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ABSTRACT The novel coronavirus disease 2019 (COVID-19) added tremendous pressure on healthcare
services worldwide. COVID-19 early detection is of the utmost importance to control the spread of the
coronavirus pandemic and to reduce pressure on health services. There have been many approaches to detect
COVID-19; the most commonly used one is the nasal swab technique. Before that was available chest X-ray
radiographs were used. X-ray radiographs are a primary care method to reveal lung infections, which allows
physicians to assess and plan a course of treatment. X-ray machines are prevalent, which makes this method
a preferable first approach for the detection of new diseases. However, this method requires a radiologist to
assess each chest X-ray image. Therefore, different automated methods using machine learning techniques
have been proposed to assist in speeding up diagnoses and improving the decision-making process. In this
paper, we review deep learning approaches for COVID-19 detection using chest X-ray images. We found that
the majority of deep learning approaches for COVID-19 detection use transfer learning. A discussion of the
limitations and challenges of deep learning in radiography images is presented. Finally, we provide potential
improvements for higher accuracy and generalisability when using deep learning models for COVID-19
detection.

INDEX TERMS Machine learning, pneumonia, radiology, diagnostic imaging, COIVD-19.

I. INTRODUCTION
The novel coronavirus disease 2019 (COVID-19) rapidly

resulting pandemic was 5.04 million confirmed death and
249.54 million confirmed cases of infection worldwide as of

spread quickly causing a global pandemic. The first inci-
dence of the virus was identified in early December 2019 in
Wuhan, the People’s Republic of China. Strong measures
were applied to control the spread of infection. Some of these
measures included shutdowns, isolation, and close monitor-
ing of contacts, which have caused economic crisis, reces-
sion, and affected the mental well-being of many individuals
around the world [1], [2], [3]. The World Health Organiza-
tion (WHO) declared the COVID-19 outbreak as a global
pandemic on March 11", 2020 [4]. The death toll of the
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November 6, 2021 [5].

The first few months of the pandemic were challenging
for hospitals, medical teams, and governments to control
and test millions of infected people. Healthcare systems
could not keep up with the significant number of infected
cases, and in some countries, the healthcare system collapsed
under the COVID-19 surge. The rapid spread of the virus
increased the need for early detection of positive COVID-19
cases and faster diagnosis [6] to help control and better
understand the pandemic. Reverse Transcription Polymerase
Chain Reaction test (RT-PCR) is the current standard tool
used to detect COVID-19 infection. However, RT-PCR is a
time-consuming and expensive process and it has reported
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FIGURE 1. The total number of papers reviewed in this manuscript for
transfer learning and training from scratch.

fairly high false-negative rates, which may cause treatment
inefficiency or failure [7], [8]. Other methods, including
Computed Tomography (CT) scans have been proposed to
assist, expedite, and increase the accuracy of the testing
process. However, methods based on RT-PCR and CT scans
can be expensive in many countries because of insufficient
facilities. Other new methods based on chest X-rays, which
are less expensive and more widely available, have shown
potential improvements in detecting COVID-19.

Inspecting a chest X-ray to diagnose COVID-19 add
to the burden of radiologists as they review and interpret
lung X-ray images. Although this approach requires time
from a radiologist to interpret the images, X-ray evidence
may be more accurate as opposed to reverse transcrip-
tion polymerase chain reaction (RT-PCR) [9]. To aid the
diagnosis of COVID-19, researchers have proposed sev-
eral automated methods based on machine learning algo-
rithms to analyze X-rays of COVID-19 cases. Automating
the COVID-19 diagnostic process using X-ray images acts
as a decision-supporting tool assisting radiologists as well as
promoting the early detection and treatment of COVID-19.

There have been previous papers that have reviewed
machine learning techniques for COVID-19 detection [10],
[11], [12], [13], [14], [15]. However, these previous reviews
covered older research papers. In this comprehensive review
article, we review recent peer-reviewed articles published
from January 2020 through the end of 2021. We classify the
reviewed papers into two categories: transfer learning and
training from scratch. A graph of the reviewed papers in each
category is shown in Figure 1. An appendix is provided to
explain the different deep learning architectures used in the
reviewed papers.

Il. DEEP LEARNING

Recently, deep learning-based approaches became one of
the most popular algorithms in machine learning. These
approaches have outperformed and achieved state-of-the-
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art performance in many learning-based research prob-
lems [16], [17], [18]. The popularity of deep learning started
in late 2012, when a deep-learning approach based on con-
volutional neural networks (CNNs) outperformed all other
methods in the best-known computer-vision competition,
ImageNet [19]. Such networks (i.e., CNNs) are designed
to take advantage of a two-dimensional input, employing a
series of convolutional layers for extracting features at differ-
ent spatial locations. They have achieved cutting-edge results
for many vision tasks, including object recognition [19], [20],
scene classification [21], [22], [23], and 3D image under-
standing [24], [25].

The unique ability of deep learning methods to automat-
ically learn a hierarchical feature representation of input
data, make them an excellent choice when compared with
traditional machine learning methods that depend on hand-
engineering features [26]. CNNs are a powerful tool for
extracting features from the input images and differentiating
the importance among the features. It can also process not
only 2-dimensional (2D) images but also 3-dimensional (3D)
images. Recently, CNNs have been used in many fields,
including medical imaging analysis.

Since medical images comprise both 2-D (e.g., X-rays) and
3-D (e.g., MRI) images, CNNs have a significant advantage
in medical purposes over other various machine learning
models [27]. While other machine learning algorithms based
on vectorizations cannot use spatial information of an image
effectively, CNNs can preserve spatial and structural infor-
mation of an image; this is one of the key factors when
analyzing medical images. For instance, CNNs can precisely
recognize high-level and low-level features compared to other
machine learning techniques. Therefore, CNN methods have
been actively investigated for analyzing medical images [28].

The general architecture of CNNs model comprises con-
volutional layers, activation functions (e.g. rectified linear
unit (RELU)), pooling layers, and fully connected layers as
shown in Figure 2. When an input image is fed into a con-
volutional layer, the layer detects raw pixels (i.e., low-level
features: lines and edges) in the image. Using these low-level
features, a ReLU layer produces a feature map that consists of
higher features, such as a cell or cytoplasm. A convolutional
layer facilitates three major mechanisms (sparse connection,
weight sharing, and sub-sampling) which reduce the degrees
of freedom in a model. A sparse connection means that it
only connects some inputs to the next layer. Weight sharing
allows the network to reduce the number of weights updated
within a convolutional layer and reduces the training time.
Sub-sampling is performed through a pooling layer to reduce
the number of parameters and the size of the image. This pro-
cess lessens over-fitting and increases efficiency. The pooling
layer computes a single value for each part in a grid within
a filter. The values are replaced with the maximum number
(max pooling) or the average number (average pooling) in
the grid. Finally, the output from the last pooling layer or
convolutional layer is passed to the fully connected layer.
The input to the fully connected layer is flattened. In other

VOLUME 10, 2022



S. S. Alahmari et al.: Comprehensive Review of Deep Learning-Based Methods for COVID-19 Detection

IEEE Access

Input Chest X-ray Images

Deep Neural Networks Output

FIGURE 2. An overview of COVID-19 classification with a generic deep

CNN.

,Ak\ Lo

Negative

Positive

FIGURE 3. Chest X-ray samples from datasets in the reviewed papers. The
top row shows COVID-19 negative samples and the bottom row shows
positive ones.

words, a 3D matrix becomes ‘flatten’ as vector values. Then,
using an activation function such as Softmax, the last layer
calculates the probability of an object in the input image being
in a particular class.

Deep learning approaches can be categorized into transfer
learning and training from scratch. In the following subsec-
tions, we highlight the advantages and disadvantages of those
approaches.

A. TRANSFER LEARNING

Transfer learning is the process of transferring knowledge
learned from a source task to a destination task of the same or
different domain [29]. This knowledge transferring process
allows for improved deep learning performance, especially
in the case of limited labeled data to train a model for a
destination task. Transfer learning reduces the training time
and power consumption by using knowledge already learned
from the source task [30]. Appendix A provides more details
about transfer learning.

B. TRAINING FROM SCRATCH

In contrast to transfer learning, training deep learning models
from scratch requires starting from random sampled initial
weights. However, this approach requires a large labeled
dataset for learning high parameterized deep neural networks.
Additionally, training from scratch requires time and large
computation resources.

IIl. CHEST X-RAY DATASETS
Chest X-ray images are used by physicians to quickly and
reliably diagnose a variety of diseases. Moreover, chest X-ray
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TABLE 1. Chest X-ray images datasets summary including reference,
hyperlinks for the datasets, categories of chest X-ray images, and the
total number of images. To access the datasets click the hyperlink
“Available online”.

Dataset Reference chest X-ray image category Total number of images
Pneumonia | Normal | COVID19 | Other
[131]
Available online v 79
[132]
Available online v v 247
[133]
Available online v 468
[[34]
Available online v v 1107
[ 135]
Available online v v v 5381
[ [36]
Available online v v 5856
[137]
Available online v v 5856
[ [38]
Available online v v 5933
[ 139]
Available online v v v 13975
[ [40]
Available online v v v v 21173
[ [41]
Available online v v 29700
[142]
Available online v v v 112120
[ 143]
Available online v v 13609
[ [44]
Not Available online v v 610
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FIGURE 4. Total number of chest X-ray images for each dataset.

images are important for training learning algorithms to learn
features for detecting pulmonary diseases. The datasets of
COVID-19 chest X-ray images and non-COVID-19 chest
X-ray images which have been used in the reviewed literature
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FIGURE 5. The main tasks of deep learning applied to chest X-ray images
for COVID-19 detection.

for this manuscript are described in Table 1 and Figure 4.
These imaging datasets serve the research community as a
fertile environment for investigation and research [37], [42],
[45]. However, to determine the optimum dataset, we per-
formed a thorough statistical and imaging analysis of several
open-source datasets (Table 1). The criteria we considered in
assessing the datasets were based on simple statistical param-
eters, such as patient demographics, kurtosis, and skewness of
the dataset in terms of outcomes bias. Additionally, common
medical physics-based criteria may apply to all datasets. The
quality of the images in terms of scan protocol such as kVp
and mAs, the field of view, angle of images along with
different machine manufacturers may have a prominent effect
on the quality of the image and the reproducibility of the
scans. Figure 3, shows some examples of COVID-19 positive
and negative X-ray images.

CoronaHack Chest X-ray dataset [38] contains 58 (1%)
patients with confirmed COVID-19 patients in the training
set, so the data is skewed toward non-positive outcomes. The
rest of the infected patients had pneumonia in either viral
or bacterial causes. This may lead to bias in classification
outcomes. A much larger COVID-19 outcome data is needed
for this dataset. The data does not show any patient demo-
graphics, especially whether all COVID-19 patients in the
dataset had pneumonia symptoms.

In another dataset presented in [36], some chest X-ray
images (Pneumonia) dataset show inconsistency in terms of
age, the field of view, and image parameters. Some images
have artifacts because of the placement of cables and devices
during the scan. Such artifacts may affect the validity of the
classifier models during training and testing.

The NIH dataset [42] is a well-established and documented
pneumonia imaging data that may be used as a preliminary
check for researchers to test their approach. Some concerns
raised in the previous two datasets are the type of X-ray used;
single or dual-energy and image parameter.

IV. DETECTION OF COVID-19 USING DEEP LEARNING

Different approaches for COVID-19 detection using chest
radiology images and deep learning have been proposed.
In this section, we review the proposed methods for
COVID-19 detection using chest X-ray images. Moreover,
we provide a classification of deep learning approaches
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applied to chest X-ray images for COVID-19 detection,
as shown in Figure 5. From the reviewed papers, we found
that there are two main approaches applied for COVID-19
detection using chest X-ray images: transfer learning and
training from scratch. For transfer learning, some approaches
used fine-tuning of the trained deep learning models using
chest X-ray datasets for COVID-19 detection, whereas the
other approaches extracted features from the trained mod-
els for applying classification algorithms, such as Support
Vector Machine (SVM). With training from scratch, some
approaches have trained a single model using convolu-
tional neural networks (CNNs), while other methods trained
multiple deep learning models for COVID-19 detection.
In Tables 2, 3, 4, 5 and 6, a summary of each reviewed
article is provided including performance, method, datasets,
and availability of source code.

A. TRANSFER LEARNING-BASED APPROACHES

Transfer learning approaches can be divided into two cate-
gories: 1) fine-tuning-based methods and 2) features extrac-
tion followed by classification methods. In this section,
we review approaches that used transfer learning for detect-
ing COVID-19 infection using chest X-ray images. We first
review fine-tuning-based approaches, followed by features
extraction-based classification. Appendix A provides a visual
illustration of transfer learning, including fine-tuning and
features extraction approaches.

1) FINE-TUNING-BASED APPROACHES

Fine-tuning is the process of using knowledge transferred
from a different domain as initial weights for training a deep
learning model for a given task. This process takes advan-
tage of models trained on large labeled datasets to enable
learning models effectively for smaller labeled datasets [46].
In this section, we review deep learning approaches that
used pre-trained deep learning models (mostly pre-trained on
ImageNet) for fine-tuning using chest X-ray images to learn
models for COVID-19 detection.

Some approaches have used off-shelf neural networks for
fine-tuning the trained models on chest X-ray images. In [47],
a transfer learning approach of a pre-trained deep learning
model on ImageNet was proposed for early detection of
COVID-19 using chest X-ray images. The pre-trained mod-
els were: VGG16, VGG19 [48], InceptionResNetV2 [49],
Xception [50], InceptionV3 [51], MobileNet [52], and
DenseNet121 [16]. The authors used a public dataset of
chest X-ray images for fine-tuning the pre-trained models.
The datasets were: 1) 164 X-ray images of COVID-19 were
obtained from [33]. 2) A random selection of 210 images
from each class was done using a dataset available on
the Kaggle website which contains 5856 X-ray images
(JPEG) of two classes normal and pneumonia (viral pneu-
monia/bacterial pneumonia)’ [36]. The proposed approach

1https://www.kaggle.com/paultimothymooney/
chest-xray-pneumonia
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classified each image into one of three classes: normal,
COVID-19, or pneumonia. The authors applied an ensem-
ble of the predictions from the seven fine-tuned deep learn-
ing models. Another fine-tuning approach was presented by
El-Gannour et al. in [53]. The authors evaluated transfer
learning of models pre-trained on the ImageNet dataset for
COVID-19 classification using a chest X-ray images dataset.
The models evaluated were: VGG16, VGG19, InceptionV3,
Xception, ResNet50v2, and mobileNetv2. The COVID-19
dataset used in this paper was from [40] and [54]. The best
performing model was Xception with an accuracy of 98% and
precision of 100%.

Some studies focused on the evaluation of existing deep
learning models by fine-tuning those models using X-ray
images. An evaluation of different fine-tuning deep learning
models was done in [55]. The pre-trained deep learning mod-
els include: AlexNet [19], SqueezNet [56], GoogleNet [57],
ResNet-50 [18], DarkNet-53 [58], DarkNet-19 [58], Shut-
tleNet [59], NasNet-Mobile [60], Xception [50], Plae365-
GoogLeNet [57], MobileNet-v2 [52], DenseNet-201 [16],
ResNet-18 [18], Inception-ResNet-v28 [49], Inception-
v3 [51], ResNet-101 [18], and VGG19 [48]. The training set
for fine-tuning the pre-trained models was taken from two
publicly available datasets: 1) the CoronaHack-Chest dataset,
which randomly selected 50 images from COVID-19 images
and 50 random images from bacterial, viral pneumonia, and
normal classes [33]. This dataset was split for training and
validation using an 80:20 split, where 80% of the dataset was
used for training and 20% was used for testing. 2) Vancouver
General Hospital (VGH), British Columbia, Canada dataset
which contains 85 COVID-19 X-ray images. The images for
the other classes were taken from CoronaHack-Chest dataset.
The results showed that DarkNet-19 had the best performance
of accuracy, about 94.28%, whereas ResNet-50 accuracy was
93.69% on the test set.

A comparative study of different deep learning models
for COVID-19 detection was done by Shazia et al. [61].
This study compared the performance of VGG16, VGG19,
DenseNet121, Inception-ResNet-v2, Inception-v3, ResNet50,
and Xception neural networks. The best result was found
using DenseNet121 where the accuracy was 99.48%.

Because of the lack of enough training examples for
fine-tuning state-of-the-art deep learning models, some
approaches combined multiple datasets together to get larger
training data. An experimental study of different state-of-
the-art deep learning models on a combined dataset from
multiple publicly available imaging datasets was done in [62].
The authors used the dataset provided in [33] and [37].
The total number of COVID-19 images in the combined
dataset was 224, the total number of bacterial pneumonia was
700 images, whereas the total number of normal condition
chest X-ray images was 504. Another combined dataset was
created where viral pneumonia was added as a class. The
total number of images for viral and bacterial pneumonia
was 714. The evaluation was done for two classes classi-
fication (COVID-19 vs. Non-COVID-19) and three classes
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classification (COVID-19 vs. pneumonia vs. normal). Pre-
trained deep learning models on ImageNet were used for
fine-tuning where lower layers of the deep learning model
were kept frozen, and the remaining layers were set as train-
able. The deep learning networks used in this experimental
study are VGG19 [48], MobileNet v2 [63], Inception [49],
Xception [50], and Inception ResNet v2 [49]. The best results
were obtained by the VGGI19 network where the accuracy
of two-class classification and three-class classification was
98.75% and 93.48% respectively. The model evaluation was
done using tenfold cross-validation. A drawback of this
study is the lack of enough COVID-19 images and the data
imbalance.

Fine-tuning of Inceptionv3 model pre-trained on Ima-
geNet dataset was done in [64]. The head of Inceptionv3
was replaced with four fully connected layers. The last
fully connected layer outputs classification for three classes:
COVID-19, pneumonia, and normal. This fine-tuning was
done using 193 images randomly selected for pneumonia
and normal classes using the X-ray images dataset [36],
and 163 COVID-19 images from the COVID-19 dataset [33].
This approach showed an accuracy of 98% on the test set.
Another transfer learning and fine-tuning of the VGG16
model was done by [65] using chest X-ray images of
COVID-19 from [33]. The normal X-ray images were chosen
from [36]. The total COVID-19 positive images used was
141, whereas the total number of normal X-ray images was
1341. VGG16 was fine-tuned after freezing all the layers
except for the last three layers of the VGG16 architecture.
Data were split into training and validation, the performance
on the validation was high at 99.45% (accuracy) using 5-fold
cross-validation; however, the data was imbalanced.

Data imbalance is a critical challenge for training and
fine-tuning deep learning models. An approach that bal-
ances the data before fine-tuning deep learning was pro-
posed in [66]. This approach fine-tunes Xception neural
network trained on ImageNet. The proposed method is
called CoroNet, where the head of the neural network was
replaced with two fully connected layers. This model was
used for binary classification, three classes based classifi-
cation, and four classes based classification. The classes
for the binary classification were COVID-19 and normal,
whereas the three classes classification were: COVID-19,
normal, and pneumonia. The four classes classification were:
COVID-19, normal, pneumonia-bacterial, and pneumonia-
viral. This approach was trained and tested using 4 folds
cross-validation using two publicly available datasets. The
first dataset contains 290 COVID-19 chest radiology images
[33]. The second dataset contains pneumonia bacterial, pneu-
monia viral, and normal chest X-ray images [36]. The total
images from these two datasets were 1300 X-ray images.
To avoid the imbalanced data issue, random under-sampling
was done from the majority class until the dataset became
balanced. Therefore, the total number of COVID-19 images
was 290, the total number of normal X-ray images was 310,
the total number of pneumonia-bacterial was 330, and the
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total number of pneumonia-viral images was 327. The results
were 89.6% (accuracy for four classes classification), 95%
(accuracy for three classes classification), and 99% (accuracy
for binary classification).

Another approach that balances the dataset before
fine-tuning deep learning models was proposed in [67].
This approach uses an integrated stacking technique and
fine-tuning of deep learning models to detect COVID-19
using chest X-ray images [67]. This approach used
pre-trained deep learning models on ImageNet for fine-tuning
using chest X-ray images. The pre-trained deep learning
models were: ResNetl01 [18], Xception [50], Inception-
v3 [51], MobileNet [63], and NASNet [60]. The last con-
volution layer from each model was fine-tuned, whereas
the other layers were kept frozen. This approach used two
publicly available datasets for fine-tuning, where the learned
representations from fine-tuning were integrated using two
fully connected layers for classification. The first dataset was
the COVID-19 radiography dataset [40] which is comprised
of 219, 1345, and 1341 COVID-19, pneumonia, and normal
chest X-ray images, respectively. The second dataset was the
Chest X-ray dataset [45] which contains 142 COVID-19 chest
X-ray images. Because of the imbalance of the dataset, ran-
dom sampling of each class was done to balance the dataset.
The total images per class after the random sampling was
361, 365, and 362 for COVID-19, normal, and pneumonia,
respectively. The accuracy for three classes classifications
(i.e., COVID-19 vs. pneumonia vs. normal) was 99.08%
whereas the accuracy for two classes classifications (i.e.,
COVID-19 vs. non-COVID-19) was 99.52%

A transfer learning and fine-tuning approach was done
in [68]. The authors used the Inception v3 network [51] pre-
trained on ImageNet [69]. Since the dataset for COVID-19
is small, and to avoid over-fitting, the Inception v3 neural
network was truncated to reduce the number of parameters.
The dataset used for this work was a combination of three
datasets: COVID-19 collection dataset [33] which consists
of 162 COVID-19 chest X-ray images, pneumonia collec-
tion dataset [70], which contains 5863 chest X-ray images
of viral and bacterial pneumonia, and Tuberculosis collec-
tion [71] that has 820 chest X-ray images. The authors tried
six experiments where the data combination from differ-
ent datasets was considered. The best result was obtained
using training and testing on a subset of the data, which
includes 162 COVID-19 cases and 1583 healthy chest X-ray
images. The accuracy was 100% and the AUC was 1.0.
However, the data imbalance is a serious problem with this
approach.

An approach to detect COVID-19 using chest X-ray
images was proposed in [72]. This approach was based on
fine-tuning of SqeezeNet neural network pre-trained on Ima-
geNet [56]. The authors used offline augmentation to balance
the dataset. The network was fine-tuned with the hyper-
parameter Bayesian optimization technique [73]. The dataset
used in this approach was based on [33] and [37], where
the best accuracy was 98.26%. The issue with this approach
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is that the authors reported results on augmented test data,
which does not represent real-life test examples.

A three steps approach was proposed in [74] to detect
COVID-19 in chest X-ray images. The approach aims to
first classify a chest X-ray image as healthy (for a healthy
patient) versus infected (for an infected patient with pul-
monary diseases, which include COVID-19). If the chest
X-ray image was classified as for an infected patient with
pulmonary disease, then the second step was applied, which
aims to detect if the pulmonary infection was pneumonia or
COVID-19. If the image was classified as COVID-19, then
a Grad-CAM visualization approach was applied to show
which part of the image the neural network was used for
the decision. The dataset for this approach was a combina-
tion of multiple publicly available datasets: the COVID-19
dataset from [33], [75], and the National Research of Health
Chest X-ray dataset [42]. Fine-tuning of the VGG16 model
pre-trained on ImageNet [48] was done, where the head of
the neural network was replaced for the classification of chest
X-ray images into two classes. The accuracy of the model in
the first step was 96% and the accuracy of the model in the
second step was 98%.

To learn recognition of certain diseases based on medical
images, a combination of multiple fine-tuned deep learning
models where each model learns from different classes of
medical images can help improve disease detection. In [76],
a transfer learning approach was proposed, where three
ResNet models were trained to classify chest X-ray images.
The first model was trained to classify normal vs. diseased.
The second model was trained to classify pneumonia and
non-pneumonia. The third model was trained to classify
COVID-19 vs. non-COVID-19. After training the models,
concatenation of the three models was done where all the
layers were frozen except the classification layers were
set as trainable. New layers for concatenation and classi-
fication of the three models were added. Then fine-tuning
of the models to classify chest X-ray images of classes:
COVID-19, normal, and pneumonia were done. The datasets
for this approach were from the RSNA Pneumonia Detec-
tion challenge dataset [41] and the COVID-19 X-ray image
dataset [33]. The total number of images of normal, pneumo-
nia, and COVID-19 X-ray images were 1579, 4245, and 184,
respectively. This approach had the best accuracy of 95.5%.

Li et al. proposed the COVID-MobileXpert approach
using a knowledge transfer and distillation framework [77].
A DenseNet-121 architecture was pre-trained and fine-tuned
using an attending physician network and resident fellow
network, respectively. The pre-training was done on the chest
X-ray image dataset [42]. MobileNetv2 and SqueezNet were
used as medical student networks for on-device COVID-19
case screening. Resident follow network was used to train
lightweight medical student network using knowledge distil-
lation. The datasets used for training, validation, and testing
this approach were from [41] and [33].

A neural network called COVID-Net was proposed in [39].
This deep learning network is inspired by ResNet architecture
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and the design of the network was done by generative synthe-
sis [78]. The authors also created a benchmark dataset called
COVIDx, comprising 13,975 chest X-ray images collected
from multiple publicly available datasets. COVID-Net was
trained on ImageNet [69], then fine-tuned on the COVIDx
dataset. Compared to ResNet and VGG19, the COVID-Net
has alow number of parameters. The accuracy of COVID-Net
was 93.3% on the COVIDx test set. The dataset and source
code are publicly available.?

Fine-tuning of deep learning models trained on similar
types of images such as X-rays could yield better detec-
tion performance compared to models trained on a different
dataset such as ImageNet. A transfer learning approach was
done in [79], where a designed deep learning network called
CovXNet was trained on X-ray images of viral pneumonia,
bacterial pneumonia, and normal images. Then the trained
model was fine-tuned on a smaller dataset of COVID-19. The
CovXNet deep learning network comprises multiple residual
blocks, where each residual block has stacked depth-wise
dilated convolution layers. Stacking of multiple neural net-
works trained on different resolutions of input images was
done, where the prediction was used to learn a meta-learner
algorithm such as random forests and XGBoost. The authors
trained the deep learning network on two publicly available
datasets: 1) pneumonia dataset chest X-ray images collected
in Guangzhou Medical Center, China [37], and 2) COVID-19
dataset collected from Sylhet Medical College, Bangladesh.
The results showed an accuracy of 96.9% for COVID-19 vs.
viral pneumonia, 94.7% for COVID-19 vs. bacterial pneumo-
nia, and 90.2% for the multi-class task of COVID-19, normal,
viral, and bacterial pneumonia.

Learning data augmentation using Bayesian optimization
and autoencoder to create augmented data was proposed
in [80]. This approach was used to fine-tune pretrained neu-
ral networks such as AlexNet, ShuffleNet, ResNet18, and
GoogleNet. This approach showed superior results compared
to state-of-the-art augmentation startiges. Another approach
that uses transfer learning by fine-tuning DenseNet-121 for
COVID-19 diagnosis and discrimination of COVID-19 from
other type of pneumonia was proposed in [81]. The trained
deep learning model was compared to radiologist perfor-
mance and showed same performance as senior radiolo-
gists. Another transfer learning approach was done using
neutrosophic domain [82]. The authors converted RGB
images to neutrosophic domain which gives three type of
images: true image, indeterminacy image, and falsity image.
Then fine-tuning of three deep learning models including
AlexNet, GoogleNet, and ResNet18 was done. The best result
was obtained using chest X-ray images in indeterminacy
domain.

A convolutional support estimator network (CSEN) was
proposed for early detection of COVID-19 infections using
X-ray images [43], [83]. This proposed classifier was com-
pared to state-of-the-art neural networks such as DenseNet-

2https:// github.com/lindawangg/COVID-Net
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121, where CSEN showed lower accuracy for COVID-19
detection compared to DenseNet-121. A study of supple-
mental training of deep learning fine-tuning for COVID-19
classification using X-ray images was performed in [84].
The authors evaluated performance of transfer learning of
models (DenseNet-121) trained on a similar task to classify
COVID-19. Then fine-tuning of pre-trained ImageNet model
(DenseNet-121) was done sequentially on pneumonia and
COVID-19 datasets.

A comparison between an ensemble of ten convolu-
tional neural networks (CNN) and radiologists was per-
formed in [44]. The authors used TRACE4 system® to
fine-tune ResNet-50 pre-trained neural network to classify
X-ray images into COVID-19 and non-COVID-19. The X-ray
images were collected by the authors from two hospitals in
Italy. The results showed that the ensemble of CNNs had
a superior results over radiologists. Another approach for
assessing the severity of COVID-19 progression was pro-
posed in [85]. This approach uses transfer learning of VGG16
pre-trained on pneumonia dataset [41] for fine-tuning. This
approach classifies X-ray images into normal, mild, moder-
ate, and severe.

2) FEATURES EXTRACTION

In this section, we review papers that extract deep fea-
tures or traditional features from chest X-ray images to
apply classification algorithms for COVID-19 detection. The
extracted deep features were from ImageNet-based pre-
trained deep learning models and traditional features, such
as co-occurrence matrix features. The following paragraphs
explain the proposed methods for COVID-19 detection using
extracted features from chest X-ray images.

A cascaded deep learning approach for COVID-19 detec-
tion in chest X-ray images was proposed in [86]. This
approach used VGG16 [48] and Capsule-Net [87]. The deep
features were extracted from the last convolution layer of
the pre-trained VGG16 model on ImageNet. The extracted
features were fed to Capsule-Net, followed by classification
layers for two classes and multi-class classification. The
proposed method was evaluated on the chest X-ray images
dataset [31]. The two classes classification were: COVID-19
positive vs. COVID-19 negative, whereas the classes for
multi-class classification were: viral pneumonia, normal,
and COVID-19 positive. The average precision, recall, and
Fl-score for two classes classification were 0.97 using the
VGG-CapsNet method.

A comparison study of transfer learning of deep learn-
ing models pre-trained on ImageNet was done in [88]. The
authors extracted features from each model and passed the
features to a perceptron neural network to classify each
chest X-ray image into one of three classes: normal, pneu-
monia, and COVID-19. The pre-training models used in
this study were: VGG16, VGG19, DenseNet201, Incep-
tion_ResNet_v2, Inception_v3, ResNet50, MobileNet_v2.

3 http://www.deeptracetech.com/files/TechnicalSheet_ TRACE4.pdf
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The dataset for this study was based on two publicly available
datasets: chest X-ray & CT dataset [33], [37], and [33].
The best accuracy was obtained by Inception_Resnet_v2
extracted features, where the accuracy was 92.18% and the
F1 score was 92.07%.

In [89], a hybrid approach for COVID-19 detection using
chest X-ray images was proposed. This approach is based
on AlexNet [19] pre-trained on ImageNet for COVID-19
detection using three methods. 1) feature extraction followed
by feature selection and SVM classification algorithm. 2)
Fine-tuning of AlexNet, where the classification layer was
replaced with a fully connected layer with three nodes to
classify chest X-ray images into three classes: normal, pneu-
monia, and COVID-19. 3) AlexNet improved version was
proposed where two fully connected layers were added while
replacing the classification layer from the original AlexNet.
The dataset for this approach was from publicly available
datasets: 1) NIH chest X-ray dataset,* 2) COVID-19 chest
X-ray images dataset [42] and [33], where random images
were selected from each class: normal, pneumonia, and
COVID-19, for training the model on a balanced dataset.
The best result of this approach was obtained using improved
AlexNet + ReliefF + SVM (where total selected features
were 40), and the accuracy was 98.64% and the F1-score was
98.63%.

An approach for detecting COVID-19 in a chest X-ray
images dataset was proposed in [90]. This method created
a dataset from two publicly available datasets [33] and [42].
The dataset was called RYDLS-20 which was made available
by the authors.” This approach extracts hand-crafted texture
features and deep features from chest X-ray images for train-
ing several classifiers. The methods for hand-crafted features
extraction were: Local binary pattern (LBP) [91], Elongated
quinary patterns (EQP) [92], binarized statistical image fea-
tures (BSIF) [93], local phase quantization (LPQ) [94], local
directional number (LDN) [95], oriented basic image features
(oBIFs) [96], Locally encoded transform feature histogram
(LETRIST) [97]. The deep features were extracted from
the pre-trained Inception-v3 model [57]. After the fusion of
the features, the authors trained the classifiers. Moreover, the
authors tried late fusion of the prediction of each classifier.
The classification was done for the flat multi-class classifica-
tion task and for the hierarchical classification task, where the
hierarchical classification task was done using Clus-HMC.%
The best result was obtained using an early fusion of BSIF
and EQP and LPQ features with SMOTE over-sampling for
data balancing [98] where the F1-score was 0.889. Another
approach was proposed in [99], where chest X-ray images
were used to extract texture features using a Co-occurrence
matrix and local binary patterns, where the total number of
extracted features was 129 features. These features were used

4https://Www.kaggle.comlnih-chest-xrays/data

5https://tinyurl.com/metka4ck

6 Available for download at https://dtai.cs.kuleuven.be/
clus/
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to train a feed-forward neural network comprising 4 hidden
layers. Moreover, the authors experimented with flattening
the chest X-ray images to a vector and feeding the flattened
vector to a feed-forward neural network of four hidden layers.
Additionally, the authors experimented with CNNs of four
convolution layers followed by two fully connected layers
for classification. This method was trained and validated
using publicly available datasets from [100] and [33]. The
results for the trained feed-forward neural network to classify
chest X-ray images as normal, pneumonia, or COVID-19
was 98.82% (accuracy), whereas CNN accuracy was 95.48%,
and texture feature extracted based feed-forward neu-
ral network accuracy was 98.56%. Although this method
showed high performance, the data is imbalanced, and the
feed-forward neural network had numerous parameters which
can lead to over-fitting. Moreover, the extracted features
were from the entire chest X-ray images which cover a
larger area beyond the lung. This feature extraction could
cause learning from non-relevant information for the target
task.

In [101], the authors proposed a deep learning approach
called ConStacknet which is based on StackNet meta-
modeling in combination with CNNs to learn discrimina-
tive features from X-ray images. Two datasets were used
to evaluate this approach: 1) A publicly available dataset
comprising 5216 X-ray images which include 4273 pneu-
monia cases, and 1583 normal cases [36]. 2) Kaggle dataset
of COVID-19 X-ray images [102], and 3) a publicly avail-
able dataset that contains X-ray images of patients having
pneumonia infections including COVID-19 disease [33]. The
authors used VGG16 architecture pre-trained on ImageNet to
extract deep features from chest X-ray images. Then, some
processing of the features was done, such as standardization
(removing the mean and scaling to unit variance). After that,
Stacknet was applied, which consisted of multiple classifiers
for ensemble [103] and [104]. The accuracy of the Stacknet
model was 97% on the test set.

An approach for features fusion was proposed in [105].
This approach incorporate traditional features (histogram
oriented gradient) and deep features extracted from X-ray
images for learning to detect COVID-19. The authors showed
that fusion of features has a superior results over classi-
fiers that uses deep features and traditional features inde-
pendently. Another approach for evaluation and assessment
of COVID-19 based models was proposed in [13]. The
authors used Inception-v3 features extraction and selection
followed by classification using SVM and assessment using
entropy.

B. TRAINING FROM SCRATCH

In this section, we review the papers which presented deep
learning approaches trained from scratch for COVID-19
detection using chest X-ray images datasets. These
approaches can be categorized into single model-based
approaches and multiple model-based approaches as detailed
in the following subsections.
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1) SINGLE MODEL-BASED APPROACHES

Convolutional Neural Networks (CNNs) are a type of neu-
ral network that enable learning spatial features and weight
sharing using kernels for grid-like data topology. The details
of CNNs have been discussed in Section II. In this subsection,
we review the papers that presented a single model-based
CNN, which was trained for detecting COVID-19 using chest
X-ray images.

A simple architecture that comprises two convolution
layers was designed, trained, and presented in [106]. This
neural network was trained using data from three publicly
available datasets: 1) the Joeseph Paul dataset, which con-
tains 542 frontal chest X-ray images from 262 patients [33]
and [33]. 2) the COVID-19 Radiography dataset created
by researchers from Qatar University [40], [54]. 3) Dataset
created by Kermany et al. [100]. The combined dataset was
split into training, validation, and testing sets, where the
accuracy of the test set was 99.2%.

The quality of X-ray images is essential for high-
performance deep learning models. Therefore, an approach
that studied the pre-processing of chest X-ray images for
performance improvement was done in [107]. This approach
has a pre-processing step, which includes an adaptive median
filter and histogram equalization. The CNNss trained to clas-
sify the chest X-ray images had four layers of convolution,
followed by two fully connected layers. Training CNN was
done using two datasets: 1) COVID-19 Radiography dataset
which had 219 positive COVID-19 chest X-ray images [40],
and 2) chest X-ray dataset created by Murali Kummitha
which contained 107 chest X-ray images of effusion disease
and 1000 chest X-ray images of normal cases [34]. The results
showed higher performance when using the pre-processed
images compared to non-processed images for both tasks: two
classes classification (i.e., COVID-19 vs normal) and three
classes classification (i.e., COVID-19 vs normal vs effusion).
The accuracy of the deep learning model when applying
histogram equalization pre-processing step for two classes
and three classes classification was 98.62% and 95.77%
respectively.

Since there are limited COVID-19 datasets of chest X-ray
images, and the chest X-ray images cover a wide range of
areas beyond the lung such as the shoulders and neck, seg-
mentation of the lung lobes from chest X-ray images is impor-
tant for the convolutional neural network models to learn
effective and discriminative features and to extract patches
of chest X-ray for training a neural network. To address
the shortage of training data, an approach was proposed
in [108] to extract patches from chest X-ray images. This
method used FC-DenseNet103 for semantic segmentation of
the lung, then K patches were extracted from the images
to train a classification architecture (ResNet18). The final
classification was an ensemble of K patches predictions of
a chest X-ray image, where K = 100. The method was
trained on chest X-ray images from [32], [70], [109] for lung
segmentation. For the classification task, the training and test-
ing datasets were combined from multiple publicly available
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datasets [32], [33], [70], [109]. The labels for the classifi-
cation task were normal, bacterial pneumonia, tuberculosis,
and viral pneumonia (which include COVID-19 cases). The
results using the ensemble of patches (local appearance) are
better than the models trained with the entire images (global
appearance), where the accuracy of the ensemble model was
88.9%. Another approach that used segmented lung lobes
for learning attention-based approach called MANet (mask
attention network) was proposed in [110]. This approach
avoids the problem of heavy computations using a soft atten-
tion approach by using the mask. This approach used two
stages: segmentation of the lung region stage, and the clas-
sification stage. The segmentation stage used U-Net with
ResNet backbone for obtaining lung region masks. Then,
the classification stage used chest X-ray images and the
segmentation masks to classify each chest X-ray image into
five classes: normal, tuberculosis (TB), bacterial pneumonia
(BP), viral pneumonia (VP), and COVID-19. Multiple deep
learning architectures were used for the classification task,
including ResNet34, ResNet50, VGG16, and Inception-v3.
The dataset for this approach came from multiple publicly
available datasets: The first dataset is Montgomery County
and Shenzhen No.3 People’s Hospital [70], the second dataset
is an image dataset [37], and the third dataset is a publicly
available dataset of COVID-19 chest X-ray images available
on GitHub [33]. The total number of chest X-ray images for
normal, COVID-19, tuberculosis, bacterial pneumonia, and
viral pneumonia were 1840, 433,394, 2780, and 1345 respec-
tively. ResNet50-based MANet had the best accuracy at
97.06%.

Some state-of-the-art architectures contain numerous
parameters, therefore, training such architectures requires
large labeled datasets. To address that, modification of the
deep learning architectures is required to get a smaller
architecture. For instance, a method to detect COVID-19 in
X-ray images was proposed in [75]. This method modified
the original DarkNet architecture [111], where the changes
mainly were fewer layers and changes in the filter sizes. This
approach was trained and tested for two classes classification
(COVID-19 positive, normal) and three classes classification
(COVID-19, normal, Pneumonia). The dataset used for this
experiment was based on 1) 127 COVID-19 X-ray images
from [33], and 2) randomly selecting 1000 images for pneu-
monia and normal classes (500 for each class) from [42].
The training and testing were done using a 5-fold cross-
validation approach. The results for two-class classification
were 98.08% (accuracy) and 87.02% (accuracy) for three-
class classification. Although the accuracy was high, the total
number of COVID-19 images used in this study was very few
and the dataset was imbalanced.

An approach for chest X-ray content-based image retrieval
(CBIR) was proposed in [112]. This approach was based
on ResNet50 pre-trained on ImageNet. The ResNet50 was
fine-tuned using chest X-ray images of COVID-19, pneumo-
nia, and normal. Then feature extraction from two different
layers within the ResNet50 was done. Moreover, an attention
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module was plugged in to learn the spatial attention mask.
The extracted features and the attention mask were combined
using element-wise multiplication [113]. Followed by con-
volution layers to output the generated embedding features.
This approach used multi-similarity loss [114]. The dataset
used for this approach is based on a COVID-19 publicly
available dataset [39] and new chest X-ray images collected
from hospitals in Massachusetts, the United States of Amer-
ica, and South Korea. The total number of images used in
this approach was 18,055 chest X-ray images. Since chest
X-ray images often have texts overlaid on the image, a pre-
processing step was done. This pre-processing step included
image cropping, resizing, windowing, and lung segmentation.
The lung segmentation was done using an ensemble of five
neural networks of the same backbone structure Efficient-
Net [115]. The results showed high accuracy for CBIR com-
pared to the baseline (original ResNet50), where the accuracy
was 83.9% and COVID-19 sensitivity was 85%.

An ensemble deep learning model approach was proposed
in [116], where the deep learning networks were MobileNet
and ShuffleNet. These two neural networks were trained
in parallel and the learned features were merged together
and used for a fully connected network for classification.
The data to evaluate this method was from four datasets:
BIMCV COVID-19 dataset [35], Shenzhen dataset [117],
Montgomery dataset [117], and CoronHack dataset [33]. The
accuracy and Fl-score of this method were 95.83% and
95.94% respectively.

Training neural networks to detect COVID-19 using chest
X-ray images, followed by extracting the features from the
trained deep learning models for features selection and clas-
sification using SVM was done in [118]. This approach clas-
sified X-ray images into pneumonia, COVID-19, or normal
class. This approach used a dataset collected by the author,
where each class had 364 X-ray images. The author cre-
ated an enhanced version of the dataset using the approach
proposed in [119]. The training of deep learning models
was done on both raw and enhanced datasets. Four neural
networks were trained from scratch, where the neural net-
works were: AlexNet [19], VGG16 [48], GoogleNet [57],
and ResNet [18]. After training the neural networks, fea-
ture extraction was done from each neural network where
the number of features extracted from each network was
1000 features. Then feature selection was done using two
meta-heuristic algorithms: Binary Gray Wolf Optimiza-
tion [120] and Binary particle swarm optimization [121]. The
selected features were used to train a Support Vector Machine
(SVM) algorithm for classification into one of three classes:
pneumonia, COVID-19, or normal. The best result was got
using a combination of AlexNet and VGG16 features, where
the accuracy was 99.08%. Another approach that used two
neural networks, MobileNet and SqueezeNet was proposed
in [122]. This approach comprised of pre-processing the
chest X-ray images using a fuzzy color technique to remove
noise from the images, followed by stacking to combine
the enhanced images with original images for better qual-
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ity [123], [124]. After the pre-processing, training of two
neural networks, MobileNet and SqueezeNet was performed.
Then using social mimic optimization (SMO) [125], features
selection was applied. Then the SVM was used to classify
chest X-ray images as normal, pneumonia, or COVID-19.
The dataset used in this approach was based on [33] and [40].
The accuracy of this approach was 98.25%.

Lung segmentation and COVID-19 localization approach
was proposed in [126]. This approach uses chest X-ray
images with segmentation ground truth for training U-Net,
U-Net++, and Pyramid Networks (FPN). The authors con-
structed the largest benchmark dataset with chest X-ray
images of 33920 image. An approach to address the short-
comings of imbalanced dataset was proposed in [127],
where MixMatch algorithm is applied [128]. Data imbalance
was corrected using the loss function weights for under-
represented class. A prognostication approach of patients
with COVID-19 using Atrtificial Intelligence (AI) and chest
X-ray images was proposed in [129]. This approach uses
chest X-ray images and clinical data to train EfficientNet
deep neural network. Then deep features extracted from the
trained model and clinical data were used to build time-to-
event models for the purpose of predicting the risk of disease
progression.

A semi-supervised approach for classifying COVID-19
X-ray images was proposed in [130]. This approach is
called Semi-supervised Open set Domain Adversarial net-
work (SODA). Features extraction was done from pre-trained
network, then feeding the latent features to different clas-
sification networks. An approach to validate deep learning
results for COVID-19 classification using X-ray images was
proposed in [131]. This approach is called Hide-and-Seek,
which uses modified versions of the training, validation, and
testing sets. The modifications include cropping the lungs out
of X-ray images to study the effect on deep learning features
learning and results. A deep anomaly detection approach
called confidence aware anomaly detection (CAAD) was
proposed in [132]. This approach consists of feature learning
and extraction, anomaly detection and confidence prediction
modules. This approach was used to detect viral pneumonia
cases using in-house built X-ray images dataset.

2) MULTIPLE MODEL-BASED APPROACHES

Multiple model-based approaches presented in this subsec-
tion are for methods that integrate and train more than one
deep learning model to detect COVID-19 using chest X-ray
images, as detailed in the following paragraph.

In [133] a convolutional neural network and an autoen-
coder were trained, where the latent space of the autoencoder
was the input to a convolutional neural network. This method
shows 2% better accuracy compared to a VGG16 model
on a chest X-ray images dataset comprising 400 COVID-19
positive cases and 400 normal cases [33]. Another approach
that combines Xception and ResNet50v2 networks for learn-
ing features and detecting COVID-19 using chest X-ray
images datasets was proposed in [134]. This approach trains
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Xception and ResNet50-v2 in parallel where the network
heads of both networks were removed. The learned features
of size 10 x 10 x 2048 from each of the two networks were
concatenated. Then a convolution layer was applied with a
filter size of 1 x 1 and no activation, followed by a dropout
and classification layer. This approach classified chest X-ray
images into normal, COVID-19, and pneumonia. The authors
also proposed a training mechanism for imbalanced data,
where the majority class is divided into many subsets of size
equal to the minority class. Then, each subset is combined
with the minority class to form a training set. A deep learning
model was trained for each combined training set, which
resulted in n trained models. The dataset used for training and
validating this approach was based on [33] the RSNA pneu-
monia detection challenge dataset. This approach showed
an accuracy of 91.40% whereas the accuracy of detecting
COVID-19 was 99.56%

V. DISCUSSION
Evidence-based medicine (EBM) is defined as integrating
current best evidence with clinical expertise [137]. EBM
is a continuously improved process that requires a non-stop
addition of new tools and research. The current vision of
radiology medical practice is to shift from volume-based
practice using standardized methods toward more afford-
able yet high-quality services that are patient-centered with
a focus on the patient’s outcome [138], [139]. Integrating
quantitative radiological-imaging-based evidence based on
literature and continuous modeling improvement to serve as
a robust decision support tool along with histopathological
findings is an overdue step [140]. Within the context of
the presented work, EBM is planned by integrating X-ray
image analysis and machine learning techniques as a decision
support tool in medicine. Specifically, the potential value of
artificial neural network (ANN) algorithms in incorporating
evidence-based practice in the clinic is promising in much
literature. [141], [142]. In this study, we reviewed studies
that aim at recruiting artificial neural networks as an ana-
lytical metric to support the decision taken in the detection
of COVID-19 infection, which is a considered relatively new
approach in medicine. According to these studies, neural net-
work algorithms showed a valid promise to aid in adopting the
evidence-based medicine treatment tailored for each patient
by enhancing the evidence collection approach [143], [144],
and [145]. These studies warrant further investigation of the
validity of such approaches by investigating artificial neu-
ral network algorithms on phase two and three randomized
clinical bases. Deep learning classifiers might provide the
physician with tools that go beyond the traditional anatomical
descriptors of the image. Such a method will increase the
mass of scans, expedite scanning time, and reduce the efforts
of radiologists in analyzing imaging scans based on infection
status.

During our literature review process, we came across
articles that used different radiological images, computed
tomography or X-ray images, as the source data to train
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the classification algorithms. A comparison between CT and
X-ray has to be drawn. The feasibility of recruiting CT
image data for a decision-supportive tool for COVID-19
patients has many considerations. Because computerized
imaging tomography is helical three-dimensional imaging
that requires intensive work to analyze based on two aspects.
First, is the physical aspect, where the three-dimensional
image processing of CT requires training the models on larger
images of raw data [146]. This will require heavy analysis,
coding, and labor-intensive assessment of both the code and
the reliability of the images. X-ray images, on the other hand,
are two-dimensional images that are easier to analyze. The
size of the CT raw data generated also requires heavy storage
and computing capacity. From a broader perspective, it is
a challenging task to generate intra- and inter-institutional
reproducibility in terms of imaging parameters and protocol
because of the difficulty of enforcing the same parameters
and protocols throughout institutions and training all tech-
nicians to rapidly reproduce the same method repeatedly.
For example, in the case of implementing the same dis-
cretization level and reconstruction algorithms [140]. These
parameters, among others, may affect image quality. From an
operational perspective, the scheduled maintenance routine,
quality assurance program, and common malfunctions of the
CT machine will add to a higher downtime compared to
the X-ray, which will translate into hardship in conducting
research and generating data. On a similar note, the cost of
acquiring a CT image is expensive and may not be cost-
effective. Second, as for the clinical aspect, the time needed
to generate a CT image requires a longer time as opposed to
a chest X-ray. Such a factor means that having a COVID-19
suspected patient waiting for his or her turn in addition to the
scan time, generation of the images, analysis by a radiologist,
and transferring the reports to the attending physician will
add to a higher waiting time for the patient. In addition,
COVID-19 patients may complain of severe lung symptoms,
which will make them unable to hold their breath properly
during CT scanning, especially elderly and pediatrics [147],
[148]. Movement during the CT scan will cause motion arti-
facts that will affect the imaging quality by reducing the lung
volume or deforming the voxel intensity value. Consequently,
it will become more challenging for a machine-learning algo-
rithm to extract features from the images due to noise and
poor quality.

From the aforementioned discussion, conducting a quan-
titative imaging analysis, by the virtue of machine learning
algorithms, is feasible using X-ray chest radiographs. On a
similar note, the efficacy of building machine learning models
roots in the validity and robustness of the mined data such
as X-ray images. Furthermore, the total number of images in
each class is important, because they will have a pronounced
statistical effect on the data, such as skewness, kurtosis, and
deviated means, which will perturb the validity of the model.

In some articles reviewed, there is a limited number
of COVID-19 chest X-ray images versus pneumonia chest
X-rays. Therefore, ensuring a balanced dataset is of utmost
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TABLE 2. Summary of reviewed papers which include the datasets, performance, and the category of the COVID-19 detection methods.

Ref Datasets and Source code

Performance Category

Datasets:

Chest X-ray images:1) 146 images of COVID-19 from
[47] [33].

2) 420 images of pneumonia from [36].

Source code: Not available.

Accuracy (%):

1) VGG16: 96.88

2) VGG19: 95.31

3) Inception ResNetV2: 8§9.06
4) Xception: 95.31 Transfer Learning - Fine-tuning
5)InceptionV3: 92.66
6) MobileNet: 89.06
7) DenseNet121: 92
8) Ensemble: 98

Datasets:
Chest X-ray:1) a publicly available dataset of
pneumonia cases [36].

2) 967 X-ray images contains three
classes: pneumonia-bacterial,
pneumonia-viral, and normal
Source code: Available HERE

[101] | 2) Kaggle dataset [102]. Accuracy: 97% Transfer Learning - Feature extraction
3) a publicly available dataset of pneumonia
and COVID-19 cases. [33].
Source code: Not available.
Datasets:
Chest X-ray:1) a publicly available dataset of COVID-19
cases [33].
[106] | 2)adataset by Qatar University [40] Accuracy: 99.2% Training from scratch - Single Model.
[54]
3) Pneumonia cases dataset [100].
Source code: Not available.
Datasets:
Chest X-ray:1) a publicly available dataset
of X-ray images [42].
[77] Zgazezu[b; ﬁly available dataset of pneumonia Accuracy : 88% Transfer Learning - Fine-tuning.
3) a publicly available dataset of COVID-19 cases
[33]
Source code: Available HERE
Datasets:
Chest X-ray images for segmentation of lung from
[109], [32],
[108] 58]9??(1 for classification from ?lc _C;::roarzy:_g?ﬁy? Training from scratch - Multiple models
[32], [70],
(33]
Source code: Available HERE
Datasets: Results for two classes
Chest X-ray images from two publicly classification:
available datasets: 1) Total of 127 COVID-19 Accuracy: 98.08%
ositive cases from [33]. F1-score: 96.51% .. .
(73] I2)) Total of 1000 images selected randomly Results for three Training from scratch - Multiple models.
from [42] for two classes: classes classification
no findings and pneumonia. :Accuracy: 87.02%
Source code: Available HERE Fl-score: 87.37%
Four classes
classification:
Datasets: F1-score = 89.8%
X-ray images from two publicly available Accuracy = 89.6%
datasets. 1) 290 COVID-19 X-ray images from Three classes
[66] [33]. classification: Transfer learning - Fine-tuning

F1-score = 95.6%
Accuracy = 95%
Two classes
classification:
F1-score = 98.5%
Accuracy = 99%

importance for the robustness and reliability of any learning
model. In the articles by [62], [64], [68], and [99] the data
was imbalanced, which cause bias in the trained model. Other
researchers have applied several approaches to overcome the
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data imbalance problem, such as under-sampling the majority
class, until the number of images becomes balanced, which
was applied in [66]. In [67] and [89], random sampling of
images from each class in the combined dataset was done to
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TABLE 3. Summary of reviewed papers which include the datasets, performance, and the category of the COVID-19 detection methods.

Ref Datasets and Source code Performance Category
Datasets:
Chest X-ray images from two publicly
available datasets: 1) CoronaHack-Chest
dataset, where randomly selecting 50
images from COVID-19 cases and the other DarkNet-19
classes was done. [33]. accuracy = 94.28% . . .
[55] 2) Vancouver General Hospital (VGH), ResNet-50 Transfer Learning - Fine-tuning
British Columbia, Canada dataset which accuracy = 93.69%
contains 85 COVID-19 X-ray images.
The dataset used for this approach was
available HERE
Source code: Not available.
Datasets:
chest X-ray Images from two datasets:
1) RSNA Pneumonia detection
[76] challenge [41]. Accuracy = 95.5% Transfer Learning - Fine-tuning
2) COVID-19 X-rays
[33]
Source code: Not available.
Datasets:
Chest X-ray from a publicly available COVID-19 Accuracy: 98% . . .
[53] dataset [40] Precision: 100% Transfer Learning - Fine-tuning
[54]. recision: o
Source code: Not available.
Datasets:
Chest X-ray images from four publicly
available datasets.
1) 3296 COVID-19 chest X-ray images from
[35].
[116] Zf)r(?r?lz[ ?? ;1]—'COVID—19 chest X-ray images ? lc _Csl::r()élrcey=_9955"9i3(7? Training from scratch - Multiple Models
3) 138 non-COVID-19 chest X-ray images
from [117].
4) 3343 non-COVID-19 chest X-ray images
from [33].
Source code: Not available.
Datasets:
Chest X-ray images from a publicly
available dataset [31],
which contains chest X-ray images for three classes:
[86] COVID-19, normal, and viral pneumonia. Average Fl-score = 0.97 | Transfer Learning - Features extraction.
The total number of images is 219, 1345, and 1341
images for COVID-19, pneumonia, and
normal cases respectively.
Source code: Available HERE
Datasets:
chest X-ray images from two publicly available datasets:
1) COVID-19 datasets [33].
2) chest X-ray datasets of pneumonia, normal, and
[89] COVID-19 [40].Total Accuracy of 98.25% Transfer Learning - Features extraction
images of COVID-19 is 295, 65 of normal
images, pneumonia X-ray images of 98.
where the total chest X-ray images is 458 .
Source code: Not available.
Datasets:
The authors used their own chest X-ray dataset,
where the images are categorized into
[118] | three classes: Pneumonia, COVID-19, Accuracy = 99.08% Training from scratch - Multiple Models
and normal. Total images per category
was 364 chest X-ray image.
Source code: Available HERE
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TABLE 4. Summary of reviewed papers which include the datasets, performance, and the category of the COVID-19 detection methods.

Ref Datasets and Source code Performance Category
Datasets:
COVIDx dataset: a benchmark
dataset consisting of 13975 chest X-ray
images including COVID-19, pneumonia,
and normal chest X-ray images.
This dataset was collected from
multiple publicly available datasets
Source code: Not available.
Datasets:
chest X-ray images from two publicly
available datasets [33] Accuracy = 92.18%
[33], F1 score = 92.07%
and [37].
Source code: Not available.
Datasets: Accuracy = 98.75%
chest X-ray images from publicly (for two classes
[62] available datasets [33] classification) Transfer Learning - Fine-tuning
and [37] Accuracy = 93.48%
Source code: Not available. (for three classes classification task)
Datasets:
chest X-ray images from publicly
available datasets [33]
[75]
[42].
Source code: Not available.
Datasets:
chest X-ray images from three publicly
available dataset:
[68] (33]
[36]
[70].
Source code: Not available.
Datasets:
chest X-ray images collect from
multiple publicly available datasets
[33]
[42].
The collected data was
named RYDLS-20.
Source code: Not available.
Datasets:
chest X-ray images from [37],
[79] and COVID-19 dataset from Accuracy = 96.9% Training from scratch - Single Model
Sylhet Medical College, Bangladesh.
Source code: Available HERE
Datasets:
chest X-ray images from two publicly
available datasets [33] Accuracy for all classes = 91.40%
and RSNA pneumonia detection Accuracy for COVID-19 = 99.56%
challenge.
Source code: Available HERE
Datasets:
chest X-ray images from two
publicly available datasets:
1) COVID-19 dataset
[72] [33] Accuracy = 98.26% Transfer Learning - Fine-tuning
2) Kaggle chest X-ray
pneumonia dataset
[37].
Source code: Not available.

[39] Accuracy =93.3% Training from scratch - Single Model

[88] Transfer Learning - Features extraction

[74] Accuracy = 98% Transfer Learning - Fine-tuning

Accuracy = 100%

AUC=1.0 Transfer Learning - Fine-tuning

[90] F1-score of 0.889 Transfer Learning - Features Extraction

[134] Training from scratch - Multiple Models
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TABLE 5. Summary of reviewed papers which include the datasets, performance, and the category of the COVID-19 detection methods.

Ref Datasets and Source code Performance Category
Datasets:
chest X-ray Images from three publicly
available datasets
1) NIH chest X-ray dataset _ s
[89] COVIDI19 chest X-ray dataset ACC}lraCy__ 98.64% Transfer Learning - Features Extraction
[42]. F1-score = 98.63%
3) COVID-19 chest X-ray images
dataset [33].
Source code: Not available.
Datasets: Accuracy of feed-forward
chest X-ray images from two publicly neural network using
available datasets:1) chest X-ray images raw images = 98.82%
[99] from [100], . Accuracy using CNNs =95.48%. Transfer Learning - Features Extraction
of normal and pneumonia cases. Accuracy using texture
2) chest X-ray images of COVID-19 features as input to
patients [33]. feed-forward neural network
Source code: Not available. was 98.56%.
Datasets:
chest X-ray images from three publicly
available datasets:
1) Montgomery County and Shenzheno. .
[110] | 3 People’s Hospital [70]. ?chgrgcgyusmg MANet Training from scratch - Single Model
2) Chest X-ray images dataset [37]. R
3) COVID-19 chest X-ray images [33]
[33].
Source code: Not available.
Datasets:
chest X—lray images from two publicly available Accuracy for three
datasets: classes classification
1) chest X-ray images of 219, 1345,1341
; was 99.08%
for COVID-19, pneumonia, . R .
[67] . Accuracy for two Transfer Learning - Fine-tuning
and normal respectively .
[40] classfzs )
2) Total of 142 COVID-19 chest X-ray images classification
[45]. was 99.52%
Source code: Not available.
Datasets:
Chest X-ray images from two publicly available Accuracy:for two
datasets 1) 219 COVID-19 cases chest X-ray images | classes classification
[107] [40]. 2) total of 1107 chest X-ray 98.62%. Training from scratch - Single Model
images of effusion disease and normal cases For three classes
[34]. classification 95.77%
Source code: Not available.
Datasets:
Chest X-ray images from publicly available
[133] | dataset [33], which consists of Accuracy: 98% Training from scratch - Multiple Models
400 COVID-19 cases and 400 normal cases.
Source code: Not available.
Datasets:
Chest X-ray from two publicly available datasets:
1) 193 images were selected randomly for each . . .
[64] . Accuracy: 98% Transfer Learning - Fine-tuning
of normal and pneumonia classes. [36]
2) 163 COVID-19 images from [33].
Source code: Not available.
Datasets:
Chest X-ray images from two publicly available A
datasets: 1) Total of 141 COVID-19 positive Accuracy on validation
set =99.45% . . .
[65] cases from [33]. S Transfer Learning - Fine-tuning
. F1-score on validation
2) Total of 1341 images of normal X-ray L
images from [36] . set=97.13%
Source code: Not available.
Datasets:
chest X-ray images from public
COVID-19 dataset [39] and chest X-ray _ .. .
[112] images collected from affiliated Accuracy = 83.9% Training from scratch - Single Model
hospitals in MA USA, and South Korea .
Source code: Not available.
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TABLE 6. Summary of reviewed papers which include the datasets, performance, and the category of the COVID-19 detection methods.

Ref Datasets and Source code

Performance Category

Datasets:

Chest X-ray images of posterior-anterior
[80] view (666 images), anterior-posterior
view (582 images) [135] [33] [41]
Source code: Available HERE

Fl-score = 62% Transfer Learning - Fine-tuning

Datasets:
[126] chest X-ray images with segmentation ground truth [126].
Source code: Not available.

Dice coefficient 97.99% Train from Scratch- Single Model

Datasets:

Chest X-ray images from publicly

available datasets [33] [33], and Costa Rica dataset.
Source code: Not available.

[127]

Accuracy of 95.5% Training from scratch - Single Model

Datasets:

Dataset collected from multiple hospitals including:
[129] University of Pennsylvania Health System PA, USA
and Brown University hospitals, RT, USA

Source code: Not available.

ROC-AUC 0.846 Training from Scratch - Single Model

Datasets:
[81] Chest X-ray images from CheXpert [136].
Source code: Available HERE.

ROC-AUC 0.97 Transfer Learning - Fine-tuning

Datasets:

Chest X-ray images from publicly available
dataset [100] [33]

Source code: Not available.

(82]

F1-score 0.8953 Transfer Learning - Fine-tuning

Datasets:

(431 [83] and QaTa-COV 19 datasets) [43]

Source code: Not available.

Chest X-ray images of pneumonia and COVID-19 cases (Early-QaTa-COV19

Accuracy: 95.6% Transfer Learning - Fine-tuning

Datasets:
[105] Chest X-ray images [33] [40].
Source code: Not available.

Accuracy 98.36% Transfer Learning - Features Extraction

Datasets:
[84] Chest X-ray images [41] [33].
Source code: Not available.

AUC 0.857 Transfer Learning - Fine-tuning

Datasets:
[44] Chest X-ray images [44].
Source code: Not available.

AUC 0.89 Transfer Learning - Fine-tuning

Datasets:
[130] Chest X-ray images [42] [33].
Source code: Not available.

AUC 0.90 Transfer Learning - Features extraction

Datasets:

Chest X-ray images [41] and

Private dataset from Emory University Hospital, GA, USA.
Source code: Not available.

[85]

AUC 0.93 Transfer Learning - Fine-tuning

Datasets:
[131] Chest X-ray images [42] [33].
Source code: Not available.

Accuracy 91.3% Training from scratch - Multiple Models

Datasets:
[132] Chest X-ray images [132].
Source code: Not available.

Accuracy 72.77% Training from scratch - Single Model

Datasets:
[13] Chest X-ray images [33].
Source code: Not available.

AUC 0.988 Transfer Learning - Features Extraction

Datasets:
[61] Chest X-ray images [33].
Source code: Not available.

AUC 0.988 Transfer Learning - Features Extraction

generate a smaller balanced dataset for training deep learning
models. In [90], the author used a Synthetic Minority Over-
sampling Technique (SMOTE) to synthesize new examples
(features) for the minority class [98] to balance the dataset.
Another approach to balance the instances in the dataset was
applied in [72], where data augmentation was extensively
applied for the minority class. Another novel approach for
training neural networks with an imbalanced dataset was
proposed in [133]. This training mechanism for an imbal-
anced dataset started by dividing the majority class into many
subsets of size equal to the minority class. Then, each subset

100778

is combined with the minority class to form a smaller training
set. The training was done for all the subsets of the majority
class n in combination with the minority class, which gives
f» trained models. The drawback of this approach is the time
consumption of training multiple n neural networks.

The published datasets consist of chest X-ray scans
that were designed for chest X-ray research. However,
the datasets need careful filtration and assessment to be
used for COVID-19 detection. As we previously mentioned,
a machine learning model relies on the information extracted
from the training images. We noticed that the chest X-ray
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images include scanned areas such as the shoulders and neck,
which provide insignificant information for determining the
presence of COVID-19 infection. In fact, such parts of the
image may influence the accuracy of the model classification.

In the case of COVID-19 infection, along with other pul-
monary diseases, visual inspection and investigation of the
lung by an expert is done using chest X-ray images. There-
fore, using the entire chest X-ray images for deep learning
or extracting features without segmentation of the lung may
make the model learn and extract features from other irrel-
evant parts of the X-ray images which are not related to
the lung infection. Moreover, the chest X-ray images often
have texts around the images which could lead the model to
learn these artifacts and distinguish between images based on
features unrelated to the whole lung region. An approach to
segment the lung lobes from chest X-ray images for learning
effective and discriminative features using a deep learning
model was proposed in [108]. This approach first segment the
lung lobes using a FC-DeenseNet103 deep learning network.
The segmentation was used to mask out parts of chest X-ray
images outside the lung lobes. Then the resulted images
are used for training a classification deep learning model.
Another approach to segment the whole lung region using the
ensemble of EfficientNet [115] was done in [112]. In [110],
segmentation of the whole lung region was done using U-Net
with ResNet backbone. The goal of these approaches is to
allow the deep learning model to learn to focus on lung
related features by masking out the irrelevant area of the chest
X-ray images. Therefore, applying a segmentation stage to
chest X-ray images in order to discard irrelevant content of
the images is very crucial for training deep learning neural
networks.

We observed that transfer learning of pre-trained deep
learning models on images of different domains (such as
natural images from ImageNet) was mostly facilitated in the
reviewed papers. Although transfer learning then fine-tuning
of pre-trained models is a promising approach, it is important
that the data sample be large enough to avoid over-fitting,
especially in large neural networks such as ResNet [18].
Additionally, some freezing of the pre-trained neural network
layers should be applied or truncation of the neural net-
work layers could help avoid over-fitting issues. For instance,
in [68], the authors truncated the Inception neural network
pre-trained on ImageNet for fine-tuning a relatively smaller
dataset of chest X-ray images [51].

The COVID-19 datasets used in the reviewed articles were
based on publicly available datasets provided by researchers.
Most COVID-19 datasets have a limited number of chest
X-ray images, therefore, some researchers have aggregated
multiple datasets for training and testing deep learning mod-
els. However, we noticed that most of the articles used mul-
tiple datasets of COVID-19 including the combined datasets,
which could cause a duplicate of images in the dataset, par-
ticularly if the duplicate images are in both the training and
testing sets. Therefore, combining multiple datasets into a
joint dataset could cause the unreliable performance of deep
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learning models. We suggest that the authors use a single
dataset for training, and the other for testing while apply-
ing approaches to compute quantitative similarity metrics
between images in the datasets, for the purpose of avoid-
ing image duplication [149]. Moreover, recent studies show
that a model trained on images from one institute does not
generalize well to other images collected from a different
institute [150]. The lack of such a universal model could place
a barrier in front of the use of deep learning models in clinics.
Therefore, we recommend the generalization of deep learning
models by ensuring that the model is trained on a wide variety
of different chest X-ray images, which are collected under
different conditions and protocols.

There are other factors observed in the chest X-ray images
datasets that could cause perturbation to the classification
model. These factors are a combination of pediatrics with
adult X-rays, different field of view (FOV) scans, machine
energy output (KVp), and electrical current (mAS). There-
fore, unifying the acquisition protocols of chest X-ray images
is important for efficient and general machine learning
models.

Some researchers have proposed deep learning approaches
for multi-class classification such as COVID-19, bacte-
rial pneumonia, viral pneumonia, and normal using X-ray
images [73], [75], [80], [86], [89], [107], [108], and [110].
However, these approaches uses entire X-ray images scans
which could learn non-lung related features. Therefore,
an optimal solution would be to segment the lung lobes from
each X-ray image to learn multi-class effectively.

Data and label quality are vital for effective machine learn-
ing models. The consistency of data labels poses a challenge
to learning algorithms. These inconsistent labeling could
result from human errors because of the similarity between
COVID-19 infection and pneumonia in terms of visual chest
X-ray appearance. Therefore, the data should be assigned
with detailed and clear labels. However, the labels of the
data are required to be annotated by more than one user or
verified by experts in the field to ensure the correctness of the
labels. Therefore, we suggest building a dataset of images for
COVID-19 and other pneumonia cases, where the labels for
each image are verified by more than one expert in the field.
An approach that may help in assisting labeling of data was
proposed in [112], where images similar to a given image are
retrieved for the expert to facilitate image labeling.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTION
Deep learning has revealed many promising avenues for
detecting COVID-19 cases using the data from chest X-ray
images.

A promising future direction for research is combining
multiple information sources for deep learning models. For
instance, adding information from clinical records of patients
such as disease history and vital signs in combination with
model-driven information derived from chest X-ray images
should improve deep learning models to further support radi-
ologists’ decisions. For deep learning models, combining
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Features

information when training the model should help in detecting
COVID-19 more effectively improving accuracy and gener-
alisability.

This review paper summarizes deep learning approaches
for COVID-19 detection using chest X-ray images. Further-
more, this article summarizes the available datasets of chest
X-ray images used in the reviewed approaches. Also, the
article presents a discussion of the reviewed approaches and
highlights directions for improvement. We also discuss the
future direction of COVID-19 detection using chest X-ray
images.

APPENDIX A

A. A SUMMARY OF DEEP LEARNING MODEL
ARCHITECTURES AND VISUALIZATIONS

Image classification is a highly time-consuming process.
To train a model with high accuracy, one needs a large
dataset of labeled data. However, collecting these datasets is
complex and expensive. Transfer learning approaches using a
pre-trained deep learning model may be one solution to over-
come these difficulties. In transfer learning, a deep neural net-
work model is pre-trained on a general and large dataset, such
as ImageNet. Then transfer the model to a different dataset of
the same domain. In transfer learning, two approaches can be
applied: feature extraction and fine-tuning.

Figure 6 describes a general concept of feature extraction
in transfer learning. The pre-trained network is used to extract
features from a new dataset. Then input images can be classi-
fied with the resulting features by simply substituting a new
classifier layer or applying classification algorithms such as
Support Vector Machine (SVM). Now the new model can
classify images in the new dataset with the extracted features
and a new classifier layer that is repurposed to classify images
in the new dataset.

Figure 7 depicts a scenario of a fine-tuning model. A deep
convolutional neural network (DCNN) model is first trained
on a different and larger dataset. The early layers of the
DCNN are more generic, but the later layers are more depen-
dent on the dataset. Fine-tuning refers to freezing early layers,
then unfreezing some top layers of the pre-trained model, and
finally substituting a new classifier layer. The unfrozen layers
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and new classifiers will be trained from scratch over the new
dataset. Learned features are fine-tuned to be more relevant
to the new data set.

Figure 8 presents a VGG-16 (or OxfordNet) model archi-
tecture. VGG-16 was proposed by Karen Simonyan and
Andrew Zisserman in 2014 [48]. It comprises 16 convolu-
tional layers and achieved 92.7% top-5 test accuracy on the
ImageNet dataset that contains over 14 million images with
1000 classes. VGG-16 is still widely used for image classifi-
cation and localization problems. The stacks of convolutional
layers are followed by fully connected layers and a Softmax
activation layer.

Fully connected layers generally refer to the last few layers
in a convolutional neural network. The output from the last
pooling or convolutional layers becomes the input for the
fully connected layer, which is a flattened vector. Activa-
tion functions (often called transfer functions) are operated
through activation layers. Typically, for hidden layers (which
receive the input from the previous layer and send the out-
put to the next layer), three types of activation functions
are used; Rectified Linear Activation (ReL.U), Logistic (Sig-
moid), and Hyperbolic Tangent (Tanh). For output layers
(which produce predictions), linear, logistic (sigmoid), and
Softmax activation functions are considered. Pooling layers
usually come after the convolutional layers. Pooling layers
are used to reduce the dimensions of the features and the num-
ber of parameters. This process increases so computational
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efficiency and helps to reduce the over-fitting problem. Aver-
age pooling and max pooling methods are commonly used.

Figure 9 describes a ResNet-50 model, one of the convolu-
tional neural networks. ResNet-50 has 50 layers, along with
the activation functions and pooling layers. Different from
other convolutional neural networks that learn from features,
ResNet-50 model follows a deep residual learning frame-
work where the model learns from residuals and skips some
connections between the layers. ResNet-50 aims to reduce
the complexity and enhance the accuracy of the learning.
ResNet-50 is used to learn computer vision tasks, such as
image classification and object detection.

Figure 10 shows a Long Short-Term Memory (LSTM)
neural network. LSTMs proposed by Sepp Hochreiter and
Juergen Schmidhuber in 1997 [151], are a special type of
Recurrent Neural Networks (RNNs). LSTMs were designed
to address the problem that RNNs cannot remember data for
a long time, which prevents the model from learning from
long data sequences. On the other hand, LSTMs are able to
store information for a longer period, learn new information,
and decide which information to keep or remove. Therefore,
LSTMs can solve many problems that RNNs were not effec-
tive in solving. In general, LSTMs are used when recognizing
patterns in sequences of data that may change over time. Also,
LSTMs hold promise for speech recognition, language mod-
eling, machine translation, handwriting recognition, image
recognition, and so forth.
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Figure 11 illustrates a Convolutional Neural Network Long
Short-Term Memory Network (CNN-LSTM) architecture
which involves convolutional neural network (CNN) layers
and an LSTM. In general, CNN layers are used for feature
extraction from the input images and LSTMs are facilitated
to detect any sequence or patterns in the input images. The
combination of a CNN and LSTM can strengthen the model’s
classification ability. CNN-LSTMs can be applied to various
computer vision tasks, including image classification, activity
recognition, and image and video labeling (generating a tex-
tual description from a single image or a video (a sequence
of images)).
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