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ABSTRACT Pedestrian lane detection is a crucial task in assistive navigation for vision-impaired people.
It can provide information on walkable regions, help blind people stay on the pedestrian lane, and assist
with obstacle detection. An accurate and real-time lane detection algorithm can improve travel safety and
efficiency for the visually impaired. Despite its importance, pedestrian lane detection in unstructured scenes
for assistive navigation has not attracted sufficient attention in the research community. This paper aims
to provide a comprehensive review and an experimental evaluation of methods that can be applied for
pedestrian lane detection, thereby laying a foundation for future research in this area. Our study covers
traditional and deep learning methods for pedestrian lane detection, general road detection, and general
semantic segmentation. We also perform an experimental evaluation of the representative methods on a large
benchmark dataset that is specifically created for pedestrian lane detection. We hope this paper can serve
as an informative guide for researchers in assistive technologies, and facilitate urgently-needed research for
vision-impaired people.

INDEX TERMS Pedestrian lane detection, assistive navigation, vision impairment, semantic segmentation,
deep networks.

I. INTRODUCTION

According to the World Health Organization (WHO), there
are about 253 million visually impaired people world-
wide, of whom 217 million have moderate or severe vision
impairments, and 36 million are blind [1]. Various stud-
ies have shown that visual impairment causes a significant
reduction in mobility [2], and a higher risk of falling or
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collision [3], [4]. Due to their reduced capability in scene per-
ception, blind people have tremendous difficulties navigating
unfamiliar environments.

Traditional walking aids for the visually impaired include
white canes and guide dogs. White canes are simple to use,
but they have short detection ranges [5], [6]. Guide dogs
can evade obstacles and memorize routes, but they require
extra training and care, and are effective primarily in famil-
iar environments [5], [7]. Hence, there is a growing need to
develop assistive navigation systems that extend beyond the
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traditional capabilities. In these assistive systems, pedes-
trian lane detection is a core component that enables
vision-impaired users to walk within the pedestrian lane
and maintain their balance. An accurate, reliable, and
real-time algorithm for pedestrian lane detection can signif-
icantly improve the mobility and safety of visually impaired
people.

Despite its importance for assistive navigation, pedestrian
lane detection has not attracted much interest in the research
community. This survey paper aims to set a foundation for
assistive navigation research by reviewing and assessing the
applicable methods, including general road detection and
semantic segmentation methods. The design principles and
performances of these methods on a benchmark pedestrian
lane detection dataset are informative resources when devel-
oping new methods.

Note that methods designed for vehicle road detection are
not optimized for pedestrian lane detection, albeit the two
tasks have some similarities. First, compared to pedestrian
lanes, vehicle roads (especially in urban environments) are
usually more structured. For example, vehicle roads often
have clear boundaries and asphalt surfaces, whereas pedes-
trian lanes usually have arbitrary shapes and various surface
textures (e.g., bricks, concrete, tiles, grass, sand, and soil).
Second, vehicle road detection methods mainly deal with out-
door situations, whereas pedestrian lane detection methods
need to consider also indoor scenes. Hence, although road
detection methods can be used to detect pedestrian lanes, they
are not the complete solution for pedestrian lane detection.

This paper presents a comprehensive review and an
experimental evaluation of methods that can be applied for
pedestrian lane detection. The survey aims to serve as an
informative guide for researchers in assistive technologies
and facilitate urgently-needed research for vision-impaired
people. The main contributions of this paper can be high-
lighted as follows:

1) We provide a comprehensive review and analysis of
the traditional and deep learning methods that can be
applied for pedestrian lane detection. The traditional
methods include color-based approaches, border-based
approaches, and combined approaches. The state-of-
the-art (SOTA) deep learning methods include deep
networks for road detection and general semantic seg-
mentation. A summary of the representative methods
is presented in Table 1. A timeline of the representative
methods is shown in Fig. 1.

2) We conduct an extensive performance evaluation of the
representative methods on a large Pedestrian Lane and
Vanishing Point detection (PLVP3) dataset!. To date,
it is the largest pedestrian lane dataset in the litera-
ture. This evaluation provides baseline performances
on pedestrian lane detection and allows practitioners to
focus on the promising directions.

1https://documents.uow.edu.au/ phung/plvp3.html
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3) We discuss the technical challenges and future research
directions in pedestrian lane detection to bridge the
gaps towards a practical assistive navigation system.

The remainder of this paper is organized as follows.
Section II reviews the traditional detection methods that are
based on hand-crafted features. Section III reviews road seg-
mentation methods that are based on deep neural networks.
Section IV presents experimental evaluations of the major
methods on the PLVP3 dataset. Section V discusses the tech-
nical challenges and future directions for pedestrian lane
detection. Section VI gives the concluding remarks.

Il. TRADITIONAL METHODS

This section reviews representative feature-based meth-
ods, which are categorized into three different groups:
(i) color-based approaches (Section II-A); (ii) border-based
approaches (Section II-B); and (iii) combined approaches
using both road color and border features (Section II-C).

A. COLOR-BASED APPROACHES

Color-based approaches classify image pixels by comparing
each pixel to a reference color model. The reference color
model can be constructed using different color spaces [8], [9],
[10], [11], [20].

In [8], Crisman and Thorpe proposed a road detection
method called SCARF. This method constructs color mod-
els as multiple Gaussian distributions in the red-green-blue
(RGB) color space for both road and off-road classes. First,
regions corresponding to road and the background in the
previous frame are selected to construct color models for
the current frame. Next, each region is clustered into four
homogeneous color groups. Then, four Gaussian distribu-
tions are generated for each class from the color groups.
Finally, two color models are constructed to segment road
and background regions. The road location in the first frame
needs to be defined manually or by another algorithm (e.g.,
UNSCAREF [20]). Because color models are represented by
multiple Gaussian distributions, this method can cope with
variations in road colors and textures. However, it relies heav-
ily on the continuity of adjacent frames, which may produce
errors if there are sudden changes between two frames.

n [11], Ceryen et al. proposed a road detection algorithm
that uses color histograms to represent road models in the
normalized red and green color space. Compared to the stan-
dard RGB color space, the normalized space can cope better
with illumination variations. This method assumes that the
center-bottom part of an input image is a homogeneous road
region. Accordingly, the sample region is defined as a rect-
angle at the center-bottom part of the input image. For each
frame, one color distribution is generated from the pixels in
the sample region. The final road model is represented by
four color distributions generated over time from different
frames. Since this method considers the frame continuity with
multiple color distributions, it improves the detection stability
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TABLE 1. A summary of representative methods for pedestrian lane detection.

Category Method based on Authors Year Technique
Crisman et al. [8] 1993 RGB color space; Multiple Gaussian distributions
Traditional: Road models Sotelo er al. [9] 2004  HSI color space; Intensity and chromatic distances
Color-based Ramstrom er al. [10] 2005 UV, normalized R and G, and intensity channels; GMMs
approach . Tan et al. [11] 2006  Normalized R and G color space; Color histograms
Sample lane regions K K . K .
Alvarez et al. [12] 2011 Illuminant-invariant feature space; Normalized histogram
Lane markers Le et al. [7] 2012 Patches of interest
Yu et al. [13] 1997  Hough Transform; Canny edge detectors
. Viosin et al. [14] 2005  Hough Transform; Sobel filters
Traditional: Edge features R .
Chen et al. [15] 2011 Gradient-enhanced images
Border-based . .
Yoo et al. [16] 2013 Gradient direction features
approach
Rasmussen et al. [17] 2004 Color and texture features
Vanishing points Kong et al. [18] 2010  Orientation consistency ratio features
Le et al. [19] 2014  Obstacle detection; Thresholding
Lane templates Crisman et al. [20] 1991  Clustering; Edge features; Lane templates
. He et al. [21] 2004  Sample regions; Lane width assumption
Traditional: L . . . A
K o i Miksik et al. [22] 2011 Trapezoidal sample regions; History of road models
Combined approach Vanishing points .
Chang et al. [23] 2012 Color branch and border branch; Kalman filter
Phung e al. [24] 2016  Sample regions; Local orientations; Lane templates
. Bianco et al. [25] 2020  ERFNet
Segmentation networks K . . . .
Cao et al. [26] 2021  Depthwise separable convolutions; Atrous spatial pyramid pooling modules
R Nguyen et al. [27] 2020  SegNet; Hierarchical Gaussian process classifier
X Uncertainty maps . L L
DL: Lane detection Le et al. [28] 2022  Bayersian Gabor layers; Variational Bayesian inference
approach Yadav et al. [29] 2015 SegNet; Color-line models in CRFs
Boundary and color . . .
. i Zhang et al. [30] 2018 Multi-task; Geometric constrains
information .
Almedia et al. [31] 2020  ENet and LaneNet; Multi-task; Lane boundaries
NAS Ang et al. [32] 2021  Network-level searching space; Gradient descent algorithm
Fully convolutional structure | Long et al. [33] 2015  FCN: Fully convolutional network
Ronneberger et al. [34] 2015 U-Net: E-D structure; Feature map concatenation
Encoder-decoder structure X L
DL: G i Badrinarayanan et al. [35] 2017  SegNet: E-D structure; Pooling indices
: Generic
" Multiscale and pyramid Lin et al. [36] 2017  FPN: Feature pyramid; Lateral connections
semantic
i structure Zhao et al. [37] 2017 PSPNet: Pyramid pooling module
segmentation - - -
Dilated convolution Chen et al. [38] 2018  DeepLabv3+: Atrous separable convolutionl
. . Fu et al. [39] 2019 Dual attention network: Self-attention mechanism
Attention mechanism
Tao et al. [40] 2020 Hierarchical multiscale attention
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FIGURE 1. A timeline of representative methods that can be used for pedestrian lane detection.

over frames. However, it is not effective when sample regions
contain multiple road colors.

In [9], Sotelo et al. introduced a road model with the
hue-saturation-intensity (HSI) color space. This method
divides pixels into chromatic pixels and achromatic pix-
els. Chromatic pixels are classified using both intensity and
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chromatic information, whereas achromatic pixels (extreme
intensity or low saturation) are classified using intensity
only. To classify a pixel, a threshold value is defined as
a function of two parameters: (i) the distance between the
pixel and the previously-predicted road center, and (ii) the
maximum threshold value of the previous frame. The initial
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road-center model is selected from seven predefined mod-
els with an assumption of the road width. To cope with
the extreme illumination variations, this method reconsiders
non-road pixels within predicted road edges based on their
intensity and chromatic features. The main limitation of this
method is that it builds color models from a small number of
randomly-selected pixels near the road center, which may not
efficiently represent the entire road surface.

In [10], Ramstrom and Christensen employed the Gaus-
sian Mixture Model (GMM) to represent road and non-road
classes with three different color-based feature vectors: UV
(of the HUV color space), normalized red and green, and
intensity channels. For each feature vector, two GMMs are
generated. The GMM:s for the road are constructed from pix-
els within road regions. Here, road regions are determined
from a road shape model (centerline of the road) and a
road-width parameter. The road shape model is continually
updated based on each new GMM. The initial road model is
selected based on assumptions of road shape and road width.
In summary, this method uses a simple color model and a sim-
ple road shape model, and it therefore does not cope well with
complex road shapes, e.g. S-shaped lanes or intersections.

In [12], Alvarez and Lopez presented road models from
illumination-invariant images to address the lighting varia-
tions. These images are computed from input RGB images
with a camera parameter, called illumination-invariant angle.
This method models the road as a normalized histogram from
a set of seeds in the center-bottom part of the input image,
see Fig. 2. Since the road histogram is built from a few seeds
within the sample regions, this method could be ineffective
for road regions with non-homogeneous surface textures.

p(Z(p)|road)

FIGURE 2. Example of using the normalized histogram as a road color
model. Figure is from [12].

The above color-based methods can cope with the varia-
tions in road shapes and illumination conditions, but their
generalization capability relies heavily on the assumptions
of road surfaces and road locations. For example, methods
proposed in [8], [9], and [10] assume that there are no sud-
den changes in image sequences, so they build color models
from previous predictions. These methods also require fur-
ther assumptions of road widths for the initial frame. A few
methods build color models from the center-bottom part of
the input image with the assumption of potential road loca-
tions [11], [12].

B. BORDER-BASED APPROACHES
Border-based approaches detect the regions of interest using
either lane markers [7], edge features [13], [14], [15], [16],
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or vanishing points [17], [18], [19]. In [7], Le et al. employed
lane markers to detect pedestrian lanes at traffic junctions.
This method extracts patches of interest on lane marker edges
using normalized cross-correlation template matching. The
lane markers are then detected using the random sample con-
sensus (RANSAC). The lane regions are segmented from the
pair of lane markers according to geometric constraints. This
method works well with clear lane markers, but often fails
when the markers are occluded or when lane surfaces are
under strong shadows.

To detect unmarked lanes, several studies have employed
either Hough Transform (HT) [13], [14] or image gradi-
ents [15], [16]. In [14], Voisin et al. extracted the edge
points using Sobel filters. The HT is then used to detect two
lane boundaries within the regions of interest predicted by
a Kalman filter. This method considers lane borders as two
straight lines. In [13], Yu and Jain used the HT to detect lane
boundaries from edge images generated by Canny detectors.
Unlike [14], this method handles curved borders by applying
the HT to multiple image resolutions. In [16], Yoo ef al. gen-
erated gradient-enhanced images from RGB images to detect
lane regions. This method also uses Canny edge detectors and
the HT to extract lane edges. In [15], Chen et al. used gradient
direction features to enhance lane features in input images
(Fig. 3). This method assumes that the two lane boundaries
are approximately parallel.

il

)
5

R

Input image Gradient image Gradient direction image

FIGURE 3. Example of gradient direction features. Figure is adapted
from [15].

The above methods can accurately detect simple roads with
clear boundaries and structured scenes, but they are not effec-
tive in coping with occlusions, degraded lane edges, or atyp-
ical road shapes. This is because road models used to match
lanes are simplified, and the performance of these methods
depends highly on the clear road features.

To overcome this problem, several methods have employed
vanishing points to determine lane boundaries [17], [18],
[19]. In [17], Rasmussen selected lane borders from the edges
pointing to the vanishing point. The edges are ranked based
on an objective function that measures texture and color dif-
ferences between lanes and the background. This method is
only effective when lane regions do not significantly dif-
fer from non-lane regions in terms of color and texture.
In [18], Kong er al. used vanishing points to detect lane
edges, which are then ranked using an orientation consistency
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ratio feature. Because this method only relies on edges for
lane-border detection, it is sensitive to background edges.
In [19], Le et al. determined lane regions from vanishing
points and road obstacles (pedestrians). The optimal bound-
ary pair is selected by a threshold determined from the train-
ing set. However, this method may fail to detect complex road
shapes because it models lane boundaries as straight lines.

In summary, the vanishing-point-based methods can cope
with degraded lane edges, occlusions, and texture variations
of lane surfaces. The main limitation of these methods is that
they can detect only simple road shapes such as straight lines
or curves with one arc. Complex road shapes may lead to poor
performances.

C. COMBINED APPROACHES

To address the aforementioned limitations, several methods
combine color and border features by: (i) matching color
segmentation results with lane templates [20], (ii) combining
color segmentation with border detection [23], or (iii) using
extracted sample regions for color model construction [21],
[22], [24], [41], [42]. In [20], Crisman and Thorpe first clus-
tered image pixels into homogeneous color regions using a
modified ISODATA algorithm. Next, the edges of each group
are extracted by removing small regions (noise). Finally, lane
regions with the highest probability are selected by matching
with lane templates. Edges of the selected regions are defined
as lane borders. Although this method can handle road surface
variations, it is unable to handle complex road scenes due to
the use of predefined lane templates.

In [23], Chang et al. estimated road regions using color
features and boarder features separately. The final results are
produced by combining information from the two branches.
An illustration of this method is shown in Fig. 4. In the color
feature branch, the input image is first segmented into homo-
geneous color regions. A rectangle at the center-bottom part
of the first frame is then selected. The largest color area
within the sample region is used to construct color models
in the RGB color space. From the second frame, the sample
regions are selected from the rectangle at the center-bottom
part of the previously predicted road regions. In the boundary
branch, the road regions within road borders are determined
by the vanishing points and a boundary score. In the final
stage, the results from the two branches are combined using
a Kalman filter. The output segmentation map is also used as
feedback for updating the road models in the two branches.
This method uses a floating window for sample region extrac-
tion, which is more efficient in coping with road location
changes. However, because the sample region of the first
frame is extracted from the center-bottom part of the image,
this method often fails if the road center of the first frame
is far from the image center. Furthermore, it is sensitive to
sudden changes between frames.

In [22], Miksik et al. constructed road models as GMMs
from sample regions in the RGB color space. Firstly, the
sample region is initialized as a trapezoid at the center-bottom
part of the input image. Then, it is refined by the vanishing

VOLUME 10, 2022

Road Region Estimation [Foad Color Feedback

Estimate Road Region Road Info Extraction

ation
{ Lyl { N {
‘ //2///; Ks\ma:jffr oo
{ [—> Segmentation
map

Road Boundary Estimation

Vanishing Pt Detector Estimate Road Boundary.

FIGURE 4. lllustration of the road recognition method that combines a
color branch for road region estimation with a boundary branch for road
border estimation. Figure is from [23].

point. To construct road models, input images are clustered
into homogeneous color regions. One Gaussian distribution
is generated for each homogeneous pixel group in the sample
region. One GMM represents the road colors in one video
frame. A fixed number of GMMs from different frames are
stored for lane detection. This method can cope with various
road shapes and road surface textures. However, because the
sample regions are refined by the lines connecting the van-
ishing points and two predefined points at the image bottom,
this method cannot cope well with road regions far from the
image center.

In [21], He et al. generated color models as Gaussian dis-
tributions from the pixels within estimated road boundaries.
First, edge images are generated by applying edge detectors
on projection images of lanes. Next, pseudo road bound-
aries are determined from edge images using vanishing points
and eight curvature models. The pseudo road boundaries are
much narrower than the real boundaries, which ensures that
all pixels within these boundaries belong to the road class.
Finally, color models constructed from these pixels are used
to segment the real lane areas. Due to the assumption of the
predefined curvature models, this model can detect only a few
types of road structures.

FIGURE 5. lllustration of the pedestrian lane detection method: (a) the
imaginary rays (blue lines) and the detected borders (green lines) from
the vanishing point; (b) lane sample region; (c) color homogeneous
sub-regions; (d) segmented walking lane. Figure is from [24].

In [24], Phung et al. represented road color models in
the RGB color space and an illumination-invariant space.
An illustration of this method is shown in Fig. 5. The color
models are generated from the sample regions that are
selected as the lower half of the area within lane bound-
aries (a trapezoidal region). The lane boundaries are selected
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from imaginary rays pointing to the vanishing points by a
lane score that considers the texture and geometric features
of the lane. The vanishing points are detected by applying
color tensors and a Canny edge detector. Before applying
color models to detect road regions, the input images are first
segmented into homogeneous color sub-regions. This method
combines geometric and color features of the lane, so it can
handle various road shapes. However, because the detection is
based on homogeneous color regions, it may fail if the scene
background has similar colors to road surfaces.

In summary, the combined methods reduce the need for
prior knowledge, and thereby increase the model’s general-
ization ability in terms of various deformation and occlusion
conditions.

1Il. DEEP LEARNING METHODS

A. ROAD DETECTION METHODS

In recent years, deep convolutional neural networks (CNN5s)
have been applied successfully to semantic segmentation.
They have achieved SOTA performances because of their
ability to learn from large-scale image datasets and extract
salient visual features automatically. Many lane segmentation
methods have been proposed based on deep CNNs, and they
have achieved promising results.

Several lane detection methods have employed semantic
segmentation networks directly for road detection. In [25],
Bianco et al. proposed a network trained on two sep-
arate datasets: a lane detection dataset and an obstacle
detection dataset. ERFNet, proposed in [43], is employed
in this method to perform both weak labeling generation
and the final segmentation. Because ERFNet has a good
trade-off between accuracy and inference speed, it is suit-
able for real-time pedestrian lane detection. However, this
method cannot cope with extreme illumination or weather
conditions due to the lack of training examples. In [26],
Cao et al. proposed a lightweight segmentation network for
blind people. This network utilizes depthwise separable con-
volutions to increase computation efficiency, and densely
connected atrous spatial pyramid pooling modules to enhance
multiscale and contextual information. However, this method
is proposed only for blind roads and crosswalks, which typ-
ically have structured shapes and fewer variations in appear-
ance. As a result, this method might not generalize well for
other types of pedestrian lanes.

Other methods have been proposed to generate the out-
put segmentation map together with an uncertainty map
for enhanced safety of blind users. In [27], Nguyen et al.
proposed a DL-HGP network, which combines the SegNet
encoder-decoder network (proposed in [35]) with a hierar-
chical Gaussian process classifier. The HGP classifier pro-
duces a segmented lane map and a calibrated uncertainty
map, which provides extra safety for visually impaired users,
see Fig. 6. However, this network cannot reach real-time
prediction due to the computation requirements of the HGP
classifier. In [28], Le et al. proposed a Bayesian Gabor Net-
work (BGN) that generates a segmentation map with two
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calibrated uncertainty maps. This network contains 13
Bayesian Gabor layers, where each Gabor parameter is rep-
resented as a learnable Gaussian distribution. By using the
Gabor layers instead of the standard CNN layers, this method
achieves high prediction accuracy and real-time segmentation
with a small network size. However, the parametric form
of the Gabor filters has a reduced representation power for
complex lane textures.

Segmentation map

Uncertainty map

Convolutional Encoder-Decoder Network|
Pooling Indices
B
» .

I Conv.
I Upsampling

Il Max-Pooling
[] GP classifier

FIGURE 6. Network structure of the DL-HGP method. Figure is from [27].

Several methods have been proposed to improve seg-
mentation results using road boundary features. In [31],
Almeida et al. combined the results from two separately-
trained models: ENet [44] for lane segmentation, and
LaneNet [45] for lane boundary detection. A post-processing
step is applied to create the final segmentation masks from
the detected lane boundaries by the LaneNet. This method
then computes a weighted sum of the output segmentation
masks from each model. Higher weights are given to regions
whose shapes are more similar to a typical road (usually a
trapezoid). However, the performance of this method may
be severely affected if one model produces imprecise predic-
tions. In [29], Yadav et al. proposed a conditional random
field (CRF) framework, in which the segmentation masks
produced by SegNet is used as prior knowledge to create
two color lines models, one for road and the other for the
background. The above methods apply boundary features to
refine segmentation results, but they only use these features
in the last few stages and therefore may not fully utilise the
road features.

Input image

FIGURE 7. Architecture of the multi-task network that uses geometric
priors for road detection. Figure is from [30].

To overcome this problem, in [30], Zhang et al. proposed
a multi-task network that follows inherent geometric priors
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between two tasks: lane region segmentation and road bound-
ary detection (Fig. 7). In their method, lane boundaries are
considered as outer contours of lane regions, and lane regions
are considered as the interior of lane boundaries. The network
contains a shared encoder for initial feature extraction, and
two link encoders for geometric relationship extraction. The
link encoders take modified preliminary predictions as inputs
to generate refined features for decoders. This network is
trained on a loss function that combines the cross-entropy
loss, boundary-aware loss, and area-aware loss. This method
can cope with complex lane types because it utilizes geomet-
ric priors between lane regions and lane boundaries. However,
the complex network structure requires extra computational
resources and increases the inference time.

The lane detection methods mentioned above are all based
on custom deep neural networks. However, designing a
high-performing deep network requires significant experi-
ence and many trial-and-error experiments. To address this
issue, in [32], Ang et al. developed a neural architecture
search (NAS) algorithm to find the optimal DNN struc-
ture for pedestrian lane detection. This method searches a
network-level space using the gradient descent algorithm, and
the search is performed directly on the target dataset without
relying on secondary datasets. As a result, the network found
by this NAS method is compact and has fast inference. How-
ever, this method requires significant time to find an optimal
network structure before the network is further trained.

B. GENERIC SEMANTIC SEGMENTATION NETWORKS
Pedestrian lane segmentation can be considered a subset of
semantic segmentation, where there are two classes: pedes-
trian lane and the background. Hence, applying semantic
generic segmentation networks to lane detection is a plausible
direction. Therefore, this section reviews representative deep
networks for semantic segmentation. The list includes: fully
convolutional networks, encoder-decoder networks, multi-
scale and pyramid feature networks, dilated convolution net-
works, and attention-based networks.

1) FULLY CONVOLUTIONAL NETWORKS

Long et al. proposed the fully convolutional network
(FCN) for semantic segmentation [33]. The FCN, shown
in Fig. 8, replaces the fully connected layers in the clas-
sification networks (e.g., VGG-16 [46], AlexNet [47], and
GoogLeNet [48]) with convolutional layers. It upsamples
the coarse outputs to produce pixel-wise dense predictions.
Moreover, the FCN uses skip connections to refine the spa-
tial precision. The FCN is a milestone work in image seg-
mentation as it was among the first to apply deep learning
for semantic segmentation in an end-to-end manner. Sub-
sequently, many semantic segmentation models have been
developed based on FCNs.

Although the FCN has shown benefits, it has two main lim-
itations. First, the FCN only uses a single-layer interpolation
to reconstruct the original input size from a coarse heat map,
which can lead to a loss of detailed boundary information.
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FIGURE 8. Architecture of the FCN. Figure is adapted from [33].

In lane detection, the network might misclassify roads in
the distance, preventing the users from planning their routes
ahead. The network might also misjudge small obstacles or
tripping hazards as roads, which could endanger the user.
Second, the FCN focuses on more local information than the
global context, which makes prediction outputs lack spatial
consistency. This might cause the network to predict lanes in
the incorrect places, such as on water or in the sky.

Similarly, there are two challenges in applying classifi-
cation networks for semantic segmentation. The first chal-
lenge is the lost of image resolution. Classification networks
utilise down-sampling and max-pooling operations to extract
low-resolution feature maps. However, semantic segmenta-
tion tasks require precise location information, which can
only be achieved with high-resolution feature maps. The sec-
ond challenge is the lack of multi-scale context. Objects in an
image are at multiple scales, and convolutions with fixed-size
kernels are not enough to capture both local and global con-
texts. Over the years, many network structures have been
developed to address these two challenges.

2) ENCODER-DECODER NETWORKS
E-D networks address the lost resolution problem in FCNs
by introducing a decoder. The decoder upsamples the coarse
feature map and incorporates the spatial information from
the shallower layers of the encoder. Some E-D networks also
fuse the feature maps of different layers to retains more local
information and reduces the risk of vanishing gradients while
training the network. As a result, the encoder-decoder net-
work can generate high-resolution lane segmentation maps.
Deconvnet [49] proposes a deconvolution network to pro-
duce dense predictions. The encoder of Deconvnet adopts
the first 13 convolution layers and two fully connected lay-
ers in VGG-16. The decoder is identical to the encoder
but hierarchically opposite. It also uses composed layers
of unpooling, deconvolution, and rectification operations.
Deconvnet records the locations of maximum activations
(during the pooling operation) in switch variables and uses
them for unpooling operations to improve interpolation accu-
racy. Since the output of an unpooling layer is enlarged
but sparse, deconvolution layers produce dense predictions
by using multiple learned filters to associate a single input
activation with multiple outputs.
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SegNet [35] (Fig. 9) adopts the 13 convolutional layers
in VGG-16 as the encoder. The decoder has 13 layers that
correspond to the encoder. SegNet records the pooling indices
in the max-pooling steps, and uses them for the correspond-
ing upsampling steps in the decoder. As a result, the spatial
resolution of the extracted feature maps is improved. The
outputs of the decoder are fed to a softmax layer to generate
pixel-wise segmentation maps. Compared to Deconvnet, Seg-
Net requires fewer computational resources because it does
not include the final fully connected layer in VGG-16.

Convolutional Encoder-Decoder Output

Pasling Indicas

0

nv + Batch Normalisation + ReLU
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I Pooling [ Upsampling Softmax

RGB Image Segmentation

FIGURE 9. Architecture of SegNet. Figure is from [35].

U-Net [34] is a U-shaped symmetrical network that con-
sists of a contracting path and an expansive path, see Fig. 10.
The contracting path consists of repeated modules of two 3x 3
convolutions (each followed by a rectified linear unit (ReL.U))
and a 2 x 2 max-pooling layer for downsampling. The expan-
sive path consists of repeated modules of a 2 x 2 convolu-
tion (also called up-convolution which halves the number of
feature map channels), a feature map concatenation opera-
tion, and two 3 x 3 convolutions (each followed by a ReLu).
The higher-resolution feature maps from the contracting path
are concatenated with the corresponding upsampled feature
maps from the expansive path. This process can yield higher
accuracy, but needs more memory than in SegNet because it
requires transferring the entire feature map instead of only
pooling indices. Finally, a 1 x 1 convolution is used to gen-
erate pixel-wise segmentation.

input
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FIGURE 10. Architecture of U-Net. Figure is from [34].

UNet++ [50] is an image segmentation network devel-
oped based on the U-Net structure. UNet++ is designed to
include multiple nested sub-networks between the original
contracting and expansive path; therefore, the semantic gap
can be bridged by the skip-pathways, shown in green and
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blue in Fig. 11. Moreover, because UNet++ produces full
resolution predictions at multiple semantic levels (X%, X0-2,
X093, x04) the network can be trained using deep supervi-
sion. At inference time, UNet++- can operate in a fast mode,
where the final segmentation map is generated from one of
the intermediate semantic levels (e.g., X 0.1 x0.2 o x0.3 ).

N Down-sampling
7 Up-sampling
> Skip connection

S/ i .
N XY Convolution

FIGURE 11. Architecture of UNet++. Figure is from [50].

In summary, the above E-D networks attempt to retain
the visual information during upsampling by using different
techniques. Notably, Deconvnet [49] stores the locations of
maximum activations during pooling. SegNet [35] records the
pooling indices during max-pooling. U-Net [34] concatenates
the corresponding feature maps from the encoder and the
decoder. These strategies can help a lane detection network
better detect road regions in the distance and small tripping
hazards on the road.

3) MULTISCALE AND PYRAMID NETWORKS

The multiscale and pyramid networks are proposed to address
the multiscale challenge in semantic segmentation by utilis-
ing features at different scales. Two methods are often used to
achieve pyramid structures: (i) combining feature maps from
different levels of a deep CNN [36], [51]; and (ii) scaling
a feature map to different scales and then concatenating the
results to produce the final feature representation [37]. These
methods can combine global and local contexts better, which
reduces situations where lanes are predicted in the wrong
places, such as in the sky or on the wall.

FIGURE 12. Architecture of the FPN. Figure is from [36].

The Feature Pyramid Network (FPN) [36] was originally
proposed for object detection tasks, but it can be extended

VOLUME 10, 2022



Y. Lei et al.: Pedestrian Lane Detection for Assistive Navigation of Vision-Impaired People

IEEE Access

for semantic segmentation tasks. The FPN consists of a
bottom-up pathway, a top-down pathway, and several lateral
connections (Fig. 12). The extracted feature maps from the
bottom-up pathway first undergo a 1 x 1 convolution. Then,
they are fused with the upsampled feature maps from the
top-down pathway by element-wise addition via the lateral
connections. The final output of the FPN is a feature pyramid
that has semantically rich representations at all scales.
Pyramid Scene Parsing Network (PSPNet) [37] is a mul-
tiscale network proposed to better learn the global context
(Fig. 13). Instead of using global average pooling to cap-
ture global contextual information which may cause the loss
of spatial information, PSPNet proposes a pyramid pooling
module. This module divides the final-layer feature map into
four sub-regions and then performs the average pooling for
each region. A 1 x 1 convolution is then used after each
pyramid level to reduce the dimension of context representa-
tion. Finally, the four feature maps are concatenated to form a
global feature. This global feature covers different sub-region
representations and different levels of contextual information.

i | -2

U=t/

d Pooling Module

() Input Image (b) Feature Map

(d) Final Prediction

FIGURE 13. Architecture of PSPNet. Figure is from [37].

4) DILATED CONVOLUTION NETWORKS

Dilated convolution, also known as atrous convolution, is an
effective way to extract multiscale features. The dilated
convolution can enlarge receptive fields without increasing
the computational or memory costs while preserving the
spatial resolution. Computation efficiency is very impor-
tant to lane detection in assistive navigation, which requires
real-time inference and small models for deployment on
mobile devices.

DeepLabv1 [52] is the first version in the DeepLab fam-
ily. This network adopts dilated convolution to address the
decreased resolution problem caused by subsampling. It also
uses a fully connected pairwise CRF to refine segmentation
by encouraging the same label for similar pixels. VGG-16 is
used as the backbone of this network.

DeepLabv2 [53] improves DeepLabvl by introducing
the atrous spatial pyramid pooling (ASPP) module. ASPP
exploits multiscale features by applying multiple parallel
filters at different dilation rates to the input feature maps.
The final results are generated by fusing the output feature
maps from the ASPP module. Moreover, DeepLabv2 adopts
ResNet-101 [54] as the encoder, which gives a better result
than VGG-16.

DeepLabv3 [55] improves DeepLabv?2 by exploring deeper
network structures (Fig. 14). Four parallel atrous convolu-
tions with different rates and batch normalization are applied
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in ASPP. Furthermore, the ASPP module incorporates the
global context of the image by applying global average pool-
ing on the last feature map. In DeepLabv3, ResNet-101
with depth-wise separable convolutions is used as the feature
extractor. To improve the computational efficiency, the dense
CRF is removed from the network.
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FIGURE 14. Architecture of DeepLabv3. Figure is adapted from [55].

DeepLabv3+ [38] is the latest extension with the high-
est performance in the DeepLab family. Compared to
DeepLabv3, DeepLabv3+ adopts the encoder-decoder archi-
tecture to restore the spatial resolution (Fig. 15). The output
feature maps from the encoder are bilinearly upsampled by a
factor of 4 and then concatenated with the low-level feature
maps. DeepLabv3+ also uses the atrous separable convolu-
tion, which consists of an atrous depthwise convolution and
a 1 x 1 convolution. Atrous separable convolution reduces
the computation complexity significantly while maintaining
similar or better performance. In summary, dilated convolu-
tion is effective for enlarging the receptive field and handling
multiscale features.
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FIGURE 15. Architecture of DeepLabv3+. Figure is adapted from [38].

5) ATTENTION-BASED NETWORKS

Attention mechanism is designed to improve segmentation
performance by placing a stronger emphasis on important
features. It is inspired by the way way humans perceive
images by focusing on the important parts rather than the
entire image. This mechanism is helpful to the lane detection
task as it enforces segmentation networks to focus on roads
instead of other non-related classes.

In [39], a dual attention network is proposed to capture rich
contextual information based on the self-attention mecha-
nism. The network has two modules: the position module and
the channel module, as in Fig. 16. The encoder of this network
is ResNet-101 with dilated convolution layers in the last two
blocks. The feature maps extracted by the encoder are passed
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FIGURE 16. Architecture of the dual attention network. Figure is from [39].

to the two parallel attention modules. The two modules are
designed to learn the spatial and channel interdependencies.
This network aggregates outputs from the two modules to
obtain a better feature representation for dense prediction.

In [40], an attention-based approach is proposed to hier-
archically fuse multiscale information during training and
inference, see Fig. 17. At training time, a relative attention
mask between adjacent scales is learned. At inference time,
the learned attention mask is used to fuse predictions of
adjacent scales. This method enables a flexible number of
scales during inference. Moreover, with multiple scales at
inference time, only two scales are needed during training,
which improves the training efficiency. This method achieves
SOTA performance using HRNet [56] and OCR method [57]
as the network structure.

Output

Output

 Scale 3

|
g

Inference

FIGURE 17. Architecture of the multiscale attention method. Figure is
from [40].

C. DESIGN PATTERN IN DEEP LEARNING MODELS

This section briefly discusses common design patterns in
deep learning models. Note that the design patterns are the
well-recognized best practices that researchers can use when
developing models to solve a problem [58].

1) EMBEDDINGS
Embeddings are utilized to represent image data as a dense
feature map so that the deep network can find patterns in the
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input images. Encoder networks with down-sampling opera-
tions are commonly applied to embed the image data.

2) TRANSFER LEARNING

Training deep learning models often requires a huge amount
of computation time and labeled data. Using encoders with
pre-trained weights found on the ImageNet dataset is a com-
mon practice when designing deep networks for downstream
tasks such as lane segmentation. Many road detection meth-
ods also pre-train the entire network on other large road-
scene datasets, such as the Cityscapes [59] and Mapillary
dataset [60].

3) PYRAMID STRUCTURES

Capturing multiscale contexts is a challenge caused by the
fixed kernel sizes of CNNs. Pyramid structures can address
this challenge by merging feature maps at different scales.
As a result, networks can capture contexts at multiple scales
and learn both global and local features better.

D. DISCUSSION

This section discusses the conceptual differences between
traditional and deep learning methods. The key difference is
in the feature extraction approach. Traditional lane detection
methods use hand-engineered feature extractors, designed
based on some prior knowledge. For example, methods in [8],
[9], and [10] are based on the observation that the difference
in lane positions between two adjacent video frames is usually
negligible. Methods in [17], [18], and [19] are based on the
assumption that the lane shape is a simple arc and has no
branches. However, these heuristics and assumptions work
under limited circumstances, and the hand-engineered feature
extractors have difficulty in coping with different lane types.

In comparison, deep learning methods use CNNs to learn
the lane features from large amounts of lane images. CNNs
learn low-level features such as lines and edges in the early
layers, and high-level features such as lanes in the later layers.
Consequently, they can extract more complex and generalized
features of the lane compared to traditional methods. How-
ever, the quality of the training data plays an important part
in creating an accurate lane detection network. For example,
if a pedestrian lane dataset mostly contains lanes surrounded
by grass, the network will learn to associate the presence
of surrounding grass with lane. Therefore, the dataset used
for training pedestrian lane detection must have variations
in lighting conditions, lane surface textures, and background
surroundings.

The ability of the deep learning methods to learn from
large-scale image datasets has enabled them to achieve bet-
ter accuracy in various environments. However, traditional
methods can still offer valuable insights in designing a deep
model for pedestrian lane detection. Some prior knowledge
can be used to design CNNs and improve model accuracy.
For example, Zhang et al. [30] used the geometric prior that
the lane boundaries form the outer contours of lane regions to
design a multi-task network and improve detection accuracy.
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Furthermore, the difference in lane positions between two
adjacent video frames is usually small, and this property can
be used to stabilize lane segmentation predictions for video.

IV. PERFORMANCE EVALUATIONS AND ANALYSIS

This section presents experimental evaluations of representa-
tive methods that can be used for lane detection. Section IV-A
describes the image datasets for pedestrian lane detection.
Section IV-B describes the performance measures and exper-
imental setup used in this survey. Section IV-C presents the
method performances on the PLVP3 dataset. Section IV-D
presents evaluations of method robustness under different
scene types. Section IV-E provides an analysis of different
encoders in U-Net.

A. IMAGE DATASETS FOR PEDESTRIAN LANE DETECTION
We evaluated different methods on the pedestrian lane
dataset PLVP3 [28]. This dataset is extended from the PLVP
dataset [24] and the PLVP2 dataset [27], which have 2,000
and 5,000 images, respectively. The PLVP3 dataset con-
tains 10,000 pedestrian lane images with the corresponding
ground-truth masks, see Fig. 18. Each ground-truth mask is
a binary image, where pixels are manually labeled as either
lane or background. The color images are taken from numer-
ous real indoor and outdoor scenes at different times of the
day. They include unmarked pedestrian lanes with multiple
surface textures (e.g., brick, concrete, and soil) and shapes
(e.g., straight and curve). Many images are taken under unfa-
vorable lighting variations, e.g. weak illumination and strong
shadows. The statistics of the PLVP3 dataset are shown in
Table 2.

TABLE 2. Statistics of the PLVP3 dataset.

Description Number of images | Percentage
Brick surfaces 2,917 29.17
Concrete surfaces 4,860 48.60
Pavement surfaces 1,164 11.64
Indoor surfaces 734 7.34
Other surfaces 325 3.25
Normal lighting 7,845 78.45
Extreme lighting 2,155 21.55

Note that other datasets exist for the visually impaired,
but they do not include pixel-wise annotations for pedestrian
lanes or sidewalks. For example, the dataset in [61] contains
only bounding box annotations for common sidewalk obsta-
cles, and boundary line annotations for blind sidewalks. The
dataset in [62] provides only pixel-wise and bounding box
annotations for common sidewalk objects. The dataset in [63]
only has the floor semantic annotations for indoor scenes.
Hence, these datasets are not used for the experimental eval-
uation in this survey.

Other benchmark datasets such as Mapillary [60] and
Cityscapes [59] contain pixel-wise annotations of the
sidewalk class. However, these datasets are created for
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self-driving vehicles, and hence not suitable for pedestrian
lane detection. In these datasets, the images are taken near
the center of the vehicle roads; the pedestrian regions are
often on the side with relatively small areas. In other words,
there is a domain gap between these datasets and our desired
application of assistive navigation for blind people.

B. PERFORMANCE MEASURES AND EXPERIMENTAL
SETUP

1) PERFORMANCE MEASURES

To measure model performances, we use three quantitative
metrics which have been widely accepted for semantic seg-
mentation research: 1) pixel accuracy, 2) mean intersection
over union, and 3) F1 score. To obtain the overall evaluation
score on the test set, the metrics are computed for individual
images and then averaged over the entire test set.

1) Pixel accuracy is the ratio between the correctly-
classified pixels versus the total number of pixels.

2) Mean intersection over union (mloU) computes
the average IoU over all semantic classes. Let S be a
machine-predicted segmentation map, and G be the corre-
sponding ground-truth mask. Intersection over union (a.k.a.
Jaccard Index) is defined as the area of overlap between S
and G, divided by the area of union between S and G:

ISNG| TP
ISUG| TP+FP+FN’
where TP, FP, and FN refer to the numbers of true positives,
false positives, and false negatives.

3) F1 score (a.k.a. Dice Coefficient) is defined as the har-
monic mean of precision and recall:

IoU = Jaccard(S, G) =

ey

Fl — 2 x Precision x Recall 2TP
B ~ 2TP+FP+FN’
Here, recall is the ratio of correctly-detected lane pixels ver-

sus all lane pixels. Precision is the ratio of correctly-detected
lane pixels versus all machine-detected lane pixels.

(@)

Precision + Recall

2) EXPERIMENTAL SETUP

We employed the 5-fold cross-validation to evaluate the rep-
resentative methods. The dataset was divided randomly into
five equal-sized partitions. For each fold, one partition was
used as the test set, and the remaining four partitions are
used as the training set. This step was repeated five times for
different choices of the test partition, and the segmentation
measures were then averaged. Note that each training set
was further divided into 90% images for training, and 10%
images for validation. Collectively, each cross-validation
fold consisted of 7200 training images, 800 validation
images, and 2000 test images. The images were resized to
320 x 320 pixels.

To train the deep neural networks, we used the Adam
optimizer [64] with a learning rate of 0.001. The exponen-
tial decay rates for the first and the second moment esti-
mates were set to 0.9 and 0.999, respectively. All models
used pretrained weights on ImageNet for the encoders, and
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FIGURE 18. Examples from the PLVP3 dataset. Rows 1 and 3: Input color images. Rows 2 and 4: The corresponding lane segmentation
ground-truth.

Kaiming uniform weight initialization [65] for the decoders.
All experiments were conducted on a computer with Intel
Xeon Gold 5115 2.4 GHz processor and NVIDIA TITAN Xp
GP102 graphics card. All methods were implemented using
the PyTorch framework [66]. We trained each network for
150 epochs. The early stop strategy was used to prevent over-
fitting: The training was stopped if the network’s performance
on the validation set had not improved for 50 epochs.

C. COMPARISONS OF REPRESENTATIVE METHODS ON
PEDESTRIAN LANE DETECTION

In this section, we evaluate: (i) two feature-based methods
and three deep-learning-based methods specifically designed
for pedestrian lane detection, and (ii) eight deep networks for
generic semantic segmentation. Although the eight segmen-
tation networks are not explicitly proposed for lane detection,
they can be applied to scene perception and their perfor-
mances on the PLVP3 dataset can provide insights on design-
ing effective lane detection networks. The implementation
details of the examined methods are as follows.

1) Border-based method [18]: The number of orientation-
consistent points for computing the orientation consistency
ratio was set to 16. We used the MATLAB code provided by
Kong et al. [18].

2) Combined (color & border) method [24]: We used the
MATLAB code provided by Phung et al. [24].

3) DL-HGP [27]: The backbone SegNet with five
encoder/decoder units (total 26 convolutional layers) was
employed for feature extraction. The number of inducing
points and the initial number of local Gaussian process
experts were set to 50 and 9, respectively. We used the Python
code provided by Nguyen et al. [27].
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4) BGN [28]: We implemented the network structure pre-
sented in the reference. As recommended by the reference,
the local re-parameterization trick [67] was used.

5) NAS method [32]: We implemented the network struc-
ture presented in the reference. The search phase of this
method was conducted with 16 layers of nodes and five levels
of scales. The base channel size for the output feature maps
was set to eight.

6) FCN-8s [33]: We implemented this model based on
VGG-16 as suggested in the reference. The final feature
map was upsampled by a factor of 8, and then element-wise
summed with the feature maps from the third and fourth
pooling layers.

7) U-Net [34]: We implemented the network structure pre-
sented in the reference. The input images are downsampled
four times before upsampling.

8) UNet++ [50]: We implemented the network structure
presented in the reference. The input images were downsam-
pled at most four times before upsampling. This method was
trained without deep supervision.

9) SegNet [35]: We implemented the network structure pre-
sented in the reference. The backbone VGG-16 with 13 con-
volutional layers was employed as the encoder.

10) PSPNet [37]: The backbone ResNet-101 was used
as the encoder. We used the Python code provided by
Zhao et al. [37].

11) DeepLabv3+ [38]: We implemented the network struc-
ture presented in the reference. We used Xception as the
encoder, where the depthwise separable convolutions were
applied to both ASPP and decoder modules.

12) HRNet with multiscale attention [40]: We used the
original HRNet architecture as the reference [56]. We applied
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TABLE 3. Performance of the representative methods on the PLVP3 dataset.

Inference speed #Params Model Size
Category Method mloU Accuracy F1-score
(Images/s) M) (MB)
. Border-based method [18] 63.12 79.23 37.04 0.009 -
Traditional methods -
Combined method [24] 75.69 89.64 70.79 0.762 -
NAS-based method [32] 92.29 97.00 95.91 142.857 4.716 113.36
DL-HGP [27] 92.61 96.40 95.17 1.008 29.4 19.0
SegNet (VGG-16) [35] 92.57 96.45 95.30 14.450 29.4 112.43
FCN-8s (VGG-16) [33] 94.88 97.20 96.81 27.778 14.7 56.24
U-Net [34] 93.64 96.89 96.42 34.722 7.8 30.02
Deep learning methods BGN [28] 94.92 97.34 96.90 68.027 0.3 1.18
UNet++ [50] 94.95 97.57 97.36 16.420 9.2 36.80
DeepLabv3+ (Xception) [38] 94.99 97.42 97.28 40.322 54.7 219.83
PSPNet (ResNet-101) [37] 95.40 97.76 97.24 30.303 68.0 272.90
Multiscale HRNet [40] 95.59 97.87 97.70 3.269 69.8 280.00
Multiscale HRNet-OCR [40] 95.68 97.92 97.75 2.610 72.1 289.30

a simple segmentation head to produce dense prediction from
output feature maps of HRNet. The segmentation head con-
sisted of (3 x 3 conv) — (BN) — (ReLU) — (3 x 3 conv) —
(BN) — (ReLU) — (1 x 1 conv). In this experiment, we used
two scales (0.5x and 1 x) for training and three scales (0.5 x,
1x, and 2 x) for inference as suggested in [40].

13) HRNet-OCR with multiscale attention [40]: We
employed the original OCR structure as in [57], and the orig-
inal HRNet structure as in [56]. The scale configurations for
training and inference were the same as HRNet with multi-
scale attention.

Table 3 shows the experimental results of the representa-
tive methods. For feature-based lane detection methods, the
performance of the combined method are better than that
of the border-based method, with an mIoU improvement of
12.57% and an F1-score improvement of 33.75%. The infer-
ence time of the combined method is 84.67 times faster than
that of the border-based method. The results indicate that
combining border features with color features are more robust
for coping with variations of lane appearance and illumi-
nation conditions. Because these feature-based methods are
built on the fly, we do not compare their model sizes.

The deep learning methods significantly outperform the
feature-based methods in both segmentation accuracy and
inference speed. Among the 11 examined methods, multi-
scale HRNet-OCR achieves the best performance, with an
mloU of 95.68% and an accuracy of 97.92%. Note that this
method also has the largest model (289.30 MB) and the lowest
inference speed (2.61 images/s). Multiscale HRNet achieves
the second-best performance with an mloU of 95.59%. Due
to the huge backbone with multiple inference scales, multi-
scale HRNet-OCR and multiscale HRNet are dramatically
slower than other deep networks. The NAS-based method
achieves the fastest inference of 142.857 images/s and an
mloU of 92.29%. This method has the most favorable speed-
accuracy trade-off among all examined methods. The BGN
has the second-best speed-accuracy trade-off, with an mloU
of 94.92%, and an inference speed of 68.027 images/s.
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Assistive navigation for blind people requires real-time
algorithms. In Table 3, five methods achieve inference speed
higher than 30 FPS: U-Net, BGN, DeepLabv3+, PSPNet,
and the NAS-based method. Among them, the BGN and the
NAS-based method achieve the highest inference speed. The
BGN uses Bayesian Gabor layers instead of the common
convolutional layers, which significantly reduces the num-
ber of trainable weights. The NAS-based method searches
directly on the pedestrian lane dataset instead of relying on
networks found with other image datasets. Consequently,
it obtains a deep network with an optimized structure for the
lane detection task. Note that the two methods with the high-
est segmentation accuracy (multiscale HRNet and multiscale
HRNet-OCR) have the lowest inference speed (below 4 FPS).

Fig. 19 presents examples of pedestrian lane detection
results produced by different segmentation methods. The
visual results indicate that the border-based method does not
cope well with the variations of lane shapes. This is because
it assumes that all lanes are formed by two straight edges
pointing to the vanishing point. The combined method per-
forms better than the border-based method. However, it only
has medium performances, especially when the lane region
has varying textures, or the lane region has a similar color
to the background. This is because the combined method
uses the color model constructed from the lower half of the
lane to detect the entire lane regions. This method also relies
substantially on the accuracy of the detected vanishing point.
For example, in Row 3, Column 4, this method misses the
true lane, and miss-classifies the handrail as lanes

The deep learning methods achieve significant improve-
ments compared to the traditional methods in both inference
speed and detection accuracy. However, they still produce
segmentation errors, especially when the background has
similar textures as lane regions (Rows 6 and 8). This
finding indicates that, despite their high performances as
shown in Table 3, the deep-learning-based methods are still
not robust enough to maintain high accuracy in complex
scenes. For example, as demonstrated in Fig. 19, even the
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3 i L ' (g

DeepLabv3+ [38] PSPNet [37]

FIGURE 19. Visual results of representative methods on the PLVP3 dataset.

TABLE 4. Segmentation accuracy (mloU) of the representative methods under different conditions in the PLVP3 dataset.

Category ‘ Method Indoor Night-time Campus Park Suburban City
. Border-based method [18] 58.50 67.72 66.57 68.43 62.12 64.53
Traditional methods

Combined method [24] 69.26 55.38 75.02 78.07 72.44 69.91

NAS-based method [32] 90.36 86.70 91.89 95.61 91.42 86.09

DL-HGP [27] 9291 86.39 93.42 95.04 92.7 89.43

SegNet (VGG-16) [35] 91.35 86.27 93.35 94.87 92.23 88.46

FCN-8s (VGG-16) [33] 93.80 87.94 94.61 95.13 93.28 89.16

U-Net [34] 92.15 87.06 93.07 95.06 92.03 89.54

Deep learning methods BGN [28] 93.17 88.14 9491 95.15 93.46 90.77
UNet++ [50] 92.69 88.36 95.31 96.47 93.93 90.17

DeepLabv3+ (Xception) [38] 93.26 88.69 94.97 96.60 94.08 90.24

PSPNet (ResNet-101) [37] 94.21 89.57 95.40 96.68 94.26 90.60

Multiscale HRNet [40] 94.56 89.96 95.70 96.85 94.65 91.21

Multiscale HRNet-OCR [40] 94.47 90.58 95.77 96.91 94.76 92.12

best-performing method has some false positive predictions
(Rows 2 and 8). Because these incorrectly-predicted lane
regions can endanger blind people, we will discuss this chal-
lenge further in Section V.

D. COMPARISONS OF MODEL PERFORMANCE IN
DIFFERENT SCENE CONDITIONS

A good algorithm for pedestrian lane detection should main-
tain high accuracy in various scene conditions. In this section,
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we evaluate the representative methods under six different
scene types in the PLVP3 dataset: indoor scenes, scenes dur-
ing night-time, university campus scenes, park scenes, sub-
urban scenes, and city scenes. As shown in Table 4, the
model performances for different scenes vary by a large
margin. All models show performance drops when tested
in night-time and city scenes, indicating that these scene
types are specifically hard for pedestrian lane detection and
require further considerations when designing lane detection
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Border-based
method [18]

Combined

Ground-truth method [24]  DL-HGP[27]  U-Net[34]

Hurstville

Rainy days

Lane with puddles

FIGURE 20. Visual results of representative methods on unseen images.

algorithms. All deep learning methods have high accuracy
for park scenes, in which man-made pedestrian paths differ
significantly from the natural scene elements. Moderate per-
formances are observed in indoor, university campus, and
suburban scenes. Multiscale HRNet-OCR demonstrates the
best performance among all methods.

To further evaluate the robustness, we test the above meth-
ods on three scenarios outside the PLVP3 dataset: a new city
(Hurstville), rainy days, and roads with puddles. As shown
in Fig. 20, all methods exhibit performance drop compares
to Fig. 19. Among the 11 methods, multiscale HRNet-OCR,
BGN, SegNet, and DL-HGP show better stability. The tradi-
tional methods do not perform as well as the deep learning
methods. Notably, most deep learning models are prone to
incorrect segmentation for reflective surfaces (rainy days or
lanes with puddles). The results show that the current meth-
ods achieve reasonable detection performances, but they still
need to be improved for unseen situations.

E. ANALYSIS OF ENCODERS USING U-NET
We selected U-Net as the base network architecture to inves-
tigate the impact of the encoder component. Fourteen SOTA
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UNet++ [50]

Multiscale

SegNet [35] FCN [33]  DeepLabv3+[38] PSPNet[37] BGN [28]  HRNet-OCR [40]

4 14 4

backbones were implemented and used as the encoder of
U-Net. The experimental results are presented in Table 5.

In terms of segmentation accuracy, MobileNetV3 achieves
the best performance with an mloU of 96.10% and an
F1-score of 97.98%. EfficientNet-b6 achieves the second-best
accuracy with an mIoU of 95.92%. Compared to the orig-
inal encoder in U-Net [34], SOTA backbones improve the
mloU score by 1.34% to 2.46%. In terms of inference
speed and model size, MobilenetV3 has the smallest model
size (19.80 MB) and the second-highest inference speed
(64.516 images/s). MobilenetV2 achieves the highest infer-
ence speed (64.935 images/s), and the second smallest model
size (26.80 MB).

V. FUTURE DIRECTIONS

Despite the high performances that the deep networks
achieve, many aspects still need to be tackled before a prac-
tical assistive navigation system is possible. This section dis-
cusses future research directions to address the current tech-
nical limitations for pedestrian lane detection.

1) Developing integrated methods that efficiently remove
incorrectly-detected lane regions: The evaluation
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TABLE 5. Performance comparison of different encoders using U-Net on the PLVP3 dataset.

2)

3)

Inference speed #Params Model Size
Backbone mloU Accuracy F1-score
(Images/s) ™) (MB)
Encoder in original U-Net [34] 93.64 96.89 96.42 34.722 7.8 30.02
NENet-{0 [68] 94.98 97.57 97.37 17.825 80.9 324.00
ResNet-34 [54] 95.31 97.75 97.56 58.824 244 97.90
ResNet-152 [54] 95.28 97.73 97.54 20367 67.2 269.60
MobileNetV2 [69] 95.64 97.91 97.73 64.935 6.6 26.80
VGG-11 [46] 95.45 97.81 97.64 42373 183 73.10
VGG-16 [46] 95.54 97.86 97.68 27.322 238 95.10
DenseNet-161 [70] 95.53 97.85 97.68 15.504 38.7 156.20
DenseNet-169 [70] 95.55 97.87 97.68 22.831 212 85.90
Inceptionv4 [71] 95.60 97.90 97.71 21.459 48.8 195.80
Xception [72] 95.77 97.98 97.80 28.490 28.8 115.40
EfficentNet-b2 [73] 95.71 97.95 97.78 34722 10.0 40.70
SENet + ResNet-50 [74] 95.78 97.98 97.81 32.258 35.1 140.60
EfficentNet-b6 [73] 95.92 98.04 97.88 15.674 438 176.60
MobileNetV3 [75] 96.10 98.14 97.98 64.516 48 19.80
results in Section IV-C show that even the %5 Vitscals HRNet oG
best-performing methods produce false positives. % g B e
In assistive navigation, these errors are more severe 95 !72 20
than false negatives because they could endanger the . ™ @

blind user. The false positives could be addressed by
using post-processing steps, e.g., combining segmen-
tation results from two separately-trained models [31].
However, these heuristic steps are less robust than
machine learning methods and may fail in complex
scenes. To better address this limitation, an integrated
deep learning method should detect pedestrian lanes
and remove false positives in an end-to-end manner.
Exploring methods to cope with variations in pedes-
trian lanes: As illustrated in Fig. 20, unseen situations
such as new cities or extreme weather conditions will
severely undermine the performance of deep learning
methods. However, assistive navigation for blind peo-
ple has not attracted similar attention as self-driving
cars, which makes collecting a large-scale dataset from
multiple countries and different weather conditions dif-
ficult. Consequently, domain shift is a technical limita-
tion faced by most pedestrian lane detection models.
Hence, investigating lane detection methods that can
adapt to different environments is essential.
Investigating methods that can learn from multiple dif-
ferent datasets: Many existing lane detection methods
only provide lane versus non-lane segmentation, which
is useful but not enough for blind users to navigate
safely. This limits the ability of the current pedestrian
lane detection system. More detailed lane informa-
tion is necessary for visually impaired users. A few
datasets [61], [62] have been developed for obstacle
detection in pedestrian scenes, but they do not contain
pixel-wise annotations of pedestrian lanes. The PLVP3
dataset used in this study is the largest public pedes-
trian lane dataset in the literature, but it does not have
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SegNet (VGG-16)
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Inference speed (Image/second)

DeepLabv3+ (Xception)
219.83MB

U-Net
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DL-HGP
92.5 113.36M

40 45

FIGURE 21. Segmentation accuracy versus inference speed produced by
different lane detection methods. The area of the circles represents the
model size.

mloU (%)

o
SENet + ResNet-50 MobileNetv3
o 19.80MB

t
I 140.60MB
S

"DenseNet-169
85.90M8

EfficientNet-b6
176.60M8

EfficientNet-b2
40.70M8
VGG-16
95.10M8

MobileNetv2

ResNet-152
260.60MB

VGG-11
73.10MB
ResNet-34
97.90MB
NFNet-f0
324.00MB

Inference speed (Image/second)

FIGURE 22. Segmentation accuracy versus inference speed produced by
U-Net with different encoders. The area of the circles represents the
model size.

4)

annotations for other objects in traffic scenes. Note that
creating a new large dataset containing all class labels
required for assistive navigation is time-consuming and
costly. Therefore, developing models that can learn
from multiple existing road-scene datasets is useful to
address the lack of labeled data.

Developing methods to compress lane detection net-
works for real-time inference on smartphones or edge
devices: As shown in Section IV, most methods with
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high accuracy also require a longer inference time and
larger storage. See also Fig. 21 and Fig. 22 for a sum-
mary. However, pedestrian lane detection needs to be
accurate and fast to cope with real-time traffic situa-
tions. Furthermore, detection networks should be small
to be deployed on mobile or edge devices, which often
have limited storage, computation capability, and bat-
tery power. The current trade-off between detection
accuracy, inference speed, and model size necessitates
the development of methods to reduce the model size
and increase the inference speed.

VI. CONCLUSION

Pedestrian lane detection is a vital task in an assistive naviga-
tion system for vision-impaired people. This paper provides
a comprehensive survey of methods that can be used for
pedestrian lane detection with two main categories: (i) tra-
ditional methods including color-based approaches, border-
based approaches, and combined approaches; and (ii) deep
learning methods including lane detection approaches and
generic semantic segmentation approaches. The paper reports
the quantitative performances of several notable methods
on a large labeled dataset (PLVP3). Finally, we discuss
the future research directions for pedestrian lane detection,
which are guided by our theoretical review and experimen-
tal evaluations. We hope that this survey could serve as a
baseline reference for assistive navigation, and facilitate the
urgently-needed research for vision-impaired people.
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