 [16] and if the inequality condition330

‖IK −WX0‖ < 1 is satisfied. The estimated inverse matrix331

at the i-th iteration can be expressed as:332

Xi+1 = Xi (2IK −WXi) (13)333

However, if p = 3 [27] and the same inequality condition334

for NI is satisfied, this algorithm is called the Chebyshev335

iteration, and can be expressed as336

Xi+1 = Xi (3IK −WXi (3IK −WXi)) (14)337

The convergence of the approximate matrix inversion algo- 338

rithms depends on the number of iterations i, the order p 339

and as well as on the preconditioning matrix X0. A Better 340

convergence can be achieved as the i and p increase with the 341

cost of increased complexity. However, the initial values of 342

the preconditioning matrix also affect the convergence and 343

complexity. In [16], the optimized initial values of X0 were 344

calculated for both the NI and CI algorithms, and it was 345

shown that both algorithms had better convergence with the 346

optimized values. 347

B. THE ITERATIVE APPROACHES FOR SOLVING LINEAR 348

EQAUTIONS 349

Iterative approaches for solving linear equations iteratively 350

solve the linear equation Wz = s to approximate a solution, 351

where z ∈ CK×1 is an unknown vector solution. First, the 352

gram matrix W is decomposed into its subcomponents, and 353

then, an iterative process is applied to the decomposed parts 354

of theW. 355

Gauss-Seidel Algorithm and Successive Over-Relaxation 356

Algorithm: The GS and SOR algorithms were similar. The 357

Gram matrix is decomposed into W = D + L + U , where 358

D ∈ CK×K is a diagonal matrix containing the diagonal 359

elements of matrix W , L ∈ CK×K contains the lower 360

triangular components, and the U ∈ CK×K contains the 361

upper triangular component matrix W . Subsequently, the 362

estimated transmitted signal vector z is computed iteratively 363

using the decomposed components. The GS algorithm can be 364

expressed as 365

zi+1 = (D+ L)−1 (s− U) zi (15) 366

The SOR algorithm was derived from the GS algorithm 367

with a slight difference. The iteratively calculated estimated 368

transmitted signal vector z using the SOR algorithm is given 369

as 370

zi+1 =
(
1
ω
D+ L

)−1 (
s+

((
1
ω
− 1

)
D− U

)
zi

)
(16) 371

where ω denotes the relaxation parameter, which is crucial 372

to the performance of the SOR algorithm. The relaxation 373

parameter must be between 0 < ω < 2 to satisfy the 374

convergence [7]. However, in [15], an optimized value for the 375

relaxation parameter is given as 376

αopt = 0.404e

(
−0.323MK

)
+ 1.035 (17) 377

In [15], the authors combined the SOR and approximate 378

matrix inversion (AMI) algorithms and proposed a joint 379

SOR-AMI to increase the convergence of the SOR algorithm. 380

Moreover, the authors combined the CI algorithm with the 381

SOR-AMI and proposed a joint CI-SOR-AMI to increase the 382

convergence rate. In the first step, one iteration is spared for 383

the CI, and then the SOR-AMI is performed. The structure 384

is similar to that of our proposed algorithm; however, the CI- 385

SOR-AMI is highly dependent on the initial conditions and 386

relaxation parameters. 387
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C. THE ITERATIVE ALGORITHMS FOR MINIMIZING388

RESIDUAL NORM389

As mentioned previously, the IMRN algorithms focus on390

minimizing the residual norm rather than approximating a391

direct solution [7]. This type of algorithm directly estimates392

the transmitted signal vector without computing matrix inver-393

sion. In IMRN algorithms, the norm of the residual vector ri394

is reduced until the desired tolerance is obtained or the direct395

solution of z is obtained.396

Conjugate Residual Algorithm and Generalized Minimal397

Residual Algorithm: The CR algorithm is derived from the398

well-known conjugate gradient (CG) algorithm to achieve399

better BER performance than the CG algorithm [7]. The400

CR algorithm can be expressed as401

αi =
rTi Wri

(Wpi)TWpi
(18)402

zi+1 = zi + αkpi (19)403

ri+1 = ri + αiWpi (20)404

βi =
rTi+1Wri+1
rTi Wri

(21)405

pi+1 = ri+1 + βipi (22)406

Wpi+1 = Wri+1 + βiWpi (23)407

where z0 denotes some arbitrary initial guess, r0 = y−Wz0408

and p0 = r0.409

On the other hand, the residual vector ri is defined as ri =410

Hzi − y in GMRES algorithm. The solution vector zi ∈ τi, τi411

is a set that contains all linearly independent combinations of412

vectors, is given as413

τi = span
{
y,Hy, . . . ,Hi−1y

}
(24)414

In some cases, the vectors y,Hy, . . . ,Hi−1y are not fully415

linearly independent. Therefore, orthogonalization algo-416

rithms, such as Arnoldi and Householder algorithms, are417

applied to find orthonormal vectors to form an orthonormal418

basis [28]. The formulation of GMRES can be found in [18].419

D. THE PROPOSED IMPROVED ITERATIVE THREE-STEP420

GENERALIZED INVERSE MATRIX APPROXIMATION421

ALGORITM422

A three-step generalized inverse matrix approximation423

(TSGIM) algorithm was proposed. First, the system model424

determined the features required for the proposed algorithm.425

According to Section II, unequal couplings and different426

array manifolds distort the conjugate symmetric matrix prop-427

erty of the gram matrix, W. As mentioned previously, when428

algorithms deal with nonsymmetric positive definitive matri-429

ces, convergence cannot be ensured. Among all algorithms,430

only GMRES offers a robust solution in this case. How-431

ever, the implementation of the GMRES is extremely diffi-432

cult and requires many restarts to ensure convergence. The433

computational complexity increases rapidly as the num-434

ber of iterations increases. These drawbacks of GMRES435

make it reluctant to use it, and we propose an approximate436

matrix inversion algorithm; hence, matrix-vector operations 437

are irrelevant to our case. Convergence, low complexity, and 438

easy implementation are key requirements of approximation 439

algorithms, which are commonly used to fulfill each other’s 440

inadequacies. 441

AMIA has fast convergence, fair precision, and easy 442

implementation but at the cost of increased computational 443

complexity. Thus, in the first step, we selected a fifth- 444

order (p = 5) three-step iterative algorithm based on (12). 445

However, the computational complexity of the algorithm 446

increased with the number of orders. In [22], a three-step 447

iterative algorithm was proposed based on two-step cubi- 448

cally iterative Homeier and secant algorithms. The proposed 449

three-step algorithm for solving any function that equals zero 450

(f (x) = 0) is given as 451

yi = xi − f ′ (xi)−1 f (xi) (25) 452

zi = xi −
1
2
f (xi)

(
f ′ (xi)−1 + f ′ (yi)−1

)
(26) 453

xi+1 = zi − (f [zi, xi])−1 f (zi) (27) 454

where f [zi, xi] = (zi − xi)−1 (f (zi)− f (xi)) is the two-point 455

divided difference. 456

To iteratively approximate the matrix inversion, f (x) = 457

x−1 −W was applied to the above equations. The iterative 458

process can then be expressed as: 459

Xi+1 =
1
2
Xi [9IK −WXi (16IK −WXi(14IK 460

−WXi(6IK −WXi)))] (28) 461

In the second part of the algorithm, we adopt a novel 462

iterative algorithm to compute the generalized inverse matrix 463

in [21]. It applies the KKT condition to minimize the 464

Frobenius norm and iteratively solves the Moore-Penrose 465

generalized inverse conditions [21] with vector-matrix mul- 466

tiplications. The KKT condition was used for the convex 467

optimization of the Frobenius norm. In [21], an accelera- 468

tion scheme that replaces vector-matrix multiplications with 469

matrix-matrix multiplications was proposed. Unlike the algo- 470

rithms in, the proposed solution does not require an initial 471

precondition matrix, norm condition, or symmetric or con- 472

jugate symmetric matrix, as in the Newton and Chebyshev 473

algorithms. It is important to highlight that their algorithm for 474

the acceleration scheme uses a direct inversion matrix com- 475

putation. Thus, the inverse matrix approximation problem 476

has not been properly solved. The first part of the proposed 477

algorithm replaces the direct inversion matrix using a robust 478

iterative algorithm. 479

Computation of the initial values of the initial matrix 480

allows for faster computation and easier implementation, as is 481

the case with the proposed algorithm. However, the inverse 482

matrix approximation algorithm must converge under any 483

circumstances, such as uncertainties in the gain and phase as 484

well as mutual coupling between adjacent antenna elements 485

in a real implementation. 486

To adopt an iterative algorithm for computing the general- 487

ized inverse matrix, significant algorithms in the literature are 488
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based on the Moore-Penrose condition, [24] which denotes489

that for any matrix A ∈ Ca×b, there exists only one matrix490

P ∈ Cb×a that satisfies the following equations:491 
A = APA
P = PAP
(AP)T = AP
(XP)T = XP

(29)492

where P is the generalized inverse of matrixA. Subsequently,493

the generalized inverse problem can be solved by minimizing494

the Frobenius norm with equality constraints. The optimiza-495

tion problem for a ≥ b with solution P∗ can be expressed496

as:497

minimize
1
2
‖P‖2F498

subject to ATAP = AT (30)499

Applying the KKT condition to (30), the optimum solu-500

tion P∗ exists if and only if R∗ ∈ Cb×a exists, and (P∗,R∗)501

satisfies below equations:502

P∗ = ATAR∗503

AT
=

(
ATA

)2
R∗ (31)504

Subsequently, given matrixR ∈ Ca×a, as well as a positive505

scalar ε, the iterative algorithm is given as506

Ri+1 = Ri +M−1
(
AT
− B1Ri

)
(32)507

where B1 =
(
ATA

)2 andM = (IK + (ATA
)2) and stopping508

criteria is
∥∥AT
− B1Ri

∥∥2
F ≤ ε or when the set maximum509

number of iterations is reached. Inverse matrix M must be510

computed only once because it is not an iterative process.511

Proof of the global convergence of (32) can be found in [21].512

From (32), we obtain the following algorithm. However,513

because M−1 is a direct inverse matrix, an iterative algo-514

rithm cannot be applied. Hence, we first approximated the515

M−1 using (28), where M =
(
IK +

(
WTW

)2). Matrix A516

is replaced with a gram matrix because we are interested517

in approximating the inverse of the gram matrix W. Sub-518

sequently, matrix B1 becomes B1 =
(
WTW

)2, and the519

proposed algorithm can be expressed as:520

W−1i+1 =W−1i + X
(
WT
− B1W−1i

)
(33)521

where X is the estimated inverse matrix ofM by (28).522

The proposed improved iterative algorithm is described in523

detail below, where r is the number of iterations, andW−1 is524

the estimated inverse matrix as the output of the algorithm.525

IV. COMPUTATIONAL COMPLEXITY ANALYSIS526

In this section, we evaluate the computational complexity of527

the proposed algorithm in terms of the number of complex528

matrix multiplications required.529

The computational complexity of ZF precoding with the530

direct inverse matrix technique is based on the evaluation of531

Algorithm 1 TSGIM Algorithm
Input: W, r .
Output: W−1

1. X = (IK + (WTW)2)
2. T =WX
3. Z = 14I− (6I−T) // intermediate step
4. X = 1

2X(9I − T (16I − TZ)) // first step
5. // second step
6. B =WTW
7. W−1 = D−1

8. for i = 1 to r do
9. W−1 =W−1 + X (WT

− B2W−1)
10. end for
11. Output: W−1

matrixG. According to (10), if the pseudo-inverse of the term 532

ĤĤH is calculated directly, then the complexity of the ZF 533

precoding technique can be determined using the following 534

steps: We assume that the constant β is known. First, the 535

complexity of matrix multiplication ĤĤH contains K 2M 536

complex multiplications. The computational complexity of 537

the direct inversion of the resultant square matrix includes 538

K 3 complex multiplications. The complexity of multiplying 539

the resultant direct inverse matrix by ĤH includes K 2M 540

multiplications. Then, the number of complex multiplica- 541

tions required to calculate the Bs is MK where B denotes 542

ĤH
(
ĤĤH

)−1
in this case. In the final step, the resultant 543

M -by-1 vector is multiplied by scalar β andM complex mul- 544

tiplications. To calculate the transmitted signal vector x with 545

ZF precodingK 3
+2K 2M+KM+M complexmultiplications 546

are required. 547

In our algorithm, the computational complexity in terms 548

of the required number of complex matrix multiplications is 549

calculated as follows: We assumeATA, 6IK, 9IK, 14IK, 16IK 550

and the constant β are known. According to (28), 5K 3
+ K 2

551

complex multiplications are required because the equation 552

includes five matrix-matrix multiplications and one matrix- 553

scalar multiplication. In the second part of the proposed 554

algorithm, because matrix B is assumed to be known, only 555

2K 3 complex multiplications are required. In total 7K 3
+ 556

2K 2M+K 2
+KM+M complex multiplication was required 557

to calculate the transmitted signal vector x. According to the 558

above analysis, the computational complexities for the first 559

iteration (i = 1) of the NI and TSGIM algorithms and the 560

computational complexity of the ZF precoding with DMI are 561

listed in Table 2. 562

TABLE 2. Computational complexity.

ZF precoding with DMI was chosen as the reference and 563

ZFwith theNI algorithmwas chosen because it is the simplest 564
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algorithm in terms of implementation among the algorithms565

mentioned in Section III. It is observed that ZF with direct566

matrix conversion precoding has the lowest computational567

complexity. However, as previously mentioned, direct inver-568

sion is unfavorable for hardware. Although the proposed569

algorithm has more computational complexity than the NI570

algorithm, as described in Section III, it converges without571

depending on any initial conditions. However, convergence572

is only possible with appropriate initial conditions in inverse-573

matrix approximation algorithms including the NI algorithm.574

Therefore, there is a trade-off between robustness and compu-575

tational complexity for iterative inversematrix approximation576

algorithms. Fig. 3 shows the computational complexity in577

terms of the number of complex multiplications versus the578

number of BS antennas M, comparing the ZF precoding579

with the different inverse-matrix approximation algorithms580

mentioned in this section. In the case of fixing the number of581

UE antennas toK = 16 and increasing only the number of BS582

antennas, the proposed algorithm has a lower computational583

complexity. This situation is favorable, because mMIMO584

systems require hundreds of antenna elements. Fig. 4 depicts585

the computational complexity in terms of the number of com-586

plex multiplications versus the number of UE antennas K,587

comparing the ZF precoding with different inverse matrix588

approximation algorithms with the different algorithms men-589

tioned in this section. In this case, our proposed algorithm has590

a slightly higher computational complexity than that of the NI591

algorithm. The number of BS antennas is fixed at M = 256,592

as shown in Fig. 4.593

FIGURE 3. Computational complexity (K = 16, i = 1).

V. SIMULATION RESULTS594

Simulations based on the system model explained in595

Section II, were conducted to verify the effectiveness of the596

proposed algorithm. The BER, sum rate, and convergence597

performance of the proposed TSGIM algorithm are evalu-598

ated. The correlated channel model proposed in this study,599

as described in Section II was used in the simulations. Fur-600

thermore, the Rayleigh uncorrelated channel model was used601

to evaluate algorithms in the literature. The proposed TGSIM602

FIGURE 4. Computational complexity (M = 256, i = 1).

algorithm was compared to different types of algorithms 603

(AMIA, IASLE, and IMRN). The optimized initial values 604

in [16] were used for the CI algorithm, whereas the optimized 605

relaxation parameter according to (16) was used for the SOR 606

and joint SOR-AMI algorithms. In addition, a noisy random 607

x vector is used as the initial vector, a diagonal matrix that 608

contains the inverse diagonal elements of the resultant matrix 609

ĤĤH is used for the CR and SOR algorithms, and a diagonal 610

matrix that contains the inverse diagonal elements of the 611

resultant matrix ĤĤH . ZF precoding, which contains direct 612

matrix inversion, was included as a benchmark. 613

With respect to the use case, a typical downlink massive 614

MIMO configuration with M × K = 256 × 32 [15], [16] 615

is considered for the BER analysis. For all combinations and 616

analyses, there were L = 8 propagation paths. In this study, 617

QPSK was used as the modulation scheme; however, any 618

modulation technique can be used. The transmitted signal 619

was normalized in the BER and sum-rate analyzes. The SNR, 620

denoted as ρ in Section II, is the ratio of transmitted signal 621

power to received noise power for BER and sum-rate analysis, 622

and can simply be expressed as; 623

ρ =

∥∥Ĥ∥∥2F
σ 2
n

(34) 624

where
∥∥Ĥ∥∥2F Frobenius norm of the channel and σ 2

n is the 625

noise variance. 626

The parameters for the correlated channel model are as 627

follows: the mutual coupling between adjacent antenna ele- 628

ments is uniformly distributed between−20 dB and−10 dB, 629

as used in [26] for the first tier of neighboring elements; gain 630

and phase variations are±5% and manufacturing tolerance is 631

±10% which affects the inter-antenna element spacing, d . 632

The BER performances of the different algorithms are 633

compared in Fig. 5. The algorithms are simulated using the 634

proposed correlated channel model. The number of iterations 635

for all algorithms was i = 1. ZF precoding with direct 636

matrix inversion was used as the benchmark. According to 637

the results, the BER performances of the CI, SOR, CR, and 638
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FIGURE 5. BER performance comparison, correlated channel model
(M = 256, K = 32, i = 1).

GMRES algorithms were insufficient. However, the joint639

CI-SOR-AMI and proposed TSGIM algorithms performed640

well. This is because the CI, SOR, and CR are highly depen-641

dent on the initial conditions. In this case, the Gram matrix642

is not a symmetric or conjugate symmetric matrix; hence,643

the BER performances of CI and SOR are poor. In addition,644

becausewe did not considermultiple restarts, the BER perfor-645

mance of GMRES was insufficient. However, it can be seen646

that the BER performance of the CR algorithm is fair because647

the random initial vector is appropriate.648

As shown in Fig. 6, when the number of iterations was649

increased to i = 3, all algorithms performed better BER650

performance but the CR algorithm. Although the number651

of iterations was higher, the BER performance of the CR652

algorithm degraded without a suitable initial vector. The BER653

performances of the joint CI-SOR-AMI and the proposed654

TSGIM algorithms converged to the optimal ZF as the num-655

ber of iterations increased.656

Fig. 7 shows that when the channels are uncorrelated, the657

Gram matrix becomes conjugate-symmetric; hence, the BER658

performance of the CI algorithm is satisfactory. However,659

more iterations are required to achieve a better BER perfor-660

mance. In addition, CI-SOR-AMI has a near-optimal BER661

performance because the initial parameters and conditions are662

optimal in this case. The relaxation parameter was optimized663

according to, [15] and the optimum initial matrix was, as664

in [16] the CI-SOR-AMI. The initial matrix for the proposed665

algorithm was a random square matrix. There is no optimiza-666

tion of the initial values for our proposed algorithm; hence,667

CI-SOR-AMI performs better. Although all the initial param-668

eters of CI-SOR-AMI are optimized, CI-SOR-AMI performs669

better than the proposed algorithm under uncorrelated chan-670

nel conditions. The proposed TSGIM algorithm also exhibits671

good BER performance under uncorrelated channels near672

the optimum. The SOR and CR algorithms require more673

iterations and more suitable initial vectors. Finally, the674

GMRES algorithm requires more restarts and iterations to675

improve BER performance.676

FIGURE 6. BER performance comparison, correlated channel model
(M = 256, K = 32, i = 3).

FIGURE 7. BER performance comparison, uncorrelated channel model
(M = 256,K = 32, i = 3).

Fig. 8 shows that if the channel estimation is not perfect, 677

i.e., CSI is incomplete, then the performance of the proposed 678

algorithm decreases. Performance degradation due to the 679

imperfect channel estimation is valid for all algorithms even 680

if they are not shown in Fig. 8. In reality, perfect channel 681

estimation is impossible but near-perfect approximations can 682

be made. Referring to (1), τ = 0 states that perfect channel 683

estimation and τ = 0.3 states that ≈ 95% of the channel is 684

estimated correctly. 685

The Frobenius norm errors of the CI, SOR-AMI, and 686

proposed TSGIM algorithms are compared in Fig. 9 and 10 687

according to the increasing number of BS antennas. In addi- 688

tion, in Fig. 11 the number of BS antennas is fixed and 689

the Frobenius norm errors are compared according to the 690

increasing number of iterations for the algorithms. A total 691

of 1,000 Monte Carlo (MC) trials were conducted under 692

correlated channel conditions. It is worth noting that the BER 693

performances of the other algorithms were not considered 694

in this analysis because they skipped the inverse matrix cal- 695

culation. In the Frobenius norm error analysis, we consider 696
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FIGURE 8. BER performance perfect vs. imperfect channel estimation,
correlated channel model (M = 256, K = 32, i = 3).

FIGURE 9. MSE comparison of approximate matrix inversion algorithms,
correlated channel condition (K = 8, i = 1).

the mean squared error (MSE) between the ideal inverse697

of the Gram matrix W−1, and the estimated inverse of the698

Gram matrix Ŵ−1. The Frobenius norm error is Ferror =699 ∥∥W−1 − Ŵ−1
∥∥
F . In Fig. 9 and 10, for the sake of brevity,700

only the first iterations, i = 1, and fifth iteration, i = 5,701

of the algorithms were considered. As shown in Fig. 9, under702

the correlated channel condition, the MSE of the proposed703

CI-SOR-AMI algorithm outperformed those of the CI and704

TSGIM algorithms in the first iteration. In this analysis, the705

initial parameters for the CI, CI-SOR-AMI, and TSGIM algo-706

rithms were optimized. However, Fig. 10 shows that, after707

five iterations, TSGIM outperformed CI and CI-SOR-AMI.708

As shown in Fig. 11, the convergence rate of the proposed709

TSGIM algorithm outperformed those of CI and CI-SOR-710

AMI. After four iterations, the Forbenius norm errors of711

the proposed TSGIM algorithm, CI, and CI-SOR-AMI were712

6.37 × 10−4, 4.09 × 10−2 and 2.67 × 10−2 respectively.713

Moreover, after ten iterations proposed TSGIM and CI con-714

verge to the exact matrix inversion, while CI-SOR-AMI still715

has the same convergence magnitude.716

FIGURE 10. MSE comparison of approximate matrix inversion algorithms,
correlated channel condition (K = 8, i = 5).

FIGURE 11. MSE comparison of approximate matrix inversion algorithms,
correlated channel condition (M = 256,K = 8).

Fig. 12 compares the sum-rate performance of the 717

ZF precoding with the proposed TGSIM algorithm and the 718

ZF precoding with direct inverse matrix calculation. In this 719

case, ZF precoding with direct inversion was the benchmark. 720

It can be seen that in case of imperfect channel estimation, the 721

FIGURE 12. Sum-rate vs SNR (M = 256,K = 32, i = 1).
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sum-rate performance of the precoding algorithms decreases.722

Moreover, if the estimated channel is imperfect and the chan-723

nels are correlated, including the antenna array manifolds, the724

sum-rate performance decreases significantly, and although725

the SNR increases, it becomes almost stationary. However,726

in each case, the sum-rate performance of the proposed algo-727

rithm was close to the optimum.728

VI. CONCLUSION729

The main focus of this study was to propose a matrix730

inverse approximation algorithm for precoding transmissions731

in 5G mMIMO systems. The proposed algorithm outper-732

formed the existing techniques in terms of BER, convergence733

speed, and Frobenius norm error when the number of BS734

antennas increased. The algorithm is based on a three-step735

approximation method using Homeier’s approach and an736

iterative generalized inverse matrix approximation algorithm737

employing KKT conditions.738

To evaluate the performance of the proposed algorithm739

under realistic mMIMO conditions, we propose a corre-740

lated channel model based on antenna array manifolds that741

includes mutual coupling, RF and radiating element impair-742

ments, and multipath channels with an angular spread.743

We then investigate the correlated channel effects on the ZF744

precoding algorithm. The proposedmethod required four iter-745

ations to converge to a direct inverse matrix with a Frobenius746

norm error magnitude of 10−4. However, at least seven itera-747

tions are required for the CI algorithm to achieve the same748

error magnitude, and the CI-SOR-AMI algorithm cannot749

achieve the same performance even after ten iterations. The750

proposed TSGIM algorithm is suitable for approximating the751

inverse of non-symmetric matrices without any preconditions752

for convergence.753

Finally, algorithms such as SOR and CI-SOR-AMI require754

matrix decomposition and the calculation of the optimum755

relaxation parameter, which increases the computation time.756

The compared algorithms, including SOR and CI-SOR-AMI,757

require pre-calculations to fulfill the pre-conditions to guar-758

antee convergence to the exact matrix inverse. The proposed759

TSGIM algorithm has better BER performance and less760

computation time than the compared algorithms. Therefore,761

the proposed algorithm is feasible for use in 5G and other762

communications systems.763
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