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ABSTRACT Pedestrian lane detection is a crucial task in assistive navigation for vision-impaired people.
It can provide information on walkable regions, help blind people stay on the pedestrian lane, and assist
with obstacle detection. An accurate and real-time lane detection algorithm can improve travel safety and
efficiency for the visually impaired. Despite its importance, pedestrian lane detection in unstructured scenes
for assistive navigation has not attracted sufficient attention in the research community. This paper aims
to provide a comprehensive review and an experimental evaluation of methods that can be applied for
pedestrian lane detection, thereby laying a foundation for future research in this area. Our study covers
traditional and deep learning methods for pedestrian lane detection, general road detection, and general
semantic segmentation. We also perform an experimental evaluation of the representative methods on a large
benchmark dataset that is specifically created for pedestrian lane detection. We hope this paper can serve
as an informative guide for researchers in assistive technologies, and facilitate urgently-needed research for
vision-impaired people.
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I. INTRODUCTION15

According to the World Health Organization (WHO), there16

are about 253 million visually impaired people world-17

wide, of whom 217 million have moderate or severe vision18

impairments, and 36 million are blind [1]. Various stud-19

ies have shown that visual impairment causes a significant20

reduction in mobility [2], and a higher risk of falling or21
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collision [3], [4]. Due to their reduced capability in scene per- 22

ception, blind people have tremendous difficulties navigating 23

unfamiliar environments. 24

Traditional walking aids for the visually impaired include 25

white canes and guide dogs. White canes are simple to use, 26

but they have short detection ranges [5], [6]. Guide dogs 27

can evade obstacles and memorize routes, but they require 28

extra training and care, and are effective primarily in famil- 29

iar environments [5], [7]. Hence, there is a growing need to 30

develop assistive navigation systems that extend beyond the 31
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traditional capabilities. In these assistive systems, pedes-32

trian lane detection is a core component that enables33

vision-impaired users to walk within the pedestrian lane34

and maintain their balance. An accurate, reliable, and35

real-time algorithm for pedestrian lane detection can signif-36

icantly improve the mobility and safety of visually impaired37

people.38

Despite its importance for assistive navigation, pedestrian39

lane detection has not attracted much interest in the research40

community. This survey paper aims to set a foundation for41

assistive navigation research by reviewing and assessing the42

applicable methods, including general road detection and43

semantic segmentation methods. The design principles and44

performances of these methods on a benchmark pedestrian45

lane detection dataset are informative resources when devel-46

oping new methods.47

Note that methods designed for vehicle road detection are48

not optimized for pedestrian lane detection, albeit the two49

tasks have some similarities. First, compared to pedestrian50

lanes, vehicle roads (especially in urban environments) are51

usually more structured. For example, vehicle roads often52

have clear boundaries and asphalt surfaces, whereas pedes-53

trian lanes usually have arbitrary shapes and various surface54

textures (e.g., bricks, concrete, tiles, grass, sand, and soil).55

Second, vehicle road detection methods mainly deal with out-56

door situations, whereas pedestrian lane detection methods57

need to consider also indoor scenes. Hence, although road58

detection methods can be used to detect pedestrian lanes, they59

are not the complete solution for pedestrian lane detection.60

This paper presents a comprehensive review and an61

experimental evaluation of methods that can be applied for62

pedestrian lane detection. The survey aims to serve as an63

informative guide for researchers in assistive technologies64

and facilitate urgently-needed research for vision-impaired65

people. The main contributions of this paper can be high-66

lighted as follows:67

1) We provide a comprehensive review and analysis of68

the traditional and deep learning methods that can be69

applied for pedestrian lane detection. The traditional70

methods include color-based approaches, border-based71

approaches, and combined approaches. The state-of-72

the-art (SOTA) deep learning methods include deep73

networks for road detection and general semantic seg-74

mentation. A summary of the representative methods75

is presented in Table 1. A timeline of the representative76

methods is shown in Fig. 1.77

2) We conduct an extensive performance evaluation of the78

representative methods on a large Pedestrian Lane and79

Vanishing Point detection (PLVP3) dataset1. To date,80

it is the largest pedestrian lane dataset in the litera-81

ture. This evaluation provides baseline performances82

on pedestrian lane detection and allows practitioners to83

focus on the promising directions.84

1https://documents.uow.edu.au/ phung/plvp3.html

3) We discuss the technical challenges and future research 85

directions in pedestrian lane detection to bridge the 86

gaps towards a practical assistive navigation system. 87

The remainder of this paper is organized as follows. 88

Section II reviews the traditional detection methods that are 89

based on hand-crafted features. Section III reviews road seg- 90

mentation methods that are based on deep neural networks. 91

Section IV presents experimental evaluations of the major 92

methods on the PLVP3 dataset. Section V discusses the tech- 93

nical challenges and future directions for pedestrian lane 94

detection. Section VI gives the concluding remarks. 95

II. TRADITIONAL METHODS 96

This section reviews representative feature-based meth- 97

ods, which are categorized into three different groups: 98

(i) color-based approaches (Section II-A); (ii) border-based 99

approaches (Section II-B); and (iii) combined approaches 100

using both road color and border features (Section II-C). 101

A. COLOR-BASED APPROACHES 102

Color-based approaches classify image pixels by comparing 103

each pixel to a reference color model. The reference color 104

model can be constructed using different color spaces [8], [9], 105

[10], [11], [20]. 106

In [8], Crisman and Thorpe proposed a road detection 107

method called SCARF. This method constructs color mod- 108

els as multiple Gaussian distributions in the red-green-blue 109

(RGB) color space for both road and off-road classes. First, 110

regions corresponding to road and the background in the 111

previous frame are selected to construct color models for 112

the current frame. Next, each region is clustered into four 113

homogeneous color groups. Then, four Gaussian distribu- 114

tions are generated for each class from the color groups. 115

Finally, two color models are constructed to segment road 116

and background regions. The road location in the first frame 117

needs to be defined manually or by another algorithm (e.g., 118

UNSCARF [20]). Because color models are represented by 119

multiple Gaussian distributions, this method can cope with 120

variations in road colors and textures. However, it relies heav- 121

ily on the continuity of adjacent frames, which may produce 122

errors if there are sudden changes between two frames. 123

In [11], Ceryen et al. proposed a road detection algorithm 124

that uses color histograms to represent road models in the 125

normalized red and green color space. Compared to the stan- 126

dard RGB color space, the normalized space can cope better 127

with illumination variations. This method assumes that the 128

center-bottom part of an input image is a homogeneous road 129

region. Accordingly, the sample region is defined as a rect- 130

angle at the center-bottom part of the input image. For each 131

frame, one color distribution is generated from the pixels in 132

the sample region. The final road model is represented by 133

four color distributions generated over time from different 134

frames. Since this method considers the frame continuity with 135

multiple color distributions, it improves the detection stability 136
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TABLE 1. A summary of representative methods for pedestrian lane detection.

FIGURE 1. A timeline of representative methods that can be used for pedestrian lane detection.

over frames. However, it is not effective when sample regions137

contain multiple road colors.138

In [9], Sotelo et al. introduced a road model with the139

hue-saturation-intensity (HSI) color space. This method140

divides pixels into chromatic pixels and achromatic pix-141

els. Chromatic pixels are classified using both intensity and142

chromatic information, whereas achromatic pixels (extreme 143

intensity or low saturation) are classified using intensity 144

only. To classify a pixel, a threshold value is defined as 145

a function of two parameters: (i) the distance between the 146

pixel and the previously-predicted road center, and (ii) the 147

maximum threshold value of the previous frame. The initial 148
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road-center model is selected from seven predefined mod-149

els with an assumption of the road width. To cope with150

the extreme illumination variations, this method reconsiders151

non-road pixels within predicted road edges based on their152

intensity and chromatic features. The main limitation of this153

method is that it builds color models from a small number of154

randomly-selected pixels near the road center, which may not155

efficiently represent the entire road surface.156

In [10], Ramstrom and Christensen employed the Gaus-157

sian Mixture Model (GMM) to represent road and non-road158

classes with three different color-based feature vectors: UV159

(of the HUV color space), normalized red and green, and160

intensity channels. For each feature vector, two GMMs are161

generated. The GMMs for the road are constructed from pix-162

els within road regions. Here, road regions are determined163

from a road shape model (centerline of the road) and a164

road-width parameter. The road shape model is continually165

updated based on each new GMM. The initial road model is166

selected based on assumptions of road shape and road width.167

In summary, this method uses a simple color model and a sim-168

ple road shape model, and it therefore does not cope well with169

complex road shapes, e.g. S-shaped lanes or intersections.170

In [12], Alvarez and Ĺopez presented road models from171

illumination-invariant images to address the lighting varia-172

tions. These images are computed from input RGB images173

with a camera parameter, called illumination-invariant angle.174

This method models the road as a normalized histogram from175

a set of seeds in the center-bottom part of the input image,176

see Fig. 2. Since the road histogram is built from a few seeds177

within the sample regions, this method could be ineffective178

for road regions with non-homogeneous surface textures.179

FIGURE 2. Example of using the normalized histogram as a road color
model. Figure is from [12].

The above color-based methods can cope with the varia-180

tions in road shapes and illumination conditions, but their181

generalization capability relies heavily on the assumptions182

of road surfaces and road locations. For example, methods183

proposed in [8], [9], and [10] assume that there are no sud-184

den changes in image sequences, so they build color models185

from previous predictions. These methods also require fur-186

ther assumptions of road widths for the initial frame. A few187

methods build color models from the center-bottom part of188

the input image with the assumption of potential road loca-189

tions [11], [12].190

B. BORDER-BASED APPROACHES191

Border-based approaches detect the regions of interest using192

either lane markers [7], edge features [13], [14], [15], [16],193

or vanishing points [17], [18], [19]. In [7], Le et al. employed 194

lane markers to detect pedestrian lanes at traffic junctions. 195

This method extracts patches of interest on lane marker edges 196

using normalized cross-correlation template matching. The 197

lane markers are then detected using the random sample con- 198

sensus (RANSAC). The lane regions are segmented from the 199

pair of lane markers according to geometric constraints. This 200

method works well with clear lane markers, but often fails 201

when the markers are occluded or when lane surfaces are 202

under strong shadows. 203

To detect unmarked lanes, several studies have employed 204

either Hough Transform (HT) [13], [14] or image gradi- 205

ents [15], [16]. In [14], Voisin et al. extracted the edge 206

points using Sobel filters. The HT is then used to detect two 207

lane boundaries within the regions of interest predicted by 208

a Kalman filter. This method considers lane borders as two 209

straight lines. In [13], Yu and Jain used the HT to detect lane 210

boundaries from edge images generated by Canny detectors. 211

Unlike [14], this method handles curved borders by applying 212

the HT to multiple image resolutions. In [16], Yoo et al. gen- 213

erated gradient-enhanced images from RGB images to detect 214

lane regions. This method also uses Canny edge detectors and 215

the HT to extract lane edges. In [15], Chen et al. used gradient 216

direction features to enhance lane features in input images 217

(Fig. 3). This method assumes that the two lane boundaries 218

are approximately parallel. 219

FIGURE 3. Example of gradient direction features. Figure is adapted
from [15].

The abovemethods can accurately detect simple roads with 220

clear boundaries and structured scenes, but they are not effec- 221

tive in coping with occlusions, degraded lane edges, or atyp- 222

ical road shapes. This is because road models used to match 223

lanes are simplified, and the performance of these methods 224

depends highly on the clear road features. 225

To overcome this problem, several methods have employed 226

vanishing points to determine lane boundaries [17], [18], 227

[19]. In [17], Rasmussen selected lane borders from the edges 228

pointing to the vanishing point. The edges are ranked based 229

on an objective function that measures texture and color dif- 230

ferences between lanes and the background. This method is 231

only effective when lane regions do not significantly dif- 232

fer from non-lane regions in terms of color and texture. 233

In [18], Kong et al. used vanishing points to detect lane 234

edges, which are then ranked using an orientation consistency 235
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ratio feature. Because this method only relies on edges for236

lane-border detection, it is sensitive to background edges.237

In [19], Le et al. determined lane regions from vanishing238

points and road obstacles (pedestrians). The optimal bound-239

ary pair is selected by a threshold determined from the train-240

ing set. However, this method may fail to detect complex road241

shapes because it models lane boundaries as straight lines.242

In summary, the vanishing-point-based methods can cope243

with degraded lane edges, occlusions, and texture variations244

of lane surfaces. The main limitation of these methods is that245

they can detect only simple road shapes such as straight lines246

or curves with one arc. Complex road shapes may lead to poor247

performances.248

C. COMBINED APPROACHES249

To address the aforementioned limitations, several methods250

combine color and border features by: (i) matching color251

segmentation results with lane templates [20], (ii) combining252

color segmentation with border detection [23], or (iii) using253

extracted sample regions for color model construction [21],254

[22], [24], [41], [42]. In [20], Crisman and Thorpe first clus-255

tered image pixels into homogeneous color regions using a256

modified ISODATA algorithm. Next, the edges of each group257

are extracted by removing small regions (noise). Finally, lane258

regions with the highest probability are selected by matching259

with lane templates. Edges of the selected regions are defined260

as lane borders. Although thismethod can handle road surface261

variations, it is unable to handle complex road scenes due to262

the use of predefined lane templates.263

In [23], Chang et al. estimated road regions using color264

features and boarder features separately. The final results are265

produced by combining information from the two branches.266

An illustration of this method is shown in Fig. 4. In the color267

feature branch, the input image is first segmented into homo-268

geneous color regions. A rectangle at the center-bottom part269

of the first frame is then selected. The largest color area270

within the sample region is used to construct color models271

in the RGB color space. From the second frame, the sample272

regions are selected from the rectangle at the center-bottom273

part of the previously predicted road regions. In the boundary274

branch, the road regions within road borders are determined275

by the vanishing points and a boundary score. In the final276

stage, the results from the two branches are combined using277

a Kalman filter. The output segmentation map is also used as278

feedback for updating the road models in the two branches.279

This method uses a floating window for sample region extrac-280

tion, which is more efficient in coping with road location281

changes. However, because the sample region of the first282

frame is extracted from the center-bottom part of the image,283

this method often fails if the road center of the first frame284

is far from the image center. Furthermore, it is sensitive to285

sudden changes between frames.286

In [22], Miksik et al. constructed road models as GMMs287

from sample regions in the RGB color space. Firstly, the288

sample region is initialized as a trapezoid at the center-bottom289

part of the input image. Then, it is refined by the vanishing290

FIGURE 4. Illustration of the road recognition method that combines a
color branch for road region estimation with a boundary branch for road
border estimation. Figure is from [23].

point. To construct road models, input images are clustered 291

into homogeneous color regions. One Gaussian distribution 292

is generated for each homogeneous pixel group in the sample 293

region. One GMM represents the road colors in one video 294

frame. A fixed number of GMMs from different frames are 295

stored for lane detection. This method can cope with various 296

road shapes and road surface textures. However, because the 297

sample regions are refined by the lines connecting the van- 298

ishing points and two predefined points at the image bottom, 299

this method cannot cope well with road regions far from the 300

image center. 301

In [21], He et al. generated color models as Gaussian dis- 302

tributions from the pixels within estimated road boundaries. 303

First, edge images are generated by applying edge detectors 304

on projection images of lanes. Next, pseudo road bound- 305

aries are determined from edge images using vanishing points 306

and eight curvature models. The pseudo road boundaries are 307

much narrower than the real boundaries, which ensures that 308

all pixels within these boundaries belong to the road class. 309

Finally, color models constructed from these pixels are used 310

to segment the real lane areas. Due to the assumption of the 311

predefined curvature models, this model can detect only a few 312

types of road structures. 313

FIGURE 5. Illustration of the pedestrian lane detection method: (a) the
imaginary rays (blue lines) and the detected borders (green lines) from
the vanishing point; (b) lane sample region; (c) color homogeneous
sub-regions; (d) segmented walking lane. Figure is from [24].

In [24], Phung et al. represented road color models in 314

the RGB color space and an illumination-invariant space. 315

An illustration of this method is shown in Fig. 5. The color 316

models are generated from the sample regions that are 317

selected as the lower half of the area within lane bound- 318

aries (a trapezoidal region). The lane boundaries are selected 319
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from imaginary rays pointing to the vanishing points by a320

lane score that considers the texture and geometric features321

of the lane. The vanishing points are detected by applying322

color tensors and a Canny edge detector. Before applying323

color models to detect road regions, the input images are first324

segmented into homogeneous color sub-regions. This method325

combines geometric and color features of the lane, so it can326

handle various road shapes. However, because the detection is327

based on homogeneous color regions, it may fail if the scene328

background has similar colors to road surfaces.329

In summary, the combined methods reduce the need for330

prior knowledge, and thereby increase the model’s general-331

ization ability in terms of various deformation and occlusion332

conditions.333

III. DEEP LEARNING METHODS334

A. ROAD DETECTION METHODS335

In recent years, deep convolutional neural networks (CNNs)336

have been applied successfully to semantic segmentation.337

They have achieved SOTA performances because of their338

ability to learn from large-scale image datasets and extract339

salient visual features automatically. Many lane segmentation340

methods have been proposed based on deep CNNs, and they341

have achieved promising results.342

Several lane detection methods have employed semantic343

segmentation networks directly for road detection. In [25],344

Bianco et al. proposed a network trained on two sep-345

arate datasets: a lane detection dataset and an obstacle346

detection dataset. ERFNet, proposed in [43], is employed347

in this method to perform both weak labeling generation348

and the final segmentation. Because ERFNet has a good349

trade-off between accuracy and inference speed, it is suit-350

able for real-time pedestrian lane detection. However, this351

method cannot cope with extreme illumination or weather352

conditions due to the lack of training examples. In [26],353

Cao et al. proposed a lightweight segmentation network for354

blind people. This network utilizes depthwise separable con-355

volutions to increase computation efficiency, and densely356

connected atrous spatial pyramid poolingmodules to enhance357

multiscale and contextual information. However, this method358

is proposed only for blind roads and crosswalks, which typ-359

ically have structured shapes and fewer variations in appear-360

ance. As a result, this method might not generalize well for361

other types of pedestrian lanes.362

Other methods have been proposed to generate the out-363

put segmentation map together with an uncertainty map364

for enhanced safety of blind users. In [27], Nguyen et al.365

proposed a DL-HGP network, which combines the SegNet366

encoder-decoder network (proposed in [35]) with a hierar-367

chical Gaussian process classifier. The HGP classifier pro-368

duces a segmented lane map and a calibrated uncertainty369

map, which provides extra safety for visually impaired users,370

see Fig. 6. However, this network cannot reach real-time371

prediction due to the computation requirements of the HGP372

classifier. In [28], Le et al. proposed a Bayesian Gabor Net-373

work (BGN) that generates a segmentation map with two374

calibrated uncertainty maps. This network contains 13 375

Bayesian Gabor layers, where each Gabor parameter is rep- 376

resented as a learnable Gaussian distribution. By using the 377

Gabor layers instead of the standard CNN layers, this method 378

achieves high prediction accuracy and real-time segmentation 379

with a small network size. However, the parametric form 380

of the Gabor filters has a reduced representation power for 381

complex lane textures. 382

FIGURE 6. Network structure of the DL-HGP method. Figure is from [27].

Several methods have been proposed to improve seg- 383

mentation results using road boundary features. In [31], 384

Almeida et al. combined the results from two separately- 385

trained models: ENet [44] for lane segmentation, and 386

LaneNet [45] for lane boundary detection. A post-processing 387

step is applied to create the final segmentation masks from 388

the detected lane boundaries by the LaneNet. This method 389

then computes a weighted sum of the output segmentation 390

masks from each model. Higher weights are given to regions 391

whose shapes are more similar to a typical road (usually a 392

trapezoid). However, the performance of this method may 393

be severely affected if one model produces imprecise predic- 394

tions. In [29], Yadav et al. proposed a conditional random 395

field (CRF) framework, in which the segmentation masks 396

produced by SegNet is used as prior knowledge to create 397

two color lines models, one for road and the other for the 398

background. The above methods apply boundary features to 399

refine segmentation results, but they only use these features 400

in the last few stages and therefore may not fully utilise the 401

road features. 402

FIGURE 7. Architecture of the multi-task network that uses geometric
priors for road detection. Figure is from [30].

To overcome this problem, in [30], Zhang et al. proposed 403

a multi-task network that follows inherent geometric priors 404
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between two tasks: lane region segmentation and road bound-405

ary detection (Fig. 7). In their method, lane boundaries are406

considered as outer contours of lane regions, and lane regions407

are considered as the interior of lane boundaries. The network408

contains a shared encoder for initial feature extraction, and409

two link encoders for geometric relationship extraction. The410

link encoders take modified preliminary predictions as inputs411

to generate refined features for decoders. This network is412

trained on a loss function that combines the cross-entropy413

loss, boundary-aware loss, and area-aware loss. This method414

can cope with complex lane types because it utilizes geomet-415

ric priors between lane regions and lane boundaries. However,416

the complex network structure requires extra computational417

resources and increases the inference time.418

The lane detection methods mentioned above are all based419

on custom deep neural networks. However, designing a420

high-performing deep network requires significant experi-421

ence and many trial-and-error experiments. To address this422

issue, in [32], Ang et al. developed a neural architecture423

search (NAS) algorithm to find the optimal DNN struc-424

ture for pedestrian lane detection. This method searches a425

network-level space using the gradient descent algorithm, and426

the search is performed directly on the target dataset without427

relying on secondary datasets. As a result, the network found428

by this NAS method is compact and has fast inference. How-429

ever, this method requires significant time to find an optimal430

network structure before the network is further trained.431

B. GENERIC SEMANTIC SEGMENTATION NETWORKS432

Pedestrian lane segmentation can be considered a subset of433

semantic segmentation, where there are two classes: pedes-434

trian lane and the background. Hence, applying semantic435

generic segmentation networks to lane detection is a plausible436

direction. Therefore, this section reviews representative deep437

networks for semantic segmentation. The list includes: fully438

convolutional networks, encoder-decoder networks, multi-439

scale and pyramid feature networks, dilated convolution net-440

works, and attention-based networks.441

1) FULLY CONVOLUTIONAL NETWORKS442

Long et al. proposed the fully convolutional network443

(FCN) for semantic segmentation [33]. The FCN, shown444

in Fig. 8, replaces the fully connected layers in the clas-445

sification networks (e.g., VGG-16 [46], AlexNet [47], and446

GoogLeNet [48]) with convolutional layers. It upsamples447

the coarse outputs to produce pixel-wise dense predictions.448

Moreover, the FCN uses skip connections to refine the spa-449

tial precision. The FCN is a milestone work in image seg-450

mentation as it was among the first to apply deep learning451

for semantic segmentation in an end-to-end manner. Sub-452

sequently, many semantic segmentation models have been453

developed based on FCNs.454

Although the FCN has shown benefits, it has twomain lim-455

itations. First, the FCN only uses a single-layer interpolation456

to reconstruct the original input size from a coarse heat map,457

which can lead to a loss of detailed boundary information.458

FIGURE 8. Architecture of the FCN. Figure is adapted from [33].

In lane detection, the network might misclassify roads in 459

the distance, preventing the users from planning their routes 460

ahead. The network might also misjudge small obstacles or 461

tripping hazards as roads, which could endanger the user. 462

Second, the FCN focuses on more local information than the 463

global context, which makes prediction outputs lack spatial 464

consistency. This might cause the network to predict lanes in 465

the incorrect places, such as on water or in the sky. 466

Similarly, there are two challenges in applying classifi- 467

cation networks for semantic segmentation. The first chal- 468

lenge is the lost of image resolution. Classification networks 469

utilise down-sampling and max-pooling operations to extract 470

low-resolution feature maps. However, semantic segmenta- 471

tion tasks require precise location information, which can 472

only be achieved with high-resolution feature maps. The sec- 473

ond challenge is the lack of multi-scale context. Objects in an 474

image are at multiple scales, and convolutions with fixed-size 475

kernels are not enough to capture both local and global con- 476

texts. Over the years, many network structures have been 477

developed to address these two challenges. 478

2) ENCODER-DECODER NETWORKS 479

E-D networks address the lost resolution problem in FCNs 480

by introducing a decoder. The decoder upsamples the coarse 481

feature map and incorporates the spatial information from 482

the shallower layers of the encoder. Some E-D networks also 483

fuse the feature maps of different layers to retains more local 484

information and reduces the risk of vanishing gradients while 485

training the network. As a result, the encoder-decoder net- 486

work can generate high-resolution lane segmentation maps. 487

Deconvnet [49] proposes a deconvolution network to pro- 488

duce dense predictions. The encoder of Deconvnet adopts 489

the first 13 convolution layers and two fully connected lay- 490

ers in VGG-16. The decoder is identical to the encoder 491

but hierarchically opposite. It also uses composed layers 492

of unpooling, deconvolution, and rectification operations. 493

Deconvnet records the locations of maximum activations 494

(during the pooling operation) in switch variables and uses 495

them for unpooling operations to improve interpolation accu- 496

racy. Since the output of an unpooling layer is enlarged 497

but sparse, deconvolution layers produce dense predictions 498

by using multiple learned filters to associate a single input 499

activation with multiple outputs. 500
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SegNet [35] (Fig. 9) adopts the 13 convolutional layers501

in VGG-16 as the encoder. The decoder has 13 layers that502

correspond to the encoder. SegNet records the pooling indices503

in the max-pooling steps, and uses them for the correspond-504

ing upsampling steps in the decoder. As a result, the spatial505

resolution of the extracted feature maps is improved. The506

outputs of the decoder are fed to a softmax layer to generate507

pixel-wise segmentationmaps. Compared to Deconvnet, Seg-508

Net requires fewer computational resources because it does509

not include the final fully connected layer in VGG-16.510

FIGURE 9. Architecture of SegNet. Figure is from [35].

U-Net [34] is a U-shaped symmetrical network that con-511

sists of a contracting path and an expansive path, see Fig. 10.512

The contracting path consists of repeatedmodules of two 3×3513

convolutions (each followed by a rectified linear unit (ReLU))514

and a 2×2 max-pooling layer for downsampling. The expan-515

sive path consists of repeated modules of a 2 × 2 convolu-516

tion (also called up-convolution which halves the number of517

feature map channels), a feature map concatenation opera-518

tion, and two 3× 3 convolutions (each followed by a ReLu).519

The higher-resolution feature maps from the contracting path520

are concatenated with the corresponding upsampled feature521

maps from the expansive path. This process can yield higher522

accuracy, but needs more memory than in SegNet because it523

requires transferring the entire feature map instead of only524

pooling indices. Finally, a 1 × 1 convolution is used to gen-525

erate pixel-wise segmentation.526

FIGURE 10. Architecture of U-Net. Figure is from [34].

UNet++ [50] is an image segmentation network devel-527

oped based on the U-Net structure. UNet++ is designed to528

include multiple nested sub-networks between the original529

contracting and expansive path; therefore, the semantic gap530

can be bridged by the skip-pathways, shown in green and531

blue in Fig. 11. Moreover, because UNet++ produces full 532

resolution predictions at multiple semantic levels (X0,1, X0,2, 533

X0,3, X0,4), the network can be trained using deep supervi- 534

sion. At inference time, UNet++ can operate in a fast mode, 535

where the final segmentation map is generated from one of 536

the intermediate semantic levels (e.g., X0,1, X0,2, or X0,3). 537

FIGURE 11. Architecture of UNet++. Figure is from [50].

In summary, the above E-D networks attempt to retain 538

the visual information during upsampling by using different 539

techniques. Notably, Deconvnet [49] stores the locations of 540

maximum activations during pooling. SegNet [35] records the 541

pooling indices duringmax-pooling. U-Net [34] concatenates 542

the corresponding feature maps from the encoder and the 543

decoder. These strategies can help a lane detection network 544

better detect road regions in the distance and small tripping 545

hazards on the road. 546

3) MULTISCALE AND PYRAMID NETWORKS 547

Themultiscale and pyramid networks are proposed to address 548

the multiscale challenge in semantic segmentation by utilis- 549

ing features at different scales. Twomethods are often used to 550

achieve pyramid structures: (i) combining feature maps from 551

different levels of a deep CNN [36], [51]; and (ii) scaling 552

a feature map to different scales and then concatenating the 553

results to produce the final feature representation [37]. These 554

methods can combine global and local contexts better, which 555

reduces situations where lanes are predicted in the wrong 556

places, such as in the sky or on the wall. 557

FIGURE 12. Architecture of the FPN. Figure is from [36].

The Feature Pyramid Network (FPN) [36] was originally 558

proposed for object detection tasks, but it can be extended 559
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for semantic segmentation tasks. The FPN consists of a560

bottom-up pathway, a top-down pathway, and several lateral561

connections (Fig. 12). The extracted feature maps from the562

bottom-up pathway first undergo a 1× 1 convolution. Then,563

they are fused with the upsampled feature maps from the564

top-down pathway by element-wise addition via the lateral565

connections. The final output of the FPN is a feature pyramid566

that has semantically rich representations at all scales.567

Pyramid Scene Parsing Network (PSPNet) [37] is a mul-568

tiscale network proposed to better learn the global context569

(Fig. 13). Instead of using global average pooling to cap-570

ture global contextual information which may cause the loss571

of spatial information, PSPNet proposes a pyramid pooling572

module. This module divides the final-layer feature map into573

four sub-regions and then performs the average pooling for574

each region. A 1 × 1 convolution is then used after each575

pyramid level to reduce the dimension of context representa-576

tion. Finally, the four feature maps are concatenated to form a577

global feature. This global feature covers different sub-region578

representations and different levels of contextual information.579

FIGURE 13. Architecture of PSPNet. Figure is from [37].

4) DILATED CONVOLUTION NETWORKS580

Dilated convolution, also known as atrous convolution, is an581

effective way to extract multiscale features. The dilated582

convolution can enlarge receptive fields without increasing583

the computational or memory costs while preserving the584

spatial resolution. Computation efficiency is very impor-585

tant to lane detection in assistive navigation, which requires586

real-time inference and small models for deployment on587

mobile devices.588

DeepLabv1 [52] is the first version in the DeepLab fam-589

ily. This network adopts dilated convolution to address the590

decreased resolution problem caused by subsampling. It also591

uses a fully connected pairwise CRF to refine segmentation592

by encouraging the same label for similar pixels. VGG-16 is593

used as the backbone of this network.594

DeepLabv2 [53] improves DeepLabv1 by introducing595

the atrous spatial pyramid pooling (ASPP) module. ASPP596

exploits multiscale features by applying multiple parallel597

filters at different dilation rates to the input feature maps.598

The final results are generated by fusing the output feature599

maps from the ASPP module. Moreover, DeepLabv2 adopts600

ResNet-101 [54] as the encoder, which gives a better result601

than VGG-16.602

DeepLabv3 [55] improves DeepLabv2 by exploring deeper603

network structures (Fig. 14). Four parallel atrous convolu-604

tions with different rates and batch normalization are applied605

in ASPP. Furthermore, the ASPP module incorporates the 606

global context of the image by applying global average pool- 607

ing on the last feature map. In DeepLabv3, ResNet-101 608

with depth-wise separable convolutions is used as the feature 609

extractor. To improve the computational efficiency, the dense 610

CRF is removed from the network. 611

FIGURE 14. Architecture of DeepLabv3. Figure is adapted from [55].

DeepLabv3+ [38] is the latest extension with the high- 612

est performance in the DeepLab family. Compared to 613

DeepLabv3, DeepLabv3+ adopts the encoder-decoder archi- 614

tecture to restore the spatial resolution (Fig. 15). The output 615

feature maps from the encoder are bilinearly upsampled by a 616

factor of 4 and then concatenated with the low-level feature 617

maps. DeepLabv3+ also uses the atrous separable convolu- 618

tion, which consists of an atrous depthwise convolution and 619

a 1 × 1 convolution. Atrous separable convolution reduces 620

the computation complexity significantly while maintaining 621

similar or better performance. In summary, dilated convolu- 622

tion is effective for enlarging the receptive field and handling 623

multiscale features. 624

FIGURE 15. Architecture of DeepLabv3+. Figure is adapted from [38].

5) ATTENTION-BASED NETWORKS 625

Attention mechanism is designed to improve segmentation 626

performance by placing a stronger emphasis on important 627

features. It is inspired by the way way humans perceive 628

images by focusing on the important parts rather than the 629

entire image. This mechanism is helpful to the lane detection 630

task as it enforces segmentation networks to focus on roads 631

instead of other non-related classes. 632

In [39], a dual attention network is proposed to capture rich 633

contextual information based on the self-attention mecha- 634

nism. The network has two modules: the position module and 635

the channelmodule, as in Fig. 16. The encoder of this network 636

is ResNet-101 with dilated convolution layers in the last two 637

blocks. The feature maps extracted by the encoder are passed 638
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FIGURE 16. Architecture of the dual attention network. Figure is from [39].

to the two parallel attention modules. The two modules are639

designed to learn the spatial and channel interdependencies.640

This network aggregates outputs from the two modules to641

obtain a better feature representation for dense prediction.642

In [40], an attention-based approach is proposed to hier-643

archically fuse multiscale information during training and644

inference, see Fig. 17. At training time, a relative attention645

mask between adjacent scales is learned. At inference time,646

the learned attention mask is used to fuse predictions of647

adjacent scales. This method enables a flexible number of648

scales during inference. Moreover, with multiple scales at649

inference time, only two scales are needed during training,650

which improves the training efficiency. This method achieves651

SOTA performance using HRNet [56] and OCR method [57]652

as the network structure.653

FIGURE 17. Architecture of the multiscale attention method. Figure is
from [40].

C. DESIGN PATTERN IN DEEP LEARNING MODELS654

This section briefly discusses common design patterns in655

deep learning models. Note that the design patterns are the656

well-recognized best practices that researchers can use when657

developing models to solve a problem [58].658

1) EMBEDDINGS659

Embeddings are utilized to represent image data as a dense660

feature map so that the deep network can find patterns in the661

input images. Encoder networks with down-sampling opera- 662

tions are commonly applied to embed the image data. 663

2) TRANSFER LEARNING 664

Training deep learning models often requires a huge amount 665

of computation time and labeled data. Using encoders with 666

pre-trained weights found on the ImageNet dataset is a com- 667

mon practice when designing deep networks for downstream 668

tasks such as lane segmentation. Many road detection meth- 669

ods also pre-train the entire network on other large road- 670

scene datasets, such as the Cityscapes [59] and Mapillary 671

dataset [60]. 672

3) PYRAMID STRUCTURES 673

Capturing multiscale contexts is a challenge caused by the 674

fixed kernel sizes of CNNs. Pyramid structures can address 675

this challenge by merging feature maps at different scales. 676

As a result, networks can capture contexts at multiple scales 677

and learn both global and local features better. 678

D. DISCUSSION 679

This section discusses the conceptual differences between 680

traditional and deep learning methods. The key difference is 681

in the feature extraction approach. Traditional lane detection 682

methods use hand-engineered feature extractors, designed 683

based on some prior knowledge. For example, methods in [8], 684

[9], and [10] are based on the observation that the difference 685

in lane positions between two adjacent video frames is usually 686

negligible. Methods in [17], [18], and [19] are based on the 687

assumption that the lane shape is a simple arc and has no 688

branches. However, these heuristics and assumptions work 689

under limited circumstances, and the hand-engineered feature 690

extractors have difficulty in coping with different lane types. 691

In comparison, deep learning methods use CNNs to learn 692

the lane features from large amounts of lane images. CNNs 693

learn low-level features such as lines and edges in the early 694

layers, and high-level features such as lanes in the later layers. 695

Consequently, they can extract more complex and generalized 696

features of the lane compared to traditional methods. How- 697

ever, the quality of the training data plays an important part 698

in creating an accurate lane detection network. For example, 699

if a pedestrian lane dataset mostly contains lanes surrounded 700

by grass, the network will learn to associate the presence 701

of surrounding grass with lane. Therefore, the dataset used 702

for training pedestrian lane detection must have variations 703

in lighting conditions, lane surface textures, and background 704

surroundings. 705

The ability of the deep learning methods to learn from 706

large-scale image datasets has enabled them to achieve bet- 707

ter accuracy in various environments. However, traditional 708

methods can still offer valuable insights in designing a deep 709

model for pedestrian lane detection. Some prior knowledge 710

can be used to design CNNs and improve model accuracy. 711

For example, Zhang et al. [30] used the geometric prior that 712

the lane boundaries form the outer contours of lane regions to 713

design a multi-task network and improve detection accuracy. 714
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Furthermore, the difference in lane positions between two715

adjacent video frames is usually small, and this property can716

be used to stabilize lane segmentation predictions for video.717

IV. PERFORMANCE EVALUATIONS AND ANALYSIS718

This section presents experimental evaluations of representa-719

tive methods that can be used for lane detection. Section IV-A720

describes the image datasets for pedestrian lane detection.721

Section IV-B describes the performance measures and exper-722

imental setup used in this survey. Section IV-C presents the723

method performances on the PLVP3 dataset. Section IV-D724

presents evaluations of method robustness under different725

scene types. Section IV-E provides an analysis of different726

encoders in U-Net.727

A. IMAGE DATASETS FOR PEDESTRIAN LANE DETECTION728

We evaluated different methods on the pedestrian lane729

dataset PLVP3 [28]. This dataset is extended from the PLVP730

dataset [24] and the PLVP2 dataset [27], which have 2,000731

and 5,000 images, respectively. The PLVP3 dataset con-732

tains 10,000 pedestrian lane images with the corresponding733

ground-truth masks, see Fig. 18. Each ground-truth mask is734

a binary image, where pixels are manually labeled as either735

lane or background. The color images are taken from numer-736

ous real indoor and outdoor scenes at different times of the737

day. They include unmarked pedestrian lanes with multiple738

surface textures (e.g., brick, concrete, and soil) and shapes739

(e.g., straight and curve). Many images are taken under unfa-740

vorable lighting variations, e.g. weak illumination and strong741

shadows. The statistics of the PLVP3 dataset are shown in742

Table 2.743

TABLE 2. Statistics of the PLVP3 dataset.

Note that other datasets exist for the visually impaired,744

but they do not include pixel-wise annotations for pedestrian745

lanes or sidewalks. For example, the dataset in [61] contains746

only bounding box annotations for common sidewalk obsta-747

cles, and boundary line annotations for blind sidewalks. The748

dataset in [62] provides only pixel-wise and bounding box749

annotations for common sidewalk objects. The dataset in [63]750

only has the floor semantic annotations for indoor scenes.751

Hence, these datasets are not used for the experimental eval-752

uation in this survey.753

Other benchmark datasets such as Mapillary [60] and754

Cityscapes [59] contain pixel-wise annotations of the755

sidewalk class. However, these datasets are created for756

self-driving vehicles, and hence not suitable for pedestrian 757

lane detection. In these datasets, the images are taken near 758

the center of the vehicle roads; the pedestrian regions are 759

often on the side with relatively small areas. In other words, 760

there is a domain gap between these datasets and our desired 761

application of assistive navigation for blind people. 762

B. PERFORMANCE MEASURES AND EXPERIMENTAL 763

SETUP 764

1) PERFORMANCE MEASURES 765

To measure model performances, we use three quantitative 766

metrics which have been widely accepted for semantic seg- 767

mentation research: 1) pixel accuracy, 2) mean intersection 768

over union, and 3) F1 score. To obtain the overall evaluation 769

score on the test set, the metrics are computed for individual 770

images and then averaged over the entire test set. 771

1) Pixel accuracy is the ratio between the correctly- 772

classified pixels versus the total number of pixels. 773

2) Mean intersection over union (mIoU) computes 774

the average IoU over all semantic classes. Let S be a 775

machine-predicted segmentation map, and G be the corre- 776

sponding ground-truth mask. Intersection over union (a.k.a. 777

Jaccard Index) is defined as the area of overlap between S 778

and G, divided by the area of union between S and G: 779

IoU = Jaccard(S,G) =
|S ∩ G|
|S ∪ G|

=
TP

TP+ FP+ FN
, (1) 780

where TP, FP, and FN refer to the numbers of true positives, 781

false positives, and false negatives. 782

3) F1 score (a.k.a. Dice Coefficient) is defined as the har- 783

monic mean of precision and recall: 784

F1 =
2× Precision× Recall
Precision+ Recall

=
2TP

2TP+ FP+ FN
. (2) 785

Here, recall is the ratio of correctly-detected lane pixels ver- 786

sus all lane pixels. Precision is the ratio of correctly-detected 787

lane pixels versus all machine-detected lane pixels. 788

2) EXPERIMENTAL SETUP 789

We employed the 5-fold cross-validation to evaluate the rep- 790

resentative methods. The dataset was divided randomly into 791

five equal-sized partitions. For each fold, one partition was 792

used as the test set, and the remaining four partitions are 793

used as the training set. This step was repeated five times for 794

different choices of the test partition, and the segmentation 795

measures were then averaged. Note that each training set 796

was further divided into 90% images for training, and 10% 797

images for validation. Collectively, each cross-validation 798

fold consisted of 7200 training images, 800 validation 799

images, and 2000 test images. The images were resized to 800

320× 320 pixels. 801

To train the deep neural networks, we used the Adam 802

optimizer [64] with a learning rate of 0.001. The exponen- 803

tial decay rates for the first and the second moment esti- 804

mates were set to 0.9 and 0.999, respectively. All models 805

used pretrained weights on ImageNet for the encoders, and 806
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FIGURE 18. Examples from the PLVP3 dataset. Rows 1 and 3: Input color images. Rows 2 and 4: The corresponding lane segmentation
ground-truth.

Kaiming uniform weight initialization [65] for the decoders.807

All experiments were conducted on a computer with Intel808

Xeon Gold 5115 2.4 GHz processor and NVIDIA TITAN Xp809

GP102 graphics card. All methods were implemented using810

the PyTorch framework [66]. We trained each network for811

150 epochs. The early stop strategy was used to prevent over-812

fitting: The trainingwas stopped if the network’s performance813

on the validation set had not improved for 50 epochs.814

C. COMPARISONS OF REPRESENTATIVE METHODS ON815

PEDESTRIAN LANE DETECTION816

In this section, we evaluate: (i) two feature-based methods817

and three deep-learning-based methods specifically designed818

for pedestrian lane detection, and (ii) eight deep networks for819

generic semantic segmentation. Although the eight segmen-820

tation networks are not explicitly proposed for lane detection,821

they can be applied to scene perception and their perfor-822

mances on the PLVP3 dataset can provide insights on design-823

ing effective lane detection networks. The implementation824

details of the examined methods are as follows.825

1) Border-based method [18]: The number of orientation-826

consistent points for computing the orientation consistency827

ratio was set to 16. We used the MATLAB code provided by828

Kong et al. [18].829

2) Combined (color & border) method [24]: We used the830

MATLAB code provided by Phung et al. [24].831

3) DL-HGP [27]: The backbone SegNet with five832

encoder/decoder units (total 26 convolutional layers) was833

employed for feature extraction. The number of inducing834

points and the initial number of local Gaussian process835

experts were set to 50 and 9, respectively. We used the Python836

code provided by Nguyen et al. [27].837

4) BGN [28]: We implemented the network structure pre- 838

sented in the reference. As recommended by the reference, 839

the local re-parameterization trick [67] was used. 840

5) NAS method [32]: We implemented the network struc- 841

ture presented in the reference. The search phase of this 842

method was conducted with 16 layers of nodes and five levels 843

of scales. The base channel size for the output feature maps 844

was set to eight. 845

6) FCN-8s [33]: We implemented this model based on 846

VGG-16 as suggested in the reference. The final feature 847

map was upsampled by a factor of 8, and then element-wise 848

summed with the feature maps from the third and fourth 849

pooling layers. 850

7) U-Net [34]: We implemented the network structure pre- 851

sented in the reference. The input images are downsampled 852

four times before upsampling. 853

8) UNet++ [50]: We implemented the network structure 854

presented in the reference. The input images were downsam- 855

pled at most four times before upsampling. This method was 856

trained without deep supervision. 857

9) SegNet [35]:We implemented the network structure pre- 858

sented in the reference. The backbone VGG-16 with 13 con- 859

volutional layers was employed as the encoder. 860

10) PSPNet [37]: The backbone ResNet-101 was used 861

as the encoder. We used the Python code provided by 862

Zhao et al. [37]. 863

11)DeepLabv3+ [38]:We implemented the network struc- 864

ture presented in the reference. We used Xception as the 865

encoder, where the depthwise separable convolutions were 866

applied to both ASPP and decoder modules. 867

12) HRNet with multiscale attention [40]: We used the 868

original HRNet architecture as the reference [56]. We applied 869
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TABLE 3. Performance of the representative methods on the PLVP3 dataset.

a simple segmentation head to produce dense prediction from870

output feature maps of HRNet. The segmentation head con-871

sisted of (3×3 conv)→ (BN)→ (ReLU)→ (3×3 conv)→872

(BN)→ (ReLU)→ (1×1 conv). In this experiment, we used873

two scales (0.5× and 1×) for training and three scales (0.5×,874

1×, and 2×) for inference as suggested in [40].875

13) HRNet-OCR with multiscale attention [40]: We876

employed the original OCR structure as in [57], and the orig-877

inal HRNet structure as in [56]. The scale configurations for878

training and inference were the same as HRNet with multi-879

scale attention.880

Table 3 shows the experimental results of the representa-881

tive methods. For feature-based lane detection methods, the882

performance of the combined method are better than that883

of the border-based method, with an mIoU improvement of884

12.57% and an F1-score improvement of 33.75%. The infer-885

ence time of the combined method is 84.67 times faster than886

that of the border-based method. The results indicate that887

combining border features with color features aremore robust888

for coping with variations of lane appearance and illumi-889

nation conditions. Because these feature-based methods are890

built on the fly, we do not compare their model sizes.891

The deep learning methods significantly outperform the892

feature-based methods in both segmentation accuracy and893

inference speed. Among the 11 examined methods, multi-894

scale HRNet-OCR achieves the best performance, with an895

mIoU of 95.68% and an accuracy of 97.92%. Note that this896

method also has the largestmodel (289.30MB) and the lowest897

inference speed (2.61 images/s). Multiscale HRNet achieves898

the second-best performance with an mIoU of 95.59%. Due899

to the huge backbone with multiple inference scales, multi-900

scale HRNet-OCR and multiscale HRNet are dramatically901

slower than other deep networks. The NAS-based method902

achieves the fastest inference of 142.857 images/s and an903

mIoU of 92.29%. This method has the most favorable speed-904

accuracy trade-off among all examined methods. The BGN905

has the second-best speed-accuracy trade-off, with an mIoU906

of 94.92%, and an inference speed of 68.027 images/s.907

Assistive navigation for blind people requires real-time 908

algorithms. In Table 3, five methods achieve inference speed 909

higher than 30 FPS: U-Net, BGN, DeepLabv3+, PSPNet, 910

and the NAS-based method. Among them, the BGN and the 911

NAS-based method achieve the highest inference speed. The 912

BGN uses Bayesian Gabor layers instead of the common 913

convolutional layers, which significantly reduces the num- 914

ber of trainable weights. The NAS-based method searches 915

directly on the pedestrian lane dataset instead of relying on 916

networks found with other image datasets. Consequently, 917

it obtains a deep network with an optimized structure for the 918

lane detection task. Note that the two methods with the high- 919

est segmentation accuracy (multiscale HRNet and multiscale 920

HRNet-OCR) have the lowest inference speed (below 4 FPS). 921

Fig. 19 presents examples of pedestrian lane detection 922

results produced by different segmentation methods. The 923

visual results indicate that the border-based method does not 924

cope well with the variations of lane shapes. This is because 925

it assumes that all lanes are formed by two straight edges 926

pointing to the vanishing point. The combined method per- 927

forms better than the border-based method. However, it only 928

has medium performances, especially when the lane region 929

has varying textures, or the lane region has a similar color 930

to the background. This is because the combined method 931

uses the color model constructed from the lower half of the 932

lane to detect the entire lane regions. This method also relies 933

substantially on the accuracy of the detected vanishing point. 934

For example, in Row 3, Column 4, this method misses the 935

true lane, and miss-classifies the handrail as lanes 936

The deep learning methods achieve significant improve- 937

ments compared to the traditional methods in both inference 938

speed and detection accuracy. However, they still produce 939

segmentation errors, especially when the background has 940

similar textures as lane regions (Rows 6 and 8). This 941

finding indicates that, despite their high performances as 942

shown in Table 3, the deep-learning-based methods are still 943

not robust enough to maintain high accuracy in complex 944

scenes. For example, as demonstrated in Fig. 19, even the 945
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FIGURE 19. Visual results of representative methods on the PLVP3 dataset.

TABLE 4. Segmentation accuracy (mIoU) of the representative methods under different conditions in the PLVP3 dataset.

best-performing method has some false positive predictions946

(Rows 2 and 8). Because these incorrectly-predicted lane947

regions can endanger blind people, we will discuss this chal-948

lenge further in Section V.949

D. COMPARISONS OF MODEL PERFORMANCE IN950

DIFFERENT SCENE CONDITIONS951

A good algorithm for pedestrian lane detection should main-952

tain high accuracy in various scene conditions. In this section,953

we evaluate the representative methods under six different 954

scene types in the PLVP3 dataset: indoor scenes, scenes dur- 955

ing night-time, university campus scenes, park scenes, sub- 956

urban scenes, and city scenes. As shown in Table 4, the 957

model performances for different scenes vary by a large 958

margin. All models show performance drops when tested 959

in night-time and city scenes, indicating that these scene 960

types are specifically hard for pedestrian lane detection and 961

require further considerations when designing lane detection 962
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FIGURE 20. Visual results of representative methods on unseen images.

algorithms. All deep learning methods have high accuracy963

for park scenes, in which man-made pedestrian paths differ964

significantly from the natural scene elements. Moderate per-965

formances are observed in indoor, university campus, and966

suburban scenes. Multiscale HRNet-OCR demonstrates the967

best performance among all methods.968

To further evaluate the robustness, we test the above meth-969

ods on three scenarios outside the PLVP3 dataset: a new city970

(Hurstville), rainy days, and roads with puddles. As shown971

in Fig. 20, all methods exhibit performance drop compares972

to Fig. 19. Among the 11 methods, multiscale HRNet-OCR,973

BGN, SegNet, and DL-HGP show better stability. The tradi-974

tional methods do not perform as well as the deep learning975

methods. Notably, most deep learning models are prone to976

incorrect segmentation for reflective surfaces (rainy days or977

lanes with puddles). The results show that the current meth-978

ods achieve reasonable detection performances, but they still979

need to be improved for unseen situations.980

E. ANALYSIS OF ENCODERS USING U-NET981

We selected U-Net as the base network architecture to inves-982

tigate the impact of the encoder component. Fourteen SOTA983

backbones were implemented and used as the encoder of 984

U-Net. The experimental results are presented in Table 5. 985

In terms of segmentation accuracy, MobileNetV3 achieves 986

the best performance with an mIoU of 96.10% and an 987

F1-score of 97.98%. EfficientNet-b6 achieves the second-best 988

accuracy with an mIoU of 95.92%. Compared to the orig- 989

inal encoder in U-Net [34], SOTA backbones improve the 990

mIoU score by 1.34% to 2.46%. In terms of inference 991

speed and model size, MobilenetV3 has the smallest model 992

size (19.80 MB) and the second-highest inference speed 993

(64.516 images/s). MobilenetV2 achieves the highest infer- 994

ence speed (64.935 images/s), and the second smallest model 995

size (26.80 MB). 996

V. FUTURE DIRECTIONS 997

Despite the high performances that the deep networks 998

achieve, many aspects still need to be tackled before a prac- 999

tical assistive navigation system is possible. This section dis- 1000

cusses future research directions to address the current tech- 1001

nical limitations for pedestrian lane detection. 1002

1) Developing integrated methods that efficiently remove 1003

incorrectly-detected lane regions: The evaluation 1004
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TABLE 5. Performance comparison of different encoders using U-Net on the PLVP3 dataset.

results in Section IV-C show that even the1005

best-performing methods produce false positives.1006

In assistive navigation, these errors are more severe1007

than false negatives because they could endanger the1008

blind user. The false positives could be addressed by1009

using post-processing steps, e.g., combining segmen-1010

tation results from two separately-trained models [31].1011

However, these heuristic steps are less robust than1012

machine learning methods and may fail in complex1013

scenes. To better address this limitation, an integrated1014

deep learning method should detect pedestrian lanes1015

and remove false positives in an end-to-end manner.1016

2) Exploring methods to cope with variations in pedes-1017

trian lanes: As illustrated in Fig. 20, unseen situations1018

such as new cities or extreme weather conditions will1019

severely undermine the performance of deep learning1020

methods. However, assistive navigation for blind peo-1021

ple has not attracted similar attention as self-driving1022

cars, which makes collecting a large-scale dataset from1023

multiple countries and different weather conditions dif-1024

ficult. Consequently, domain shift is a technical limita-1025

tion faced by most pedestrian lane detection models.1026

Hence, investigating lane detection methods that can1027

adapt to different environments is essential.1028

3) Investigating methods that can learn from multiple dif-1029

ferent datasets: Many existing lane detection methods1030

only provide lane versus non-lane segmentation, which1031

is useful but not enough for blind users to navigate1032

safely. This limits the ability of the current pedestrian1033

lane detection system. More detailed lane informa-1034

tion is necessary for visually impaired users. A few1035

datasets [61], [62] have been developed for obstacle1036

detection in pedestrian scenes, but they do not contain1037

pixel-wise annotations of pedestrian lanes. The PLVP31038

dataset used in this study is the largest public pedes-1039

trian lane dataset in the literature, but it does not have1040

FIGURE 21. Segmentation accuracy versus inference speed produced by
different lane detection methods. The area of the circles represents the
model size.

FIGURE 22. Segmentation accuracy versus inference speed produced by
U-Net with different encoders. The area of the circles represents the
model size.

annotations for other objects in traffic scenes. Note that 1041

creating a new large dataset containing all class labels 1042

required for assistive navigation is time-consuming and 1043

costly. Therefore, developing models that can learn 1044

from multiple existing road-scene datasets is useful to 1045

address the lack of labeled data. 1046

4) Developing methods to compress lane detection net- 1047

works for real-time inference on smartphones or edge 1048

devices: As shown in Section IV, most methods with 1049
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high accuracy also require a longer inference time and1050

larger storage. See also Fig. 21 and Fig. 22 for a sum-1051

mary. However, pedestrian lane detection needs to be1052

accurate and fast to cope with real-time traffic situa-1053

tions. Furthermore, detection networks should be small1054

to be deployed on mobile or edge devices, which often1055

have limited storage, computation capability, and bat-1056

tery power. The current trade-off between detection1057

accuracy, inference speed, and model size necessitates1058

the development of methods to reduce the model size1059

and increase the inference speed.1060

VI. CONCLUSION1061

Pedestrian lane detection is a vital task in an assistive naviga-1062

tion system for vision-impaired people. This paper provides1063

a comprehensive survey of methods that can be used for1064

pedestrian lane detection with two main categories: (i) tra-1065

ditional methods including color-based approaches, border-1066

based approaches, and combined approaches; and (ii) deep1067

learning methods including lane detection approaches and1068

generic semantic segmentation approaches. The paper reports1069

the quantitative performances of several notable methods1070

on a large labeled dataset (PLVP3). Finally, we discuss1071

the future research directions for pedestrian lane detection,1072

which are guided by our theoretical review and experimen-1073

tal evaluations. We hope that this survey could serve as a1074

baseline reference for assistive navigation, and facilitate the1075

urgently-needed research for vision-impaired people.1076
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