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ABSTRACT The popularity of adapting deep neural networks (DNNs) in solving hard problems has
increased substantially. Specifically, in the field of computer vision, DNNs are becoming a core element
in developing many image and video classification and recognition applications. However, DNNs are
vulnerable to adversarial attacks, in which, given a well-trained image classification model, a malicious
input can be crafted by adding mere perturbations to misclassify the image. This phenomena raise many
security concerns in utilizing DNNs in critical life applications which attracts the attention of academic
and industry researchers. As a result, multiple studies have proposed discussing novel attacks that can
compromise the integrity of state-of-the-art image classification neural networks. The raise of these attacks
urges the research community to explore countermeasure methods to mitigate these attacks and increase
the reliability of adapting DDNs in different major applications. Hence, various defense strategies have
been proposed to protect DNNs against adversarial attacks. In this paper, we thoroughly review the most
recent and state-of-the-art adversarial attack methods by providing an in-depth analysis and explanation of
the working process of these attacks. In our review, we focus on explaining the mathematical concepts and
terminologies of the adversarial attacks, which provide a comprehensive and solid survey to the research
community. Additionally, we provide a comprehensive review of the most recent defense mechanisms and
discuss their effectiveness in defending DNNs against adversarial attacks. Finally, we highlight the current
challenges and open issues in this field as well as future research directions.

INDEX TERMS Deep neural networks, artificial intelligence, adversarial examples, adversarial perturba-
tions.

I. INTRODUCTION

Deep learning makes a significant breakthrough in providing
solutions to many hard problems that cannot be solved using
traditional machine learning algorithms. Examples include,
but are not limited to, image classification, text translation,
and speech recognition. Due to the advancement of deep
learning neural networks and the availability of powerful
computational resources, deep learning is becoming the pri-
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mary choice for developing a wide spectrum of critical life
applications such as DNA analysis [1], autonomous vehi-
cles [2] and other security application such DDoS detection
and malware detection [3], [4].

Adapting deep learning models to computer vision tasks
was set in motion by Krizhevsky et al. [5]. The authors were
able to successfully demonstrate the capabilities and perfor-
mance achievable by utilizing deep neural networks for image
recognition [6]. Their work sparked an increased interest
in deep learning and computer vision research, giving rise
to more complex and more powerful deep learning models
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FIGURE 1. Samples of adversarial attacks: DeepFool, FGSM, and HSJA
against the pre-trained ResNet-50 deep learning model. The trained deep
learning model correctly classifies the original input image with 94%
accuracy. After adding small imperceptible perturbations to the image,
the trained model misclassified the adversarial image.

such as ResNet [7] and DenseNet [8]. The introduction of
more advanced network architectures allowed researchers to
explore complex tasks such as X-ray analysis [9], predictive
maintenance [10], and crop yield prediction [11].

Despite the evident ability in solving many sophisticated
problems with high accuracy, Szegedy et al. [12] demon-
strated that deep neural networks are susceptible to adver-
sarial attacks. As depicted in Fig. 1, an adversarial example
can be generated by adding small perturbations to an image
to fool the deep neural networks and reduce their accuracy.
Their finding triggered the interest of researchers to study
the security of deep neural networks. As a result, several
adversarial attacks have been proposed in the literature that
show different security vulnerabilities that can be exploited
by an adversary to compromise a deep learning system. For
example, Su et al. [13] showed that changing one pixel on an
image can fool a deep learning model. Furthermore, different
research works have shown the ability to generate universal
perturbations that can fool any neural network [14].

The inherited weaknesses of DNN models against adver-
sarial attacks raise many security concerns especially for
critical applications such as the robustness of deep learning
algorithms used for autonomous vehicles [15]. Hence, differ-
ent studies propose various countermeasure methods against
adversarial attacks. Examples include the modification to the
deep neural network, adding to the neural network, and many
others are explained in this literature.

A. MOTIVATION AND CONTRIBUTION

The main motivation of this paper is to provide a compre-
hensive review of the most recent deep learning adversarial
attacks and defense methods to offer easy access to the recent
advancement in this field and provide a jump-start to tap
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on the rapidly growing adversarial deep learning research.
Also, we believe there is a need to survey the current and the
emerging adversarial deep learning advancement and provide
an in-depth study about future research directions. Recently,
different articles have reviewed various research works in this
field [16], [17], [18], [19], [20], [21]. This survey is different
from the existing surveys in several aspects. As compared to
other surveys in the literature, this survey provides a com-
prehensive background review of the mathematical concepts
that are vital to understanding the working process of the
adversarial attacks and defense mechanisms on image clas-
sification, as well as it provides a clear description of the
terminologies and technical terms used in this domain based
on the most recent research and advancements in this field.
The distinctive part of this survey is that it provides a sys-
tematic and deep review of the working process of the most
recent and state-of-the-art adversarial attacks by focusing on
describing their mathematical terminologies and foundation
which provide an easy and profound description of these
attacks. Besides, we provide a general overview about the
effectiveness of these attacks in many terms including but
not limited to attack performance. Furthermore, we provide
a comprehensive review of the well-known defense mecha-
nisms by highlighting their effectiveness including their lim-
itations and the covered attacks. Not to mention, this article
mainly focuses on reviewing adversarial attacks and their
defense methods in computer vision. However, we provide
a lightweight review of the well-known adversarial attacks in
different contexts such as audio, 3-D data, and software which
help the interested readers to explore and rapidly tap on the
adversarial attacks in different contexts.

The main contributions of this article can be summarized
as follows:

« We provide an extensive study of state-of-the-art algo-
rithms for generating deep learning adversarial attacks
in computer vision

o We provide an in-depth study of various adversarial
attacks defense mechanisms.

« We provide a systematic and comprehensive review of
the adversarial threat model that covers the deep learning
system attack surface, adversarial knowledge and capa-
bilities, adversarial goals, and attack scenarios.

« We identify and discuss a number of open issues and
possible future research directions for adversarial deep
learning.

B. ORGANIZATION

The remainder of this paper is organized as follows. Section II
provides some technical terms related to adversarial deep
learning. In section III we provide an overview of different
concepts of deep learning and adversarial attacks. Section IV
describes the threat model of deep learning. We dedicate
Section V to discuss the adversarial attacks. In Section VI
we introduce the defense mechanisms. We discuss the future
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research directions of deep learning security in Section VII.
Finally, Section VIII concludes this paper.

Il. DEFINITIONS OF TERMS
In this section, we describe some of the technical terms used
in this survey study.

o Adversarial example (%) is a malicious permutation of
a clean image (x) that has been generated by adding
small perturbations (e.g., noise) to fool the deep learning
model. The added perturbations are usually impercepti-
ble, however, there are a few cases in which the pertur-
bation is perceptible.

o Adversarial perturbation is the noise that is added to
a clean instance image to create an adversarial example.

o The Adversary is the attacker that crafts and carries out
adversarial attacks against the ML model.

o Adpversarial training is a kind of machine learning
training that uses the adversarial examples within the
training set to increase the robustness of the deep learn-
ing model against adversarial attacks.

« Image-Detector is a mechanism that is used to reveal
adversarial images.

« Fooling rate/ratio is a measurement that is used to
evaluate the robustness of an ML model and adversar-
ial attack intensity. It refers to the percentage of the
adversarial examples that fooled the ML model. A high
fooling ratio means that the attack is strong, and the ML
model is not robust to the adversarial examples.

« Targeted attack is an attack that forces the DNN model
to misclassify an adversarial example to a specific target
label predefined by the adversary.

o Untargeted attack is the most common type of attack
that forces the DNN model to misclassify the label of
the adversarial example into any incorrect label. Such
attacks intend to reduce the integrity and availability of
the DNN models.

Ill. BACKGROUND

Adversarial machine learning attacks and defense meth-
ods are formed using different mathematical concepts. This
section provides a comprehensive overview of several con-
cepts that are crucial for understanding how the attacks and
defense methods work.

A. GRADIENT DESCENT
Optimization is the process of either minimizing or maxi-
mizing an objective function. In machine learning, the opti-
mization process is used to find the optimal values of the
parameters of an objective function that minimize a cost
function. Different algorithms can be adapted to perform the
optimization process. Gradient descent is one of the most
used algorithms to find the optimal parameters for a wide
range of machine learning algorithms [22].

Gradient descent is a first-order optimization algorithm
that uses the gradient of the function at its current location
to find the trajectory used to move through the search space.
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FIGURE 2. A demonstration of the difference between the local and
global maximum and minimum values as well as the impact of the
learning rate on model training. The learning rate value (shown in red)
determines the magnitude of the updates to the model’s weights.

As depicted in Fig. 2, the basic gradient descent algorithm
consists of: (1) calculating the gradient V¢ of the objective
function J(#), (2) moving in the opposite direction of the
gradient V¢ which is the direction of the steepest descent
that will lead to an improvement (i.e., finding the global
minimum) (see Fig. 2), and (3) selecting the learning rate
that refers to the size of the steps toward the minimum. g is the
most important parameter that needs to be tuned carefully to
achieve a highly performed DNN model. Generally, a large
B allows the ML-model to learn faster. However, it could
drastically decrease the model’s performance since the algo-
rithm may result on the other side of the valley (missing the
optimal minimum). Small 8 allows the model to converge
by finding the local minimum after many iterations which,
not surprisingly, requires a long run-time. There is a trade-off
between the accuracy of the results and the time required to
perform parameter updates.

Gradient descent has three variants: batch gradient descent
(BGD), stochastic gradient descent (SGD), and mini-batch
gradient descent, which we will discuss in the next sections.

1) BATCH GRADIENT DESCENT (BGD)

As shown in Eq. 1, BGD calculates the gradient of the cost
function with regards to the model parameter 6 for the whole
training dataset. In other words, BGD computes the gradient
descent over the full training dataset to perform one parameter
update, which explains why it is called “Batch” or in some
case “full gradient descent”. Depending on the size of the
training dataset, batch gradient descent is time-consuming
and requires a long processing time.

0=0—p-VJ©) (1)

Despite the long processing time, BGD has several advan-
tages. For example, when the cost function is convex, BGD
with a fixed learning rate will converge to the global mini-
mum. When the cost function is not convex, it will converge
to the local minimum since it has a straight direction to
the minimum value, see Fig. 3. Therefore, BGD guarantees
convergence to the minimum value.
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2) STOCHASTIC GRADIENT DESCENT (SGD)

Since BGD requires a long processing time to calculate the
gradient for large-scale training datasets, SGD [23] was pro-
posed to overcome BGD’s limitations. SGD is an iterative
technique for optimizing the cost function. As illustrated in
Eq. 2, in every iteration SGD randomly selects an example
from the training data and calculates the gradient, then it
performs a parameter update using the selected example.
In contrast to BGD, where the actual gradient is calculated
using the entire dataset, the objective of SGD is to calcu-
late an estimation of the gradient using a small number of
instances. The cost of updating the stochastic gradient descent
is independent of the training dataset size and can reach linear
convergence [23]. In some cases, the cost of training some
ML models using SGD can reach O(1) [24]. Thus, SGD has
become the most widely used optimization algorithm.

9:9—ﬂ~V9J(9;xi;yi) )

As depicted in Fig. 3, SGD has one main performance
issue. Unlike the convergence path of BGD, which gently
moves toward the minimum, the convergence path in SGD is
irregular and has many fluctuations due to the noise that orig-
inates from the random selection of the instances. Therefore,
SGD performs high variance parameter updates [25].

3) MINI-BATCH GRADIENT DESCENT

Instead of using the entire training dataset to compute the
gradient of the cost function, the training dataset is shuffled
and then divided into mini-batches based on a predefined
batch size [22]. Subsequently, these small batches are used to
calculate the gradient descent of the cost function as shown
in Eq. 3.

9 — 0 _ ﬂ . V@J(e, xi:i+n; yi1i+n) (3)

The advantages of using mini-batch gradient descent over
other gradient descent methods are two-fold: First, it is faster
than BGD in computing the gradient of the cost function.
Second, with a large number of batches, mini-batch gradient
descent fluctuates less than stochastic gradient descent while
moving towards the minimum, see Fig. 3.

However, mini-batch gradient descent requires tuning the
batch size parameter. When the batches are small, extra noise
will be added to the training process which helps in reducing
the generalization error (i.e., regularization effect). When
the batches are large, mini-batch gradient descent converges
slowly but has more accurate results concerning the gradient
error.

B. DISTANCE METRICS

Distance metrics are used to measure the distance between
two points (i.e., vectors). In other words, distance metrics
quantify the similarities between two vectors. If the distance
is zero, the two vectors are equivalent under that distance
metric. To compute the distance between two vectors, the
norm of the difference between those two vectors needs to
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FIGURE 3. An illustration of the differences between training a model
using BGD, SGD, and mini-batch gradient with regrading to approaching
the minimum value.

be evaluated using a norm function. A norm L, is a function
that measures the magnitude of a vector. Formally, the norm
function L? of x can be defined as:

1/p
el = (Y Ill?) ©3:peRp=1 @

The distance metrics are used within the process of gener-
ating the adversarial attacks by quantifying their similarities.
Lo, L1, Ly, and L, distance metrics have been widely adopted
by state-of-the-art adversarial attack algorithms [12], [26],
[27], [28] which are detailed below.

1) Lo DISTANCE

As shown in Eq. 5, L distance is used to calculate the vector
size by measuring the total number of the non-zero elements
of a given vector. Arguably, sometimes Ly is referred to as
a “norm” which is not correct since scaling a vector by
constant value a will not change the number of non-zero ele-
ments, thus, it is more accurate to be classified as a cardinality
function.

lxllo = (ilxi # 0) &)

The Lo distance was used in [26] and [29] to generate
adversarial attacks since it corresponds to the number of
altered pixels of an image.

2) L, DISTANCE

The L distance, also known as the Manhattan Distance or the
Taxicab norm, is used when the difference between non-zero
and zero elements is important. Essentially, when an element
moves away from the origin (0,0) by a, L increments by a.
Therefore, L1 measures the distance between the origin (0,0)
to the point (x,y). Formally, L; distance is defined as follows:

Ixlly =) " x ©6)
i=1

The L; distance is utilized by the elastic net attack [30] to
generate adversarial perturbations. More specifically, the L;
distance functions as a regularization parameter, representing
the perturbation’s total variation. The L; distance improves
the transferability of the elastic net attack by generating
distinct adversarial images that fool DNN models.
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3) L, DISTANCE

The L, distance, also known as the Euclidean Distance,
is widely used in machine learning, and often denoted as ||x||.
As shown in Eq.7, L, measures the shortest distance (i.e.,
length of the straight line) between two vectors.

n 1/2
xll, = (Z ||x,-||2> @)
i=1

The L, distance was employed by different researchers to
generate adversarial attacks [31]. For example, In [27], they
used L, to measure the distance between the class labels of
the original image x and the perturbed image x. It is used to
measure the size of the perturbations in the perturbed image x.

4) L DISTANCE

The L, distance, also known as the ‘“max norm”, returns the
maximum magnitude of the difference between each element
in a vector. As shown in Eq. 8, the Lo, norm can be described
as the maximum among the absolute values of the differences
in a set of numbers (e.g., coordinate pair, n-dimensional
vector, etc.) [26].

Hx —x’”oo = max(|x1 —xi|

Xn — xy/l |) (8)

In adversarial settings, Lo, can be used as a sufficient
constraint over the size of perturbations that could be added
to generate the perturbed image [32]. Thus, Ly, ensures that
the perturbations do not modify the true class of the original
image.

C. ARTIFICIAL NEURAL NETWORKS

In an attempt to mimic the way the brain learns information
and patterns, artificial neural networks (ANNs) were devel-
oped to be the generalized mathematical models of biological
neural networks [33]. The basic structure of an ANN consists
of at least three layers: (1) the input layer, (2) the output
layer, and (3) the hidden layer(s). Each layer is a collection
of nodes that passes the inputs along to the succeeding layers.
Nodes are the basic units of computation in an ANN, taking
inputs from other nodes or external sources and producing an
output. Depending on the conditions of the problem, different
types of neural networks are required to perform different
tasks. For example, a text generation problem would employ a
recurrent neural network over other ANNS for optimal results.
We will further discuss and break down ANNs and their
specific components in the ensuing sections.

1) ARTIFICIAL NEURONS

Artificial neurons, or nodes, are mathematical representa-
tions of biological neurons. They serve as connection points
between layers in an artificial neural network. Nodes take
input values (x,...,x,) from the dataset and combine them
with a set of weights (wy, ..., w,). The weighted inputs are
summed and passed through a non-linear activation or trans-
fer function [33]. This process is shown in Fig. 4, in which a
set of inputs are passed through a node. Like their biological
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FIGURE 4. A mathematical model of an artificial neuron (Perceptron),
with inputs x; . ..xp, weight values w; ... wp, activation and
transformation functions, and output value y. Artificial neurons are the
building blocks of a neural network.

counterparts, there exists a hierarchical arrangement in arti-
ficial neurons and artificial neural networks. The weighted
output of node y is passed into the next layer of the ANN
until it reaches the final layer of the network.

2) FEED-FORWARD NEURAL NETWORKS

Artificial neural networks can solve classification problems
for non-linear datasets by utilizing the hidden layers within
the network. A layer in a network is a row of interconnected
nodes, and an ANN can have multiple layers that improve
its overall robustness and performance. As demonstrated in
Fig. 5, the basic structure of a multi-layer neural network
consists of three layers: (1) the input layer, (2) the hidden
layer, and (3) the output layer.

The input layer is the initial layer in an ANN, and it is
mainly responsible for feeding the data into the network.
The inputs are then transferred to the hidden layer(s) for
processing. The hidden layer(s) is where the network applies
an activation function and weights for the inputs. The hidden
layers process the inputs coming from the preceding layer
and extract the required information from the data. As shown
in Fig. 6, neural networks can have multiple hidden layers,
this is known as a deep neural network (DNN). Based on the
problem’s complexity, multiple hidden layers can be used to
increase the prediction accuracy of the network and extract
more features from the data. For example, as shown in Fig. 7,
a convolutional neural network (CNN) used for facial recog-
nition cannot solely identify a human face with only one
hidden layer. One layer that identifies eyes cannot recognize
an entire face, but if it is combined with other layers that
identify other features, such as noses or mouths, the network
becomes stronger and can successfully recognize faces. The
output layer is the final layer in an ANN and is responsible
for aggregating the information and returning the outputs in
the format given by the problem.

Forward propagation is the process of progressively mov-
ing through the layers of the ANN and is used in feed-forward
neural networks [34]. The hidden layer(s) take the input
data, process it, and then pass it onto the next layer. This
is a necessary step for feed-forward networks to generate
outputs. If the data travels backward at any point, it will form
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Hidden Layer

FIGURE 5. The general architecture of a simple neural network and its
three layers: the input layer (green), the hidden layer (blue), and the
output layer (red).
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FIGURE 6. Demonstration of a deep neural network with multiple hidden
layers. The additional hidden layers allow the neural network to perform
complex facial and object recognition operations.

a loop that will block the output generation process. Other
ANNSs are designed and built using other architectures (e.g.,
backpropagation) and serve different purposes.

3) BACKPROPAGATION

At the core of most neural networks is the process of back-
propagation. Backpropagation is a training algorithm that
starts by feeding the input values forward through the ANN,
calculating the error, and propagating it back through the net-
work [34]. The main goal of backpropagation is to minimize
the cost function by iteratively updating and adjusting the
ANN weights and biases. Parameter updates are calculated
by taking the gradient of the loss function with respect to the
weights of the model. The network will back-propagate until
the cost function is minimized.
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4) ACTIVATION FUNCTIONS

The activation function determines whether an artificial neu-
ron should be activated. The main objective of the activation
function is transforming the values in the node into an output
value that can be accepted as input into a function (e.g.,
vector) while adding non-linearity to the output values. Acti-
vation functions map the resulting values from the summation
function in the node to lie between [0 to 1] or [—1 to 1]. The
result of the activation function forms the input for the next
layer. Activation functions fall into two categories: linear
and non-linear. The most widely used activation functions
are non-linear, and the most popular ones include hyperbolic
tangent, sigmoid, and softmax.

a: SIGMOID FUNCTIONS
The sigmoid functions are characterized by an S-shaped curve
that can be categorized into three different functions: the
logistic function, the hyperbolic tangent, and the arctangent.
In the context of machine learning, the sigmoid function
coincides with the logistic sigmoid function [35]. The logistic
sigmoid function as defined in Eq.9, takes any real value x and
outputs a value S(x) that lies within the range [0 to 1].
1 e
S0 = l+e™ e +1 ©)

Sigmoid functions are widely used as activation functions
in deep learning because they add non-linearity into the
network. Sigmoid functions are also used to convert real
numbers into probabilities. A logistic sigmoid function that
is placed in the last layer of an ANN converts the output into
a probability score.

b: SOFTMAX FUNCTION
The softmax function can be viewed as a generalization of
the logistic regression function, sharing similarities to the
sigmoid function shown in Eq. 10. The softmax function
transforms a vector of values into a single vector, whose
values when summed are equal to one. It is normal to see
the softmax function implemented as a penultimate layer in a
neural network [36] because it can transform the outputs from
the hidden layers into a normalized probability.
Zi
%= = (10)
D j—1€%

where x is a vector of output values, and e is a mathematical
constant which is the base for the natural log. The sigmoid and
softmax functions are similar in terms of the latter function
being a specialized case of the former. The main difference
between the two lies in the type of values they can accept
as input. The softmax function only accepts vectors as input,
whereas the sigmoid function only accepts scalars.

¢: HYPERBOLIC TANGENT OR TANH

The hyperbolic tangent or tanh function can be utilized as
an alternative to the logistic sigmoid function in an ANN.
The tanh function shares similarities with the logistic sigmoid
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FIGURE 7. An example of a CNN that is used for image classification, recognition, and processing. CNN's differentiate themselves from normal ANNs
because of the addition of convolutional layers which utilize convolution to convert the image pixels into values that can be used for classification.

function in that it has a similar S-shaped curve. One difference
between the two is the output range. As defined in Eq. 11, the
tanh function takes any real value x as an input and generates
a value in the range [—1 to 1] as output.
—X
tanh) = & ¢ ) (11)
(X +e™)

Larger input values (more positive) will result in outputs
that are closer to 1, whereas smaller inputs (more negative)
will result in outputs closer to —1. tanh is preferable to the
logistic sigmoid as it has unrestricted gradients [37], and
the outputs function is zero centered. Since the values lie
between [—1 to 1], their mean value is approximately equals
zero which helps center the data and allows the next layers to
have an easily processing and predicting the data.

IV. ADVERSARIAL THREAT MODEL

This section describes the threat model of machine learning
models. As depicted in Fig. 8, the threat model includes
the adversarial degree of knowledge, adversarial capabilities,
adversarial goals, and the attacking scenarios.

A. ADVERSARIAL DEGREE OF KNOWLEDGE

The adversary knowledge about the targeted machine learn-
ing system (e.g., DNN image classification model) may vary
and can be classified into three categories:

1) PERFECT-KNOWLEDGE

In this setting, the adversary has complete-knowledge
of the targeted learning system used for classifica-
tion/prediction [38]. The adversary has comprehensive
knowledge of the training and testing dataset. The adversary
has complete knowledge of the ML model which includes:
the model architecture, the number of layers, the weights, the
inputs and outputs, and the model’s features and parameters.
The adversary also knows the type of learning algorithm

102272

which includes the type of the activation function and loss
function. In white-box settings, the adversary has access
to the full knowledge of the targeted learning system [39].
Thus, the generated adversarial attacks using this setting are
commonly known as white-box attacks [40], [41].

2) LIMITED-KNOWLEDGE

In this setting, the adversary has insubstantial knowledge
of the targeted learning system. This includes knowing a
similar training dataset to the one that was used in training the
targeted DNN model. The adversary can obtain such limited
knowledge about the targeted model by building a surrogate
model of the same scale [39]. The adversarial attacks gener-
ated in this setting are referred to as gray-box attacks [42].

3) ZERO-KNOWLEDGE

In contrast to the perfect knowledge, in this setting, the
adversary has no knowledge about the targeted system or
access to any surrogate model. The only available option for
the adversary is querying the targeted learning system (i.e.,
oracle). Given the adversary’s lack of knowledge, the gen-
erated attacks using this setting are referred to as black-box
attacks [41].

B. ADVERSARIAL CAPABILITIES

Machine learning threat models can be categorized using
the capabilities of the adversary. In cyber-security, the term
“capability” refers to the adversary’s level of access to the
system resources (i.e., the learning model and data). Depend-
ing on the adversarial attack settings, the adversary capabili-
ties can be categorized as the following:

1) TRAINING DATA
In white-box settings, the adversary has read and write
access to the training dataset of the targeted learning system.

VOLUME 10, 2022
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FIGURE 8. The taxonomy of the adversarial threat model, broken down by the degree of knowledge, perfect knowledge (white-box) shown in green,
limited knowledge (gray-box) shown in blue, and zero knowledge (black-box) shown in light gray. The threat model further splits into either training or
testing phase capabilities, and then into their adversarial goals. The goals for the training phase are data manipulation or logical corruption, whereas
the goals for the testing phase capabilities are evasion and extraction attacks. Adversarial attack examples for both the testing and training phase
capabilities are also shown. This diagram covers the threat model for most of the adversarial attacks that are discussed in Section V.

The adversary can modify the feature vectors in various
ways such as modifying the data of specific feature(s) or
adding/removing certain features. In a gray-box attack set-
ting, the adversary can collect surrogate training data that
is similar to the original training dataset of the targeted
model [42]. In a black-box setting, the adversary does not
have access to the training dataset of the targeted system [40].

2) NETWORK ARCHITECTURE

In white-box attacks, the adversary has access to the learning
model architecture. It can modify the learning model configu-
rations (e.g., learning rate). In gray-box attacks, the adversary
can build a surrogate learning model using the surrogate
training data. Conversely, the black box assumes that the
adversary has no access to the targeted system architecture.

3) ORACLE

If the adversary can interact with the targeted model or a
surrogate model, they can extract vital information that could
help in crafting the adversarial attacks [43]. Here, the adver-
sary can query the model multiple times and observe the out-
puts. This enables the adversary to identify any relationship
between the inputs and the outputs. The use of an oracle is
common for gray-box and black-box threat models.

C. ADVERSARIAL GOALS
The severity of any threat on a system asset is measured by
the potential impact on these three objectives: confidentiality,
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integrity, and availability [44]. Depending on the business
logic of the computer system, the integrity of the output
(i.e., predictions and classification) from a machine learning
model is indispensable. For instance, an adversary can pro-
vide an adversarial example, yielding an incorrect output.

Based on the output incorrectness, the adversarial goals fall
into three categories:

o Untargeted Misclassification. The adversary tries to
increase the misclassification ratio for the DNN model
by using the adversarial examples generated by untar-
geted adversarial attack as an input to produce an incor-
rect classification. In other words, the adversary tries to
force the targeted model to assign any incorrect label to
the adversarial examples.

o Confidence Reduction. The adversary tries to reduce
the prediction confidence by increasing the prediction
ambiguity of the targeted model.

o Source/Target Misclassification. The adversary tries
to craft perturbations that force the classification of an
adversarial examples to a specific label (i.e., assign a
specific label to an adversarial input) [45]. To achieve
this objective, the adversary may use targeted adversarial
attacks.

D. ADVERSARIAL ATTACK SCENARIOS

The adversarial attacks against ML-learning systems can
be launched either at the training or the testing phase as
explained below.
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1) ATTACKS DURING TRAINING PHASE

An adversary can compromise the targeted machine learning
system by attacking its training dataset during the training
phase. This attack scenario is referred to as poisoning attack
in which the adversary tries to corrupt the training dataset
to change the statistical characteristics of the training data.
This poisoning attack can be launched using the following
scenarios:

« Data Injection & Modification. The adversary tries to
purposefully inject malicious examples into the training
dataset and/or maliciously alter the training dataset sam-
ples. The malicious examples can be generated using the
label noise approach [46]. Upon poisoning the training
dataset, the trained DNN model generates incorrect out-
puts [47].

o Transfer Learning. The adversary tries to spread mali-
cious examples to other learning methods using transfer
learning [48]. This approach has the least impact when
attacking a deep learning model because the model is
trained using clean data.

« Logical Corruption. The adversary intervenes with the
learning process of the DNN model to prevent it from
learning correctly.

2) ATTACKS DURING TESTING PHASE

In some situations, an adversary can utilize the characteris-
tics of the underlying classes that can be changed without
affecting the true classification [48]. Mainly, two attacking
scenarios can be carried out at the testing phase:

« Evasion Attack. In this attack scenario, the adversary
tries to compromise the targeted model by carefully
crafting a malicious input sample that is misclassified
by the ML model. This kind of attack has been adopted
by most of the proposed adversarial works [49].

« Exploratory Attack. Like side-channel attacks, the
adversary tries to extract information about the learning
system at testing time. During this attack, the adversary
probes the DNN model to extract information about its
parameters, features, architecture, or training datasets by
crafting adversarial examples.

V. ATTACK STRATEGIES

In this section, we review state-of-the-art adversarial attacks
that compromise the image classification neural networks.
We divide the attacks into five categories: white-box attacks,
black-box attacks, poisoning attacks, extraction attacks, and
inference attacks. In our review, we focus on providing a
deep explanation of the working process of these attacks in
addition to their performance evaluation. Table 1 provides a
quick overview of the reviewed attacks and demonstrates a
comparison between them in terms of attack effectiveness,
transferability, and other performance metrics such as execu-
tion time and the size of the attack perturbation. It should be
noted that the majority of the reviewed attacks are focused on
crafting perturbations to compromise DNNs. This is because
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FIGURE 9. A sample of generating different adversarial examples using
state-of-the-art attacks. In this example, an input image was selected
from the MNIST dataset and had the perturbation generated using the
FGSM [28], PGD [50], ZOO [51], Square [52], and HJSA [53] attack methods.

adding perturbations into a clean image appears to be an
effective attack method in which the generated adversarial
examples are almost identical to the clean images (see Fig. 9)
which attracts the research community.

A. WHITE BOX ATTACKS

1) L-BFGS

Adversarial examples were first introduced by
Szegedy et al. [12] who found that adding a small per-
turbation p to an image x would result in an adversarial
image x that could successfully fool a deep learning model.
To compute the proper size of perturbations, the authors
attempted to solve the following optimization problem.

min [|pllys.tf(x + p) =L x + p € [0, 1]" (12)

However, the equation above is difficult to solve, as a
result, the Box-Constrained L-BFGS [54] was used to find
an estimation for the solution as shown in Eq.13. This is done
by finding the minimum value that satisfies the condition
f(x 4+ p) = [ while calculating the loss of the classifier.

minc- [p| +Lr(x +p,1) stx+pe[0,1]" (13)

The authors observed that the adversarial examples gener-
ated by the box-constrained L-BFGS appear almost identical
to the original images (i.e., imperceptible perturbation). They
also noted that the resulting adversarial examples can fool
other DNN models (i.e., transferable adversarial examples).
The results of their work triggered concerns on the security
of deep learning systems and established a wide interest in
researching adversarial machine learning.

2) FAST GRADIENT SIGN METHOD

FGSM [28] has been proposed as an efficient algorithm that
can generate perturbations for any given image. Compared
with L-BFGS [12], FGSM differs in two aspects: (1) it’s
adversarial examples are measured by L, metric, and (2)
it is intended to be a fast method for generating adversarial
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examples that can be used in adversarial training to increase
the robustness of DNN models against adversarial attacks.

More formally, given an image x, FGSM calculates the
perturbation using the formula below,

X=x—¢-sign(ViJ(0,x,y)) (14)

where V,J(.) is the gradient of a cost function (e.g., cate-
gorical cross-entropy) of x for a given neural network and
€ is a small error that is used to constrain the size of the
perturbations. In other words, depending on the sign of
the gradient, FGSM generates X by adding or subtracting
€ to each pixel of x. FGSM was able to generate effective
adversarial examples that can fool different DNN models.
However, it can be observed from the reported results in [27]
that FGSM requires adding a large size of perturbations to
generate powerful adversarial examples which may distort
the image resolution.

3) DeepFool ATTACK

Moosavi-Dezfooli et al. [27] proposed the DeepFool attack,
an iterative algorithm optimized by L, distance metric. The
DeepFool algorithm was designed under the assumption that
deep learning models are linear, with a decision boundaries
(i.e., hyperplanes) separating each class. This algorithm cen-
ters around an iterative linearization of the classifier f that
will produce small perturbations p for an input image x.
On every iteration, DeepFool linearizes the classifier around
the current point x; and computes the perturbations p; as an
orthogonal projection vector that projects x; onto the closest
hyperplane. As depicted in Fig. 10, DeepFool has generated
the minimum perturbations that project the “Cauliflower”
image into the nearest hyperplane “Broccoli’’. DeepFool has
been shown to be an effective algorithm for generating the
smallest perturbations necessary to fool the targeted deep
learning model.

4) CARLINI & WAGNER ATTACKS

Carlini and Wagner [26] introduced a set of three attacks
known as the C&W attacks. Their motivation was to build a
set of powerful attacks that are capable of bypassing defensive
distillation image classification neural networks [29]. The
C&W attacks generate adversarial perturbations by solving a
norm-restricted constrained optimization problem. The C&W
attacks find the adversarial example by solving the following
optimization problem:

min [|pll, + ¢ - f(x + p), s.t.x+p €[0,1]"  (15)

where x is the input image, p is the adversarial perturbation,
IIll, is a regularization term bounded by an L, norm, c is a
constant value, and f(x + p) is an objective function. This
attack can be implemented with either the Ly, Ly, or Ly
distance metrics.

Furthermore, the authors has demonstrated that it is pos-
sible for adversarial images generated on un-distilled net-
works to transfer to distilled networks, effectively bypassing
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the defensive distillation method. The C&W attacks were
able to successfully subvert distilled networks trained on
the CIFAR-10 [55] and MNIST [56] datasets with a 100%
success rate. Also, C&W attacks were able to generate trans-
ferable adversarial examples. Hence, C&W attacks are con-
sidered powerful attacks that can be utilized to validate the
well-trained DNN models. However, these attacks require
huge computational resources on large-scale datasets [51].

5) ITERATIVE FAST GRADIENT SIGN METHOD
Kurakin et al. [57] proposed a set of novel attacks that extend
the FGSM [28] algorithm to operate iteratively. The authors
introduce two methods for generating adversarial pertur-
bations: the basic-iterative method (BIM) and the iterative
least-likely class method (ICLM).

Adpversarial images generated using BIM are provided by
solving the following formula:

Xip1 = Clipy eXi + o - sign(ViJ (3, y)) (16)

where X; is the adversarial example at the i iteration, BIM
will find the next image X;4; and repeat for the number of
iterations, determined heuristically. Therefore, the BIM algo-
rithm minimizes the computational cost while being strong
enough to reach the edge of the decision boundary, yielding
to misclassifying x.

The ICLM attack further extends the BIM to generate a
targeted attack. The ICLM differentiates itself from BIM
by generating a perturbation for the least likely class of x.
Adversarial images generated using the ICLM are created
using the formula below.

Xig1 = Clipy eXi — o - sign(VeJ (%, y1)) a7

where y is the class label used in Eq.16 replaced with the
target label y, that corresponds to the least likely class with
the lowest confidence score predicted by the model. ICLM
uses the same number of iterations and step size as BIM. The
adversarial examples generated by the ICLM attack can fool
a given model and lower its classification accuracy.

6) UNIVERSAL ADVERSARIAL PERTURBATIONS

Popular adversarial machine learning algorithms like FGSM
and DeepFool generate perturbations that attack a network
on a single image. The universal adversarial perturbations
(UAP) [14] method generates universal perturbations that can
attack a network with any image. Perturbations are universal
if the perturbation p satisfies the following constraint:

P(f(x+p) #f() = 1=8st lpll, <& (18)

where f* is a classification function, ||-||,, is the L;, norm, § is
the desired fooling rate, and the parameter £ is responsible
for the magnitude of the perturbation p.

More specifically, generating a perturbation p that can fool
most data points in an image set X = { x1,...,X, } can be
done by iterating over the images in X and gradually building
up the UAP. The authors generate universal perturbations in a
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FIGURE 10. An adversarial example was generated using DeepFool [27]
Attack. The perturbation image in the middle is magnified.

similar way as in the DeepFool [27] algorithm, they gradually
push a single data value towards the closest hyperplane.
In this case, the UAP method consecutively pushes all the
input data towards their respective hyperplanes.

On every iteration, the algorithm calculates the minimum
perturbation Ap; that will project the current value closer
towards the hyperplane. The minimum perturbation is com-
puted by solving a constrained optimization problem that lim-
its the L, norms. The perturbation p is updated by projecting
(p 4+ Ap;) back onto p. The algorithm iterates multiple times
over the data in the set X to enhance the UAP.

The attack terminates when the fooling rate on the adver-
sarial dataset X, = {x1 + po,...,x; + p } surpasses the
target threshold. Multiple random shuffles on the original
image set will result in a diverse set of UAPs. Therefore, this
algorithm can be used to generate numerous UAPs that are
highly effective against deep neural networks.

7) JACOBIAN-BASED SALIENCY MAP ATTACK

JSMA [58] is a first-order adversarial attack that gener-
ates adversarial examples optimized by L distance metric.
Instead of applying the perturbations to the entire image’s
pixels, JISMA aims to modify the “enough pixels” to fool the
model. At a high level, JSMA generates adversarial exam-
ples using a well-defined process. It selects the pixels of a
clean image x and perturbs them one at a time (i.e., greedy
perturbations) and checks the results of the labeling. JSMA
calculates the gradient of the output from the network to
generate a saliency map. A large value of this map increases
the likelihood of the model to label the image as the target
label. Upon computing the saliency map, JSMA determines
the required pixels that need to be perturbed to fool the
model. JSMA repeats this process until the model is fooled
or it exceeds the maximum threshold of pixels that can be
perturbed without making the perturbations detectable.

8) PROJECTED GRADIENT DESCENT

PGD [50] can be viewed as an extension to FGSM [28]
and BIM [57] attacks that generate adversarial examples to
maximize the loss of the targeted DNN model. The authors
propose two versions of PGD: the L, PGD attack, and the
Loo PGD attack. PGD initializes the attack at a random point
in the L, ball and projects the perturbation back onto the
L, ball after every iteration. The authors also has shown
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that adversarial robustness of DNN models can be viewed
in terms of “‘robustness optimization”. As shown in E.q 19,
they defined the adversarial training as a formal optimization
problem, known as the saddle point problem.

min p(60), where p(8) = E(y y)~p[max L0, x + 8, ¥)] (19)

where Ep[L(.)] is the population risk for a distribution value
D into a loss function L. The saddle point optimization prob-
lem is an arrangement of an inner maximization problem
and an outer minimization problem [50]. Inner maximization
finds an adversarial data point that maximizes the loss. The
outer minimization finds the model parameters such that the
loss generated by the inner function is minimized. Moreover,
Eq. 19 also defines a goal for an ideal robust classifier as well
as a measurable value of the classifiers robustness. PGD is a
powerful first-order attack and has been shown to fool the
deep learning models efficiently and effectively [59].

9) NewtonFool ATTACK

The NewtonFool algorithm [60] is used to decrease the proba-
bility of the original class label by utilizing Newton’s method
for solving nonlinear equations. This attack performs gradient
descent with step size § to find a perturbation p that will
produce an adversarial example x. The step size is determined
adaptively, changing over time according to the change in the
perturbation p. The step size § is computed by solving the
following equation:

1
§ = min {nnxonnvEf(x,-)n, Flg) — ﬁ} (20)

where the tuning parameter 1 controls the size of p, xp is
the input image, and F sl represents a neural network with a
softmax activation layer. The step size § is then utilized to
calculate the adversarial perturbation p as follows,

8- VF (x)

= s 21
IVFLx)|? D

where x; is the current image, § is the step size calculated
in Eq. 20, and VF Sl is the gradient of the classifier. The
authors extend the attack to work with multiple class labels.
NewtonFool decreases the probability of all labels in a set of
clean images L, and increases the probability of all labels in
a set of perturbed images L_. NewtonFool produces effective
perturbations and significantly reduces the confidence prob-
ability of the correct class.

10) ELASTIC NET

The elastic net attack (EAD) [30] is an extension of the C&W
attacks [26] and aims to control the L; norm of the adversar-
ial perturbations. EAD generates adversarial examples using
the iterative shrinkage-thresholding algorithm (ISTA) [61].
ISTA is an optimization algorithm where every iteration
includes a matrix-vector multiplication step accompanied by
a shrinkage-thresholding step. The shrinkage-thresholding
step is responsible for deciding if the algorithm will shrink
a pixel value of the perturbed image.
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The ISTA algorithm can be seen as an ordinary first-order
optimization problem. Specifically, if we let a function
gx) =c-f(x)+ |Ix — x0||% and Vg(x) be the gradient of
g(x), the adversarial image x**! for the input image xo is
determined by:

K = S50k — a Vig(xby) (22)

where oy is the step size at the (k + 1)y, iteration, and Sg
is the projected shrinkage-thresholding function. The final
adversarial image X is chosen from all the successful exam-
ples based on distortion metrics. The authors propose two
decision rules for selecting X, the least elastic-net and the
L distortions relative to the input image x. The EAD attack,
like its predecessor the C&W attack can successfully bypass
defensive distillation [29].

11) TARGETED UNIVERSAL ADVERSARIAL PERTURBATIONS
Universal perturbations for targeted attacks proposed by
Hirano et al. [62] extends the basic iterative algorithm used
to generate universal perturbations for untargeted attacks.
This algorithm begins with the perturbation p = 0,
and iteratively updates o under the constraint that the L,
norm of the perturbation will be less than or equal to a
value €.

As compared to the untargeted UAP [14] algorithm
which utilizes the DeepFool [27] method for generating
perturbations, the attack uses the targeted FGSM [28]
method to generate the perturbations. The perturbation p
is updated additively by generating a perturbation for a
randomly selected input x from the set X. On every step,
the targeted-FGSM algorithm computes a new perturbation
¥(x + p,y) and projects this back onto p updating the
perturbation.

This process continues until the maximum number of iter-
ations i,y is reached or the success rate of the targeted attack
is equal to 100%, i.e., all inputs are classified with the correct
target class. This attack generates universal perturbations that
were shown to be effective at undermining models trained on
the CIFAR-10 [55] and ImageNet [6] datasets. This algorithm
also has shown that generating a UAP for a targeted attack is
easier and less computationally expensive when compared to
an untargeted attack [62].

12) BRENDEL & BETHGE ATTACK
The Brendel & Bethge attack [63] utilizes the gradients
to estimate the boundary between the perturbed and clean
inputs, better known as the adversarial boundary. Unlike other
attacks, this attack initiates with an adversarial input 0 as
well as a clean input x. Both inputs are far from one another
within the adversarial boundary. Therefore, x° travels along
the adversarial boundary towards x. The attack computes the
optimal step by solving a quadratic trust-region optimization
problem for every iteration.

The goal of the optimization problem is to discover a step
8k such that the new perturbation ¥¥ = x*~1 48 has the min-
imum L, distance to the clean input x. The new perturbation
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¥ will stay between the box constraints of a valid input range.
The perturbation will be placed on the adversarial boundary.
The Brendel & Bethge attack moves along the adversarial
boundary to minimize the distance to the clean input. The
Brendel & Bethge attack is a proficient algorithm, achieving
model accuracies of 69.5% in an untargeted setting on the
MNIST [56] dataset, 31.2% on the CIFAR-10 [55] dataset,
and 42.5% on ImageNet [6]. Upon utilizing a targeted setting,
this attack achieves model accuracies of 56% against MNIST,
37.6% on CIFAR-10, and 37% on ImageNet.

13) WASSERSTEIN ATTACK

Instead of using the L, distance metrics, the Wasserstein
attack [64] generates adversarial examples by using a min-
imized wasserstein distance [65]. The Wasserstein distance
is an optimal transport problem that finds the minimum cost
of moving a probability mass. When applied to images, the
Wasserstein distance is identified as the cost of moving from
one image to another. The cost value is directly proportional
to the distance traveled by the pixels. The Wasserstein dis-
tance dy between the two data points x and y is defined as
follows:

dw(x,y) =min(I1,C);stll =x, 1=y (23)

where the minimization over transport plans [T, with entries
I1; ; show how the mass moves from x; to y;. With this, the
Wasserstein ball with radius € is defined as:

Bwx,e)={x+ A :dwx,x+ A) < ¢} 24)

The first step in generating adversarial images is to project
examples onto a Wasserstein ball. More specifically, project-
ing w onto the Wasserstein ball around x with a radius € and
a cost matrix C.

1
min lw—zl3; sl =x, 71 =2, (II,C) <e (25)

Solving the optimization problem for the Wasser-
stein attack in Eq. 25 is time-consuming and compu-
tationally expensive [64]. The authors proposed solving
the entropy-regularized projection problem shown in
Eq. 26 which efficiently projects the examples onto
the Wasserstein ball.

. 1 2 1
min > lw—zll5 + 5 Z IT;; log(I1;)
ij

subjectto Tl =x, 71 =z(I1,C) <e (26)

Although this is only an estimated projection, all feasi-
ble solutions are still within the Wasserstein ball’s limits.
Therefore, adversarial examples generated using projection
approximation are still valid as they lie within the bound-
aries of the attack’s threat model. The Wasserstein attack has
been shown to generate adversarial images that are capable
of adequately fooling deep learning models trained on the
MNIST [56] and CIFAR-10 [55] datasets.
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14) SHADOW ATTACK

The shadow attack [66] forces neural networks to misclas-
sify images and produce a spoofed certificate by generating
and applying large perturbations. This attack is invented to
break the certifiable secure neural networks that generate the
predicted label with a rigorous guarantee that the input is not
maliciously manipulated (i.e, certificate). The shadow attack
is a generalization of the projected gradient descent [50]
attack. Instead of solving a constrained optimization problem,
as done in PGD, the shadow attack solves the following
problem with the addition of three penalties that force Eq. 27
to be unconstrained.

max L(60, x + p) — A.C(p) — AnTV(p) — AsDissim(p) (27)
P

where A, Ay, As are the three penalty weights. The penalty
C(p) limits the perturbation p by constraining the change
in each color channel c. The penalty TV (p) forces p to
have a small total variation to appear smoother and more
natural. The last penalty Dissim(p) advances perturbations
that share similar values in their color channels. These penal-
ties also allow for larger perturbations in the L, norm. This
algorithm generates adversarial examples for every possible
incorrect class ¥y and chooses the optimal perturbation for
the attack.

The shadow attack has been shown to be an effective
method for generating adversarial attacks achieving a success
rate of 98.5%. However, this attack was tested under very
specific constraints, testing only specific target class IDs in
the ImageNet [6], and a small sample size from the CIFAR-
10 [55] dataset.

B. BLACK BOX ATTACKS

1) BOUNDARY ATTACK

The boundary attack [67] performs a rejection sampling along
the decision boundary of the sets of images. This attack seeks
to find the minimum perturbation necessary to misclassify
the target image by slowly moving towards the hyperplane
of the original input. Initially, the boundary attack is set with
a large perturbation that is easily detectable and randomly
walks along the decision boundary towards the target class,
effectively optimizing the original perturbation. This attack
has two parameters, the length of the perturbation p and
the step § towards the initial image. Both of them adjust
to the local geometry of the boundary. If the perturbation
is adversarial (i.e., misclassifies the target image) there is
a small step towards the original input image. As the algo-
rithm approaches the input image, the decision boundary
becomes flatter, and § must be smaller to continue to make
progress. The attack converges when § converges to zero.
The boundary attack is a strong method for targeting deep
learning models, outperforming gradient-based white-box
attacks such as FGSM [28] and DeepFool [27]. This attack
has shown effective in undermining networks trained on the
MNIST [56], CIFAR-10 [55], VGG-19 [68], ResNet-50 [7],
and ImageNet [6] datasets.
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2) ZEROTH ORDER OPTIMIZATION ATTACK

The zeroth-order optimization (ZOO) attack [51] utilizes
zeroth order stochastic coordinate descent to generate per-
turbations. The authors adapted the Carlini & Wagner
attacks [26] to the black-box threat model by modify-
ing the loss function and approximating the gradient. The
authors propose a new loss function f(x, ) dependent on
only the outputs and the target class label. The attack opti-
mizes the new loss function using zeroth-order optimiza-
tion. Then, ZOO approximates the gradients of the model
using stochastic coordinate descent instead of the traditional
backpropagation method. Zeroth-order stochastic coordinate
descent is utilized to target the model and extract information
about the gradients. In special cases, techniques such as
dimension reduction, hierarchical attacks, and importance
sampling are utilized to optimize the loss function. The
Z0O0 attack is extremely effective, with success rates of
100% in an untargeted setting on both the MNIST [56] and
CIFAR-10 [55] datasets. Upon utilizing a targeted setting, the
Z00 attack success rate is 98.9% against MNIST and 97%
on CIFAR-10.

3) SPATIAL TRANSFORMATION ATTACK

As the name implies, the spatial transformation attack [69]
distorts the input image to generate adversarial examples by
performing one translation and one rotation of the image.
To ensure visual similarity to the clean images, the pertur-
bation space is restricted to only allow 30° max rotation and
a 10% max translation in every direction. The optimal pertur-
bation is calculated via hyperparameter optimization, better
known as grid search. Grid search is an extensive process in
which a subset of the hyperparameter space is searched to
find the optimal parameters, in this case, the perturbation, for
a given model. The combination of rotation and translation
parameters is applied to the entire group of input images. In a
sense, the perturbation found by the spatial transformation
attack is universal. The spatial transformation attack is able
to achieve remarkably high results and fool multiple deep
learning models trained on the MNIST [56], CIFAR-10 [55],
and ImageNet [6] datasets.

4) UPSET AND ANGRI ATTACKS

Sarkar et al. [70] introduced two adversarial attacks: UPSET
and ANGRI. The UPSET (Universal Perturbations for Steer-
ing to Exact Targets) method seeks to generate n universal
perturbations p for n target classes such that when p is applied
to an image, the image is misclassified to the target class.
UPSET generates an efficient and robust perturbation with
the use of a residual generating network. The UPSET network
R accepts the target class as input and generates a perturbation
p that is applied to the input image x to fool the network. The
adversarial image X is generated by solving an optimization
problem using the UPSET network U, where pixel values
of x are normalized to stay within the range [—1, 1]. All
values outside this range are clipped to guarantee that X is
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valid. In contrast to the universal perturbations generated by
UPSET, ANGRI produces an image-specific targeted per-
turbation that depends on the input image. The adversarial
image is generated using the ANGRI network A. The UPSET
and ANGRI networks are built upon a residual generating
network such as the ResNet [7] architecture. Both algorithms
produce perturbations suitable for targeted fooling, and both
attacks have high fooling rates against the MNIST [56] and
CIFAR-10 [55] datasets.

5) HOUDINI ATTACK
Common algorithms utilize the gradients of the loss functions
to generate perturbations. However, the Houdini attack [71]
generates adversarial examples that handle task losses
task-specific loss functions, which are combinatorial values
that are difficult to optimize. This makes it difficult to use
gradient-based solutions to generate perturbations. The nor-
mal optimization problem is replaced with a differentiable
surrogate loss function Z(ye (X)), y, referred to as Houdini.
Houdini is composed of two parts. The first is a stochas-
tic margin that calculates the probability that the difference
between the score of the predicted target and the actual target
is smaller than a given value. This represents the total model’s
confidence. The second part to Houdini is the task loss, which
is independent of the model and corresponds to the target that
will be maximized. Houdini is designed to generate effective
adversarial images that can fool a given model, but it has
also been shown to be effective against speech recognition
systems. Effective targeted and untargeted attacks were able
to be generated to attack a DNN that estimated human poses.

6) SIMPLE BLACK-BOX ADVERSARIAL ATTACK

In many cases, white box assumptions of a model are not
applicable in real-life attack scenarios. Therefore, an adver-
sary is more likely to utilize a black box threat model. Black
box attacks are harder to develop since the adversary has no
prior knowledge or access to the targeted DNN model which
further intricate finding the optimal perturbations. Further-
more, querying the model for information is time-consuming
and reduces attack efficiency. For these reasons, the simple
black box attack (SimBA) [72] was introduced an an attempt
to tackle the inherent limitations in the black box threat
model. SimBA assumes that an input image x is fed through a
neural network F that classifies the image using a confidence
value or an output probability pr(y|x). The intention is to
find a sufficiently small perturbation p that when added to
the input will result in an incorrect prediction.

Model information is unavailable to the adversary in a
black-box environment. Thus, the output probabilities are
used to estimate the adversarial examples. As input, SimBA
takes the targeted label, a set of candidate vectors, and a step
size § > 0. Then, the attack randomly picks an orthogonal
direction g from the set of candidate vectors. SimBA guar-
antees query efficiency by assuring that no two previously
selected g values undermine each other or amplify any other
q disproportionately. Therefore, the orthogonal direction ¢ is
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selected from a restricted set of vectors and is chosen without
replacement.

The SimBa attack algorithm is an effective method for
generating adversarial examples. This attack was tested on
a deep learning model trained on the ImageNet [6] dataset,
and was able to achieve success rates of 98.6% and 100%
in an untargeted and targeted attack setting respectively. The
SimBa attack is also able to achieve an extremely low number
of average queries into the model compared to similar black
box algorithms, 1665 queries in an untargeted setting and
7899 queries in a targeted setting.

7) ONE-PIXEL ATTACK

Designed to operate under the strict conditions of only mod-
ifying a single pixel from an image to fool the DNN mod-
els. One-Pixel attack [13] generates adversarial examples
through differential evolution [73] optimization. Differential
evolution allows for the one-pixel attack to generate effective
adversarial examples while lacking any information about
the network or gradient. For a given clean image x, a set
of 400 vectors are created such that every vector contains a
coordinate pair as well as RGB values for a random pixel.
The attack changes the components of the vectors at random,
creating child vectors to compete with the parent vectors to
stay for the next iteration of the algorithm. The probability
labels calculated by the network are used as the filter for the
vectors. This will continue until there is only one remaining
child vector. The selected vector is then used to modify the
pixel in the image.

The reported results demonstrate that, one-Pixel attack can
generate adversarial examples to fool DNN models. However,
in [74], the authors argued that, One-Pixel attack requires
huge computational resources and cannot be applied on large
images.

8) FEW-PIXEL AND THRESHOLD ATTACKS

Kotyan and Vargas [75] introduced a set of two adversarial
attacks, the few-pixel attack and the threshold attack, which
extend the One-Pixel attack [13].

The threshold attack, also known as the Lo, black-box
attack, optimizes a constrained optimization problem using
the Lo, norm. This attack applies the small perturbation p
slightly to all pixels. The optimization problem is constrained
with [|pyllcc < th, where th is a predefined threshold value.
The threshold attack searches for variables in the algorithm
search space R¥, which is the same as the input space. The
variables can be any variation of the inputs if the threshold is
not crossed.

The few-pixel attack attempts to minimize the number of
the perturbed pixels by optimizing a constrained optimiza-
tion problem with the Lo norm. The search space for the
few-pixel attack is smaller than the input space and searches
for variables in the search space R?+9*" The fundamental
difference between this attack and the threshold attack is the
use of a different L, norm, and a different search space.
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Both attacks were tested using the CIFAR-10 [55] dataset
with multiple threshold values. In both cases the attack per-
formed at its best with th = 10, with the Ly for ResNet [7]
scoring 85% and 79% on adversarial accuracy with the CMA-
ES [76] and differential evolution [73] optimization algo-
rithms respectively. Whereas the Lo, attack scored slightly
lower on the CMA-ES optimization algorithm achieving an
adversarial accuracy of 83%, the differential evolution opti-
mization algorithm for the threshold attack scored slightly
higher at 82%. Overall, both of these attacks work fairly well
at fooling deep learning models, albeit they were only tested
against two models and one dataset leaving out potential
unknown results.

9) HopSkipJump ATTACK

Chen et al. [53] developed the HopSkipJump attack (HSJA)
to generate adversarial examples by estimating the direc-
tion of the gradient using binary information at the decision
boundary. HSJA finds the optimal perturbation without the
use of hyperparameters while maintaining query efficiency.
HSJA can be targeted and untargeted attack. For untargeted
attacks, HSJA can be initialized with a sample from the target
class, whereas for targeted attacks, it uses a misclassified
sample with added noise.

The HSJA will repeat for ¢ iterations or until the optimal
adversarial perturbation is generated. Each iteration has three
main steps: (1) binary search, (2) gradient-direction estima-
tion, and (3) step size search. First, binary search pushes
the value from the previous iteration towards the hyperplane.
Then, the direction of the gradient is estimated using the
following formula,

B
— 1 _
VS, p) = 51 E (Pux (X + pup) — Gy )up  (28)
b=1

where x is the input image, p is the adversarial perturbation,
the number of batches B, up is a unit vector, and ¢,+ is a
binary function. Lastly, the step size is initialized and updated
along the direction of the gradient and decreased through
geometric sequencing until the perturbation is successful. The
next iteration begins with the adversarial example projected
back onto the hyperplane.

The HSJA was evaluated on four datasets, MNIST [56],
CIFAR-10 [55], CIFAR-100 [55], and ImageNet [6], and
was shown to outperform previous decision based attacks
such as the boundary attack [67]. With a limited number
the of queries, the HSJA is able to generate adversarial
images with a smaller median distance over all the datasets.
The HSJA was also shown to minimize the number of
queries used, this attack was able to achieve a 70% success
rate after 1000 queries, where the boundary attack required
20000 queries to get similar results.

10) ColorFool ATTACK

ColorFool attack [77] aims to generate adversarial examples
using natural colors by producing low-frequency perturba-
tions that are highly transferable and robust. The ColorFool
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attack starts by identifying the most important areas of an
image and their specific colors. Then, it classifies those
regions as either sensitive or non-sensitive. Sensitive regions
are classified into four categories, person, sky, plants, and
water, while the non-sensitive regions would be anything that
does not fall into those categories. Sensitive regions must stay
within a specific range of modification, while non-sensitive
regions can be modified more inconsistently and still look
normal.

After identifying the different regions, ColorFool splits an
image x into k semantic regions using a binary mask that
identifies the position of the pixels belonging to the region.
The colors of each set are modified in color space, which
separates the brightness from the color. Natural color ranges
a, b, and L are used to pull apart the color values, where a
ranges from red to green, b from blue to yellow, and L from
black to white.

The colors of the sensitive regions are then modified and
converted from RGB to the color space. The adversarial
perturbations in the color channels a and b are randomly
chosen from the set of natural color ranges. The color ranges
are determined by the true colors, the region semantics,
and previous information on color perception. The colors
are changed iteratively with small intervals until the opti-
mal perturbation fools the classifier. Then, the colors of the
non-sensitive regions are modified in the same way as the
sensitive ones, but the color values are from the entire range of
a and b in order to endure larger changes. Finally, the adver-
sarial image x is generated by combining the two modified
color regions into one image. The adversarial image is then
converted back into RGB form from color space form and is
multiplied by a function to ensure that the image is in the
original range of pixel values.

The ColorFool attack is a strong algorithm that is able to
effectively undermine deep learning models trained on the
CIFAR-10 [55], ImageNet [6], and P-Places365 [78] datasets.
For example, on CIFAR-10 trained models trained with a
softmax activation function, ColorFool is able to achieve a
success rate of 99.4%. On models trained with the prototype
conformity loss (PCL) [79] method as well as PCL with
adversarial training, ColorFool was able to get success rates
of 100% and 99.9%, respectively. Overall, this algorithm
is an impressive and effective method of undermining deep
learning models.

11) SQUARE ATTACK
The square attack [52] is modeled on random search, an iter-
ative optimization technique. This attack differentiates itself
from other random search-based attacks by iteratively gener-
ating perturbations that lie on the L; or L, boundaries before
projecting them onto the image. As a result, the perturbation
can be maximized on every iteration. The attack updates the
image at each step modifying a small percentage of neighbor-
ing pixels grouped into a square.

The square attack initializes by choosing the side length
h' of the pixel square that will be updated. 4’ decreases
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according to a fixed schedule. Then, a new perturbation p is
discovered and subsequently added to the current iteration.
The loss value is re-calculated and if the resulting value
is smaller than the previous loss value, the perturbation is
accepted. The square attack works with both the L, and Ly
distance metrics. This attack focuses on query efficiency to
terminate the algorithm as soon as the optimal perturbations
is generated. The square attack is a strong algorithm that
can efficiently undermine a deep learning model, with a
success rate of 99.7% against Inception v3 [80], 100% against
ResNet-50 [7], and 100% against VGG-16-BN [68]. Query
efficiency of the square attack is outstanding, when tested
against Inception v3 the average number of queries is 197,
73 against ResNet-50, and 31 against VGG-16-BN.

C. POISONING ATTACKS

1) POISONING ATTACK ON SVM

If the adversary has full access to the model’s learning algo-
rithm and training data, they can effectively create poisoning
attacks that can be used to successfully target support vector
machines (SVM) [81]. This algorithm can be kernelized but
depends entirely on the use of the gradients of points lying
within the input space. The adversary utilizes an iterative
gradient ascent method to optimize the non-convex objective
function of the model. Gradient ascent as opposed to gradient
descent takes steps that are proportional to the positive gradi-
ent (rather than the negative gradient), such that it approaches
the local maximum instead of the local minimum.

The adversary initiates the attack with a vector that repli-
cates a random point from the targeted class and changes its
classification label. In practice, about any point deep enough
in the adversarial class’s margin can be used to initiate the
attack. Then, the gradient ascent algorithm is used to find
the gradient of the validation error. During the update, it is
imperative to preserve the architecture of dataset used to train
the SVM classifier. In most cases when gradient ascent is
used, a linear search algorithm is used to find the optimal
solution. In this case, a large step size is required to secure
the training sets, and linear search would be computationally
expensive. To circumvent this, the attack fixes the step size
to a given constant value. After every update, the optimal
solution is re-calculated. This attack terminates once the val-
idation error is less than a certain threshold value. The attack
can substantially increase classification error rates, from an
initial error rate of 2-5% to 15-20% using a single adversarial
data point.

2) ADVERSARIAL BACKDOOR EMBEDDING

Generally speaking, backdoor detection algorithms such as
activation clustering [82] are effective against a majority
of backdoor attacks. However, they fail to consider more
robust adversarial models. The adversarial backdoor embed-
ding attack [83] exploits these weak defenses by including a
secondary loss function to the objective training function. The
secondary loss function serves as a penalty term that punishes
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the model when it detects any difference between perturbed
and non-perturbed images. Dual objective functions allow the
adversary to return high classification accuracy for the model
while setting constraints that weaken the model’s defenses.
As the adversarial training converges, the distribution of
backdoor inputs, as well as clean inputs, also converges —
minimizing the differences that the defense systems use for
detecting poisoning attacks.

3) INPUT MODEL CO-OPTIMIZATION ATTACK

Despite the differences between adversarial examples and
poisoned models, both threat models share the same goals
of attacking a neural network and misclassifying input data.
The input model co-optimization (IMC) attack [84] looks
to unify the two threat models. The authors define a uni-
fied framework that gives adversaries the freedom to either
generate adversarial examples or to poison the model. The
attack generates adversarial examples x for every input x
in a dataset. The perturbed image is then misclassified to a
specific target class by a poisoned model. The IMC attack
finds the optimal adversarial example and the poisoned model
by going back and forth between the model and the input
perturbation until the attack converges. It is worth noting
that the IMC attack can work in various attack scenarios by
adjusting the base algorithm to meet those constraints, one
example is the TrojanNN [85] attack.

4) CONVEX POLYTOPE

Algorithms such as the feature collision attack [86] fail when
the feature extractor is unknown to the adversary. Thus, the
convex polytope attack [87] was introduced to bypass the lim-
itations of such algorithms. This attack creates a set of adver-
sarial examples that contain the target class within the convex
hull. The convex polytope attack exploits the association
made by the linear classifier of the targeted network between
the adversarial examples and the targeted class. Then, the
network will classify any point within the convex hull as the
targeted class. The attack is highly transferable due to the
convex polytope expanding the attack area. The attack will
find the optimal adversarial examples by iterating through
a specialized non-convex optimization problem 4000 times.
The convex polytope attack has several inherent issues, such
as scalability, robustness, and generalizability.

Due to its extremely slow execution time, convex poly-
tope attack is considered non-scalable. Notably, it has two
time-consuming processes: First, it checks whether the new
coefficients have a smaller loss compared to the previous
ones, and it checks this on each iteration while optimizing the
coefficients. Second, whenever the new coefficients satisfy
the previous condition, the convex polytope attack projects
onto the probability simplex, a space in which each point
represents a probability distribution. The convex polytope
also faces other issues, specifically the robustness and gen-
eralizability of the attack. Once the target moves through
the boundary into the convex polytope, there is no reason
to continue the optimization process and move further into
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the attack area. For this reason, the target will be close to the
boundary of the adversarial polytope.

5) BULLSEYE POLYTOPE

The bullseye polytope attack [88] is a more efficient, transfer-
able, and robust adaptation of the convex polytope attack [87].
This attack fixes the relative position of the target class
to the convex hull of the adversarial examples, which
allows the bullseye polytope to overcome the implicit issues
of the convex polytope attack. Bullseye polytope pre-defines
its coefficients as equal values instead of the inefficient
way of generating the coefficients through optimization. Pre-
assigning the coefficient values effectively alleviates the most
time-consuming step of the algorithm. Therefore, bullseye
polytope is an order of magnitude faster than the convex
polytope attack. The bullseye polytope attack also pushes the
targeted class towards the center of the attack zone, improving
the overall transferability.

D. EXTRACTION ATTACKS

1) COPYCAT NETWORKS

Correia-Silva et al. [89] propose a method with the intent
to copy a targeted network into a copy-cat version by only
querying the network with clean images. The copycat method
goes through two phases: generating fake information and
then training the copycat network.

The adversary generates a mock dataset by first selecting
a large set of images, these images can originate from the
targeted network, or they can be from an unrelated image set.
The adversary selects the data collection method depending
on the amount of access they have over the targeted model.
The original image labels are useless to the adversary and
are discarded from all image sets. The primary objective for
the adversary in this phase is to observe the way images are
classified by the targeted network. This is accomplished by
feeding the new dataset into the target model and having it
classify all the images. The newly generated image labels
are known as the “stolen labels”. The adversary intends to
capture the slight imperfections of the classifier. This allows
for another network to be trained on the same dataset and
produce similar results to the target model.

Upon generating the fake dataset and the stolen labels, the
adversary trains a copycat network that mimics the original
one in a well defined process: First, the adversary chooses a
model architecture for the copycat network without requiring
any prior knowledge of the targeted networks architecture.
Then the adversary adapts the chosen model architecture to
fit the target’s problem domain. For example, the adversary
can change the number of outputs of their network to match
the number of classes in the target model. Ideally, the model is
pre-trained and has randomized weights, however, this is not
necessary. The final step for generating a copycat network is
fine-tuning the generated model using the fake dataset and
the stolen labels. This allows the adversary to simulate the
original conditions of the target model and to generate the
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most effective adversarial examples possible to attack the
target model.

2) FUNCTIONALLY EQUIVALENT EXTRACTION

Model extraction attacks directly target the most secret parts
of a given model, its architecture, and parameters. Model
extraction allows the adversary who was previously operating
under a black-box threat model to effectively gain access to
the model in a white-box threat model, this is achieved by
extracting an exact copy of the oracle. Model extraction is
one of the most difficult adversarial goals as the adversary
is attempting to generate a copy of the model while they only
have access to the inputs and outputs. Functionally equivalent
extraction [90] looks to construct an oracle O’ in such a way
that,

Vx € X, 0'(x) = O(x) (29)

The functionally equivalent extraction method works on
neural networks using the ReLU activation function. The
algorithm is split into four steps. First, critical point search
determines inputs to the network such that one ReLU unit is at
a critical point. This is accomplished by sampling two values
and putting them through a linear function. This function
computes the slopes and intercepts of the input vectors and
then calculates the intersection of the two vectors. If there
happen to be more than two linear factors, then it is unlikely
that the true values will match the predicted values. Second,
the next step in constructing a duplicate oracle is weight
recovery. In order to form the weight matrix A©), they cal-
culate the second derivative of the oracle O in each input
direction at the critical points x;. The second derivative is used
to calculate the difference between adjacent linear regions.
This is repeated until the entire matrix A© is complete.
Third, the algorithm determines the sign of every row vector
A](.O), using global information about the matrix. Finally, the
least-squares method is used to approximate the architecture
of the hidden layer(s) of the neural network. When tested
against MNIST [56], the functionally equivalent extraction
method produces oracles that have a rate of 100% accu-
racy and only begins to diminish around 100000 parameters.
When tested against CIFAR-10 [55], the accuracy dips below
100% after 200000 parameters. The main issue with this
method is that it can’t be extended to other deeper neural
networks, and only works sufficiently on two-layer models.

E. INFERENCE ATTACKS

1) MODEL INVERSION

This attack is developed to be a general-purpose universal
attack. Model inversion [91] works by utilizing the informa-
tion available to the adversary from the model and using that
to estimate the probabilities of a potential target. Rows from
a candidate database that share characteristics with the target
database are used as input and are processed by the model.
The database rows are weighted depending on the accepted
priors and the model’s output for a given row corresponding
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TABLE 1. An overview of the white-box and black-box attacks. The table is organized into: (1) Algorithm name, (2) Attack Type: targeted or untargeted, (3)
Scenario: white-box or black-box, (4) Learning: iterative/one-shot (N/A denotes attacks that are neither one-shot or iterative), (5) the number of
perturbations (high, low, fair), (6) the perturbation norm (sections with N/A denote attacks that do not utilize the L, norms to formulate perturbations),
(7) the execution time (fast, slow, fair), (8) the transferability of the attack, either universal or model specific, and (9) the attack strength, which is
observed from first hand experiments with the specific algorithms or is the perceived strength from the literature. Sections labeled “Unknown" are where
the literature did not provide such information, or where further experiments are needed.

. . . Performance
Algorithm Name Attack Type | Scenario Learning Num. of Pert. | Norm Time Transferability | Strength
L-BFGS [12] Targeted White-box | One-Shot | High Lo Fair Model Specific * % %
C&W [26] Targeted White-box | Iterative Fair Lo, Lo, Loo Fair Model Specific * Kk kK
JSMA [58] Targeted White-box | Iterative Low Lo Fair Model Specific * k%
Elastic Net [30] Targeted White-box | Iterative Unknown Ly Unknown | Model Specific * K Kk K
Wasserstein [64] Targeted White-box | Iterative Low N/A Unknown | Model Specific * ok Kok
Targeted UAP [62] Targeted White-box | Iterative Fair L1, Lo, Lo Unknown | Universal * K ok kK
Threshold Attack [75] Targeted Black-box | Iterative High Lo Fair Model Specific * % %
Z0O0 [51] Targeted Black-box Iterative Fair Lo, Lo, Lo Fair Model Specific * % ok ok %
UPSET [70] Targeted Black-box | Iterative High Loo Unknown | Universal * ok kok
ANGRI [70] Targeted Black-box | Iterative High Loo Unknown | Model Specific * %k skok
Houdini [71] Targeted Black-box Iterative Unknown Lo, Lo Unknown | Model Specific * K Kk
ColorFool [77] Targeted Black-box | N/A Fair N/A Unknown | Model Specific * % Kk
FGSM [28] Untargeted White-box | One-Shot | High Lo Fast Model Specific * % %
I-FGSM [57] Untargeted White-box | Iterative High Loo Fast Model Specific * %k skok
PGD [50] Untargeted White-box | Iterative Fair Lo, Lo Fast Model Specific * Kk
DeepFool [27] Untargeted White-box | Iterative Low Lo Fair Model Specific * % Kk
NewtonFool [60] Untargeted White-box | Iterative Low Lo Fair Model Specific * ok Kk
Shadow Attack [66] Untargeted White-box | Iterative Fair Lo, Lo Fast Model Specific * ok koK
UAP [14] Untargeted White-box | Iterative Fair Lo, Lo Unknown | Universal * kK ok K
Square Attack [52] Untargeted Black-box Iterative Fair Lo, Lo Unknown | Model Specific * % Kk
One-Pixel [13] Untargeted Black-box Iterative Low Lo Fast Model Specific *ok
Few-Pixel [75] Untargeted Black-box Iterative Low Lo Fast Model Specific *ok
Spatial Transform [69] | Untargeted Black-box | Iterative Fair N/A Unknown | Universal * % %
Brendel & Bethge [63] | Both White-box | Iterative Fair Lo, L1, Lo, Lo Fair Model Specific * %k
SimBA [72] Both Black-box | Iterative Unknown Lo Unknown | Model Specific * sk kok
Boundary Attack [67] Both Black-box | Iterative Unknown N/A Unknown | Model Specific * %k skok
HSJA [53] Both Black-box | Iterative Unknown Lo, Lo Unknown | Model Specific * kK

to the target’s previous outputs. The value with the highest
weight for the target is returned. Model inversion, while being
a universal black-box attack, has limitations such as poor
scalability when the targeted features span a large dataset.

2) RECONSTRUCTION ATTACK

As the base model inversion attack [91] is unable to handle
large datasets, tasks such as attacking a facial recognition
model become increasingly more difficult. Thus, the recon-
struction attack [92] was developed to target and attack facial
recognition models. The reconstruction attack is an inference
attack that exploits its access to the model to gain information
about the training data. The reconstruction attack assumes
that the adversary has knowledge of at least one output label
of the model and will use this information to reconstruct an
image of a face corresponding to the label. At the core of
this attack is the MI-Face algorithm, which allows inversion
attacks against facial recognition systems by utilizing gradi-
ent descent to minimize the cost function of the recognition
model.

MI-Face first defines a cost function in terms of the
recognition model f and a specific function AuxTerm, which
uses any additional information to advise the cost function.
Then MI-Face iteratively performs gradient descent, and after
each gradient step, the generated vector is put through a
post-processor that does image manipulation such as sharpen-
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ing and de-noising. If the cost function fails to improve under
a given number of iterations or the cost value is close to a
given threshold value, then the attack is terminated, and the
optimal cost value is returned. The reconstruction attack is
an efficient and effective algorithm that was shown to have
an increased attack accuracy and precision compared to other
attacks, and is able to fool a deep learning image recognition
model in both a white box and black box setting.

F. SUPPLEMENTARY ADVERSARIAL ATTACKS

Generally speaking, any system that utilizes a machine learn-
ing algorithm can be targeted by adversarial attacks [93].
Hence, the adversarial attacks are not limited to image classi-
fications. In this paper, we focus mainly on adversarial attacks
in the context of image classification networks. However,
we believe it is important to briefly review some of the
well-known adversarial attacks in different contexts such as
audio, point clouds, and software.

1) ADVERSARIAL ATTACKS IN AUDIO

Recently, deep learning methods become the primary choice
in developing audio systems, specifically, voice recognition
and voice-to-text systems. Some researchers have shown that
such systems can be compromised by adversarial attacks.
Carlini & Wagner [94] demonstrate the existence of targeted
audio adversarial examples that can target the automatic
speech recognition system such as DeepSpeech [93]. They
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introduce a targeted white box attack to compromise the audio
generated by DeepSpeech. Given a clean audio wave-form x,
an inaudible perturbation p is generated such that when added
to the original audio wave, X is recognized as any phrase.
The authors use the same attack methods in [26] to generate
the audio adversarial waves. The proposed attack is highly
effective with a success rate of 100%.

Qin et al. [95] can be viewed as an improvement to Carlini
& Wagner’s [94] by addressing two shortcomings. First, they
noticed that the generated adversarial perturbations can be
easily detectable by humans. Secondly, the generated adver-
sarial audio is not effective when it’s played over the air. The
authors were successfully able to develop effective impercep-
tible audio perturbations by utilizing psychoacoustics in the
form of audio masking while continuing to maintain a high
success rate. They also show the possibility to transfer the
generated adversarial audio examples to real-world over-the-
air situations. The authors used the LibriSpeech dataset [96],
which is a corpus of English-speaking audio recordings taken
from audiobooks. They were able to achieve a 100% success
rate on arbitrary targets. Also, they were able to move forward
with research in developing robust audio adversarial exam-
ples that can be used in over-the-air situations.

2) ADVERSARIAL ATTACKS IN POINT CLOUDS

Adversarial examples for 2D images and CNNs have been
largely studied and researched. However, less amount of
research has been put into adversarial attacks within 3D
data like point clouds. Point clouds [97] are datasets that
represent points in space. Generally, point clouds represent
3D objects, with each point having its own set of coordinates.
They are usually produced through 3D scanning or aerial
photography and are normally used for 3D CAD model-
ing, visualization, and animation along with a multitude of
other applications. Xiang et al. [98] propose two methods
for generating adversarial examples to target PointNet which
can be defined as a deep neural network that is used for
point cloud processing [99]. Their methods, adversarial point
perturbation and adversarial point generation, were shown
to have success rates of 99% for all targeted attack exper-
iments. Other researchers such as Zhang et al. [100] con-
cluded that performing perturbations to point clouds works in
a controlled environment, and to reproduce these experiments
in a real-world scenario powerful computational resources
are required, which may substantially affect the adversar-
ial attack. Hence, they proposed the Mesh Attack, which
addresses these shortcomings of other 3D point cloud attacks
by directly performing perturbations on the mesh of a 3D
object. Mesh Attack is able to achieve an attack success rate
of 90% on PointNet, 98% on PointNet++ [101], and 59% on
DGCNN [102].

3) ADVERSARIAL ATTACKS IN SOFTWARE

Presently, malwares are widely spread over the internet and
becoming a serious and persistent threat. Methods for detect-
ing malware have evolved to become more robust and many
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of these detection methods utilize machine learning mod-
els to improve the detection of malwares. However, these
machine learning-based malware detection tools are vul-
nerable to adversarial examples. Liu e al. [103] presents
an attack called Adversarial Texture Malware Perturbation
Attack (ATMPA). ATMPA can generate adversarial examples
to fool ML-based visualization malware detection systems.
ATMPA uses FGSM and C&W attacks to generate adversar-
ial examples. The authors have shown that on both gradient
descent and L, norm-based optimization methods, they were
able to consistently produce a 100% success rate. However,
it is worth noting that they also used fairly high epsilon values
e = {0.4,0.5,0.6} for FGSM adversarial examples which
may have resulted in such high success rates. Nonetheless,
their work presents an interesting point of view to utilize
adversarial examples to undermine ML-based visualization
malware detection systems.

VI. DEFENSE STRATEGIES

As depicted in Table 2, defenses for neural networks against
adversarial attacks generally lie within one of four frame-
works: (1) modifying the ANN, (2) modifying the train-
ing by including the adversarial examples (e.g., adversarial
training), (3) transforming the inputs, or (4) having external
models that serve as ANN add-ons. Defense methods that
change the training or the input data are disconnected from
the ANN model itself. However, modified ANNs and ANN
add-ons implement more layers, add subnetworks, change
the loss function, or use external models to defend against
attacks. In this section, we will discuss the various meth-
ods used to protect a deep learning model from adversarial
attacks.

A. MODIFICATIONS TO THE ANN

1) DEFENSIVE DISTILLATION

Papernot et al. [29] introduced defensive distillation as a
defense method for deep learning models against adversarial
attacks. Defensive distillation builds upon the original distil-
lation algorithm [104], which was originally introduced as
a way to reduce the size of a large model into a reduced
distilled model. Defensive distillation utilizes the distillation
algorithm to increase the robustness of the model. However,
instead of reducing the size of the model, defensive distil-
lation modifies the softmax activation function in the last
layer of the neural network to include a temperature value
T. This temperature value forces the model to make stronger
and more confident predictions.

The defensive distillation algorithm operates as follows:
First, a large network F is trained by initializing the tempera-
ture T of the softmax function during the model’s training
phase. Then “soft” labels are generated by applying the
network to every value in a training set X and recalculating the
softmax with the temperature. Next, a new training set is gen-
erated using the soft labels. Then using the new training data
another deep learning model is trained, with the same model
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architecture as the original model F, and the temperature of
the softmax function remains 7'. This new model is known as
the distilled model F¢ , and when ran at test time the model
will classify new input data.

The defensive distillation defense method works effec-
tively against the L-BFGS [12] and DeepFool [27] attacks.
However, Carlini & Wagner [26] were able to bypass the
defensive distillation defense method. They applied their
three attacks to defensively distilled networks trained on
MNIST [56] and CIFAR-10 [55], with a model temperature
T = 100. They showed that their Lo, Ly, and Lo, attack
algorithms were able to successfully attack a model 100% of
the time.

2) GRADIENT REGULARIZATION

Input gradient regularization [105], or double backpropa-
gation [106], trains deep neural networks while penalizing
any slight variation in the inputs. If any inputs are slightly
modified, the relative entropy between the labels and the
predictions will be insignificant. This means that a small per-
turbation would be unlikely to change the output of a trained
classifier. Combined with methods such as brute-force train-
ing, gradient regularization is known to be highly successful
in defending DNNs against attacks such as FGSM [28] and
JSMA [58].

3) DeepCloak

The primary goal of DeepCloak [107] is to remove unnec-
essary features used by an adversary to generate adversarial
examples. The authors propose inserting a mask layer in the
DNN model right before the classification layer. The mask
layer is trained by forward passing both clean and perturbed
images, encoding the differences between the outputs of the
two in the previous layers. DeepCloak filters out the unneces-
sary features by setting them to 0, effectively removing them
from the adversarial examples. DeepCloak was shown to be
effective in filtering out the perturbations in images generated
by the FGSM [28] attack.

4) PARSEVAL NETWORKS

Cisse et al. [108] introduced the idea of using Parseval
networks to defend against adversarial attacks. Parseval
networks control the Lipschitz constant by utilizing
layer-wise regularization of the weight matrices. The Lips-
chitz constant is the maximum ratio between permutations
in the input and output spaces and is used to measure
the sensitivity of the classifier. Maintaining a small Lips-
chitz constant is crucial to remain robust against even the
smallest perturbations. The authors realized that they were
able to control the spectral norm of the weight matrices,
which is the natural norm of the L, norm, by parame-
terizing the network with Parseval tight frames. Parseval
networks as a defense mechanism were tested against and
shown to be successful in defending against the FGSM [28]
attack.
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5) SafetyNet

Adversarial examples generate distinctive patterns, notably
during the last layers of neural networks of ReLU models
rather than what is seen with clean images. SafetyNet [109]
proposes an RBF-SVM (radial basis function SVM) classifier
should be added to the end of the targeted models. The SVM
should use codes distinctly generated by ReLU. The SVM
detects adversarial examples by comparing the codes of the
testing data with the codes of the training data. SafetyNet
was able to effectively detect adversarial perturbations in both
DeepFool [27] and L-BFGS [12].

6) DETECTOR SUBNETWORK

Metzen et al. [110] use subnetworks that augment the origi-
nal network to detect adversarial perturbations. Subnetworks
work by branching off the main network and producing a
probability p,q, that weighs the chances of an image being
adversarial. This subnetwork is known as the detector and is
trained to classify inputs as clean or adversarial.

First, the classification network is trained on the regular
data (i.e., non-adversarial). Then, the adversarial examples
are generated for the entire dataset, using the attack algo-
rithms from which the network is trying to defend itself (e.g.,
FGSM and DeepFool). Once an equal size dataset that has
the same amount of clean and perturbed images is generated,
the weights of the classification network are frozen and the
detector network is trained such that the cross-entropy of the
probability p,qy, as well as, the labels are minimized. The
specifics of the detection subnetworks and how it connects
to the classification network are specific to each dataset
and classification network. The detector subnetworks defense
works in detecting perturbations that are generated using
FGSM, DeepFool, and BIM [57].

7) DEEP CONTRACTIVE NETWORKS

Denoising autoencoders (DAE) [111] were introduced to
combat adversarial noise. A DAE is trained to detect and
remove adversarial noise. However, when coupled along-
side the original network, attacks that are targeted at this
stacked network are even more powerful than attacks with
the original model. Gu and Rigazio propose deep contractive
networks (DCN) [111], using a smoothness penalty like the
one used in contractive autoencoders, which are a variant
of autoencoders that include a minimization penalty. DCNs
improve the robustness of the network against adversarial
attacks without sacrificing performance. Deep contractive
networks are effective in detecting the perturbations gener-
ated by the L-BFGS [12] attack algorithm.

B. MODIFICATIONS TO THE TRAINING

1) BRUTE-FORCE TRAINING

Adversarial training is one of the most effective ways to
improve overall model robustness against adversarial exam-
ples. It corresponds to the process of adding the adver-
sarial examples with their correct labels into the training
dataset of the DNN models [32]. This method requires that
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the adversarial training is executed with a powerful attack
algorithm, an exposed model, and a large dataset. For these
reasons, adversarial training is commonly known as brute-
force training. It is also shown that adversarial training can
provide an added regularization to the network [28] which
helps strengthen the DNN models against adversarial attacks.
Methods that build on the observations made in [12], [28],
and [27] have been proposed, such as stability and virtual
adversarial training.

Virtual adversarial training [112] extends the previously
mentioned method to work with unlabeled data and in
semi-supervised situations. Virtual adversarial training can
also work with text classification and sequencing models.
Zheng et al. [113] proposed the stability training method
which stabilizes DNNs and improves robustness against
small distortions in input images. Overall, adversarial
brute-force training is an effective way of improving the
robustness of the model but is also exposed to certain attacks,
namely universal perturbations [14].

2) INPUT TRANSFORMATIONS

Another way of protecting neural networks from adversarial
attacks is by modifying the inputs in a way to reduce the
model’s sensitivity to small perturbations. Data compression
is one way of minimizing the damage perturbed images can
do to the model. Dziugate et al. [114] noticed that almost
every classification dataset consists of JPG images. They
used this observation as a basis for testing the effects of JPG
compression on adversarial images generated by FGSM [28].
They found that most of the time JPG compression would
reverse the classification of the adversarial image for small
perturbations generated by FGSM. Generally speaking, for
large perturbations, JPG compression is not an effective
method to reverse the effects of the perturbation and only
slightly improves the overall classification of the images.
Another method proposed by Bhagoji er al. [115] seeks to
defend against evasion attacks by using dimensionality reduc-
tion approaches such as the principal component analysis
(PCA) method. They found that by using PCA against evasion
attacks, their defense is effective against the L, Carlini &
Wagner attack [26] and FGSM attacks. Principal component
analysis makes it harder for the adversary to perturb an image
and perform a successful white-box attack. They found that
their defense can work across multiple classifiers including
SVMs and DNNs and can be generalized to work in multiple
applications.

C. ADDITIONS TO THE ANN

1) TRAPDOORED MODEL

Shan et al. [116] propose an approach for defending against
adversarial examples by utilizing honeypots to detect per-
turbed images. These honeypots are decoys that lure adver-
saries into artificial security vulnerabilities in the network.
The authors deliberately implanted trapdoors that attracted
adversaries attempting to probe the model for any infor-
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FIGURE 11. Visualization of the framework for defending against
UAPs [117]. This method rectifies the images to restore the classifier's
predictions. The patterns that are removed during the rectification
process are analyzed to determine whether an image is adversarial.

mation to generate adversarial images. The adversaries are
drawn towards the trapdoors and generate images designed
to target these perceived weaknesses to attack the clas-
sifier. The honeypots catch and identify the incoming
attacks by measuring and comparing the neuron activa-
tion of the inputs to the injected trapdoors. The trapdoored
model can protect the ANN against PGD [50], C&W [26],
and EAD [30] attacks, with high accuracy and with little
impact on normal classifications. This method can also work
in multiple classification scenarios like image and facial
recognition.

2) DEFENSE AGAINST UAPs

Universal adversarial perturbations (UAP) [14] highlight a
critical shortcoming in the security of machine learning mod-
els. Therefore, Akhtar et al. [117] introduce a framework for
defending against UAPs by adding a perturbation rectifying
network (PRN) as a pre-input layer to the targeted model
to prevent having to alter the model. The PRN catches the
perturbed images coming into the network and adjusts them
to label these perturbed images with same label of the original
image. The perturbation rectifying network is trained using
datasets that contain real and artificial UAPs without chang-
ing any of the model’s parameters. Separately, a perturbation
detector is trained on the cosine transform of the differences
between inputs and outputs of the PRN. As shown in Fig. 11,
the images pass through the PRN and then verified by the
detector. When, the perturbations is detected, the output from
the PRN is used to predict the labels instead of the actual
image. PRN shows promising results in defending DNNs
against UAPs with a 97.5% success rate.

3) FEATURE SQUEEZING

Other attempts to defend neural networks from adversarial
attacks investigate optimizing the model which can be com-
putationally expensive. Therefore, Xu et al. [118] proposed
feature squeezing to strengthen DNNs by detecting perturbed
images. The feature squeezing process minimizes the search
space by consolidating examples that correlate to various fea-
ture vectors in the original search space into a single example.
Although the feature squeezing process is quite general, the
authors specifically explore two methods, spatial smoothing,
and the reduction of the color bit depth of every pixel. These
techniques are simple, inexpensive, and can be combined
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TABLE 2. An outline of the different defense strategies against adversarial machine learning attacks. the “Unknown” indicates lack of information in the

literature.
Defense Type Defense Name Covered Attacks
Modifications to the ANN Defensive Distillation [29] JSMA [58]
Gradient Regularization [105] [106] | FGSM [28], JSMA [58]
DeepCloak [107] FGSM [28]
Parseval Networks [108] FGSM [28]

SafetyNet [109]

L-BFGS [12], DeepFool [27]

Detector Subnetwork [110]

FGSM [28], DeepFool [27], BIM [57]

Deep Contractive Networks [111] L-BFGS [12]
Brute-force Training Adversarial Training [27] [28] [12] JSMA [58]

Virtual Adversarial Training [112] Unknown

Stability Adversarial Training [113] Unknown
Input Transformations Data Compression [114] FGSM [28]

Data Transformation [115]

Lo C&W [26], FGSM [28]

External Models and Network Add-Ons | Trapdoor Model [116]

PGD [50], C&W [26], EAD [30]

Defense against UAPs [117]

UAP [14]

Feature Squeezing [118]

FGSM [28], BIM [57], C&W [26], DeepFool [27], JSMA [58]

Magnet [119]

FGSM [28], I-FGSM [57], DeepFool [27], C&W [26]

with other defense strategies to have more effective results.
Input images first go through an external model that performs
feature squeezing over the image. The probability score of
the target network using the original input is compared to
the score of the squeezed image. If the difference between
the probability scores is considerably large, then the image is
classified as adversarial and discarded.

4) MagNet

Meng and Chen proposed MagNet [119], a framework used
for defending against adversarial attacks on neural network
classifiers. MagNet introduces separate detector and reformer
networks that classify whether incoming input images are
adversarial or not. Detector networks are either based on
the reconstruction error or the probability divergence. They
estimate the manifold of clean inputs and during the training
phase, they learn to separate the clean images from the per-
turbed ones. In the testing phase, images that are far from the
manifold are labeled adversarial and then dropped. For adver-
sarial images with small perturbations, reformer networks,
which are based on random noise or an autoencoder, push
perturbed images towards the manifold of the unperturbed
images, essentially forcing the image to be correctly classi-
fied. MagNet is an effective method to defend against black
box (zero-knowledge) and gray box attack (limited knowl-
edge) scenarios, and because it does not assume any specific
perturbation generation method, MagNet can be generalized
to different attacks.

D. DEFENSE AGAINST POISONING ATTACKS

1) DETECTION BASED ON ACTIVATION ANALYSIS

Detecting and defending a deep neural network model against
backdoor attacks is extremely difficult because the triggers of
the backdoors are only known to the adversary. Backdoors are
triggered when specific features are identified by the model
that is associated with the source class, which in turn, the
backdoor trigger results in network activations that represent
a decision made by the model. Chen et al. [82] proposed an
activation clustering algorithm to detect the poisoned input
images that are generated to inject backdoors into deep neural
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networks. The proposed algorithm analyzes the activations in
the neural network to detect backdoors. The working process
of their algorithm can be described as follows. First, they
train the neural network using an untrusted dataset containing
poisoned examples. Second, they query the neural network
using the training data and the subsequent activations of the
last hidden layer. Third, once the activations of each sample
are retained, they are segmented into different segments that
are clustered individually, where each segment corresponds to
a label. Fourth, by using k-means clustering [120], the clus-
ters are separated into two groups: poisoned and clean data.
Finally, the poisoned data is identified either by exclusionary
reclassification, relative size comparison, or silhouette score.
Once the poisoned data is identified, the authors suggest
the fastest way to repair the backdoor by “‘re-labeling” the
poisoned data with its original class, and continue to train
the model until convergence. Their method was tested using
the LISA [121], MNIST [56], and Rotten Tomatoes [122]
datasets. When the authors experimented with 10% poisoned
data using MNIST, they were able to achieve accuracy and
F1 score of nearly 100% for each class label. Compared to a
conventional clustering algorithm, their method outshines in
every respect.

2) DETECTION BASED ON SPECTRAL SIGNATURES

Tran et al. [123] proposed a new method for defending neu-
ral networks against poisoning backdoor attacks by utilizing
spectral signatures. The authors noticed that in the aftermath
of a backdoor attack, a detectable trace of the attack was left
behind in the covariance of a feature representation learned
by the model. They refer to the remnant of the attack as a
spectral signature. The authors presume that the set of inputs
contains both clean and adversarial examples for each label.
A backdoor in an adversarial example would yield a strong
signal in the representation vector. Signals that are large
in magnitude can easily be detected through singular value
decomposition and the images that provide that signal can
be detected and removed. The authors test their algorithm
using CIFAR-10 [55] with 5000 examples for each of the

102287



IEEE Access

S. Y. Khamaiseh et al.: Adversarial Deep Learning: A Survey on Adversarial Attacks and Defense Mechanisms

10 labels. When they use 250 adversarial examples, which
is relatively a very small sample, the trained model accuracy
drops to around 10%. In most cases by utilizing spectral sig-
nals they can remove all traces of corrupted data, minimizing
the misclassification rate to around 1%.

VII. DISCUSSION & FUTURE RESEARCH DIRECTION

In the previous sections, we discussed the recent state-of-the-
art adversarial attacks against deep neural networks and the
defense mechanisms. In this section, we present the current
challenges and the broader view of the directions of the
future research work based on the literature discussed in this

paper.

A. THE EXISTENCE OF ADVERSARIAL ATTACKS

Upon constructing an adversarial example, the adversary
needs to craft the perturbations in the way that forces the
targeted model to misclassify, as well as, maintain the “true
class’ of the input. Adding large imperceptible perturbations
could truly change the identification characteristics of an
input. Therefore, few studies present some skepticisms about
the existence of adversarial attacks and consider their exis-
tence as normal behavior in deep neural networks. In other
words, yielding a different class of the original input after
adding the perturbations by the DNN model is a normal
behavior [32]. However, in Sections V and VI we has
demonstrated how adversarial attacks are real and pose a real
threat to deep neural networks.

The reason why deep neural networks are vulnerable
to adversarial attacks is unknown. Many viewpoints have
been proposed attempting to explain this phenomenon. For
instance, Goodfellow [28] argued that the deep neural net-
works are “too linear” in a high dimensional space which
makes them susceptible to any subtle changes that occur to
any input. Fawzi [124] suggested that the ““low flexibility”” of
the classifiers in certain tasks can be the reason. Despite the
recent advances, we believe that identifying the adversarial
vulnerabilities of deep learning is still unclear and requires
further investigation.

B. THE TRANSFERABILITY OF ADVERSARIAL ATTACKS

The term “transferability” refers to the degree of general-
izing the adversarial attack of a specific neural network to
fool other neural networks of different architectures. Most of
the adversarial attacks are transferable. This is especially true
for neural networks that have a similar architecture [74]. The
attack transferability can be categorized into three levels:

o Low transferability. The adversarial attack can fool
similar deep neural networks when trained with a dif-
ferent dataset. For example, the DeepFool attack is an
example of low transferability. The adversarial images
generated using DeepFool on any given architecture are
hardly able to fool other neural networks.

e Medium transferability. The adversarial attack can
fool different types of neural networks when trained
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using the same dataset (i.e., performing the same task).
FGSM is an example of medium transferability.

« High transferability. At this level, the adversarial attack
can fool different neural networks of different architec-
tures performing different tasks.

Currently, most of the existing adversarial attack research
is focused on image classification. Very limited studies have
focused on different applications [41]. Therefore, further
research is required to focus on adversarial deep neural net-
works in different applications. In addition, further investiga-
tion is required to evaluate the applicability, efficiency, and
practical use of the current adversarial attacks in different
applications.

C. ADVERSARIAL ATTACK DEFENSE METHODS

Multiple defense methods have been proposed to counter-
measure the adversarial attacks. However, oftentimes showed
that a defended model has been successfully attacked by an
existing attack or a zero-day attack. For example, the distilled
neural network defense mechanism [29] has been defeated
against C&W attacks [26]. Furthermore, the adversarial train-
ing defense technique has been proved to be ineffective [125].
Thus, further research is required to focus on developing a
universal adversarial defense method that covers the various
aspects of adversarial attacks.

D. EVALUATION METHODOLOGY OF THE ROBUSTNESS OF
DEEP NEURAL NETWORKS

Currently, most of the adversarial attacks and defense mech-
anisms have been simulated in limited environments. Also,
in many cases, the source code and the configuration param-
eters of the work environment are not available to the research
community to further evaluate the robustness of the defense
method as well as the adversarial attack. Hence, having a deep
learning robustness methodology is crucial. Different works
have conducted initial studies emphasizing the importance
of evaluating the robustness of neural networks [126], [127],
[128]. However, different questions arose such as (1) how
to stress-test neural networks on different business domains?
and (2) what are the general robustness parameters and accep-
tance score of a neural network application?. To answer these
questions, further research is required.

VIil. CONCLUSION

In this article, we provide a comprehensive review of the
state-of-the-art adversarial attack methods. In our review,
we focused on adversarial attacks against the image classi-
fication neural networks. In addition, we have provided a
detailed discussion of the most widely used defense strate-
gies against adversarial attacks by focusing on their usage
in real-life applications. Also, we have provided a detailed
overview of the attacking scenarios that can be employed
by the adversary to compromise DNNs. Furthermore, in this
paper, we analyzed and discussed the current open issues and
challenges that require further investigation.
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