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ABSTRACT The popularity of adapting deep neural networks (DNNs) in solving hard problems has
increased substantially. Specifically, in the field of computer vision, DNNs are becoming a core element
in developing many image and video classification and recognition applications. However, DNNs are
vulnerable to adversarial attacks, in which, given a well-trained image classification model, a malicious
input can be crafted by adding mere perturbations to misclassify the image. This phenomena raise many
security concerns in utilizing DNNs in critical life applications which attracts the attention of academic
and industry researchers. As a result, multiple studies have proposed discussing novel attacks that can
compromise the integrity of state-of-the-art image classification neural networks. The raise of these attacks
urges the research community to explore countermeasure methods to mitigate these attacks and increase
the reliability of adapting DDNs in different major applications. Hence, various defense strategies have
been proposed to protect DNNs against adversarial attacks. In this paper, we thoroughly review the most
recent and state-of-the-art adversarial attack methods by providing an in-depth analysis and explanation of
the working process of these attacks. In our review, we focus on explaining the mathematical concepts and
terminologies of the adversarial attacks, which provide a comprehensive and solid survey to the research
community. Additionally, we provide a comprehensive review of the most recent defense mechanisms and
discuss their effectiveness in defending DNNs against adversarial attacks. Finally, we highlight the current
challenges and open issues in this field as well as future research directions.
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INDEX TERMS Deep neural networks, artificial intelligence, adversarial examples, adversarial perturba-
tions.

I. INTRODUCTION20

Deep learning makes a significant breakthrough in providing21

solutions to many hard problems that cannot be solved using22

traditional machine learning algorithms. Examples include,23

but are not limited to, image classification, text translation,24

and speech recognition. Due to the advancement of deep25

learning neural networks and the availability of powerful26

computational resources, deep learning is becoming the pri-27

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Tucci .

mary choice for developing a wide spectrum of critical life 28

applications such as DNA analysis [1], autonomous vehi- 29

cles [2] and other security application such DDoS detection 30

and malware detection [3], [4]. 31

Adapting deep learning models to computer vision tasks 32

was set in motion by Krizhevsky et al. [5]. The authors were 33

able to successfully demonstrate the capabilities and perfor- 34

mance achievable by utilizing deep neural networks for image 35

recognition [6]. Their work sparked an increased interest 36

in deep learning and computer vision research, giving rise 37

to more complex and more powerful deep learning models 38
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FIGURE 1. Samples of adversarial attacks: DeepFool, FGSM, and HSJA
against the pre-trained ResNet-50 deep learning model. The trained deep
learning model correctly classifies the original input image with 94%
accuracy. After adding small imperceptible perturbations to the image,
the trained model misclassified the adversarial image.

such as ResNet [7] and DenseNet [8]. The introduction of39

more advanced network architectures allowed researchers to40

explore complex tasks such as X-ray analysis [9], predictive41

maintenance [10], and crop yield prediction [11].42

Despite the evident ability in solving many sophisticated43

problems with high accuracy, Szegedy et al. [12] demon-44

strated that deep neural networks are susceptible to adver-45

sarial attacks. As depicted in Fig. 1, an adversarial example46

can be generated by adding small perturbations to an image47

to fool the deep neural networks and reduce their accuracy.48

Their finding triggered the interest of researchers to study49

the security of deep neural networks. As a result, several50

adversarial attacks have been proposed in the literature that51

show different security vulnerabilities that can be exploited52

by an adversary to compromise a deep learning system. For53

example, Su et al. [13] showed that changing one pixel on an54

image can fool a deep learning model. Furthermore, different55

research works have shown the ability to generate universal56

perturbations that can fool any neural network [14].57

The inherited weaknesses of DNN models against adver-58

sarial attacks raise many security concerns especially for59

critical applications such as the robustness of deep learning60

algorithms used for autonomous vehicles [15]. Hence, differ-61

ent studies propose various countermeasure methods against62

adversarial attacks. Examples include the modification to the63

deep neural network, adding to the neural network, and many64

others are explained in this literature.65

A. MOTIVATION AND CONTRIBUTION66

The main motivation of this paper is to provide a compre-67

hensive review of the most recent deep learning adversarial68

attacks and defense methods to offer easy access to the recent69

advancement in this field and provide a jump-start to tap70

on the rapidly growing adversarial deep learning research. 71

Also, we believe there is a need to survey the current and the 72

emerging adversarial deep learning advancement and provide 73

an in-depth study about future research directions. Recently, 74

different articles have reviewed various research works in this 75

field [16], [17], [18], [19], [20], [21]. This survey is different 76

from the existing surveys in several aspects. As compared to 77

other surveys in the literature, this survey provides a com- 78

prehensive background review of the mathematical concepts 79

that are vital to understanding the working process of the 80

adversarial attacks and defense mechanisms on image clas- 81

sification, as well as it provides a clear description of the 82

terminologies and technical terms used in this domain based 83

on the most recent research and advancements in this field. 84

The distinctive part of this survey is that it provides a sys- 85

tematic and deep review of the working process of the most 86

recent and state-of-the-art adversarial attacks by focusing on 87

describing their mathematical terminologies and foundation 88

which provide an easy and profound description of these 89

attacks. Besides, we provide a general overview about the 90

effectiveness of these attacks in many terms including but 91

not limited to attack performance. Furthermore, we provide 92

a comprehensive review of the well-known defense mecha- 93

nisms by highlighting their effectiveness including their lim- 94

itations and the covered attacks. Not to mention, this article 95

mainly focuses on reviewing adversarial attacks and their 96

defense methods in computer vision. However, we provide 97

a lightweight review of the well-known adversarial attacks in 98

different contexts such as audio, 3-D data, and softwarewhich 99

help the interested readers to explore and rapidly tap on the 100

adversarial attacks in different contexts. 101

The main contributions of this article can be summarized 102

as follows: 103

• We provide an extensive study of state-of-the-art algo- 104

rithms for generating deep learning adversarial attacks 105

in computer vision 106

• We provide an in-depth study of various adversarial 107

attacks defense mechanisms. 108

• We provide a systematic and comprehensive review of 109

the adversarial threat model that covers the deep learning 110

system attack surface, adversarial knowledge and capa- 111

bilities, adversarial goals, and attack scenarios. 112

• We identify and discuss a number of open issues and 113

possible future research directions for adversarial deep 114

learning. 115

B. ORGANIZATION 116

The remainder of this paper is organized as follows. Section II 117

provides some technical terms related to adversarial deep 118

learning. In section III we provide an overview of different 119

concepts of deep learning and adversarial attacks. Section IV 120

describes the threat model of deep learning. We dedicate 121

Section V to discuss the adversarial attacks. In Section VI 122

we introduce the defense mechanisms. We discuss the future 123
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research directions of deep learning security in Section VII.124

Finally, Section VIII concludes this paper.125

II. DEFINITIONS OF TERMS126

In this section, we describe some of the technical terms used127

in this survey study.128

• Adversarial example (x̂) is a malicious permutation of129

a clean image (x) that has been generated by adding130

small perturbations (e.g., noise) to fool the deep learning131

model. The added perturbations are usually impercepti-132

ble, however, there are a few cases in which the pertur-133

bation is perceptible.134

• Adversarial perturbation is the noise that is added to135

a clean instance image to create an adversarial example.136

• The Adversary is the attacker that crafts and carries out137

adversarial attacks against the ML model.138

• Adversarial training is a kind of machine learning139

training that uses the adversarial examples within the140

training set to increase the robustness of the deep learn-141

ing model against adversarial attacks.142

• Image-Detector is a mechanism that is used to reveal143

adversarial images.144

• Fooling rate/ratio is a measurement that is used to145

evaluate the robustness of an ML model and adversar-146

ial attack intensity. It refers to the percentage of the147

adversarial examples that fooled the ML model. A high148

fooling ratio means that the attack is strong, and the ML149

model is not robust to the adversarial examples.150

• Targeted attack is an attack that forces the DNNmodel151

to misclassify an adversarial example to a specific target152

label predefined by the adversary.153

• Untargeted attack is the most common type of attack154

that forces the DNN model to misclassify the label of155

the adversarial example into any incorrect label. Such156

attacks intend to reduce the integrity and availability of157

the DNN models.158

III. BACKGROUND159

Adversarial machine learning attacks and defense meth-160

ods are formed using different mathematical concepts. This161

section provides a comprehensive overview of several con-162

cepts that are crucial for understanding how the attacks and163

defense methods work.164

A. GRADIENT DESCENT165

Optimization is the process of either minimizing or maxi-166

mizing an objective function. In machine learning, the opti-167

mization process is used to find the optimal values of the168

parameters of an objective function that minimize a cost169

function. Different algorithms can be adapted to perform the170

optimization process. Gradient descent is one of the most171

used algorithms to find the optimal parameters for a wide172

range of machine learning algorithms [22].173

Gradient descent is a first-order optimization algorithm174

that uses the gradient of the function at its current location175

to find the trajectory used to move through the search space.176

FIGURE 2. A demonstration of the difference between the local and
global maximum and minimum values as well as the impact of the
learning rate on model training. The learning rate value (shown in red)
determines the magnitude of the updates to the model’s weights.

As depicted in Fig. 2, the basic gradient descent algorithm 177

consists of: (1) calculating the gradient ∇f of the objective 178

function J (θ ), (2) moving in the opposite direction of the 179

gradient ∇f which is the direction of the steepest descent 180

that will lead to an improvement (i.e., finding the global 181

minimum) (see Fig. 2), and (3) selecting the learning rate β 182

that refers to the size of the steps toward theminimum.β is the 183

most important parameter that needs to be tuned carefully to 184

achieve a highly performed DNN model. Generally, a large 185

β allows the ML-model to learn faster. However, it could 186

drastically decrease the model’s performance since the algo- 187

rithm may result on the other side of the valley (missing the 188

optimal minimum). Small β allows the model to converge 189

by finding the local minimum after many iterations which, 190

not surprisingly, requires a long run-time. There is a trade-off 191

between the accuracy of the results and the time required to 192

perform parameter updates. 193

Gradient descent has three variants: batch gradient descent 194

(BGD), stochastic gradient descent (SGD), and mini-batch 195

gradient descent, which we will discuss in the next sections. 196

1) BATCH GRADIENT DESCENT (BGD) 197

As shown in Eq. 1, BGD calculates the gradient of the cost 198

function with regards to the model parameter θ for the whole 199

training dataset. In other words, BGD computes the gradient 200

descent over the full training dataset to perform one parameter 201

update, which explains why it is called ‘‘Batch’’ or in some 202

case ‘‘full gradient descent’’. Depending on the size of the 203

training dataset, batch gradient descent is time-consuming 204

and requires a long processing time. 205

θ = θ − β · ∇θJ (θ ) (1) 206

Despite the long processing time, BGD has several advan- 207

tages. For example, when the cost function is convex, BGD 208

with a fixed learning rate will converge to the global mini- 209

mum. When the cost function is not convex, it will converge 210

to the local minimum since it has a straight direction to 211

the minimum value, see Fig. 3. Therefore, BGD guarantees 212

convergence to the minimum value. 213
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2) STOCHASTIC GRADIENT DESCENT (SGD)214

Since BGD requires a long processing time to calculate the215

gradient for large-scale training datasets, SGD [23] was pro-216

posed to overcome BGD’s limitations. SGD is an iterative217

technique for optimizing the cost function. As illustrated in218

Eq. 2, in every iteration SGD randomly selects an example219

from the training data and calculates the gradient, then it220

performs a parameter update using the selected example.221

In contrast to BGD, where the actual gradient is calculated222

using the entire dataset, the objective of SGD is to calcu-223

late an estimation of the gradient using a small number of224

instances. The cost of updating the stochastic gradient descent225

is independent of the training dataset size and can reach linear226

convergence [23]. In some cases, the cost of training some227

ML models using SGD can reach O(1) [24]. Thus, SGD has228

become the most widely used optimization algorithm.229

θ = θ − β · ∇θJ (θ; x i; yi) (2)230

As depicted in Fig. 3, SGD has one main performance231

issue. Unlike the convergence path of BGD, which gently232

moves toward the minimum, the convergence path in SGD is233

irregular and has many fluctuations due to the noise that orig-234

inates from the random selection of the instances. Therefore,235

SGD performs high variance parameter updates [25].236

3) MINI-BATCH GRADIENT DESCENT237

Instead of using the entire training dataset to compute the238

gradient of the cost function, the training dataset is shuffled239

and then divided into mini-batches based on a predefined240

batch size [22]. Subsequently, these small batches are used to241

calculate the gradient descent of the cost function as shown242

in Eq. 3.243

θ = θ − β · ∇θJ (θ; x i:i+n; yi:i+n) (3)244

The advantages of using mini-batch gradient descent over245

other gradient descent methods are two-fold: First, it is faster246

than BGD in computing the gradient of the cost function.247

Second, with a large number of batches, mini-batch gradient248

descent fluctuates less than stochastic gradient descent while249

moving towards the minimum, see Fig. 3.250

However, mini-batch gradient descent requires tuning the251

batch size parameter. When the batches are small, extra noise252

will be added to the training process which helps in reducing253

the generalization error (i.e., regularization effect). When254

the batches are large, mini-batch gradient descent converges255

slowly but has more accurate results concerning the gradient256

error.257

B. DISTANCE METRICS258

Distance metrics are used to measure the distance between259

two points (i.e., vectors). In other words, distance metrics260

quantify the similarities between two vectors. If the distance261

is zero, the two vectors are equivalent under that distance262

metric. To compute the distance between two vectors, the263

norm of the difference between those two vectors needs to264

FIGURE 3. An illustration of the differences between training a model
using BGD, SGD, and mini-batch gradient with regrading to approaching
the minimum value.

be evaluated using a norm function. A norm Lp is a function 265

that measures the magnitude of a vector. Formally, the norm 266

function Lp of x can be defined as: 267

‖x‖p =
(∑
‖xi‖p

)1/p
, ∃ : p ∈ R, p ≥ 1 (4) 268

The distance metrics are used within the process of gener- 269

ating the adversarial attacks by quantifying their similarities. 270

L0, L1, L2, and L∞ distancemetrics have been widely adopted 271

by state-of-the-art adversarial attack algorithms [12], [26], 272

[27], [28] which are detailed below. 273

1) L0 DISTANCE 274

As shown in Eq. 5, L0 distance is used to calculate the vector 275

size by measuring the total number of the non-zero elements 276

of a given vector. Arguably, sometimes L0 is referred to as 277

a ‘‘norm’’ which is not correct since scaling a vector by 278

constant value a will not change the number of non-zero ele- 279

ments, thus, it is more accurate to be classified as a cardinality 280

function. 281

‖x‖0 = (i|xi 6= 0) (5) 282

The L0 distance was used in [26] and [29] to generate 283

adversarial attacks since it corresponds to the number of 284

altered pixels of an image. 285

2) L1 DISTANCE 286

The L1 distance, also known as theManhattan Distance or the 287

Taxicab norm, is used when the difference between non-zero 288

and zero elements is important. Essentially, when an element 289

moves away from the origin (0,0) by a, L1 increments by a. 290

Therefore, L1 measures the distance between the origin (0,0) 291

to the point (x,y). Formally, L1 distance is defined as follows: 292

‖x‖1 =
n∑
i=1

xi (6) 293

The L1 distance is utilized by the elastic net attack [30] to 294

generate adversarial perturbations. More specifically, the L1 295

distance functions as a regularization parameter, representing 296

the perturbation’s total variation. The L1 distance improves 297

the transferability of the elastic net attack by generating 298

distinct adversarial images that fool DNN models. 299
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3) L2 DISTANCE300

The L2 distance, also known as the Euclidean Distance,301

is widely used in machine learning, and often denoted as ‖x‖.302

As shown in Eq.7, L2 measures the shortest distance (i.e.,303

length of the straight line) between two vectors.304

‖x‖2 =

(
n∑
i=1

‖xi‖2
)1/2

(7)305

The L2 distance was employed by different researchers to306

generate adversarial attacks [31]. For example, In [27], they307

used L2 to measure the distance between the class labels of308

the original image x and the perturbed image x̂. It is used to309

measure the size of the perturbations in the perturbed image x̂.310

4) L∞ DISTANCE311

The L∞ distance, also known as the ‘‘max norm’’, returns the312

maximum magnitude of the difference between each element313

in a vector. As shown in Eq. 8, the L∞ norm can be described314

as the maximum among the absolute values of the differences315

in a set of numbers (e.g., coordinate pair, n-dimensional316

vector, etc.) [26].317 ∥∥x − x ′∥∥
∞
= max(

∣∣x1 − x ′1∣∣ , . . . , ∣∣xn − x ′n∣∣) (8)318

In adversarial settings, L∞ can be used as a sufficient319

constraint over the size of perturbations that could be added320

to generate the perturbed image [32]. Thus, L∞ ensures that321

the perturbations do not modify the true class of the original322

image.323

C. ARTIFICIAL NEURAL NETWORKS324

In an attempt to mimic the way the brain learns information325

and patterns, artificial neural networks (ANNs) were devel-326

oped to be the generalized mathematical models of biological327

neural networks [33]. The basic structure of an ANN consists328

of at least three layers: (1) the input layer, (2) the output329

layer, and (3) the hidden layer(s). Each layer is a collection330

of nodes that passes the inputs along to the succeeding layers.331

Nodes are the basic units of computation in an ANN, taking332

inputs from other nodes or external sources and producing an333

output. Depending on the conditions of the problem, different334

types of neural networks are required to perform different335

tasks. For example, a text generation problemwould employ a336

recurrent neural network over other ANNs for optimal results.337

We will further discuss and break down ANNs and their338

specific components in the ensuing sections.339

1) ARTIFICIAL NEURONS340

Artificial neurons, or nodes, are mathematical representa-341

tions of biological neurons. They serve as connection points342

between layers in an artificial neural network. Nodes take343

input values (x1,. . . ,xn) from the dataset and combine them344

with a set of weights (w1, . . . ,wn). The weighted inputs are345

summed and passed through a non-linear activation or trans-346

fer function [33]. This process is shown in Fig. 4, in which a347

set of inputs are passed through a node. Like their biological348

FIGURE 4. A mathematical model of an artificial neuron (Perceptron),
with inputs x1 . . . xn, weight values w1 . . . wn, activation and
transformation functions, and output value y. Artificial neurons are the
building blocks of a neural network.

counterparts, there exists a hierarchical arrangement in arti- 349

ficial neurons and artificial neural networks. The weighted 350

output of node y is passed into the next layer of the ANN 351

until it reaches the final layer of the network. 352

2) FEED-FORWARD NEURAL NETWORKS 353

Artificial neural networks can solve classification problems 354

for non-linear datasets by utilizing the hidden layers within 355

the network. A layer in a network is a row of interconnected 356

nodes, and an ANN can have multiple layers that improve 357

its overall robustness and performance. As demonstrated in 358

Fig. 5, the basic structure of a multi-layer neural network 359

consists of three layers: (1) the input layer, (2) the hidden 360

layer, and (3) the output layer. 361

The input layer is the initial layer in an ANN, and it is 362

mainly responsible for feeding the data into the network. 363

The inputs are then transferred to the hidden layer(s) for 364

processing. The hidden layer(s) is where the network applies 365

an activation function and weights for the inputs. The hidden 366

layers process the inputs coming from the preceding layer 367

and extract the required information from the data. As shown 368

in Fig. 6, neural networks can have multiple hidden layers, 369

this is known as a deep neural network (DNN). Based on the 370

problem’s complexity, multiple hidden layers can be used to 371

increase the prediction accuracy of the network and extract 372

more features from the data. For example, as shown in Fig. 7, 373

a convolutional neural network (CNN) used for facial recog- 374

nition cannot solely identify a human face with only one 375

hidden layer. One layer that identifies eyes cannot recognize 376

an entire face, but if it is combined with other layers that 377

identify other features, such as noses or mouths, the network 378

becomes stronger and can successfully recognize faces. The 379

output layer is the final layer in an ANN and is responsible 380

for aggregating the information and returning the outputs in 381

the format given by the problem. 382

Forward propagation is the process of progressively mov- 383

ing through the layers of the ANN and is used in feed-forward 384

neural networks [34]. The hidden layer(s) take the input 385

data, process it, and then pass it onto the next layer. This 386

is a necessary step for feed-forward networks to generate 387

outputs. If the data travels backward at any point, it will form 388
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FIGURE 5. The general architecture of a simple neural network and its
three layers: the input layer (green), the hidden layer (blue), and the
output layer (red).

FIGURE 6. Demonstration of a deep neural network with multiple hidden
layers. The additional hidden layers allow the neural network to perform
complex facial and object recognition operations.

a loop that will block the output generation process. Other389

ANNs are designed and built using other architectures (e.g.,390

backpropagation) and serve different purposes.391

3) BACKPROPAGATION392

At the core of most neural networks is the process of back-393

propagation. Backpropagation is a training algorithm that394

starts by feeding the input values forward through the ANN,395

calculating the error, and propagating it back through the net-396

work [34]. The main goal of backpropagation is to minimize397

the cost function by iteratively updating and adjusting the398

ANN weights and biases. Parameter updates are calculated399

by taking the gradient of the loss function with respect to the400

weights of the model. The network will back-propagate until401

the cost function is minimized.402

4) ACTIVATION FUNCTIONS 403

The activation function determines whether an artificial neu- 404

ron should be activated. The main objective of the activation 405

function is transforming the values in the node into an output 406

value that can be accepted as input into a function (e.g., 407

vector) while adding non-linearity to the output values. Acti- 408

vation functionsmap the resulting values from the summation 409

function in the node to lie between [0 to 1] or [−1 to 1]. The 410

result of the activation function forms the input for the next 411

layer. Activation functions fall into two categories: linear 412

and non-linear. The most widely used activation functions 413

are non-linear, and the most popular ones include hyperbolic 414

tangent, sigmoid, and softmax. 415

a: SIGMOID FUNCTIONS 416

The sigmoid functions are characterized by an S-shaped curve 417

that can be categorized into three different functions: the 418

logistic function, the hyperbolic tangent, and the arctangent. 419

In the context of machine learning, the sigmoid function 420

coincides with the logistic sigmoid function [35]. The logistic 421

sigmoid function as defined in Eq.9, takes any real value x and 422

outputs a value S(x) that lies within the range [0 to 1]. 423

S(x) =
1

1+ e−x
=

ex

ex + 1
(9) 424

Sigmoid functions are widely used as activation functions 425

in deep learning because they add non-linearity into the 426

network. Sigmoid functions are also used to convert real 427

numbers into probabilities. A logistic sigmoid function that 428

is placed in the last layer of an ANN converts the output into 429

a probability score. 430

b: SOFTMAX FUNCTION 431

The softmax function can be viewed as a generalization of 432

the logistic regression function, sharing similarities to the 433

sigmoid function shown in Eq. 10. The softmax function 434

transforms a vector of values into a single vector, whose 435

values when summed are equal to one. It is normal to see 436

the softmax function implemented as a penultimate layer in a 437

neural network [36] because it can transform the outputs from 438

the hidden layers into a normalized probability. 439

σEzi =
ezi∑k
j=1 ezj

(10) 440

where x is a vector of output values, and e is a mathematical 441

constant which is the base for the natural log. The sigmoid and 442

softmax functions are similar in terms of the latter function 443

being a specialized case of the former. The main difference 444

between the two lies in the type of values they can accept 445

as input. The softmax function only accepts vectors as input, 446

whereas the sigmoid function only accepts scalars. 447

c: HYPERBOLIC TANGENT OR TANH 448

The hyperbolic tangent or tanh function can be utilized as 449

an alternative to the logistic sigmoid function in an ANN. 450

The tanh function shares similarities with the logistic sigmoid 451
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FIGURE 7. An example of a CNN that is used for image classification, recognition, and processing. CNN’s differentiate themselves from normal ANNs
because of the addition of convolutional layers which utilize convolution to convert the image pixels into values that can be used for classification.

function in that it has a similar S-shaped curve. One difference452

between the two is the output range. As defined in Eq. 11, the453

tanh function takes any real value x as an input and generates454

a value in the range [−1 to 1] as output.455

tanh(x) =
(ex − e−x)
(ex + e−x)

(11)456

Larger input values (more positive) will result in outputs457

that are closer to 1, whereas smaller inputs (more negative)458

will result in outputs closer to −1. tanh is preferable to the459

logistic sigmoid as it has unrestricted gradients [37], and460

the outputs function is zero centered. Since the values lie461

between [−1 to 1], their mean value is approximately equals462

zero which helps center the data and allows the next layers to463

have an easily processing and predicting the data.464

IV. ADVERSARIAL THREAT MODEL465

This section describes the threat model of machine learning466

models. As depicted in Fig. 8, the threat model includes467

the adversarial degree of knowledge, adversarial capabilities,468

adversarial goals, and the attacking scenarios.469

A. ADVERSARIAL DEGREE OF KNOWLEDGE470

The adversary knowledge about the targeted machine learn-471

ing system (e.g., DNN image classification model) may vary472

and can be classified into three categories:473

1) PERFECT-KNOWLEDGE474

In this setting, the adversary has complete-knowledge475

of the targeted learning system used for classifica-476

tion/prediction [38]. The adversary has comprehensive477

knowledge of the training and testing dataset. The adversary478

has complete knowledge of the ML model which includes:479

the model architecture, the number of layers, the weights, the480

inputs and outputs, and the model’s features and parameters.481

The adversary also knows the type of learning algorithm482

which includes the type of the activation function and loss 483

function. In white-box settings, the adversary has access 484

to the full knowledge of the targeted learning system [39]. 485

Thus, the generated adversarial attacks using this setting are 486

commonly known as white-box attacks [40], [41]. 487

2) LIMITED-KNOWLEDGE 488

In this setting, the adversary has insubstantial knowledge 489

of the targeted learning system. This includes knowing a 490

similar training dataset to the one that was used in training the 491

targeted DNN model. The adversary can obtain such limited 492

knowledge about the targeted model by building a surrogate 493

model of the same scale [39]. The adversarial attacks gener- 494

ated in this setting are referred to as gray-box attacks [42]. 495

3) ZERO-KNOWLEDGE 496

In contrast to the perfect knowledge, in this setting, the 497

adversary has no knowledge about the targeted system or 498

access to any surrogate model. The only available option for 499

the adversary is querying the targeted learning system (i.e., 500

oracle). Given the adversary’s lack of knowledge, the gen- 501

erated attacks using this setting are referred to as black-box 502

attacks [41]. 503

B. ADVERSARIAL CAPABILITIES 504

Machine learning threat models can be categorized using 505

the capabilities of the adversary. In cyber-security, the term 506

‘‘capability’’ refers to the adversary’s level of access to the 507

system resources (i.e., the learning model and data). Depend- 508

ing on the adversarial attack settings, the adversary capabili- 509

ties can be categorized as the following: 510

1) TRAINING DATA 511

In white-box settings, the adversary has read and write 512

access to the training dataset of the targeted learning system. 513
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FIGURE 8. The taxonomy of the adversarial threat model, broken down by the degree of knowledge, perfect knowledge (white-box) shown in green,
limited knowledge (gray-box) shown in blue, and zero knowledge (black-box) shown in light gray. The threat model further splits into either training or
testing phase capabilities, and then into their adversarial goals. The goals for the training phase are data manipulation or logical corruption, whereas
the goals for the testing phase capabilities are evasion and extraction attacks. Adversarial attack examples for both the testing and training phase
capabilities are also shown. This diagram covers the threat model for most of the adversarial attacks that are discussed in Section V.

The adversary can modify the feature vectors in various514

ways such as modifying the data of specific feature(s) or515

adding/removing certain features. In a gray-box attack set-516

ting, the adversary can collect surrogate training data that517

is similar to the original training dataset of the targeted518

model [42]. In a black-box setting, the adversary does not519

have access to the training dataset of the targeted system [40].520

2) NETWORK ARCHITECTURE521

In white-box attacks, the adversary has access to the learning522

model architecture. It canmodify the learningmodel configu-523

rations (e.g., learning rate). In gray-box attacks, the adversary524

can build a surrogate learning model using the surrogate525

training data. Conversely, the black box assumes that the526

adversary has no access to the targeted system architecture.527

3) ORACLE528

If the adversary can interact with the targeted model or a529

surrogate model, they can extract vital information that could530

help in crafting the adversarial attacks [43]. Here, the adver-531

sary can query the model multiple times and observe the out-532

puts. This enables the adversary to identify any relationship533

between the inputs and the outputs. The use of an oracle is534

common for gray-box and black-box threat models.535

C. ADVERSARIAL GOALS536

The severity of any threat on a system asset is measured by537

the potential impact on these three objectives: confidentiality,538

integrity, and availability [44]. Depending on the business 539

logic of the computer system, the integrity of the output 540

(i.e., predictions and classification) from a machine learning 541

model is indispensable. For instance, an adversary can pro- 542

vide an adversarial example, yielding an incorrect output. 543

Based on the output incorrectness, the adversarial goals fall 544

into three categories: 545

• Untargeted Misclassification. The adversary tries to 546

increase the misclassification ratio for the DNN model 547

by using the adversarial examples generated by untar- 548

geted adversarial attack as an input to produce an incor- 549

rect classification. In other words, the adversary tries to 550

force the targeted model to assign any incorrect label to 551

the adversarial examples. 552

• Confidence Reduction. The adversary tries to reduce 553

the prediction confidence by increasing the prediction 554

ambiguity of the targeted model. 555

• Source/Target Misclassification. The adversary tries 556

to craft perturbations that force the classification of an 557

adversarial examples to a specific label (i.e., assign a 558

specific label to an adversarial input) [45]. To achieve 559

this objective, the adversarymay use targeted adversarial 560

attacks. 561

D. ADVERSARIAL ATTACK SCENARIOS 562

The adversarial attacks against ML-learning systems can 563

be launched either at the training or the testing phase as 564

explained below. 565
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1) ATTACKS DURING TRAINING PHASE566

An adversary can compromise the targeted machine learning567

system by attacking its training dataset during the training568

phase. This attack scenario is referred to as poisoning attack569

in which the adversary tries to corrupt the training dataset570

to change the statistical characteristics of the training data.571

This poisoning attack can be launched using the following572

scenarios:573

• Data Injection & Modification. The adversary tries to574

purposefully inject malicious examples into the training575

dataset and/or maliciously alter the training dataset sam-576

ples. The malicious examples can be generated using the577

label noise approach [46]. Upon poisoning the training578

dataset, the trained DNN model generates incorrect out-579

puts [47].580

• Transfer Learning. The adversary tries to spread mali-581

cious examples to other learning methods using transfer582

learning [48]. This approach has the least impact when583

attacking a deep learning model because the model is584

trained using clean data.585

• Logical Corruption. The adversary intervenes with the586

learning process of the DNN model to prevent it from587

learning correctly.588

2) ATTACKS DURING TESTING PHASE589

In some situations, an adversary can utilize the characteris-590

tics of the underlying classes that can be changed without591

affecting the true classification [48]. Mainly, two attacking592

scenarios can be carried out at the testing phase:593

• Evasion Attack. In this attack scenario, the adversary594

tries to compromise the targeted model by carefully595

crafting a malicious input sample that is misclassified596

by the ML model. This kind of attack has been adopted597

by most of the proposed adversarial works [49].598

• Exploratory Attack. Like side-channel attacks, the599

adversary tries to extract information about the learning600

system at testing time. During this attack, the adversary601

probes the DNN model to extract information about its602

parameters, features, architecture, or training datasets by603

crafting adversarial examples.604

V. ATTACK STRATEGIES605

In this section, we review state-of-the-art adversarial attacks606

that compromise the image classification neural networks.607

We divide the attacks into five categories: white-box attacks,608

black-box attacks, poisoning attacks, extraction attacks, and609

inference attacks. In our review, we focus on providing a610

deep explanation of the working process of these attacks in611

addition to their performance evaluation. Table 1 provides a612

quick overview of the reviewed attacks and demonstrates a613

comparison between them in terms of attack effectiveness,614

transferability, and other performance metrics such as execu-615

tion time and the size of the attack perturbation. It should be616

noted that the majority of the reviewed attacks are focused on617

crafting perturbations to compromise DNNs. This is because618

FIGURE 9. A sample of generating different adversarial examples using
state-of-the-art attacks. In this example, an input image was selected
from the MNIST dataset and had the perturbation generated using the
FGSM [28], PGD [50], ZOO [51], Square [52], and HJSA [53] attack methods.

adding perturbations into a clean image appears to be an 619

effective attack method in which the generated adversarial 620

examples are almost identical to the clean images (see Fig. 9) 621

which attracts the research community. 622

A. WHITE BOX ATTACKS 623

1) L-BFGS 624

Adversarial examples were first introduced by 625

Szegedy et al. [12] who found that adding a small per- 626

turbation ρ to an image x would result in an adversarial 627

image x̂ that could successfully fool a deep learning model. 628

To compute the proper size of perturbations, the authors 629

attempted to solve the following optimization problem. 630

min ‖ρ‖2 s.t.f (x + ρ) = l; x + ρ ∈ [0, 1]m (12) 631

However, the equation above is difficult to solve, as a 632

result, the Box-Constrained L-BFGS [54] was used to find 633

an estimation for the solution as shown in Eq.13. This is done 634

by finding the minimum value that satisfies the condition 635

f (x + ρ) = l while calculating the loss of the classifier. 636

min c · |ρ| + Lf (x + ρ, l) s.t. x + ρ ∈ [0, 1]m (13) 637

The authors observed that the adversarial examples gener- 638

ated by the box-constrained L-BFGS appear almost identical 639

to the original images (i.e., imperceptible perturbation). They 640

also noted that the resulting adversarial examples can fool 641

other DNN models (i.e., transferable adversarial examples). 642

The results of their work triggered concerns on the security 643

of deep learning systems and established a wide interest in 644

researching adversarial machine learning. 645

2) FAST GRADIENT SIGN METHOD 646

FGSM [28] has been proposed as an efficient algorithm that 647

can generate perturbations for any given image. Compared 648

with L-BFGS [12], FGSM differs in two aspects: (1) it’s 649

adversarial examples are measured by L∞ metric, and (2) 650

it is intended to be a fast method for generating adversarial 651
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examples that can be used in adversarial training to increase652

the robustness of DNN models against adversarial attacks.653

More formally, given an image x, FGSM calculates the654

perturbation using the formula below,655

x̂ = x − ε · sign(∇xJ (θ, x, y)) (14)656

where ∇xJ (.) is the gradient of a cost function (e.g., cate-657

gorical cross-entropy) of x for a given neural network and658

ε is a small error that is used to constrain the size of the659

perturbations. In other words, depending on the sign of660

the gradient, FGSM generates x̂ by adding or subtracting661

ε to each pixel of x. FGSM was able to generate effective662

adversarial examples that can fool different DNN models.663

However, it can be observed from the reported results in [27]664

that FGSM requires adding a large size of perturbations to665

generate powerful adversarial examples which may distort666

the image resolution.667

3) DeepFool ATTACK668

Moosavi-Dezfooli et al. [27] proposed the DeepFool attack,669

an iterative algorithm optimized by L2 distance metric. The670

DeepFool algorithm was designed under the assumption that671

deep learning models are linear, with a decision boundaries672

(i.e., hyperplanes) separating each class. This algorithm cen-673

ters around an iterative linearization of the classifier f that674

will produce small perturbations ρ for an input image x.675

On every iteration, DeepFool linearizes the classifier around676

the current point xi and computes the perturbations ρi as an677

orthogonal projection vector that projects xi onto the closest678

hyperplane. As depicted in Fig. 10, DeepFool has generated679

the minimum perturbations that project the ‘‘Cauliflower’’680

image into the nearest hyperplane ‘‘Broccoli’’. DeepFool has681

been shown to be an effective algorithm for generating the682

smallest perturbations necessary to fool the targeted deep683

learning model.684

4) CARLINI & WAGNER ATTACKS685

Carlini and Wagner [26] introduced a set of three attacks686

known as the C&W attacks. Their motivation was to build a687

set of powerful attacks that are capable of bypassing defensive688

distillation image classification neural networks [29]. The689

C&W attacks generate adversarial perturbations by solving a690

norm-restricted constrained optimization problem. TheC&W691

attacks find the adversarial example by solving the following692

optimization problem:693

min ‖ρ‖p + c · f (x + ρ), s.t. x + ρ ∈ [0, 1]m (15)694

where x is the input image, ρ is the adversarial perturbation,695

‖.‖ρ is a regularization term bounded by an Lp norm, c is a696

constant value, and f (x + ρ) is an objective function. This697

attack can be implemented with either the L0, L2, or L∞698

distance metrics.699

Furthermore, the authors has demonstrated that it is pos-700

sible for adversarial images generated on un-distilled net-701

works to transfer to distilled networks, effectively bypassing702

the defensive distillation method. The C&W attacks were 703

able to successfully subvert distilled networks trained on 704

the CIFAR-10 [55] and MNIST [56] datasets with a 100% 705

success rate. Also, C&W attacks were able to generate trans- 706

ferable adversarial examples. Hence, C&W attacks are con- 707

sidered powerful attacks that can be utilized to validate the 708

well-trained DNN models. However, these attacks require 709

huge computational resources on large-scale datasets [51]. 710

5) ITERATIVE FAST GRADIENT SIGN METHOD 711

Kurakin et al. [57] proposed a set of novel attacks that extend 712

the FGSM [28] algorithm to operate iteratively. The authors 713

introduce two methods for generating adversarial pertur- 714

bations: the basic-iterative method (BIM) and the iterative 715

least-likely class method (ICLM). 716

Adversarial images generated using BIM are provided by 717

solving the following formula: 718

x̂i+1 = Clipx,ε x̂i + α · sign(∇xJ (x̂i, y)) (16) 719

where x̂i is the adversarial example at the ith iteration, BIM 720

will find the next image x̂i+1 and repeat for the number of 721

iterations, determined heuristically. Therefore, the BIM algo- 722

rithm minimizes the computational cost while being strong 723

enough to reach the edge of the decision boundary, yielding 724

to misclassifying x̂. 725

The ICLM attack further extends the BIM to generate a 726

targeted attack. The ICLM differentiates itself from BIM 727

by generating a perturbation for the least likely class of x. 728

Adversarial images generated using the ICLM are created 729

using the formula below. 730

x̂i+1 = Clipx,ε x̂i − α · sign(∇xJ (x̂i, yt )) (17) 731

where y is the class label used in Eq.16 replaced with the 732

target label yt that corresponds to the least likely class with 733

the lowest confidence score predicted by the model. ICLM 734

uses the same number of iterations and step size as BIM. The 735

adversarial examples generated by the ICLM attack can fool 736

a given model and lower its classification accuracy. 737

6) UNIVERSAL ADVERSARIAL PERTURBATIONS 738

Popular adversarial machine learning algorithms like FGSM 739

and DeepFool generate perturbations that attack a network 740

on a single image. The universal adversarial perturbations 741

(UAP) [14] method generates universal perturbations that can 742

attack a network with any image. Perturbations are universal 743

if the perturbation ρ satisfies the following constraint: 744

P(f (x + ρ) 6= f (ρ)) ≥ 1− δ s.t. ‖ρ‖p ≤ ξ (18) 745

where f is a classification function, ‖·‖p is the Lp norm, δ is 746

the desired fooling rate, and the parameter ξ is responsible 747

for the magnitude of the perturbation ρ. 748

More specifically, generating a perturbation ρ that can fool 749

most data points in an image set X = { x1, . . . , xn } can be 750

done by iterating over the images in X and gradually building 751

up the UAP. The authors generate universal perturbations in a 752
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FIGURE 10. An adversarial example was generated using DeepFool [27]
Attack. The perturbation image in the middle is magnified.

similar way as in the DeepFool [27] algorithm, they gradually753

push a single data value towards the closest hyperplane.754

In this case, the UAP method consecutively pushes all the755

input data towards their respective hyperplanes.756

On every iteration, the algorithm calculates the minimum757

perturbation 1ρi that will project the current value closer758

towards the hyperplane. The minimum perturbation is com-759

puted by solving a constrained optimization problem that lim-760

its the Lp norms. The perturbation ρ is updated by projecting761

(ρ +1ρi) back onto ρ. The algorithm iterates multiple times762

over the data in the set X to enhance the UAP.763

The attack terminates when the fooling rate on the adver-764

sarial dataset Xρ = { x1 + ρ, . . . , xn + ρ } surpasses the765

target threshold. Multiple random shuffles on the original766

image set will result in a diverse set of UAPs. Therefore, this767

algorithm can be used to generate numerous UAPs that are768

highly effective against deep neural networks.769

7) JACOBIAN-BASED SALIENCY MAP ATTACK770

JSMA [58] is a first-order adversarial attack that gener-771

ates adversarial examples optimized by L0 distance metric.772

Instead of applying the perturbations to the entire image’s773

pixels, JSMA aims to modify the ‘‘enough pixels’’ to fool the774

model. At a high level, JSMA generates adversarial exam-775

ples using a well-defined process. It selects the pixels of a776

clean image x and perturbs them one at a time (i.e., greedy777

perturbations) and checks the results of the labeling. JSMA778

calculates the gradient of the output from the network to779

generate a saliency map. A large value of this map increases780

the likelihood of the model to label the image as the target781

label. Upon computing the saliency map, JSMA determines782

the required pixels that need to be perturbed to fool the783

model. JSMA repeats this process until the model is fooled784

or it exceeds the maximum threshold of pixels that can be785

perturbed without making the perturbations detectable.786

8) PROJECTED GRADIENT DESCENT787

PGD [50] can be viewed as an extension to FGSM [28]788

and BIM [57] attacks that generate adversarial examples to789

maximize the loss of the targeted DNN model. The authors790

propose two versions of PGD: the L2 PGD attack, and the791

L∞ PGD attack. PGD initializes the attack at a random point792

in the Lp ball and projects the perturbation back onto the793

Lp ball after every iteration. The authors also has shown794

that adversarial robustness of DNN models can be viewed 795

in terms of ‘‘robustness optimization’’. As shown in E.q 19, 796

they defined the adversarial training as a formal optimization 797

problem, known as the saddle point problem. 798

min ρ(θ ), where ρ(θ ) = E(x,y)∼D[maxL(θ, x + δ, y)] (19) 799

where ED[L(.)] is the population risk for a distribution value 800

D into a loss function L. The saddle point optimization prob- 801

lem is an arrangement of an inner maximization problem 802

and an outer minimization problem [50]. Inner maximization 803

finds an adversarial data point that maximizes the loss. The 804

outer minimization finds the model parameters such that the 805

loss generated by the inner function is minimized. Moreover, 806

Eq. 19 also defines a goal for an ideal robust classifier as well 807

as a measurable value of the classifiers robustness. PGD is a 808

powerful first-order attack and has been shown to fool the 809

deep learning models efficiently and effectively [59]. 810

9) NewtonFool ATTACK 811

TheNewtonFool algorithm [60] is used to decrease the proba- 812

bility of the original class label by utilizing Newton’s method 813

for solving nonlinear equations. This attack performs gradient 814

descent with step size δ to find a perturbation ρ that will 815

produce an adversarial example x̂. The step size is determined 816

adaptively, changing over time according to the change in the 817

perturbation ρ. The step size δ is computed by solving the 818

following equation: 819

δ = min
{
η‖x0‖‖∇F ls (xi)‖,F

l
s (xi)−

1
|C|

}
(20) 820

where the tuning parameter η controls the size of ρ, x0 is 821

the input image, and F ls represents a neural network with a 822

softmax activation layer. The step size δ is then utilized to 823

calculate the adversarial perturbation ρ as follows, 824

ρ = −
δ · ∇F ls (xi)
‖∇F ls (xi)‖2

(21) 825

where xi is the current image, δ is the step size calculated 826

in Eq. 20, and ∇F ls is the gradient of the classifier. The 827

authors extend the attack to work with multiple class labels. 828

NewtonFool decreases the probability of all labels in a set of 829

clean images L+ and increases the probability of all labels in 830

a set of perturbed images L−. NewtonFool produces effective 831

perturbations and significantly reduces the confidence prob- 832

ability of the correct class. 833

10) ELASTIC NET 834

The elastic net attack (EAD) [30] is an extension of the C&W 835

attacks [26] and aims to control the L1 norm of the adversar- 836

ial perturbations. EAD generates adversarial examples using 837

the iterative shrinkage-thresholding algorithm (ISTA) [61]. 838

ISTA is an optimization algorithm where every iteration 839

includes a matrix-vector multiplication step accompanied by 840

a shrinkage-thresholding step. The shrinkage-thresholding 841

step is responsible for deciding if the algorithm will shrink 842

a pixel value of the perturbed image. 843
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The ISTA algorithm can be seen as an ordinary first-order844

optimization problem. Specifically, if we let a function845

g(x) = c · f (x) + ‖x − x0‖22 and ∇g(x) be the gradient of846

g(x), the adversarial image xk+1 for the input image x0 is847

determined by:848

xk+1 = Sβ (xk − αk∇g(xk )) (22)849

where αk is the step size at the (k + 1)th iteration, and Sβ850

is the projected shrinkage-thresholding function. The final851

adversarial image x̂ is chosen from all the successful exam-852

ples based on distortion metrics. The authors propose two853

decision rules for selecting x̂, the least elastic-net and the854

L1 distortions relative to the input image x. The EAD attack,855

like its predecessor the C&W attack can successfully bypass856

defensive distillation [29].857

11) TARGETED UNIVERSAL ADVERSARIAL PERTURBATIONS858

Universal perturbations for targeted attacks proposed by859

Hirano et al. [62] extends the basic iterative algorithm used860

to generate universal perturbations for untargeted attacks.861

This algorithm begins with the perturbation ρ = 0,862

and iteratively updates ρ under the constraint that the Lp863

norm of the perturbation will be less than or equal to a864

value ε.865

As compared to the untargeted UAP [14] algorithm866

which utilizes the DeepFool [27] method for generating867

perturbations, the attack uses the targeted FGSM [28]868

method to generate the perturbations. The perturbation ρ869

is updated additively by generating a perturbation for a870

randomly selected input x from the set X . On every step,871

the targeted-FGSM algorithm computes a new perturbation872

ψ(x + ρ, y) and projects this back onto ρ updating the873

perturbation.874

This process continues until the maximum number of iter-875

ations imax is reached or the success rate of the targeted attack876

is equal to 100%, i.e., all inputs are classified with the correct877

target class. This attack generates universal perturbations that878

were shown to be effective at undermining models trained on879

the CIFAR-10 [55] and ImageNet [6] datasets. This algorithm880

also has shown that generating a UAP for a targeted attack is881

easier and less computationally expensive when compared to882

an untargeted attack [62].883

12) BRENDEL & BETHGE ATTACK884

The Brendel & Bethge attack [63] utilizes the gradients885

to estimate the boundary between the perturbed and clean886

inputs, better known as the adversarial boundary. Unlike other887

attacks, this attack initiates with an adversarial input x̄0 as888

well as a clean input x. Both inputs are far from one another889

within the adversarial boundary. Therefore, x̄0 travels along890

the adversarial boundary towards x. The attack computes the891

optimal step by solving a quadratic trust-region optimization892

problem for every iteration.893

The goal of the optimization problem is to discover a step894

δk such that the new perturbation x̄k = x̄k−1+δk has the min-895

imum Lp distance to the clean input x. The new perturbation896

x̄k will stay between the box constraints of a valid input range. 897

The perturbation will be placed on the adversarial boundary. 898

The Brendel & Bethge attack moves along the adversarial 899

boundary to minimize the distance to the clean input. The 900

Brendel & Bethge attack is a proficient algorithm, achieving 901

model accuracies of 69.5% in an untargeted setting on the 902

MNIST [56] dataset, 31.2% on the CIFAR-10 [55] dataset, 903

and 42.5% on ImageNet [6]. Upon utilizing a targeted setting, 904

this attack achieves model accuracies of 56% against MNIST, 905

37.6% on CIFAR-10, and 37% on ImageNet. 906

13) WASSERSTEIN ATTACK 907

Instead of using the Lp distance metrics, the Wasserstein 908

attack [64] generates adversarial examples by using a min- 909

imized wasserstein distance [65]. The Wasserstein distance 910

is an optimal transport problem that finds the minimum cost 911

of moving a probability mass. When applied to images, the 912

Wasserstein distance is identified as the cost of moving from 913

one image to another. The cost value is directly proportional 914

to the distance traveled by the pixels. The Wasserstein dis- 915

tance dW between the two data points x and y is defined as 916

follows: 917

dW (x, y) = min 〈5,C〉 ; s.t.51 = x,5T 1 = y (23) 918

where the minimization over transport plans 5, with entries 919

5i,j show how the mass moves from xi to yj. With this, the 920

Wasserstein ball with radius ε is defined as: 921

BW (x, ε) = {x +1 : dW (x, x +1) ≤ ε} (24) 922

The first step in generating adversarial images is to project 923

examples onto a Wasserstein ball. More specifically, project- 924

ing w onto the Wasserstein ball around x with a radius ε and 925

a cost matrix C . 926

min
1
2
‖w−z‖22 ; s.t.51 = x,5T 1 = z, 〈5,C〉 ≤ ε (25) 927

Solving the optimization problem for the Wasser- 928

stein attack in Eq. 25 is time-consuming and compu- 929

tationally expensive [64]. The authors proposed solving 930

the entropy-regularized projection problem shown in 931

Eq. 26 which efficiently projects the examples onto 932

the Wasserstein ball. 933

min
1
2
‖w− z‖22 +

1
λ

∑
ij

5ij log(5ij) 934

subject to 51 = x,5T 1 = z 〈5,C〉 ≤ ε (26) 935

Although this is only an estimated projection, all feasi- 936

ble solutions are still within the Wasserstein ball’s limits. 937

Therefore, adversarial examples generated using projection 938

approximation are still valid as they lie within the bound- 939

aries of the attack’s threat model. The Wasserstein attack has 940

been shown to generate adversarial images that are capable 941

of adequately fooling deep learning models trained on the 942

MNIST [56] and CIFAR-10 [55] datasets. 943
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14) SHADOW ATTACK944

The shadow attack [66] forces neural networks to misclas-945

sify images and produce a spoofed certificate by generating946

and applying large perturbations. This attack is invented to947

break the certifiable secure neural networks that generate the948

predicted label with a rigorous guarantee that the input is not949

maliciously manipulated (i.e, certificate). The shadow attack950

is a generalization of the projected gradient descent [50]951

attack. Instead of solving a constrained optimization problem,952

as done in PGD, the shadow attack solves the following953

problem with the addition of three penalties that force Eq. 27954

to be unconstrained.955

max
ρ

L(θ, x + ρ)− λcC(ρ)− λtvTV (ρ)− λsDissim(ρ) (27)956

where λc, λtv, λs are the three penalty weights. The penalty957

C(ρ) limits the perturbation ρ by constraining the change958

in each color channel c. The penalty TV (ρ) forces ρ to959

have a small total variation to appear smoother and more960

natural. The last penalty Dissim(ρ) advances perturbations961

that share similar values in their color channels. These penal-962

ties also allow for larger perturbations in the Lp norm. This963

algorithm generates adversarial examples for every possible964

incorrect class y′ and chooses the optimal perturbation for965

the attack.966

The shadow attack has been shown to be an effective967

method for generating adversarial attacks achieving a success968

rate of 98.5%. However, this attack was tested under very969

specific constraints, testing only specific target class IDs in970

the ImageNet [6], and a small sample size from the CIFAR-971

10 [55] dataset.972

B. BLACK BOX ATTACKS973

1) BOUNDARY ATTACK974

The boundary attack [67] performs a rejection sampling along975

the decision boundary of the sets of images. This attack seeks976

to find the minimum perturbation necessary to misclassify977

the target image by slowly moving towards the hyperplane978

of the original input. Initially, the boundary attack is set with979

a large perturbation that is easily detectable and randomly980

walks along the decision boundary towards the target class,981

effectively optimizing the original perturbation. This attack982

has two parameters, the length of the perturbation ρ and983

the step δ towards the initial image. Both of them adjust984

to the local geometry of the boundary. If the perturbation985

is adversarial (i.e., misclassifies the target image) there is986

a small step towards the original input image. As the algo-987

rithm approaches the input image, the decision boundary988

becomes flatter, and δ must be smaller to continue to make989

progress. The attack converges when δ converges to zero.990

The boundary attack is a strong method for targeting deep991

learning models, outperforming gradient-based white-box992

attacks such as FGSM [28] and DeepFool [27]. This attack993

has shown effective in undermining networks trained on the994

MNIST [56], CIFAR-10 [55], VGG-19 [68], ResNet-50 [7],995

and ImageNet [6] datasets.996

2) ZEROTH ORDER OPTIMIZATION ATTACK 997

The zeroth-order optimization (ZOO) attack [51] utilizes 998

zeroth order stochastic coordinate descent to generate per- 999

turbations. The authors adapted the Carlini & Wagner 1000

attacks [26] to the black-box threat model by modify- 1001

ing the loss function and approximating the gradient. The 1002

authors propose a new loss function f (x, t) dependent on 1003

only the outputs and the target class label. The attack opti- 1004

mizes the new loss function using zeroth-order optimiza- 1005

tion. Then, ZOO approximates the gradients of the model 1006

using stochastic coordinate descent instead of the traditional 1007

backpropagation method. Zeroth-order stochastic coordinate 1008

descent is utilized to target the model and extract information 1009

about the gradients. In special cases, techniques such as 1010

dimension reduction, hierarchical attacks, and importance 1011

sampling are utilized to optimize the loss function. The 1012

ZOO attack is extremely effective, with success rates of 1013

100% in an untargeted setting on both the MNIST [56] and 1014

CIFAR-10 [55] datasets. Upon utilizing a targeted setting, the 1015

ZOO attack success rate is 98.9% against MNIST and 97% 1016

on CIFAR-10. 1017

3) SPATIAL TRANSFORMATION ATTACK 1018

As the name implies, the spatial transformation attack [69] 1019

distorts the input image to generate adversarial examples by 1020

performing one translation and one rotation of the image. 1021

To ensure visual similarity to the clean images, the pertur- 1022

bation space is restricted to only allow 30◦ max rotation and 1023

a 10%max translation in every direction. The optimal pertur- 1024

bation is calculated via hyperparameter optimization, better 1025

known as grid search. Grid search is an extensive process in 1026

which a subset of the hyperparameter space is searched to 1027

find the optimal parameters, in this case, the perturbation, for 1028

a given model. The combination of rotation and translation 1029

parameters is applied to the entire group of input images. In a 1030

sense, the perturbation found by the spatial transformation 1031

attack is universal. The spatial transformation attack is able 1032

to achieve remarkably high results and fool multiple deep 1033

learning models trained on the MNIST [56], CIFAR-10 [55], 1034

and ImageNet [6] datasets. 1035

4) UPSET AND ANGRI ATTACKS 1036

Sarkar et al. [70] introduced two adversarial attacks: UPSET 1037

and ANGRI. The UPSET (Universal Perturbations for Steer- 1038

ing to Exact Targets) method seeks to generate n universal 1039

perturbations ρ for n target classes such that when ρ is applied 1040

to an image, the image is misclassified to the target class. 1041

UPSET generates an efficient and robust perturbation with 1042

the use of a residual generating network. TheUPSET network 1043

R accepts the target class as input and generates a perturbation 1044

ρ that is applied to the input image x to fool the network. The 1045

adversarial image x̂ is generated by solving an optimization 1046

problem using the UPSET network U , where pixel values 1047

of x are normalized to stay within the range [−1, 1]. All 1048

values outside this range are clipped to guarantee that x̂ is 1049
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valid. In contrast to the universal perturbations generated by1050

UPSET, ANGRI produces an image-specific targeted per-1051

turbation that depends on the input image. The adversarial1052

image is generated using the ANGRI network A. The UPSET1053

and ANGRI networks are built upon a residual generating1054

network such as the ResNet [7] architecture. Both algorithms1055

produce perturbations suitable for targeted fooling, and both1056

attacks have high fooling rates against the MNIST [56] and1057

CIFAR-10 [55] datasets.1058

5) HOUDINI ATTACK1059

Common algorithms utilize the gradients of the loss functions1060

to generate perturbations. However, the Houdini attack [71]1061

generates adversarial examples that handle task losses1062

task-specific loss functions, which are combinatorial values1063

that are difficult to optimize. This makes it difficult to use1064

gradient-based solutions to generate perturbations. The nor-1065

mal optimization problem is replaced with a differentiable1066

surrogate loss function l̄(yθ (x̃)), y, referred to as Houdini.1067

Houdini is composed of two parts. The first is a stochas-1068

tic margin that calculates the probability that the difference1069

between the score of the predicted target and the actual target1070

is smaller than a given value. This represents the total model’s1071

confidence. The second part to Houdini is the task loss, which1072

is independent of the model and corresponds to the target that1073

will be maximized. Houdini is designed to generate effective1074

adversarial images that can fool a given model, but it has1075

also been shown to be effective against speech recognition1076

systems. Effective targeted and untargeted attacks were able1077

to be generated to attack a DNN that estimated human poses.1078

6) SIMPLE BLACK-BOX ADVERSARIAL ATTACK1079

In many cases, white box assumptions of a model are not1080

applicable in real-life attack scenarios. Therefore, an adver-1081

sary is more likely to utilize a black box threat model. Black1082

box attacks are harder to develop since the adversary has no1083

prior knowledge or access to the targeted DNN model which1084

further intricate finding the optimal perturbations. Further-1085

more, querying the model for information is time-consuming1086

and reduces attack efficiency. For these reasons, the simple1087

black box attack (SimBA) [72] was introduced an an attempt1088

to tackle the inherent limitations in the black box threat1089

model. SimBA assumes that an input image x is fed through a1090

neural network F that classifies the image using a confidence1091

value or an output probability pF (y|x). The intention is to1092

find a sufficiently small perturbation ρ that when added to1093

the input will result in an incorrect prediction.1094

Model information is unavailable to the adversary in a1095

black-box environment. Thus, the output probabilities are1096

used to estimate the adversarial examples. As input, SimBA1097

takes the targeted label, a set of candidate vectors, and a step1098

size δ > 0. Then, the attack randomly picks an orthogonal1099

direction q from the set of candidate vectors. SimBA guar-1100

antees query efficiency by assuring that no two previously1101

selected q values undermine each other or amplify any other1102

q disproportionately. Therefore, the orthogonal direction q is1103

selected from a restricted set of vectors and is chosen without 1104

replacement. 1105

The SimBa attack algorithm is an effective method for 1106

generating adversarial examples. This attack was tested on 1107

a deep learning model trained on the ImageNet [6] dataset, 1108

and was able to achieve success rates of 98.6% and 100% 1109

in an untargeted and targeted attack setting respectively. The 1110

SimBa attack is also able to achieve an extremely low number 1111

of average queries into the model compared to similar black 1112

box algorithms, 1665 queries in an untargeted setting and 1113

7899 queries in a targeted setting. 1114

7) ONE-PIXEL ATTACK 1115

Designed to operate under the strict conditions of only mod- 1116

ifying a single pixel from an image to fool the DNN mod- 1117

els. One-Pixel attack [13] generates adversarial examples 1118

through differential evolution [73] optimization. Differential 1119

evolution allows for the one-pixel attack to generate effective 1120

adversarial examples while lacking any information about 1121

the network or gradient. For a given clean image x, a set 1122

of 400 vectors are created such that every vector contains a 1123

coordinate pair as well as RGB values for a random pixel. 1124

The attack changes the components of the vectors at random, 1125

creating child vectors to compete with the parent vectors to 1126

stay for the next iteration of the algorithm. The probability 1127

labels calculated by the network are used as the filter for the 1128

vectors. This will continue until there is only one remaining 1129

child vector. The selected vector is then used to modify the 1130

pixel in the image. 1131

The reported results demonstrate that, one-Pixel attack can 1132

generate adversarial examples to fool DNNmodels. However, 1133

in [74], the authors argued that, One-Pixel attack requires 1134

huge computational resources and cannot be applied on large 1135

images. 1136

8) FEW-PIXEL AND THRESHOLD ATTACKS 1137

Kotyan and Vargas [75] introduced a set of two adversarial 1138

attacks, the few-pixel attack and the threshold attack, which 1139

extend the One-Pixel attack [13]. 1140

The threshold attack, also known as the L∞ black-box 1141

attack, optimizes a constrained optimization problem using 1142

the L∞ norm. This attack applies the small perturbation ρ 1143

slightly to all pixels. The optimization problem is constrained 1144

with ‖ρx‖∞ ≤ th, where th is a predefined threshold value. 1145

The threshold attack searches for variables in the algorithm 1146

search space Rk , which is the same as the input space. The 1147

variables can be any variation of the inputs if the threshold is 1148

not crossed. 1149

The few-pixel attack attempts to minimize the number of 1150

the perturbed pixels by optimizing a constrained optimiza- 1151

tion problem with the L0 norm. The search space for the 1152

few-pixel attack is smaller than the input space and searches 1153

for variables in the search space R(2+c)∗th. The fundamental 1154

difference between this attack and the threshold attack is the 1155

use of a different Lp norm, and a different search space. 1156
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Both attacks were tested using the CIFAR-10 [55] dataset1157

with multiple threshold values. In both cases the attack per-1158

formed at its best with th = 10, with the L0 for ResNet [7]1159

scoring 85% and 79% on adversarial accuracy with the CMA-1160

ES [76] and differential evolution [73] optimization algo-1161

rithms respectively. Whereas the L∞ attack scored slightly1162

lower on the CMA-ES optimization algorithm achieving an1163

adversarial accuracy of 83%, the differential evolution opti-1164

mization algorithm for the threshold attack scored slightly1165

higher at 82%. Overall, both of these attacks work fairly well1166

at fooling deep learning models, albeit they were only tested1167

against two models and one dataset leaving out potential1168

unknown results.1169

9) HopSkipJump ATTACK1170

Chen et al. [53] developed the HopSkipJump attack (HSJA)1171

to generate adversarial examples by estimating the direc-1172

tion of the gradient using binary information at the decision1173

boundary. HSJA finds the optimal perturbation without the1174

use of hyperparameters while maintaining query efficiency.1175

HSJA can be targeted and untargeted attack. For untargeted1176

attacks, HSJA can be initialized with a sample from the target1177

class, whereas for targeted attacks, it uses a misclassified1178

sample with added noise.1179

The HSJA will repeat for t iterations or until the optimal1180

adversarial perturbation is generated. Each iteration has three1181

main steps: (1) binary search, (2) gradient-direction estima-1182

tion, and (3) step size search. First, binary search pushes1183

the value from the previous iteration towards the hyperplane.1184

Then, the direction of the gradient is estimated using the1185

following formula,1186

∇̂S(xt , ρ) :=
1

B− 1

B∑
b=1

(φx∗ (xt + ρub)− φx∗ )ub (28)1187

where x is the input image, ρ is the adversarial perturbation,1188

the number of batches B, ub is a unit vector, and φx∗ is a1189

binary function. Lastly, the step size is initialized and updated1190

along the direction of the gradient and decreased through1191

geometric sequencing until the perturbation is successful. The1192

next iteration begins with the adversarial example projected1193

back onto the hyperplane.1194

The HSJA was evaluated on four datasets, MNIST [56],1195

CIFAR-10 [55], CIFAR-100 [55], and ImageNet [6], and1196

was shown to outperform previous decision based attacks1197

such as the boundary attack [67]. With a limited number1198

the of queries, the HSJA is able to generate adversarial1199

images with a smaller median distance over all the datasets.1200

The HSJA was also shown to minimize the number of1201

queries used, this attack was able to achieve a 70% success1202

rate after 1000 queries, where the boundary attack required1203

20000 queries to get similar results.1204

10) ColorFool ATTACK1205

ColorFool attack [77] aims to generate adversarial examples1206

using natural colors by producing low-frequency perturba-1207

tions that are highly transferable and robust. The ColorFool1208

attack starts by identifying the most important areas of an 1209

image and their specific colors. Then, it classifies those 1210

regions as either sensitive or non-sensitive. Sensitive regions 1211

are classified into four categories, person, sky, plants, and 1212

water, while the non-sensitive regions would be anything that 1213

does not fall into those categories. Sensitive regions must stay 1214

within a specific range of modification, while non-sensitive 1215

regions can be modified more inconsistently and still look 1216

normal. 1217

After identifying the different regions, ColorFool splits an 1218

image x into k semantic regions using a binary mask that 1219

identifies the position of the pixels belonging to the region. 1220

The colors of each set are modified in color space, which 1221

separates the brightness from the color. Natural color ranges 1222

a, b, and L are used to pull apart the color values, where a 1223

ranges from red to green, b from blue to yellow, and L from 1224

black to white. 1225

The colors of the sensitive regions are then modified and 1226

converted from RGB to the color space. The adversarial 1227

perturbations in the color channels a and b are randomly 1228

chosen from the set of natural color ranges. The color ranges 1229

are determined by the true colors, the region semantics, 1230

and previous information on color perception. The colors 1231

are changed iteratively with small intervals until the opti- 1232

mal perturbation fools the classifier. Then, the colors of the 1233

non-sensitive regions are modified in the same way as the 1234

sensitive ones, but the color values are from the entire range of 1235

a and b in order to endure larger changes. Finally, the adver- 1236

sarial image x̂ is generated by combining the two modified 1237

color regions into one image. The adversarial image is then 1238

converted back into RGB form from color space form and is 1239

multiplied by a function to ensure that the image is in the 1240

original range of pixel values. 1241

The ColorFool attack is a strong algorithm that is able to 1242

effectively undermine deep learning models trained on the 1243

CIFAR-10 [55], ImageNet [6], and P-Places365 [78] datasets. 1244

For example, on CIFAR-10 trained models trained with a 1245

softmax activation function, ColorFool is able to achieve a 1246

success rate of 99.4%. On models trained with the prototype 1247

conformity loss (PCL) [79] method as well as PCL with 1248

adversarial training, ColorFool was able to get success rates 1249

of 100% and 99.9%, respectively. Overall, this algorithm 1250

is an impressive and effective method of undermining deep 1251

learning models. 1252

11) SQUARE ATTACK 1253

The square attack [52] is modeled on random search, an iter- 1254

ative optimization technique. This attack differentiates itself 1255

from other random search-based attacks by iteratively gener- 1256

ating perturbations that lie on the L2 or L∞ boundaries before 1257

projecting them onto the image. As a result, the perturbation 1258

can be maximized on every iteration. The attack updates the 1259

image at each step modifying a small percentage of neighbor- 1260

ing pixels grouped into a square. 1261

The square attack initializes by choosing the side length 1262

hi of the pixel square that will be updated. hi decreases 1263
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according to a fixed schedule. Then, a new perturbation ρ is1264

discovered and subsequently added to the current iteration.1265

The loss value is re-calculated and if the resulting value1266

is smaller than the previous loss value, the perturbation is1267

accepted. The square attack works with both the L2 and L∞1268

distance metrics. This attack focuses on query efficiency to1269

terminate the algorithm as soon as the optimal perturbations1270

is generated. The square attack is a strong algorithm that1271

can efficiently undermine a deep learning model, with a1272

success rate of 99.7% against Inception v3 [80], 100% against1273

ResNet-50 [7], and 100% against VGG-16-BN [68]. Query1274

efficiency of the square attack is outstanding, when tested1275

against Inception v3 the average number of queries is 197,1276

73 against ResNet-50, and 31 against VGG-16-BN.1277

C. POISONING ATTACKS1278

1) POISONING ATTACK ON SVM1279

If the adversary has full access to the model’s learning algo-1280

rithm and training data, they can effectively create poisoning1281

attacks that can be used to successfully target support vector1282

machines (SVM) [81]. This algorithm can be kernelized but1283

depends entirely on the use of the gradients of points lying1284

within the input space. The adversary utilizes an iterative1285

gradient ascent method to optimize the non-convex objective1286

function of the model. Gradient ascent as opposed to gradient1287

descent takes steps that are proportional to the positive gradi-1288

ent (rather than the negative gradient), such that it approaches1289

the local maximum instead of the local minimum.1290

The adversary initiates the attack with a vector that repli-1291

cates a random point from the targeted class and changes its1292

classification label. In practice, about any point deep enough1293

in the adversarial class’s margin can be used to initiate the1294

attack. Then, the gradient ascent algorithm is used to find1295

the gradient of the validation error. During the update, it is1296

imperative to preserve the architecture of dataset used to train1297

the SVM classifier. In most cases when gradient ascent is1298

used, a linear search algorithm is used to find the optimal1299

solution. In this case, a large step size is required to secure1300

the training sets, and linear search would be computationally1301

expensive. To circumvent this, the attack fixes the step size1302

to a given constant value. After every update, the optimal1303

solution is re-calculated. This attack terminates once the val-1304

idation error is less than a certain threshold value. The attack1305

can substantially increase classification error rates, from an1306

initial error rate of 2-5% to 15-20% using a single adversarial1307

data point.1308

2) ADVERSARIAL BACKDOOR EMBEDDING1309

Generally speaking, backdoor detection algorithms such as1310

activation clustering [82] are effective against a majority1311

of backdoor attacks. However, they fail to consider more1312

robust adversarial models. The adversarial backdoor embed-1313

ding attack [83] exploits these weak defenses by including a1314

secondary loss function to the objective training function. The1315

secondary loss function serves as a penalty term that punishes1316

the model when it detects any difference between perturbed 1317

and non-perturbed images. Dual objective functions allow the 1318

adversary to return high classification accuracy for the model 1319

while setting constraints that weaken the model’s defenses. 1320

As the adversarial training converges, the distribution of 1321

backdoor inputs, as well as clean inputs, also converges — 1322

minimizing the differences that the defense systems use for 1323

detecting poisoning attacks. 1324

3) INPUT MODEL CO-OPTIMIZATION ATTACK 1325

Despite the differences between adversarial examples and 1326

poisoned models, both threat models share the same goals 1327

of attacking a neural network and misclassifying input data. 1328

The input model co-optimization (IMC) attack [84] looks 1329

to unify the two threat models. The authors define a uni- 1330

fied framework that gives adversaries the freedom to either 1331

generate adversarial examples or to poison the model. The 1332

attack generates adversarial examples x̂ for every input x 1333

in a dataset. The perturbed image is then misclassified to a 1334

specific target class by a poisoned model. The IMC attack 1335

finds the optimal adversarial example and the poisonedmodel 1336

by going back and forth between the model and the input 1337

perturbation until the attack converges. It is worth noting 1338

that the IMC attack can work in various attack scenarios by 1339

adjusting the base algorithm to meet those constraints, one 1340

example is the TrojanNN [85] attack. 1341

4) CONVEX POLYTOPE 1342

Algorithms such as the feature collision attack [86] fail when 1343

the feature extractor is unknown to the adversary. Thus, the 1344

convex polytope attack [87] was introduced to bypass the lim- 1345

itations of such algorithms. This attack creates a set of adver- 1346

sarial examples that contain the target class within the convex 1347

hull. The convex polytope attack exploits the association 1348

made by the linear classifier of the targeted network between 1349

the adversarial examples and the targeted class. Then, the 1350

network will classify any point within the convex hull as the 1351

targeted class. The attack is highly transferable due to the 1352

convex polytope expanding the attack area. The attack will 1353

find the optimal adversarial examples by iterating through 1354

a specialized non-convex optimization problem 4000 times. 1355

The convex polytope attack has several inherent issues, such 1356

as scalability, robustness, and generalizability. 1357

Due to its extremely slow execution time, convex poly- 1358

tope attack is considered non-scalable. Notably, it has two 1359

time-consuming processes: First, it checks whether the new 1360

coefficients have a smaller loss compared to the previous 1361

ones, and it checks this on each iteration while optimizing the 1362

coefficients. Second, whenever the new coefficients satisfy 1363

the previous condition, the convex polytope attack projects 1364

onto the probability simplex, a space in which each point 1365

represents a probability distribution. The convex polytope 1366

also faces other issues, specifically the robustness and gen- 1367

eralizability of the attack. Once the target moves through 1368

the boundary into the convex polytope, there is no reason 1369

to continue the optimization process and move further into 1370
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the attack area. For this reason, the target will be close to the1371

boundary of the adversarial polytope.1372

5) BULLSEYE POLYTOPE1373

The bullseye polytope attack [88] is a more efficient, transfer-1374

able, and robust adaptation of the convex polytope attack [87].1375

This attack fixes the relative position of the target class1376

to the convex hull of the adversarial examples, which1377

allows the bullseye polytope to overcome the implicit issues1378

of the convex polytope attack. Bullseye polytope pre-defines1379

its coefficients as equal values instead of the inefficient1380

way of generating the coefficients through optimization. Pre-1381

assigning the coefficient values effectively alleviates the most1382

time-consuming step of the algorithm. Therefore, bullseye1383

polytope is an order of magnitude faster than the convex1384

polytope attack. The bullseye polytope attack also pushes the1385

targeted class towards the center of the attack zone, improving1386

the overall transferability.1387

D. EXTRACTION ATTACKS1388

1) COPYCAT NETWORKS1389

Correia-Silva et al. [89] propose a method with the intent1390

to copy a targeted network into a copy-cat version by only1391

querying the network with clean images. The copycat method1392

goes through two phases: generating fake information and1393

then training the copycat network.1394

The adversary generates a mock dataset by first selecting1395

a large set of images, these images can originate from the1396

targeted network, or they can be from an unrelated image set.1397

The adversary selects the data collection method depending1398

on the amount of access they have over the targeted model.1399

The original image labels are useless to the adversary and1400

are discarded from all image sets. The primary objective for1401

the adversary in this phase is to observe the way images are1402

classified by the targeted network. This is accomplished by1403

feeding the new dataset into the target model and having it1404

classify all the images. The newly generated image labels1405

are known as the ‘‘stolen labels’’. The adversary intends to1406

capture the slight imperfections of the classifier. This allows1407

for another network to be trained on the same dataset and1408

produce similar results to the target model.1409

Upon generating the fake dataset and the stolen labels, the1410

adversary trains a copycat network that mimics the original1411

one in a well defined process: First, the adversary chooses a1412

model architecture for the copycat network without requiring1413

any prior knowledge of the targeted networks architecture.1414

Then the adversary adapts the chosen model architecture to1415

fit the target’s problem domain. For example, the adversary1416

can change the number of outputs of their network to match1417

the number of classes in the target model. Ideally, themodel is1418

pre-trained and has randomized weights, however, this is not1419

necessary. The final step for generating a copycat network is1420

fine-tuning the generated model using the fake dataset and1421

the stolen labels. This allows the adversary to simulate the1422

original conditions of the target model and to generate the1423

most effective adversarial examples possible to attack the 1424

target model. 1425

2) FUNCTIONALLY EQUIVALENT EXTRACTION 1426

Model extraction attacks directly target the most secret parts 1427

of a given model, its architecture, and parameters. Model 1428

extraction allows the adversary who was previously operating 1429

under a black-box threat model to effectively gain access to 1430

the model in a white-box threat model, this is achieved by 1431

extracting an exact copy of the oracle. Model extraction is 1432

one of the most difficult adversarial goals as the adversary 1433

is attempting to generate a copy of the model while they only 1434

have access to the inputs and outputs. Functionally equivalent 1435

extraction [90] looks to construct an oracle O′ in such a way 1436

that, 1437

∀x ∈ X ,O′(x) = O(x) (29) 1438

The functionally equivalent extraction method works on 1439

neural networks using the ReLU activation function. The 1440

algorithm is split into four steps. First, critical point search 1441

determines inputs to the network such that one ReLU unit is at 1442

a critical point. This is accomplished by sampling two values 1443

and putting them through a linear function. This function 1444

computes the slopes and intercepts of the input vectors and 1445

then calculates the intersection of the two vectors. If there 1446

happen to be more than two linear factors, then it is unlikely 1447

that the true values will match the predicted values. Second, 1448

the next step in constructing a duplicate oracle is weight 1449

recovery. In order to form the weight matrix A(0), they cal- 1450

culate the second derivative of the oracle O in each input 1451

direction at the critical points xi. The second derivative is used 1452

to calculate the difference between adjacent linear regions. 1453

This is repeated until the entire matrix A(0) is complete. 1454

Third, the algorithm determines the sign of every row vector 1455

A(0)j , using global information about the matrix. Finally, the 1456

least-squares method is used to approximate the architecture 1457

of the hidden layer(s) of the neural network. When tested 1458

against MNIST [56], the functionally equivalent extraction 1459

method produces oracles that have a rate of 100% accu- 1460

racy and only begins to diminish around 100000 parameters. 1461

When tested against CIFAR-10 [55], the accuracy dips below 1462

100% after 200000 parameters. The main issue with this 1463

method is that it can’t be extended to other deeper neural 1464

networks, and only works sufficiently on two-layer models. 1465

E. INFERENCE ATTACKS 1466

1) MODEL INVERSION 1467

This attack is developed to be a general-purpose universal 1468

attack. Model inversion [91] works by utilizing the informa- 1469

tion available to the adversary from the model and using that 1470

to estimate the probabilities of a potential target. Rows from 1471

a candidate database that share characteristics with the target 1472

database are used as input and are processed by the model. 1473

The database rows are weighted depending on the accepted 1474

priors and the model’s output for a given row corresponding 1475
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TABLE 1. An overview of the white-box and black-box attacks. The table is organized into: (1) Algorithm name, (2) Attack Type: targeted or untargeted, (3)
Scenario: white-box or black-box, (4) Learning: iterative/one-shot (N/A denotes attacks that are neither one-shot or iterative), (5) the number of
perturbations (high, low, fair), (6) the perturbation norm (sections with N/A denote attacks that do not utilize the Lp norms to formulate perturbations),
(7) the execution time (fast, slow, fair), (8) the transferability of the attack, either universal or model specific, and (9) the attack strength, which is
observed from first hand experiments with the specific algorithms or is the perceived strength from the literature. Sections labeled ‘‘Unknown’’ are where
the literature did not provide such information, or where further experiments are needed.

to the target’s previous outputs. The value with the highest1476

weight for the target is returned.Model inversion, while being1477

a universal black-box attack, has limitations such as poor1478

scalability when the targeted features span a large dataset.1479

2) RECONSTRUCTION ATTACK1480

As the base model inversion attack [91] is unable to handle1481

large datasets, tasks such as attacking a facial recognition1482

model become increasingly more difficult. Thus, the recon-1483

struction attack [92] was developed to target and attack facial1484

recognition models. The reconstruction attack is an inference1485

attack that exploits its access to the model to gain information1486

about the training data. The reconstruction attack assumes1487

that the adversary has knowledge of at least one output label1488

of the model and will use this information to reconstruct an1489

image of a face corresponding to the label. At the core of1490

this attack is the MI-Face algorithm, which allows inversion1491

attacks against facial recognition systems by utilizing gradi-1492

ent descent to minimize the cost function of the recognition1493

model.1494

MI-Face first defines a cost function in terms of the1495

recognition model f and a specific function AuxTerm, which1496

uses any additional information to advise the cost function.1497

ThenMI-Face iteratively performs gradient descent, and after1498

each gradient step, the generated vector is put through a1499

post-processor that does imagemanipulation such as sharpen-1500

ing and de-noising. If the cost function fails to improve under 1501

a given number of iterations or the cost value is close to a 1502

given threshold value, then the attack is terminated, and the 1503

optimal cost value is returned. The reconstruction attack is 1504

an efficient and effective algorithm that was shown to have 1505

an increased attack accuracy and precision compared to other 1506

attacks, and is able to fool a deep learning image recognition 1507

model in both a white box and black box setting. 1508

F. SUPPLEMENTARY ADVERSARIAL ATTACKS 1509

Generally speaking, any system that utilizes a machine learn- 1510

ing algorithm can be targeted by adversarial attacks [93]. 1511

Hence, the adversarial attacks are not limited to image classi- 1512

fications. In this paper, we focusmainly on adversarial attacks 1513

in the context of image classification networks. However, 1514

we believe it is important to briefly review some of the 1515

well-known adversarial attacks in different contexts such as 1516

audio, point clouds, and software. 1517

1) ADVERSARIAL ATTACKS IN AUDIO 1518

Recently, deep learning methods become the primary choice 1519

in developing audio systems, specifically, voice recognition 1520

and voice-to-text systems. Some researchers have shown that 1521

such systems can be compromised by adversarial attacks. 1522

Carlini & Wagner [94] demonstrate the existence of targeted 1523

audio adversarial examples that can target the automatic 1524

speech recognition system such as DeepSpeech [93]. They 1525
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introduce a targetedwhite box attack to compromise the audio1526

generated by DeepSpeech. Given a clean audio wave-form x,1527

an inaudible perturbation ρ is generated such that when added1528

to the original audio wave, x̂ is recognized as any phrase.1529

The authors use the same attack methods in [26] to generate1530

the audio adversarial waves. The proposed attack is highly1531

effective with a success rate of 100%.1532

Qin et al. [95] can be viewed as an improvement to Carlini1533

&Wagner’s [94] by addressing two shortcomings. First, they1534

noticed that the generated adversarial perturbations can be1535

easily detectable by humans. Secondly, the generated adver-1536

sarial audio is not effective when it’s played over the air. The1537

authors were successfully able to develop effective impercep-1538

tible audio perturbations by utilizing psychoacoustics in the1539

form of audio masking while continuing to maintain a high1540

success rate. They also show the possibility to transfer the1541

generated adversarial audio examples to real-world over-the-1542

air situations. The authors used the LibriSpeech dataset [96],1543

which is a corpus of English-speaking audio recordings taken1544

from audiobooks. They were able to achieve a 100% success1545

rate on arbitrary targets. Also, they were able tomove forward1546

with research in developing robust audio adversarial exam-1547

ples that can be used in over-the-air situations.1548

2) ADVERSARIAL ATTACKS IN POINT CLOUDS1549

Adversarial examples for 2D images and CNNs have been1550

largely studied and researched. However, less amount of1551

research has been put into adversarial attacks within 3D1552

data like point clouds. Point clouds [97] are datasets that1553

represent points in space. Generally, point clouds represent1554

3D objects, with each point having its own set of coordinates.1555

They are usually produced through 3D scanning or aerial1556

photography and are normally used for 3D CAD model-1557

ing, visualization, and animation along with a multitude of1558

other applications. Xiang et al. [98] propose two methods1559

for generating adversarial examples to target PointNet which1560

can be defined as a deep neural network that is used for1561

point cloud processing [99]. Their methods, adversarial point1562

perturbation and adversarial point generation, were shown1563

to have success rates of 99% for all targeted attack exper-1564

iments. Other researchers such as Zhang et al. [100] con-1565

cluded that performing perturbations to point clouds works in1566

a controlled environment, and to reproduce these experiments1567

in a real-world scenario powerful computational resources1568

are required, which may substantially affect the adversar-1569

ial attack. Hence, they proposed the Mesh Attack, which1570

addresses these shortcomings of other 3D point cloud attacks1571

by directly performing perturbations on the mesh of a 3D1572

object. Mesh Attack is able to achieve an attack success rate1573

of 90% on PointNet, 98% on PointNet++ [101], and 59% on1574

DGCNN [102].1575

3) ADVERSARIAL ATTACKS IN SOFTWARE1576

Presently, malwares are widely spread over the internet and1577

becoming a serious and persistent threat. Methods for detect-1578

ing malware have evolved to become more robust and many1579

of these detection methods utilize machine learning mod- 1580

els to improve the detection of malwares. However, these 1581

machine learning-based malware detection tools are vul- 1582

nerable to adversarial examples. Liu et al. [103] presents 1583

an attack called Adversarial Texture Malware Perturbation 1584

Attack (ATMPA). ATMPA can generate adversarial examples 1585

to fool ML-based visualization malware detection systems. 1586

ATMPA uses FGSM and C&W attacks to generate adversar- 1587

ial examples. The authors have shown that on both gradient 1588

descent and Lp norm-based optimization methods, they were 1589

able to consistently produce a 100% success rate. However, 1590

it is worth noting that they also used fairly high epsilon values 1591

ε = {0.4, 0.5, 0.6} for FGSM adversarial examples which 1592

may have resulted in such high success rates. Nonetheless, 1593

their work presents an interesting point of view to utilize 1594

adversarial examples to undermine ML-based visualization 1595

malware detection systems. 1596

VI. DEFENSE STRATEGIES 1597

As depicted in Table 2, defenses for neural networks against 1598

adversarial attacks generally lie within one of four frame- 1599

works: (1) modifying the ANN, (2) modifying the train- 1600

ing by including the adversarial examples (e.g., adversarial 1601

training), (3) transforming the inputs, or (4) having external 1602

models that serve as ANN add-ons. Defense methods that 1603

change the training or the input data are disconnected from 1604

the ANN model itself. However, modified ANNs and ANN 1605

add-ons implement more layers, add subnetworks, change 1606

the loss function, or use external models to defend against 1607

attacks. In this section, we will discuss the various meth- 1608

ods used to protect a deep learning model from adversarial 1609

attacks. 1610

A. MODIFICATIONS TO THE ANN 1611

1) DEFENSIVE DISTILLATION 1612

Papernot et al. [29] introduced defensive distillation as a 1613

defense method for deep learning models against adversarial 1614

attacks. Defensive distillation builds upon the original distil- 1615

lation algorithm [104], which was originally introduced as 1616

a way to reduce the size of a large model into a reduced 1617

distilled model. Defensive distillation utilizes the distillation 1618

algorithm to increase the robustness of the model. However, 1619

instead of reducing the size of the model, defensive distil- 1620

lation modifies the softmax activation function in the last 1621

layer of the neural network to include a temperature value 1622

T . This temperature value forces the model to make stronger 1623

and more confident predictions. 1624

The defensive distillation algorithm operates as follows: 1625

First, a large network F is trained by initializing the tempera- 1626

ture T of the softmax function during the model’s training 1627

phase. Then ‘‘soft’’ labels are generated by applying the 1628

network to every value in a training setX and recalculating the 1629

softmax with the temperature. Next, a new training set is gen- 1630

erated using the soft labels. Then using the new training data 1631

another deep learning model is trained, with the same model 1632
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architecture as the original model F , and the temperature of1633

the softmax function remains T . This new model is known as1634

the distilled model Fd , and when ran at test time the model1635

will classify new input data.1636

The defensive distillation defense method works effec-1637

tively against the L-BFGS [12] and DeepFool [27] attacks.1638

However, Carlini & Wagner [26] were able to bypass the1639

defensive distillation defense method. They applied their1640

three attacks to defensively distilled networks trained on1641

MNIST [56] and CIFAR-10 [55], with a model temperature1642

T = 100. They showed that their L0, L2, and L∞ attack1643

algorithms were able to successfully attack a model 100% of1644

the time.1645

2) GRADIENT REGULARIZATION1646

Input gradient regularization [105], or double backpropa-1647

gation [106], trains deep neural networks while penalizing1648

any slight variation in the inputs. If any inputs are slightly1649

modified, the relative entropy between the labels and the1650

predictions will be insignificant. This means that a small per-1651

turbation would be unlikely to change the output of a trained1652

classifier. Combined with methods such as brute-force train-1653

ing, gradient regularization is known to be highly successful1654

in defending DNNs against attacks such as FGSM [28] and1655

JSMA [58].1656

3) DeepCloak1657

The primary goal of DeepCloak [107] is to remove unnec-1658

essary features used by an adversary to generate adversarial1659

examples. The authors propose inserting a mask layer in the1660

DNN model right before the classification layer. The mask1661

layer is trained by forward passing both clean and perturbed1662

images, encoding the differences between the outputs of the1663

two in the previous layers. DeepCloak filters out the unneces-1664

sary features by setting them to 0, effectively removing them1665

from the adversarial examples. DeepCloak was shown to be1666

effective in filtering out the perturbations in images generated1667

by the FGSM [28] attack.1668

4) PARSEVAL NETWORKS1669

Cisse et al. [108] introduced the idea of using Parseval1670

networks to defend against adversarial attacks. Parseval1671

networks control the Lipschitz constant by utilizing1672

layer-wise regularization of the weight matrices. The Lips-1673

chitz constant is the maximum ratio between permutations1674

in the input and output spaces and is used to measure1675

the sensitivity of the classifier. Maintaining a small Lips-1676

chitz constant is crucial to remain robust against even the1677

smallest perturbations. The authors realized that they were1678

able to control the spectral norm of the weight matrices,1679

which is the natural norm of the L2 norm, by parame-1680

terizing the network with Parseval tight frames. Parseval1681

networks as a defense mechanism were tested against and1682

shown to be successful in defending against the FGSM [28]1683

attack.1684

5) SafetyNet 1685

Adversarial examples generate distinctive patterns, notably 1686

during the last layers of neural networks of ReLU models 1687

rather than what is seen with clean images. SafetyNet [109] 1688

proposes an RBF-SVM (radial basis function SVM) classifier 1689

should be added to the end of the targeted models. The SVM 1690

should use codes distinctly generated by ReLU. The SVM 1691

detects adversarial examples by comparing the codes of the 1692

testing data with the codes of the training data. SafetyNet 1693

was able to effectively detect adversarial perturbations in both 1694

DeepFool [27] and L-BFGS [12]. 1695

6) DETECTOR SUBNETWORK 1696

Metzen et al. [110] use subnetworks that augment the origi- 1697

nal network to detect adversarial perturbations. Subnetworks 1698

work by branching off the main network and producing a 1699

probability padv that weighs the chances of an image being 1700

adversarial. This subnetwork is known as the detector and is 1701

trained to classify inputs as clean or adversarial. 1702

First, the classification network is trained on the regular 1703

data (i.e., non-adversarial). Then, the adversarial examples 1704

are generated for the entire dataset, using the attack algo- 1705

rithms from which the network is trying to defend itself (e.g., 1706

FGSM and DeepFool). Once an equal size dataset that has 1707

the same amount of clean and perturbed images is generated, 1708

the weights of the classification network are frozen and the 1709

detector network is trained such that the cross-entropy of the 1710

probability padv, as well as, the labels are minimized. The 1711

specifics of the detection subnetworks and how it connects 1712

to the classification network are specific to each dataset 1713

and classification network. The detector subnetworks defense 1714

works in detecting perturbations that are generated using 1715

FGSM, DeepFool, and BIM [57]. 1716

7) DEEP CONTRACTIVE NETWORKS 1717

Denoising autoencoders (DAE) [111] were introduced to 1718

combat adversarial noise. A DAE is trained to detect and 1719

remove adversarial noise. However, when coupled along- 1720

side the original network, attacks that are targeted at this 1721

stacked network are even more powerful than attacks with 1722

the original model. Gu and Rigazio propose deep contractive 1723

networks (DCN) [111], using a smoothness penalty like the 1724

one used in contractive autoencoders, which are a variant 1725

of autoencoders that include a minimization penalty. DCNs 1726

improve the robustness of the network against adversarial 1727

attacks without sacrificing performance. Deep contractive 1728

networks are effective in detecting the perturbations gener- 1729

ated by the L-BFGS [12] attack algorithm. 1730

B. MODIFICATIONS TO THE TRAINING 1731

1) BRUTE-FORCE TRAINING 1732

Adversarial training is one of the most effective ways to 1733

improve overall model robustness against adversarial exam- 1734

ples. It corresponds to the process of adding the adver- 1735

sarial examples with their correct labels into the training 1736

dataset of the DNN models [32]. This method requires that 1737
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the adversarial training is executed with a powerful attack1738

algorithm, an exposed model, and a large dataset. For these1739

reasons, adversarial training is commonly known as brute-1740

force training. It is also shown that adversarial training can1741

provide an added regularization to the network [28] which1742

helps strengthen the DNNmodels against adversarial attacks.1743

Methods that build on the observations made in [12], [28],1744

and [27] have been proposed, such as stability and virtual1745

adversarial training.1746

Virtual adversarial training [112] extends the previously1747

mentioned method to work with unlabeled data and in1748

semi-supervised situations. Virtual adversarial training can1749

also work with text classification and sequencing models.1750

Zheng et al. [113] proposed the stability training method1751

which stabilizes DNNs and improves robustness against1752

small distortions in input images. Overall, adversarial1753

brute-force training is an effective way of improving the1754

robustness of the model but is also exposed to certain attacks,1755

namely universal perturbations [14].1756

2) INPUT TRANSFORMATIONS1757

Another way of protecting neural networks from adversarial1758

attacks is by modifying the inputs in a way to reduce the1759

model’s sensitivity to small perturbations. Data compression1760

is one way of minimizing the damage perturbed images can1761

do to the model. Dziugate et al. [114] noticed that almost1762

every classification dataset consists of JPG images. They1763

used this observation as a basis for testing the effects of JPG1764

compression on adversarial images generated by FGSM [28].1765

They found that most of the time JPG compression would1766

reverse the classification of the adversarial image for small1767

perturbations generated by FGSM. Generally speaking, for1768

large perturbations, JPG compression is not an effective1769

method to reverse the effects of the perturbation and only1770

slightly improves the overall classification of the images.1771

Another method proposed by Bhagoji et al. [115] seeks to1772

defend against evasion attacks by using dimensionality reduc-1773

tion approaches such as the principal component analysis1774

(PCA)method. They found that by using PCA against evasion1775

attacks, their defense is effective against the L2 Carlini &1776

Wagner attack [26] and FGSM attacks. Principal component1777

analysis makes it harder for the adversary to perturb an image1778

and perform a successful white-box attack. They found that1779

their defense can work across multiple classifiers including1780

SVMs and DNNs and can be generalized to work in multiple1781

applications.1782

C. ADDITIONS TO THE ANN1783

1) TRAPDOORED MODEL1784

Shan et al. [116] propose an approach for defending against1785

adversarial examples by utilizing honeypots to detect per-1786

turbed images. These honeypots are decoys that lure adver-1787

saries into artificial security vulnerabilities in the network.1788

The authors deliberately implanted trapdoors that attracted1789

adversaries attempting to probe the model for any infor-1790

FIGURE 11. Visualization of the framework for defending against
UAPs [117]. This method rectifies the images to restore the classifier’s
predictions. The patterns that are removed during the rectification
process are analyzed to determine whether an image is adversarial.

mation to generate adversarial images. The adversaries are 1791

drawn towards the trapdoors and generate images designed 1792

to target these perceived weaknesses to attack the clas- 1793

sifier. The honeypots catch and identify the incoming 1794

attacks by measuring and comparing the neuron activa- 1795

tion of the inputs to the injected trapdoors. The trapdoored 1796

model can protect the ANN against PGD [50], C&W [26], 1797

and EAD [30] attacks, with high accuracy and with little 1798

impact on normal classifications. This method can also work 1799

in multiple classification scenarios like image and facial 1800

recognition. 1801

2) DEFENSE AGAINST UAPs 1802

Universal adversarial perturbations (UAP) [14] highlight a 1803

critical shortcoming in the security of machine learning mod- 1804

els. Therefore, Akhtar et al. [117] introduce a framework for 1805

defending against UAPs by adding a perturbation rectifying 1806

network (PRN) as a pre-input layer to the targeted model 1807

to prevent having to alter the model. The PRN catches the 1808

perturbed images coming into the network and adjusts them 1809

to label these perturbed images with same label of the original 1810

image. The perturbation rectifying network is trained using 1811

datasets that contain real and artificial UAPs without chang- 1812

ing any of the model’s parameters. Separately, a perturbation 1813

detector is trained on the cosine transform of the differences 1814

between inputs and outputs of the PRN. As shown in Fig. 11, 1815

the images pass through the PRN and then verified by the 1816

detector. When, the perturbations is detected, the output from 1817

the PRN is used to predict the labels instead of the actual 1818

image. PRN shows promising results in defending DNNs 1819

against UAPs with a 97.5% success rate. 1820

3) FEATURE SQUEEZING 1821

Other attempts to defend neural networks from adversarial 1822

attacks investigate optimizing the model which can be com- 1823

putationally expensive. Therefore, Xu et al. [118] proposed 1824

feature squeezing to strengthen DNNs by detecting perturbed 1825

images. The feature squeezing process minimizes the search 1826

space by consolidating examples that correlate to various fea- 1827

ture vectors in the original search space into a single example. 1828

Although the feature squeezing process is quite general, the 1829

authors specifically explore two methods, spatial smoothing, 1830

and the reduction of the color bit depth of every pixel. These 1831

techniques are simple, inexpensive, and can be combined 1832
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TABLE 2. An outline of the different defense strategies against adversarial machine learning attacks. the ‘‘Unknown’’ indicates lack of information in the
literature.

with other defense strategies to have more effective results.1833

Input images first go through an external model that performs1834

feature squeezing over the image. The probability score of1835

the target network using the original input is compared to1836

the score of the squeezed image. If the difference between1837

the probability scores is considerably large, then the image is1838

classified as adversarial and discarded.1839

4) MagNet1840

Meng and Chen proposed MagNet [119], a framework used1841

for defending against adversarial attacks on neural network1842

classifiers.MagNet introduces separate detector and reformer1843

networks that classify whether incoming input images are1844

adversarial or not. Detector networks are either based on1845

the reconstruction error or the probability divergence. They1846

estimate the manifold of clean inputs and during the training1847

phase, they learn to separate the clean images from the per-1848

turbed ones. In the testing phase, images that are far from the1849

manifold are labeled adversarial and then dropped. For adver-1850

sarial images with small perturbations, reformer networks,1851

which are based on random noise or an autoencoder, push1852

perturbed images towards the manifold of the unperturbed1853

images, essentially forcing the image to be correctly classi-1854

fied. MagNet is an effective method to defend against black1855

box (zero-knowledge) and gray box attack (limited knowl-1856

edge) scenarios, and because it does not assume any specific1857

perturbation generation method, MagNet can be generalized1858

to different attacks.1859

D. DEFENSE AGAINST POISONING ATTACKS1860

1) DETECTION BASED ON ACTIVATION ANALYSIS1861

Detecting and defending a deep neural networkmodel against1862

backdoor attacks is extremely difficult because the triggers of1863

the backdoors are only known to the adversary. Backdoors are1864

triggered when specific features are identified by the model1865

that is associated with the source class, which in turn, the1866

backdoor trigger results in network activations that represent1867

a decision made by the model. Chen et al. [82] proposed an1868

activation clustering algorithm to detect the poisoned input1869

images that are generated to inject backdoors into deep neural1870

networks. The proposed algorithm analyzes the activations in 1871

the neural network to detect backdoors. The working process 1872

of their algorithm can be described as follows. First, they 1873

train the neural network using an untrusted dataset containing 1874

poisoned examples. Second, they query the neural network 1875

using the training data and the subsequent activations of the 1876

last hidden layer. Third, once the activations of each sample 1877

are retained, they are segmented into different segments that 1878

are clustered individually, where each segment corresponds to 1879

a label. Fourth, by using k-means clustering [120], the clus- 1880

ters are separated into two groups: poisoned and clean data. 1881

Finally, the poisoned data is identified either by exclusionary 1882

reclassification, relative size comparison, or silhouette score. 1883

Once the poisoned data is identified, the authors suggest 1884

the fastest way to repair the backdoor by ‘‘re-labeling’’ the 1885

poisoned data with its original class, and continue to train 1886

the model until convergence. Their method was tested using 1887

the LISA [121], MNIST [56], and Rotten Tomatoes [122] 1888

datasets. When the authors experimented with 10% poisoned 1889

data using MNIST, they were able to achieve accuracy and 1890

F1 score of nearly 100% for each class label. Compared to a 1891

conventional clustering algorithm, their method outshines in 1892

every respect. 1893

2) DETECTION BASED ON SPECTRAL SIGNATURES 1894

Tran et al. [123] proposed a new method for defending neu- 1895

ral networks against poisoning backdoor attacks by utilizing 1896

spectral signatures. The authors noticed that in the aftermath 1897

of a backdoor attack, a detectable trace of the attack was left 1898

behind in the covariance of a feature representation learned 1899

by the model. They refer to the remnant of the attack as a 1900

spectral signature. The authors presume that the set of inputs 1901

contains both clean and adversarial examples for each label. 1902

A backdoor in an adversarial example would yield a strong 1903

signal in the representation vector. Signals that are large 1904

in magnitude can easily be detected through singular value 1905

decomposition and the images that provide that signal can 1906

be detected and removed. The authors test their algorithm 1907

using CIFAR-10 [55] with 5000 examples for each of the 1908
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10 labels. When they use 250 adversarial examples, which1909

is relatively a very small sample, the trained model accuracy1910

drops to around 10%. In most cases by utilizing spectral sig-1911

nals they can remove all traces of corrupted data, minimizing1912

the misclassification rate to around 1%.1913

VII. DISCUSSION & FUTURE RESEARCH DIRECTION1914

In the previous sections, we discussed the recent state-of-the-1915

art adversarial attacks against deep neural networks and the1916

defense mechanisms. In this section, we present the current1917

challenges and the broader view of the directions of the1918

future research work based on the literature discussed in this1919

paper.1920

A. THE EXISTENCE OF ADVERSARIAL ATTACKS1921

Upon constructing an adversarial example, the adversary1922

needs to craft the perturbations in the way that forces the1923

targeted model to misclassify, as well as, maintain the ‘‘true1924

class’’ of the input. Adding large imperceptible perturbations1925

could truly change the identification characteristics of an1926

input. Therefore, few studies present some skepticisms about1927

the existence of adversarial attacks and consider their exis-1928

tence as normal behavior in deep neural networks. In other1929

words, yielding a different class of the original input after1930

adding the perturbations by the DNN model is a normal1931

behavior [32]. However, in Sections V and VI we has1932

demonstrated how adversarial attacks are real and pose a real1933

threat to deep neural networks.1934

The reason why deep neural networks are vulnerable1935

to adversarial attacks is unknown. Many viewpoints have1936

been proposed attempting to explain this phenomenon. For1937

instance, Goodfellow [28] argued that the deep neural net-1938

works are ‘‘too linear’’ in a high dimensional space which1939

makes them susceptible to any subtle changes that occur to1940

any input. Fawzi [124] suggested that the ‘‘low flexibility’’ of1941

the classifiers in certain tasks can be the reason. Despite the1942

recent advances, we believe that identifying the adversarial1943

vulnerabilities of deep learning is still unclear and requires1944

further investigation.1945

B. THE TRANSFERABILITY OF ADVERSARIAL ATTACKS1946

The term ‘‘transferability’’ refers to the degree of general-1947

izing the adversarial attack of a specific neural network to1948

fool other neural networks of different architectures. Most of1949

the adversarial attacks are transferable. This is especially true1950

for neural networks that have a similar architecture [74]. The1951

attack transferability can be categorized into three levels:1952

• Low transferability. The adversarial attack can fool1953

similar deep neural networks when trained with a dif-1954

ferent dataset. For example, the DeepFool attack is an1955

example of low transferability. The adversarial images1956

generated using DeepFool on any given architecture are1957

hardly able to fool other neural networks.1958

• Medium transferability. The adversarial attack can1959

fool different types of neural networks when trained1960

using the same dataset (i.e., performing the same task). 1961

FGSM is an example of medium transferability. 1962

• High transferability.At this level, the adversarial attack 1963

can fool different neural networks of different architec- 1964

tures performing different tasks. 1965

Currently, most of the existing adversarial attack research 1966

is focused on image classification. Very limited studies have 1967

focused on different applications [41]. Therefore, further 1968

research is required to focus on adversarial deep neural net- 1969

works in different applications. In addition, further investiga- 1970

tion is required to evaluate the applicability, efficiency, and 1971

practical use of the current adversarial attacks in different 1972

applications. 1973

C. ADVERSARIAL ATTACK DEFENSE METHODS 1974

Multiple defense methods have been proposed to counter- 1975

measure the adversarial attacks. However, oftentimes showed 1976

that a defended model has been successfully attacked by an 1977

existing attack or a zero-day attack. For example, the distilled 1978

neural network defense mechanism [29] has been defeated 1979

against C&Wattacks [26]. Furthermore, the adversarial train- 1980

ing defense technique has been proved to be ineffective [125]. 1981

Thus, further research is required to focus on developing a 1982

universal adversarial defense method that covers the various 1983

aspects of adversarial attacks. 1984

D. EVALUATION METHODOLOGY OF THE ROBUSTNESS OF 1985

DEEP NEURAL NETWORKS 1986

Currently, most of the adversarial attacks and defense mech- 1987

anisms have been simulated in limited environments. Also, 1988

in many cases, the source code and the configuration param- 1989

eters of the work environment are not available to the research 1990

community to further evaluate the robustness of the defense 1991

method as well as the adversarial attack. Hence, having a deep 1992

learning robustness methodology is crucial. Different works 1993

have conducted initial studies emphasizing the importance 1994

of evaluating the robustness of neural networks [126], [127], 1995

[128]. However, different questions arose such as (1) how 1996

to stress-test neural networks on different business domains? 1997

and (2) what are the general robustness parameters and accep- 1998

tance score of a neural network application?. To answer these 1999

questions, further research is required. 2000

VIII. CONCLUSION 2001

In this article, we provide a comprehensive review of the 2002

state-of-the-art adversarial attack methods. In our review, 2003

we focused on adversarial attacks against the image classi- 2004

fication neural networks. In addition, we have provided a 2005

detailed discussion of the most widely used defense strate- 2006

gies against adversarial attacks by focusing on their usage 2007

in real-life applications. Also, we have provided a detailed 2008

overview of the attacking scenarios that can be employed 2009

by the adversary to compromise DNNs. Furthermore, in this 2010

paper, we analyzed and discussed the current open issues and 2011

challenges that require further investigation. 2012
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