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ABSTRACT Precoding algorithms are used in massive multiple-input multiple-output (mMIMO) com-
munication systems to ensure effective signal transmission. The zero-forcing (ZF) is one of the most
common linear precoding algorithms used in MIMO and mMIMO systems. ZF precoding is complex
to implement because it requires direct matrix inversion of the gram matrix. Iterative algorithms have
been proposed for approximating matrix inversions. However, iterative algorithms require initial conditions
and pre-computations to converge to the optimal transmitted signal vector. This paper proposes a new
improved iterative algorithm that guarantees convergence under any circumstances without dependency on
any optimized initial parameter or condition. The proposed algorithm is based on a three-step iterative
and iterative generalized inverse matrix approximation algorithm. The proposed algorithm was verified
using a new correlated channel model that included mutual coupling effects and gain and phase variances
caused by radio frequency elements at a base station (BS). The computational complexity of the proposed
algorithm was then computed. This study analyzes and compares the bit error rate (BER) performance of
the proposed algorithm with that of prominent existing algorithms. Moreover, the sum-rate performance of
the proposed algorithm was analyzed. Simulations were performed under both correlated and uncorrelated
channel conditions, for comparison and analysis. The simulation results demonstrate that the proposed
algorithm outperforms the compared algorithms in terms of the convergence and convergence rates.

INDEX TERMS Adaptive antenna system, approximate matrix inversion, iterative algorithms, massive
MIMO, ZF precoding.

I. INTRODUCTION to use fifth-generation communication systems [1] and

In wireless communication systems, the demand for high-
speed data access or transmission is inevitably growing
with the exponentially increasing number of users. Fifth-
generation (5G) communication systems are expected to
provide an improved communication quality with extended
coverage. Massive multiple-input multiple-output (mMIMO)
technology is considered a key factor that enables people
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thing-to-thing prospective sixth-generation (6G) systems [2].
To simultaneously serve many users at the same time,
mMIMO systems consist of a large number of antennas.
The densely numbered antenna structure of mMIMO sys-
tems provides high transmission rate, spectral efficiency, and
power efficiency [3], [4], [S]. However, a large number of
antennas have drawbacks that must be carefully considered,
such as pilot-signal contamination and interference at the
base station (BS) and user equipment (UE) [1], [4], [6].
In mMIMO systems, precoding algorithms are used to
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provide seamless signal transmission and interference
cancellation [7].

Massive MIMO systems track the instantaneous state of
a channel by using pilot signals. In this sense, channel state
information (CSI) is used to mitigate channel impairments
to optimize signal transmission at the BS through precod-
ing. Precoding algorithms are classified as linear or non-
linear. In terms of capacity, nonlinear precoding algorithms
are superior to linear ones [8]. However, their complexities
are considerably higher and their hardware implementation
is costly. Thus, mMIMO systems generally employ linear
precoding algorithms [5]. There are many linear precoding
algorithms in the literature, the most prominent of which are
the matched filter (MF), zero-forcing (ZF), regularized zero-
forcing (RZF), and minimum mean square error (MMSE).

The linear precoding algorithms ZF, RZF, and MMSE
provide optimal detection performance; however, these algo-
rithms involve high-dimensional matrix inversion [9], [10].
Fast matrix inversion is required because the channel state
changes rapidly, constantly adding or removing users from
the system and processing them in a short time. However,
the computational complexity of the direct inverse channel
correlation matrix increases significantly as the number of
antennas and users increases; hence, a fast matrix inversion
becomes critical. Inverse matrix approximation algorithms
are commonly used in linear precoding to provide simple and
accurate implementation of precoding algorithms. Finally,
there are two prominent approximation algorithms for com-
puting inverse matrix calculations: truncated number series
algorithms based on polynomial expansion, and iterative
algorithms. The most widely used truncated number series
algorithm is the Neumann [11] series, because it has a
very simple hardware implementation. Although the Neuman
series is favorable in terms of complexity, its convergence and
accuracy are insufficient. On the other hand, the Taylor [12]
and Kapteyn series [13] have better convergence and accuracy
but at the cost of higher complexity. In addition, rapid matrix
inversion updates are required to maintain an accurate seam-
less transmission when a user is added to or removed from
the system [14]. However, the inverse matrix update slows
down as the polynomial terms of the truncated number series
increase. Moreover, the computation of the optimal coeffi-
cients of the matrix polynomial with the smallest possible
number of terms places a higher burden on hardware [10].
However, iterative algorithms are less complex, have a faster
convergence rate, and have fair accuracy; therefore, they
are considered to be more efficient than linear precoding
algorithms. In terms of approaches to the problem, iterative
algorithms can generally be classified into three categories:
approximate matrix inversion algorithms (AMIA), iterative
approaches for solving linear equations (IASLE), and itera-
tive algorithms for minimizing the residual norm (IMRN) [9].
To calculate the required approximate matrix inversion,
AMIA is derived from a truncated number series, such
as Newton-Schulz iteration (NI) and Chebyshev iteration
(CI) [15], [16]. The TASLE algorithm approaches the matrix
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inversion problem by solving the system equation, and the
optimal transmitted signal vector is calculated by applying
iterative processes to decomposed matrix elements, such as
the Gauss-Seidel (GS) algorithm and its derivative succes-
sive over-relaxation (SOR) algorithm [7]. Finally, IMRN
algorithms focus on the minimization of the resid-
ual norm application order to bypass the approximate
matrix inversion operations and directly find the transmitted
signal vector, such as the conjugate residual (CR) algori-
thm (further improvement of the conjugate gradient
algorithm) [17] and generalized minimal residual (GMRES)
algorithm [18]. Moreover, iterative algorithms can be
obtained by combining two or more algorithms, such as
the joint CI and Neumann series (CI-NS) algorithms and
the SOR-based approximate matrix inversion (SOR-AMI)
algorithm [15]. Among the three types of iterative algorithms,
the AMIA is the most inefficient. As the dimensions of the
channel matrix increase, the number of polynomial terms
or iterations increases to maintain the accuracy. Hence, the
computational complexity of the algorithm increases signifi-
cantly. It should be noted that the implementation complexity
and computational complexity are different. Iterative algo-
rithms have a tradeoff between implementation complexity
and convergence, as shown in Fig. 1. However, under inap-
propriate initial conditions, such as when the channel matrix
is nonsymmetric, positive, definitive, and strictly diagonally
dominant, many IASLE and IMRN algorithms fail to con-
verge to a proper solution [9].

COMPLEXITY

ITERATIVE ALGORITHMS

AMIA  IASLE IMRN

CONVERGENCE

FIGURE 1. Trade-off between implementation complexity and
convergence of iterative algorithms.

The three aforementioned types of algorithms require pre-
computations for the optimal initial parameters to guar-
antee convergence. The advantages and disadvantages of
iterative algorithms can be found in [7] and with brief
descriptions.

In general, one algorithm alone is not sufficient to sat-
isfy the convergence, fast convergence rate, and accuracy
requirements. However, most algorithms proposed in the lit-
erature require initial conditions and an appropriate initial
matrix, known as the precondition matrix to guarantee con-
vergence. Hence, in this study, we propose a new improved
method based on the combination of Homeier’s cubically
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TABLE 1. Comparison of iterative Algorithms [7].

Algorithm  Relevant Characteristic Pros Cons
NI and CI -Symmetric matrix -If the optimal initial values are adapted -Optimal initial values are cumbersome to
-Needs precondition convergence is fast and accurate calculate
GS -Matrix decomposition is needed -If the number of transmitter and receiver -Unable to implement on parallel computing
antennas are equal it gives near-optimal structure
solution . .
-Includes matrix decomposition
SOR -Matrix decomposition is needed -If the ratio of BS antennas and UE -Unable to implement on parallel computing
-Needs precondition antennas, is large, it gives near optimal structure
solution . .
-Includes matrix decomposition
-Relaxation parameter is uncertain
CR -Convergence only guaranteed with proper -If the ratio of BS -It requires a large number of iterations and
initial vector and high number of iterations antennas and UE antennas, is large, it gives initial vector is crucial for convergence
near optimal solution
GMRES -Needs preconditioning to turn linearly -Suitable for non-symmetric matrices and -Hard to implement and complexity rises

dependent vectors into orthonormal vectors
-Restart needed

very robust

linearly as the number of iterations increase

iterative method [19] and the Karush Kuhn-Tucker (KKT)
constraint, [20] resulting in an approach different from Xia’s
iterative method [21]. Thus, the proposed method converges
globally. The proposed method is globally convergent, with-
out the need for any preconditions, can use any square matrix
without symmetry, and the initial matrix can be diagonally
dominant. Hence, there is no need for any preconditions, and
pre-computation is discarded. The proposed algorithm was
divided into two parts. The first part computes the initial
approximation, whereas the second part processes the iter-
ative generalized inverse matrix approach. The two parts are
described as follows:

—  The first part of the algorithm was a three-step iterative
method based on Homeier’s method. However, in the
third step, a secant approach was adopted to keep the
polynomial order low to avoid a higher computational
complexity [22]. After one iteration, the output of the
three-step iterative method was passed as an input to the
second iterative method. The second method is based on
iteratively approximating the generalized inverse using
the KKT conditions [21]. If the KKT conditions hold for
a problem, optimality is guaranteed [23]. The advantage
of this method is that no initial condition is needed
for convergence because the Moore-Penrose rules hold
for KKT [24]. Thus, nonsymmetric diagonally dom-
inant matrix inverses can be computed more accu-
rately without pre-computation to optimize the initial
values.

— In the second part, there is typically a need for direct
inversion of the acceleration scheme, as proposed
in [21]. Otherwise, the convergence rate degrades as
the dimensions of the input matrix increase. Hence,
we replaced the direct inversion with a highly accurate
iterative estimation method. The need for a proper pre-
condition matrix to guarantee the convergence of the
iterative algorithm based on Homeier’s method in the
literature is discarded here by applying KKT conditions,
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as in [21]. Thus, the proposed algorithm can be catego-
rized as AMIA-type.

In the ZF precoding algorithm, interference is forced to
zero. In this study, ZF precoding was selected because inter-
ference, rather than additive noise, is the dominant factor
when the number of antennas at the BS increases [15]. The
bit error rate (BER) and sum rate of the proposed algorithm
were evaluated using both the correlated and uncorrelated
channel models. One of the main focuses of this study was to
evaluate and analyze the proposed algorithm under realistic
conditions; thus, a new correlated channel model was con-
sidered. Referring to the channel model, a mutual coupling
channel model [3] was used in this study, including array
manifolds, which were modeled as in, [25] and extended to
mMIMO. Array manifolds include manufacturing tolerances,
active radio frequency (RF) element gain, phase variations,
and mutual coupling, which are modeled using the k-nearest
neighbor approach, as explained in detail in [25]. By contrast,
the Rayleigh fading channel model was used for a simpler
evaluation of the performance of the proposed algorithm.
In addition, some of the most prominent iterative algorithms,
such as the CI, SOR, CR, and GMRES algorithms, were
investigated for a performance comparison with the proposed
algorithm. The main contributions of this study are summa-
rized as follows:

— First, we propose a channel model that produces cor-
related channels, including mutual coupling, gain, and
phase variances, caused by RF component errors and
manufacturing tolerances. A model was developed to
evaluate the performance of the proposed algorithm
under realistic conditions.

— Second, we propose an improved approximate matrix
inversion algorithm for the ZF precoding. The proposed
algorithm always converges without depending on any
initial conditions, and is suitable for correlated channel
conditions.
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— Finally, the performance of the proposed method was
evaluated with respect to different criteria, and its per-
formance was compared with that of various iterative
methods in the literature, as summarized in Table 1.
Based on these results, the effectiveness of the proposed
algorithm was discussed.

The remainder of this paper is organized as follows.
In SectionII, the system model and the ZF precoding
matrix are described. In Section III, the investigated itera-
tive algorithms and the proposed algorithms are described.
In Section IV, a computational complexity analysis of the
investigated iterative algorithms and proposed algorithms is
presented. Simulations to demonstrate the performance of
the proposed algorithm are presented in Section V. Finally,
Section VI concludes this paper.

Notations: Upper-case and lower-case boldface letters
denote the matrices and vectors, respectively. ()7, ()7,
()~!, represent the transpose, conjugate transpose (Hermi-
tian), and inversion, respectively. Ik is an identity matrix of
size K.

Il. SYSTEM MODEL

This section describes the system model used in this study.
We consider a downlink mMIMO system in which M trans-
mit antennas at the BS are employed to serve K single UEs.
In our model, an encoder digitally modulates the transmitted
signal s, and a precoder weights the information stream X,
at the BS. Fig. 2 shows the mMIMO system employed in this
study.

s, X,
BS BS

Encoder Precoder

FIGURE 2. Block diagram of mMIMO system model with encoder and
precoder.

In this study, we consider a mutual coupling channel model
that includes an array manifold to create a more realistic
channel model. The estimated imperfect channel between the
antenna transmitter array and users is modeled as H e ckxM
and can be expressed as

H=v1-12H+ v (1

where T € [0, 1] is a scalar parameter denoting the imper-
fection of channel estimation. When t= 0, perfect channel
estimation is obtained. The estimated channel noise v €
C!M s independent and identically distributed over the
[, o

real channel matrix H = ﬁK] which follows
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a Gaussian distribution with a zero mean and unit variance.
The correlation coefficients of the real channel matrix H are
obtained according to the correlation channel model and can
be expressed as

hy = Al k=1,2,....K )

wherea = [o1, a2 .. ., op ] denotes the complex gains, which
are i.i.d. complex Gaussian distributions with zero mean and
unit variance, and L denotes the number of propagation paths
of the incoming signals to the BS. Ay € CM*L is the
array steering matrix of the BS antenna array and is given
as follows:

Am = [a(Om1.om,1) a (Om2, oMm2) .- - -
a(Ovmr. omr)] 3

where (0p1, om) are the L scattered i.i.d. uniformly dis-
tributed angles of arrival, with an angular spread of 5°, The
BS steering vectors A (6, ¢) can be calculated as follows:

a@,p) = Le—j%”(xm sin @ cos p+yy, sin 6 sin ¢)

m=1...M (4

where x,, and y,, are the m-th antenna coordinates in the
x-y plane, X is the wavelength of the carrier frequency, and
M is the number of antennas in the antenna array.

To obtain a more realistic channel model, array manifolds
including a coupling matrix were included in this study. The
array manifold channel model H € CK*M is expressed as
follows:

H=HAy 5)

where Ay € CM*M denotes the BS antenna array manifold,
and, which considers the mutual coupling matrix. The array
manifold matrix A (6, ¢) is given [25] by:

A0, ¢) = C(AGrrAG (6, 9) AA (0, ¢))
“Grr (80, 9)a(0,¢)) (6)

where Ggr, AGgr, AA (0, ¢) and AG (0, ¢) atre M x M
diagonal matrices with complex elements representing each
(0, @), is the gain of the RF circuit, and the effect of the gain
and phase uncertainty sources owing to the active antenna
array components and antenna elements, respectively [25],
[26]. In addition, g (8, ¢) € C Mx1 denotes the amplitude and
phase of the m-th element, and a (6, ¢) € CMx1 genotes the
ideal steering vector of the array containing the information
for each (6, ¢) [25]. The mutual coupling matrix C € CM*M
consists of the amplitude and phase coupling coefficients
Cumk, k is the k-th neighbor of the antenna element m.
The coefficient of mutual coupling C can be calculated as
follows:.

Cpi = 14 e F g amsindsin) (gls,,))  (7)

where ap is the steering vector that contains all the
k-neighboring antenna elements of m-th antenna element, and
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Semy = [Sm1, ..., Swn] is the 1 x k vector of the scattering
coefficients of the m-th antenna element.

The received complex baseband signal y € CX*! is given
as

y=.pHx+n ®)

where p is the normalized average transmit symbol energy by
the number of transmit antennas, which denotes the signal-
to-noise power ratio (SNR); n € C XK denotes the additive
white Gaussian vector; and x € CM*!1 represents the trans-
mitted signal vector after precoding and can be expressed as

x = Gs ©))

where s € CK*! is the symbol vector of the constellation

symbols to be transmitted and G € CY*X is the precoding
matrix, which can be expressed as

G = gH" (ﬁﬁ”)_l (10)

where the scalar 8 is chosen to satisfy the equation IIGII% =
tr (GGH) = P. P is the total transmitted power. The BER
and sum rate were considered as criteria for measuring the
performance of the precoding algorithms.

After precoding, the sum-rate capacity [5] of the mMIMO
system can be calculated as

K
C=) log, (I +n) (11)
k=1

where y, = p/K lgwel’, and gie is the k-th row and k-th
column of matrix G.

Ill. ITERATIVE ALGORITHMS

A. THE APPROXIMATE MATRIX INVERSION ALGORTIHMS
Approximate matrix inversion algorithms are based on num-
ber series. These algorithms are derived from the higher-order
recursions [27] in (12), which can be expressed as:

Xitr = X; (Tk + (I = WX) + -+ (Ix = WX ™)
(12)

where i is the number of iterations, p is the order of the
polynomial series, X; € CX*K is the estimated inverse matrix
and when i = 0, X is defined as the preconditioning matrix
wheni=0.

Newton Iteration and Chebyshev Iteration Algorithms:
The Newton iteration algorithm converges to the inverse
matrix when p = 2 [16] and if the inequality condition
[Ig — WXp|| < 1 is satisfied. The estimated inverse matrix
at the i-th iteration can be expressed as:

X1 = X; QIx — WX)) (13)

However, if p = 3 [27] and the same inequality condition
for NI is satisfied, this algorithm is called the Chebyshev
iteration, and can be expressed as

Xit1 = X; GBIk — WX; GIx — WX))) (14)
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The convergence of the approximate matrix inversion algo-
rithms depends on the number of iterations i, the order p
and as well as on the preconditioning matrix Xo. A Better
convergence can be achieved as the i and p increase with the
cost of increased complexity. However, the initial values of
the preconditioning matrix also affect the convergence and
complexity. In [16], the optimized initial values of Xy were
calculated for both the NI and CI algorithms, and it was
shown that both algorithms had better convergence with the
optimized values.

B. THE ITERATIVE APPROACHES FOR SOLVING LINEAR
EQAUTIONS

Iterative approaches for solving linear equations iteratively
solve the linear equation Wz = s to approximate a solution,
where z € CK*! is an unknown vector solution. First, the
gram matrix W is decomposed into its subcomponents, and
then, an iterative process is applied to the decomposed parts
of the W.

Gauss-Seidel Algorithm and Successive Over-Relaxation
Algorithm: The GS and SOR algorithms were similar. The
Gram matrix is decomposed into W = D + L + U, where
D e CK*K is a diagonal matrix containing the diagonal
elements of matrix W, L € CX*K contains the lower
triangular components, and the U € CX*X contains the
upper triangular component matrix W. Subsequently, the
estimated transmitted signal vector z is computed iteratively
using the decomposed components. The GS algorithm can be
expressed as

zii1=D+L) ! s- Uz (15)

The SOR algorithm was derived from the GS algorithm
with a slight difference. The iteratively calculated estimated
transmitted signal vector z using the SOR algorithm is given
as

zi1 = (i“* L>_l <s+ <<$ - 1) D-— U) z,~) (16)

where @ denotes the relaxation parameter, which is crucial
to the performance of the SOR algorithm. The relaxation
parameter must be between 0 < w < 2 to satisfy the
convergence [7]. However, in [15], an optimized value for the
relaxation parameter is given as

_ M
Copt = 0.404¢("033%) | 1 035 (17)

In [15], the authors combined the SOR and approximate
matrix inversion (AMI) algorithms and proposed a joint
SOR-AMI to increase the convergence of the SOR algorithm.
Moreover, the authors combined the CI algorithm with the
SOR-AMI and proposed a joint CI-SOR-AMI to increase the
convergence rate. In the first step, one iteration is spared for
the CI, and then the SOR-AMI is performed. The structure
is similar to that of our proposed algorithm; however, the CI-
SOR-AMI is highly dependent on the initial conditions and
relaxation parameters.
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C. THE ITERATIVE ALGORITHMS FOR MINIMIZING
RESIDUAL NORM

As mentioned previously, the IMRN algorithms focus on
minimizing the residual norm rather than approximating a
direct solution [7]. This type of algorithm directly estimates
the transmitted signal vector without computing matrix inver-
sion. In IMRN algorithms, the norm of the residual vector r;
is reduced until the desired tolerance is obtained or the direct
solution of z is obtained.

Conjugate Residual Algorithm and Generalized Minimal
Residual Algorithm: The CR algorithm is derived from the
well-known conjugate gradient (CG) algorithm to achieve
better BER performance than the CG algorithm [7]. The
CR algorithm can be expressed as

rl.TWri
0 = (18)
(Wp,)" Wp;
Zit| = Z; + 0P, (19)
riy1 =1 +o;Wp; (20)
T
r., Wr;
pi= L 1)
r; Wr;
Pi+1 = Tit1 + Bipi (22)
Wp,; 1 = Wri + B;Wp; (23)

where zo denotes some arbitrary initial guess, ro =y — Wz
and Po = ro.

On the other hand, the residual vector r; is defined as r; =
Hz; — y in GMRES algorithm. The solution vector z; € T, T;
is a set that contains all linearly independent combinations of
vectors, is given as

T; = span [y, Hy, ... ,H’I*]y} 24)

In some cases, the vectors y, Hy, ..., H! y are not fully
linearly independent. Therefore, orthogonalization algo-
rithms, such as Arnoldi and Householder algorithms, are
applied to find orthonormal vectors to form an orthonormal
basis [28]. The formulation of GMRES can be found in [18].

D. THE PROPOSED IMPROVED ITERATIVE THREE-STEP
GENERALIZED INVERSE MATRIX APPROXIMATION
ALGORITM

A three-step generalized inverse matrix approximation
(TSGIM) algorithm was proposed. First, the system model
determined the features required for the proposed algorithm.
According to Section II, unequal couplings and different
array manifolds distort the conjugate symmetric matrix prop-
erty of the gram matrix, W. As mentioned previously, when
algorithms deal with nonsymmetric positive definitive matri-
ces, convergence cannot be ensured. Among all algorithms,
only GMRES offers a robust solution in this case. How-
ever, the implementation of the GMRES is extremely diffi-
cult and requires many restarts to ensure convergence. The
computational complexity increases rapidly as the num-
ber of iterations increases. These drawbacks of GMRES
make it reluctant to use it, and we propose an approximate
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matrix inversion algorithm; hence, matrix-vector operations
are irrelevant to our case. Convergence, low complexity, and
easy implementation are key requirements of approximation
algorithms, which are commonly used to fulfill each other’s
inadequacies.

AMIA has fast convergence, fair precision, and easy
implementation but at the cost of increased computational
complexity. Thus, in the first step, we selected a fifth-
order (p = 5) three-step iterative algorithm based on (12).
However, the computational complexity of the algorithm
increased with the number of orders. In [22], a three-step
iterative algorithm was proposed based on two-step cubi-
cally iterative Homeier and secant algorithms. The proposed
three-step algorithm for solving any function that equals zero
(f (x) =0) is given as

yi=xi—f )7 f () (25)
oy l . /e —1 /=1

a=xi—5f @ (@ + 7)o

Xiv1 = zi — (f [z 5D 7' f (@) (27)

where f [z;, xi] = (z; — xi) ! (f (zi)) —f (x;)) is the two-point
divided difference.

To iteratively approximate the matrix inversion, f (x) =
x~! — W was applied to the above equations. The iterative
process can then be expressed as:

1
Xit1 = EX,~ [OIx — WX; (16Ix — WX;(14Ik
—WX;(6Ix — WX;))]  (28)

In the second part of the algorithm, we adopt a novel
iterative algorithm to compute the generalized inverse matrix
in [21]. It applies the KKT condition to minimize the
Frobenius norm and iteratively solves the Moore-Penrose
generalized inverse conditions [21] with vector-matrix mul-
tiplications. The KKT condition was used for the convex
optimization of the Frobenius norm. In [21], an accelera-
tion scheme that replaces vector-matrix multiplications with
matrix-matrix multiplications was proposed. Unlike the algo-
rithms in, the proposed solution does not require an initial
precondition matrix, norm condition, or symmetric or con-
jugate symmetric matrix, as in the Newton and Chebyshev
algorithms. It is important to highlight that their algorithm for
the acceleration scheme uses a direct inversion matrix com-
putation. Thus, the inverse matrix approximation problem
has not been properly solved. The first part of the proposed
algorithm replaces the direct inversion matrix using a robust
iterative algorithm.

Computation of the initial values of the initial matrix
allows for faster computation and easier implementation, as is
the case with the proposed algorithm. However, the inverse
matrix approximation algorithm must converge under any
circumstances, such as uncertainties in the gain and phase as
well as mutual coupling between adjacent antenna elements
in a real implementation.

To adopt an iterative algorithm for computing the general-
ized inverse matrix, significant algorithms in the literature are
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based on the Moore-Penrose condition, [24] which denotes
that for any matrix A € C axb , there exists only one matrix
P € CP* that satisfies the following equations:

A = APA
P = PAP
(AP)T = AP
xp)’ =Xp

(29)

where P is the generalized inverse of matrix A. Subsequently,
the generalized inverse problem can be solved by minimizing
the Frobenius norm with equality constraints. The optimiza-
tion problem for @ > b with solution P* can be expressed
as:

o] 2
minimize 3 P&
subject to ATAP = AT (30)

Applying the KKT condition to (30), the optimum solu-
tion P* exists if and only if R* € C?*¢ exists, and (P*, R*)
satisfies below equations:

P* = ATAR*
2
AT = <ATA) R* G1)

Subsequently, given matrix R € C%*¢, as well as a positive
scalar ¢, the iterative algorithm is given as

R =R+ M~ (AT - BiR,) (32)

where B| = (ATA)2 and M = (IK + (ATA)z) and stopping

criteria is ||AT — BiR; ||12¢ < € or when the set maximum
number of iterations is reached. Inverse matrix M must be
computed only once because it is not an iterative process.
Proof of the global convergence of (32) can be found in [21].

From (32), we obtain the following algorithm. However,
because M~! is a direct inverse matrix, an iterative algo-
rithm cannot be applied. Hence, we first approximated the
M~ using (28), where M = (I + (W/W)?). Matrix A
is replaced with a gram matrix because we are interested
in approximating the inverse of the gram matrix W. Sub-
sequently, matrix B; becomes B; = (WTW)z, and the
proposed algorithm can be expressed as:

-1
Wi+1

=w;! +X(WT —B1Wi_1> (33)
where X is the estimated inverse matrix of M by (28).

The proposed improved iterative algorithm is described in
detail below, where r is the number of iterations, and W1 is

the estimated inverse matrix as the output of the algorithm.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, we evaluate the computational complexity of
the proposed algorithm in terms of the number of complex
matrix multiplications required.

The computational complexity of ZF precoding with the
direct inverse matrix technique is based on the evaluation of
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Algorithm 1 TSGIM Algorithm
Input: W, r.
Output: W—!

L X=(Ix+W'W?

2. T=WX

3 Z = 141— (6I—T) // intermediate step
4. X =1X©OI - T @16l — TZ)) // first step
5. // second step
6

7

8

B=W'WwW

W—l — D—l

fori =1t r do
9. W !l=W!4+XWI-B*W )
10. end for

11. Output: W~!

matrix G. According to (10), if the pseudo-inverse of the term
HH” is calculated directly, then the complexity of the ZF
precoding technique can be determined using the following
steps: We assume that the constant 8 is known. First, the
complexity of matrix multiplication HH” contains K2M
complex multiplications. The computational complexity of
the direct inversion of the resultant square matrix includes
K3 complex multiplications. The complexity of multiplying
the resultant direct inverse matrix by H includes K2M
multiplications. Then, the number of complex multiplica-
tions required to calculate the Bs is MK where B denotes
HA (ﬁﬁH )_1 in this case. In the final step, the resultant
M -by-1 vector is multiplied by scalar 8 and M complex mul-
tiplications. To calculate the transmitted signal vector X with
ZF precoding K34+2K*M +KM +M complex multiplications
are required.

In our algorithm, the computational complexity in terms
of the required number of complex matrix multiplications is
calculated as follows: We assume ATA, 6lx, 91k, 141k, 16Ix
and the constant 8 are known. According to (28), SK 34 K2
complex multiplications are required because the equation
includes five matrix-matrix multiplications and one matrix-
scalar multiplication. In the second part of the proposed
algorithm, because matrix B is assumed to be known, only
2K3 complex multiplications are required. In total 7K> +
2K>M + K%+ KM + M complex multiplication was required
to calculate the transmitted signal vector x. According to the
above analysis, the computational complexities for the first
iteration (i = 1) of the NI and TSGIM algorithms and the
computational complexity of the ZF precoding with DMI are
listed in Table 2.

TABLE 2. Computational complexity.

Precoding Algorithm Computational Complexity
ZF-Direct Matrix Inversion (DMI) K3+ 2K?’M + KM + M
ZF-NI 2K3 + 2K?M + KM + M

ZF-TSGIM (Proposed) TKP+K*(M+ 1) +KM+M

ZF precoding with DMI was chosen as the reference and
ZF with the NI algorithm was chosen because it is the simplest
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algorithm in terms of implementation among the algorithms
mentioned in Section III. It is observed that ZF with direct
matrix conversion precoding has the lowest computational
complexity. However, as previously mentioned, direct inver-
sion is unfavorable for hardware. Although the proposed
algorithm has more computational complexity than the NI
algorithm, as described in Section III, it converges without
depending on any initial conditions. However, convergence
is only possible with appropriate initial conditions in inverse-
matrix approximation algorithms including the NI algorithm.
Therefore, there is a trade-off between robustness and compu-
tational complexity for iterative inverse matrix approximation
algorithms. Fig. 3 shows the computational complexity in
terms of the number of complex multiplications versus the
number of BS antennas M, comparing the ZF precoding
with the different inverse-matrix approximation algorithms
mentioned in this section. In the case of fixing the number of
UE antennas to K = 16 and increasing only the number of BS
antennas, the proposed algorithm has a lower computational
complexity. This situation is favorable, because mMIMO
systems require hundreds of antenna elements. Fig. 4 depicts
the computational complexity in terms of the number of com-
plex multiplications versus the number of UE antennas K,
comparing the ZF precoding with different inverse matrix
approximation algorithms with the different algorithms men-
tioned in this section. In this case, our proposed algorithm has
a slightly higher computational complexity than that of the NI
algorithm. The number of BS antennas is fixed at M = 256,
as shown in Fig. 4.
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FIGURE 3. Computational complexity (K = 16,i = 1).

V. SIMULATION RESULTS

Simulations based on the system model explained in
Section II, were conducted to verify the effectiveness of the
proposed algorithm. The BER, sum rate, and convergence
performance of the proposed TSGIM algorithm are evalu-
ated. The correlated channel model proposed in this study,
as described in Section II was used in the simulations. Fur-
thermore, the Rayleigh uncorrelated channel model was used
to evaluate algorithms in the literature. The proposed TGSIM

VOLUME 10, 2022

3 «108 Computational Complexity

T T : T T T

—-©—-ZF-DMI ,76
@ —-©—-ZF-NI *
0251~ —— -ZF-TSGIM (Proposed) */Q/,
® /
k] # fo3
s s
E 2r Do ]
=]
= @
>< jot
215 @ .
[ gd
§ &
38 5
~o6 1F %@
5 g
£ o7
Sosf ﬁg/g
=z gz§§

16-@@ ] . . L . .
10 20 30 40 50 60

Number of UE Antennas (K)

FIGURE 4. Computational complexity (M = 256, i = 1).

algorithm was compared to different types of algorithms
(AMIA, TASLE, and IMRN). The optimized initial values
in [16] were used for the CI algorithm, whereas the optimized
relaxation parameter according to (16) was used for the SOR
and joint SOR-AMI algorithms. In addition, a noisy random
x vector is used as the initial vector, a diagonal matrix that
contains the inverse diagonal elements of the resultant matrix
HH" is used for the CR and SOR algorithms, and a diagonal
matrix that contains the inverse diagonal elements of the
resultant matrix HH” . ZF precoding, which contains direct
matrix inversion, was included as a benchmark.

With respect to the use case, a typical downlink massive
MIMO configuration with M x K = 256 x 32 [15], [16]
is considered for the BER analysis. For all combinations and
analyses, there were L = 8 propagation paths. In this study,
QPSK was used as the modulation scheme; however, any
modulation technique can be used. The transmitted signal
was normalized in the BER and sum-rate analyzes. The SNR,
denoted as p in Section II, is the ratio of transmitted signal
power to received noise power for BER and sum-rate analysis,
and can simply be expressed as;

=2
H

o= 1Bl ﬂF (34)
Un

where ”ﬁ“i Frobenius norm of the channel and o is the
noise variance.

The parameters for the correlated channel model are as
follows: the mutual coupling between adjacent antenna ele-
ments is uniformly distributed between —20 dB and —10 dB,
as used in [26] for the first tier of neighboring elements; gain
and phase variations are 5% and manufacturing tolerance is
+10% which affects the inter-antenna element spacing, d.

The BER performances of the different algorithms are
compared in Fig. 5. The algorithms are simulated using the
proposed correlated channel model. The number of iterations
for all algorithms was i = 1. ZF precoding with direct
matrix inversion was used as the benchmark. According to
the results, the BER performances of the CI, SOR, CR, and
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FIGURE 5. BER performance comparison, correlated channel model
(M =256,K =32,i=1).

GMRES algorithms were insufficient. However, the joint
CI-SOR-AMI and proposed TSGIM algorithms performed
well. This is because the CI, SOR, and CR are highly depen-
dent on the initial conditions. In this case, the Gram matrix
is not a symmetric or conjugate symmetric matrix; hence,
the BER performances of CI and SOR are poor. In addition,
because we did not consider multiple restarts, the BER perfor-
mance of GMRES was insufficient. However, it can be seen
that the BER performance of the CR algorithm is fair because
the random initial vector is appropriate.

As shown in Fig. 6, when the number of iterations was
increased to i = 3, all algorithms performed better BER
performance but the CR algorithm. Although the number
of iterations was higher, the BER performance of the CR
algorithm degraded without a suitable initial vector. The BER
performances of the joint CI-SOR-AMI and the proposed
TSGIM algorithms converged to the optimal ZF as the num-
ber of iterations increased.

Fig. 7 shows that when the channels are uncorrelated, the
Gram matrix becomes conjugate-symmetric; hence, the BER
performance of the CI algorithm is satisfactory. However,
more iterations are required to achieve a better BER perfor-
mance. In addition, CI-SOR-AMI has a near-optimal BER
performance because the initial parameters and conditions are
optimal in this case. The relaxation parameter was optimized
according to, [15] and the optimum initial matrix was, as
in [16] the CI-SOR-AMI. The initial matrix for the proposed
algorithm was a random square matrix. There is no optimiza-
tion of the initial values for our proposed algorithm; hence,
CI-SOR-AMI performs better. Although all the initial param-
eters of CI-SOR-AMI are optimized, CI-SOR-AMI performs
better than the proposed algorithm under uncorrelated chan-
nel conditions. The proposed TSGIM algorithm also exhibits
good BER performance under uncorrelated channels near
the optimum. The SOR and CR algorithms require more
iterations and more suitable initial vectors. Finally, the
GMRES algorithm requires more restarts and iterations to
improve BER performance.
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FIGURE 7. BER performance comparison, uncorrelated channel model
(M =1256,K =32,i =3).

Fig. 8 shows that if the channel estimation is not perfect,
i.e., CSI is incomplete, then the performance of the proposed
algorithm decreases. Performance degradation due to the
imperfect channel estimation is valid for all algorithms even
if they are not shown in Fig. 8. In reality, perfect channel
estimation is impossible but near-perfect approximations can
be made. Referring to (1), T = O states that perfect channel
estimation and T = 0.3 states that &~ 95% of the channel is
estimated correctly.

The Frobenius norm errors of the CI, SOR-AMI, and
proposed TSGIM algorithms are compared in Fig. 9 and 10
according to the increasing number of BS antennas. In addi-
tion, in Fig. 11 the number of BS antennas is fixed and
the Frobenius norm errors are compared according to the
increasing number of iterations for the algorithms. A total
of 1,000 Monte Carlo (MC) trials were conducted under
correlated channel conditions. It is worth noting that the BER
performances of the other algorithms were not considered
in this analysis because they skipped the inverse matrix cal-
culation. In the Frobenius norm error analysis, we consider
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the mean squared error (MSE) between the ideal inverse
of the Gram matrix W™!, and the estimated inverse of the
Gram matrix W—!. The Frobenius norm error is Forror =
||W_1 —-w! ”F In Fig. 9 and 10, for the sake of brevity,
only the first iterations, i = 1, and fifth iteration, i = 5,
of the algorithms were considered. As shown in Fig. 9, under
the correlated channel condition, the MSE of the proposed
CI-SOR-AMI algorithm outperformed those of the CI and
TSGIM algorithms in the first iteration. In this analysis, the
initial parameters for the CI, CI-SOR-AMI, and TSGIM algo-
rithms were optimized. However, Fig. 10 shows that, after
five iterations, TSGIM outperformed CI and CI-SOR-AMI.
As shown in Fig. 11, the convergence rate of the proposed
TSGIM algorithm outperformed those of CI and CI-SOR-
AMI. After four iterations, the Forbenius norm errors of
the proposed TSGIM algorithm, CI, and CI-SOR-AMI were
6.37 x 107*, 4.09 x 1072 and 2.67 x 1072 respectively.
Moreover, after ten iterations proposed TSGIM and CI con-
verge to the exact matrix inversion, while CI-SOR-AMI still
has the same convergence magnitude.
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Fig. 12 compares the sum-rate performance of the
ZF precoding with the proposed TGSIM algorithm and the
ZF precoding with direct inverse matrix calculation. In this
case, ZF precoding with direct inversion was the benchmark.
It can be seen that in case of imperfect channel estimation, the

8 T T T T T T

ZF-DMI 7= 1 No Correlation

— ©— - ZF-TSGIM (Proposed) 7= 1 No Correlation

7+ ZF-DMI 7= 0.3 No Correlation -

ZF-TSGIM (Proposed) 7= 0.3 No Correlation o~

ZF-DMI = 0.3 Correlation ©

ZF-TSGIM (Proposed) 7= 0.3 Correlation o
et -

o7

o
T
I

©
/G’O/

o
T

_e
oo ®
_o-
o ©

Sum Rate [bit/sec/Hz]
IS

20 -18 -16 -14 12 10 -8 -6 -4 -2 0
SNR [dB]

FIGURE 12. Sum-rate vs SNR (M =256, K = 32,i = 1).
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sum-rate performance of the precoding algorithms decreases.
Moreover, if the estimated channel is imperfect and the chan-
nels are correlated, including the antenna array manifolds, the
sum-rate performance decreases significantly, and although
the SNR increases, it becomes almost stationary. However,
in each case, the sum-rate performance of the proposed algo-
rithm was close to the optimum.

VI. CONCLUSION

The main focus of this study was to propose a matrix
inverse approximation algorithm for precoding transmissions
in 5G mMIMO systems. The proposed algorithm outper-
formed the existing techniques in terms of BER, convergence
speed, and Frobenius norm error when the number of BS
antennas increased. The algorithm is based on a three-step
approximation method using Homeier’s approach and an
iterative generalized inverse matrix approximation algorithm
employing KKT conditions.

To evaluate the performance of the proposed algorithm
under realistic mMIMO conditions, we propose a corre-
lated channel model based on antenna array manifolds that
includes mutual coupling, RF and radiating element impair-
ments, and multipath channels with an angular spread.
We then investigate the correlated channel effects on the ZF
precoding algorithm. The proposed method required four iter-
ations to converge to a direct inverse matrix with a Frobenius
norm error magnitude of 1074, Howeyver, at least seven itera-
tions are required for the CI algorithm to achieve the same
error magnitude, and the CI-SOR-AMI algorithm cannot
achieve the same performance even after ten iterations. The
proposed TSGIM algorithm is suitable for approximating the
inverse of non-symmetric matrices without any preconditions
for convergence.

Finally, algorithms such as SOR and CI-SOR-AMI require
matrix decomposition and the calculation of the optimum
relaxation parameter, which increases the computation time.
The compared algorithms, including SOR and CI-SOR-AMI,
require pre-calculations to fulfill the pre-conditions to guar-
antee convergence to the exact matrix inverse. The proposed
TSGIM algorithm has better BER performance and less
computation time than the compared algorithms. Therefore,
the proposed algorithm is feasible for use in 5G and other
communications systems.
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