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ABSTRACT Aiming at the difficulty in identifying subtle AC arcs in aviation cables, this paper proposes an
arc fault detection method based on the combination of three-dimensional features and convolutional neural
network-long short term memory (CNN-LSTM). Firstly, based on the SAE AS5692A standard, the vibration
series test, cutting parallel test, and wet arc trajectory parallel test were respectively conducted and the arc
current signals under four types of loads were collected to analyze the arc faults under different incentives.
Then, the three-dimensional features of arc current including Hurst exponent, inter-harmonic variance, and
wavelet energy entropy (H-I-W) were extracted with an improved algorithm so as to enhance the fault
identification capability and overcome the limitation of single-dimensional feature detection. Finally, a grid
search algorithm was used to find out the optimal parameters, and a three-dimensional reference input
CNN-LSTM neural network was designed to detect arc faults. The experimental results showed that the
average detection accuracy of the proposed method for the three AC arc faults respectively reached 98.52%,
99.23%, and 98.51%. The real-time performance of the proposed method was better than the comparison
methods, proving the feasibility and effectiveness of the proposed method.

INDEX TERMS Aviation cable, AC arc fault, H-I-W three-dimensional feature, CNN-LSTM neural
network.

I. INTRODUCTION

Aviation cables are the most important components in aircraft
systems and mainly responsible for energy transmission and
control signal transmission between avionics [1]. Compared
with ordinary power cables, aviation cables are characterized
by thinner insulation layers and the longer service period
in humid environments with intense vibration, friction, and
radiation. They are highly susceptible to cracks and breakage
[2], [3], thus inducing AC arc faults. When an arc occurs,
the temperature of the arc center can reach several thou-
sand degrees [4] and cause cable combustion and fire in
the aircraft, thus threatening flight safety. Due to the circuit
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load and environmental factors, the AC arc current has a
small amplitude and hidden characteristics and is difficult to
be detected with thermal circuit breakers (TCB) and solid-
state power controller (SSPC) [5]. It is therefore necessary
to develop arc fault detection methods for the purposes of
improving the identification rate of AC arc faults in aviation
cables and enhancing flight safety.

At present, AC arc fault detection methods are mainly
divided into two categories. The first is the detection of phys-
ical phenomena such as arc lights or arc sounds generated
by the occurrence of an arc fault. The ultraviolet range of
300 nm to 330 nm was used as the wavelength for arc fault
detection and satisfactory detection results were achieved [6].
Yun et al. [7] collected the characteristic light of the arc with
the collection system on the roof of the train, analyzed the
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arc spectral distribution, and determined the range of 275 nm
to 285 nm as the detection characteristic waveband of the
short-gap arc of the pantograph-catenary system. However,
the determined detection band could identify only one type
of arc faults. A loop antenna or sensor was designed to
collect electromagnetic radiation and then arc fault detection
was performed based on the extracted features (log spectral
distance, pulse oscillation time, and characteristic frequency
distribution) of the collected electromagnetic radiation sig-
nals [8], [9]. However, the physical feature extraction of arc
signals requires numerous sensors and the installation posi-
tions of sensors affect the operation of the power distribution
system of an aircraft. Moreover, the strong ambient noise and
interference in flight may affect the output of sensors, so it is
difficult to carry out accurate fault identification based on the
physical characteristics of the arc.

The second category is the detection method based on the
characteristic changes of voltage and current of the signals
in the time domain, frequency domain, and time-frequency
domain in the case of an arc. The time-domain features and
parameters are computed rapidly and easily embedded in
hardware devices such as arc fault circuit breakers (AFCB),
so relevant time-domain arc detection algorithms have been
proposed. Sultan ef al. proposed arc fault detection based on
current peaks [10]. Lezama et al. calculated current auto-
correlation coefficients and obtained arc detection metrics
through algebraic estimation of autocorrelation coefficients
[11]. Metrics such as kurtosis, mean value, variance, and
third, and fourth accumulation were also introduced into arc
fault detection [12]. A method based on high-frequency pulse
components of coupled signals was used in the identification
of AC series arc faults in residential buildings [13], [14].
On the basis of this method, Run et al. proposed short obser-
vation window singular value decomposition and reconstruc-
tion algorithm [15] and time series reconstruction algorithm
[16] for enhancing high-frequency pulse components and
realized series arc fault identification. However, due to the
low amplitude and weak characteristics of AC arc currents
of aviation cables, it is difficult to accurately identify the
arc faults with time-domain features alone. In some studies,
it was found that the frequency domain information changed
to some degree when an arc occurred. Guan et al. derived
an expression for the signal power spectrum with the Welch
algorithm for arc identification based on spectral changes
[17]. When an arc fault occurred, some new high-frequency
components of the circuit current appeared, so identification
of arc faults based on high-frequency components was the
main frequency domain method [18]. Lezama et al. [19] per-
formed arc fault detection by comparing the low-frequency
band of current, the high-frequency band of voltage, and
the root means square value of current and voltage with the
corresponding threshold values. When a certain number of
consecutive occurrences of faults were detected, the occur-
rence of an arc fault was determined. However, various arc
faults in aviation cables had different characteristics, so it
was difficult to apply the arc fault detection method based
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on comparison results in aviation electrical systems. In the
advanced harmonic study [20], the 3rd and 5th harmonics
of the signal were used in arc fault detection. Li et al. used
the half-cycle analysis method and fast Fourier transform
(FFT) to detect arc faults [21]. Artale et al. used the chirp
zeta transform (CZT) to analyze the low-frequency harmonic
current in the case of an arc [22]. Karakose et al. pro-
posed an arc detection method based on signal normalization
and S-transform (ST) for arch network systems and applied
fuzzy theory and ST in arc fault detection [23]. Chen et al.
performed low-voltage series arc fault identification with
empirical modal decomposition (EMD) and Hilbert’s Huang
transform (HHT) [24]. In time-frequency domain, Wavelet
Transform (WT) is an effective tool to analyze time series.
Through 550 sets of arc experiments, Qi ef al. found that
the selection of mother wavelet, number of decomposition
layers, and sampling frequency greatly affected the arc fault
detection performance [25]. Mortazavi et al. extracted the
dynamic features of signals with smooth WT, input them
into support vector machine (SVM) for arc identification, and
improved the identification of arc faults from a few amperes
to several hundred amperes [26], but it was difficult to achieve
the same identification effect for low-current vibration arc
faults.

To integrate the advantages of different features, Qu ef al.
extracted a large number of features and selected 4 time-
domain features and 10 frequency-domain features for arc
fault identification [4], but the fusion of too many features
could lead to overfitting and accuracy reduction [27] and
increase the embedding difficulty and the cost of the algo-
rithm. Therefore, it is extremely important to select an appro-
priate number of effective signal features.

In recent years, intelligent learning methods have also
been gradually introduced into arc detection research due
to their excellent processing capability of complex signals.
Wang et al. proposed to extract signal features with sparse
matrix, and input them into fully connected neural network
(FCNN) for residential AC arc identification [28]. Jiang et al.
carried out series arc fault identification based on random
forest (RF) and deep neural network (DNN) [29]. Amiri et al.
proposed a method for series arc fault detection in photo-
voltaic systems based on voltage signal determinism and used
a recursive graph method to derive the signal determinism
for detecting series arc faults [30].Yu et al. proposed an
arc fault detection method based on raw data and parallel
deep neural networks (PDNN), and demonstrated that the
detection accuracy and stability of PDNN were better than
DNN [31]. Nevertheless, it would take a lot of time to train
neural networks with raw data. Li et al. proposed a recurrent
neural network (RNN) method for series arc fault detection in
multi-load systems, and further improved the detection speed
and accuracy through fast continuous monitoring and prob-
ability classification results [32]. Furthermore, Wang et al.
proposed an arc recognition model based on current raw data
and convolutional neural network (CNN), and implemented
the model on Raspberry Pi 3B to achieve good results [33].
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A time-domain visualization (TDV) method converted the
time series into a two-dimensional image, which was then fed
into a CNN [34], [35] or Long-Short Term Memory (LSTM)
[36] neural network for arc fault detection, and the better
identification results of AC series arcs in residences demon-
strated the application of CNN and LSTM in arc fault detec-
tion. CNN is a typical network for complex fault diagnosis
in deep learning methods and aims to convolve and pool the
signal layer by layer through convolutional and pooling layers
and extract the features of the input data layer by layer. As a
kind of neural network, LSTM neural network can solve gra-
dient disappearance and gradient explosion problems in the
training process of long sequences and has the excellent pro-
cessing ability and model parameter optimization capability
for time series data. However, LSTM without the specialized
feature mining function shows average results when dealing
with the data with weak fault information [37]. Therefore,
the idea of combining CNN's with LSTMs has been proposed
in fault recognition research. Currently, CNN-LSTM neural
networks are widely used in the fault detection of bearings
[37] because the combination of CNN and LSTM for the
analysis and processing of time series is more advantageous
in complex environments.

Aiming at the problems of the hidden characteristics and
the difficulty in accurate identification of arc faults in aviation
cables, this paper proposes an AC arc fault detection method
for aviation cables based on the combination of H-I-W three-
dimensional features and CNN-LSTM neural networks. The
method improved the arc fault identification through extract-
ing features from three dimensions separately and combined
the excellent weak feature extraction ability of CNN with
the good fault identification ability of LSTM. The method
proposed in this paper can achieve the efficient and accurate
detection of AC arc faults in aviation cables.

The paper is organized as follows. In Section II, the arc
simulation test schemes under different loads are presented
and the circuit currents are acquired. In Section III, the arc
fault detection strategy is described. In Section IV, three
improved algorithms are designed to extract H-I-W three-
dimensional features. In Section V, the CNN-LSTM arc
detection model is designed to detect the normal status and
arc fault. The method has high detection accuracy and relia-
bility of AC arc faults in aviation cables.

Il. ARC EXPERIMENTS AND DATA ACQUISITION

Aviation cables are applied in complex environments and it
is difficult to simulate their actual arcing situation through
traditional point contact tests. All the factors causing AC arc
faults, including terminal vibration, cut-off, and water drop,
are fully considered. Furthermore, under the same power
supply voltage and load type, three typical tests (vibration
test, cutting test, and wet arc trajectory arc test) were carried
out to simulate the generation of arc in actual avionics system
environments. In this way, the measured data of arc currents
were similar to the actual data and provided a reliable basis
for arc fault detection.
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A. ARC SIMULATION EXPERIMENT

UL1699 is Standard for Safe Arc-Fault Circuit-Interrupters
[38] and SAE AS5692A is the Standard for Arc Fault Test
Platforms [39]. Based on arc fault circuit breaker standard
UL1699 and aviation standard SAE AS5692A, vibration test,
cutting test, and wet arc trajectory arc test were carried out.
The arc test circuits are shown in Fig. 1 to Fig. 3.
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FIGURE 1. Vibration test circuit.
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FIGURE 3. Wet arc trajectory test circuit.

In the vibration test, the test bench was continuously
vibrated with the vibration control device, thus resulting in
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intermittent contact at cable connection terminals and sim-
ulating arc faults caused by loose electrical connectors due
to aircraft vibration. In the cutting test. a steering gear was
used to move the cutter downward, thus simulating an arc
fault caused by a short circuit between cables under the
complex environmental stress. In the wet arc trajectory test,
the injection pump was controlled to drop saline water with a
concentration of 3+0.5% on the test cable at a rate of § drops
per minute so as to simulate an arc fault caused by condensed
water droplets at the breakage of different wire harnesses due
to the changes in ambient temperature.

In the test, the power cabinet generated 115 V/400 Hz
driving voltage and power current.

The current probe used was Tektronix TCP303 with a
bandwidth of 0 Hz to 15 MHz and a minimum measurable
current of 5 mA.

The data were acquired with Tektronix MDO 4034C with
its analog bandwidth of 1 GHz and the maximum sampling
rate of a single channel, 5 GS/s.

MIL-DTL-81381 cable was used in vibration tests and
M27500-24WN2N24 cable was used in cutting test and wet
arc track test.

Aviation cables were connected with lamp (resistive load),
aviation solenoid (inductive load), seat (capacitive load), and
the non-linear motor load. Therefore, two types of loads were
used in the test: linear load and nonlinear load. In Table 1,
Load 1, Load 2, and Load 3 are respectively pure resis-
tive load, inductive load, and capacitive load. The nonlinear
Load 4 is the rotating electrical machine (REM).

TABLE 1. H-I-W feature of wet arc trajectory test.

Linear Nonlinear
Load 1 Load 2 Load 3 Load 4
200 20 Q plus solenoid 20 Q plus REM
valve 47 uF

B. ARC FAULT DATA ACQUISITION

The sampling frequency used in the arc study could be deter-
mined with the spectral band, in which the arc information is
mainly distributed [26]. FFT operation was conducted on the
arc signal. The signal spectrum is plotted in Fig. 4.
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FIGURE 4. FFT waveform of test current.
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The arc information of the signal was still detected around
the frequency of 1.1587 MHz (Fig. 4). Therefore, for acquir-
ing complete signal information, the sampling rate chosen in
the test was 2.5 MHz. When the smallest observation window
(OW) was selected, the main spectral information should
be contained [14]. Different OWs (0.5 cycle, 1 cycle, and
2 cycles) were compared and the spectral information near
the fundamental frequency was in the normal state (Fig. 5).
At OW=0.5 cycle, the spectrum near the fundamental fre-
quency was leaked severely. Compared to OW=2 cycles,
OW=1 cycle could represent the spectral information of the
signal completely. When an arc fault occurred, the waveforms
of adjacent current cycles became different. Therefore, in
order to accurately identify arc faults, we used 1 cycle of the
current signal as one calculation unit for the feature extraction
algorithm below.
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FIGURE 5. Spectral effects of different OWs on the signal in the normal
state.

The arc fault test current was collected with a current probe
and each test intercepted 30 cycle currents including normal
and fault currents with 6250 sampling points per cycle. The
test current signals collected under Load 1 are shown in Fig. 6.
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FIGURE 6. Arc test current waveforms under Load 1: (a) vibration test,
(b) cutting test, and (c) wet arc trajectory test.

From the test phenomena and test current waveforms in
Fig. 6, the conclusions can be drawn as follows:

Firstly, under a linear load, the current waveform was in
a stable sine wave state before the arc fault occurred. When
an arc fault occurred, the vibration test current decreased to a
smaller value close to 0 and then maintained for a short period
of time. The amplitude of the cutting test current instantly
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increased tenfold and the wet arc track test current showed a
slight burr at the trough.

Secondly, the arc current waveforms of the cutting test had
an area where the current was close to zero before and after
the zero-crossing point because of the damaged cable core
and the arc extinguishing and re-igniting process before and
after the current zero point.

Thirdly, during the arcing test, the arc in the vibration test
was weak and had a short duration and the arc in the cutting
test was intense and accompanied by sparks. The arc burning
time in the wet arc trajectory test was synchronized with the
time when saline water dropped at the damaged cable.

Fourthly, at the end of the arc test, black charcoal remained
at the position where the arc occurred and the cutter in the
cutting test showed an obvious corrosion nick.

The arc test current waveforms under Load 2, Load 3, and
Load 4 are shown in Fig. 7.
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FIGURE 7. Arc test current waveforms under Load 2, Load 3, and Load 4:
(a) vibration test, (b) cutting test, and (c) wet arc trajectory test.

From the analysis results of current waveforms shown in
Fig. 7, it can be seen that the above conclusions are also appli-
cable to resistive inductive load, resistive capacitive load, and
rotating motor load. Under normal conditions, the test current
was below 7 A, which was less than the maximum AFCI
nominal value, 20 A. When an arc fault occurred, the currents
in vibration tests and the wet arc track test were less than 20 A
and the current in the cutting test was within 48.5 A and less
than AFCI short-circuit current. Therefore, the current used
in the test met the current detection requirements in UL1699
standard.

In practice, the cutting test arc rarely occurs. Once it
occurred, it caused a serious fire. However, an arc fault was
prone to occur in the vibration test and the wet arc trajec-
tory test. The changes of the current after the occurrence of
an arc are shown in Fig. 6 and Fig. 7. The arc current in
the cutting test showed obvious changes. In the case of arc
fault, the arc current in the vibration test became smaller
and the increase of the arc current in the wet arc trajectory
test was small. The above two arc currents could not meet
circuit breaker action requirements of TCB and traditional
SSPC.
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IIl. ARC FAULT DETECTION STRATEGY

Based on the arc test platform, under four typical loads,
three kinds of arc tests were carried out, respectively. After
acquiring the current signals, we performed arc fault detec-
tion according to the scheme shown in Fig. 8.

The three arc faults were accompanied by unique cur-
rent variations and the original data were huge and would
lead to too long training time and low recognition rate
of CNN-LSTM. Therefore, the H-I-W features were firstly
extracted by using time domain, frequency domain, and
energy entropy methods. In time domain, we introduced
Hurst exponent as the time domain feature of the current
signal. In order to obtain more arc fault information on
the basis of frequency-domain harmonics, we calculated the
inter-harmonic variance of the current signal as a frequency-
domain feature. In order to realize the comprehensive detec-
tion of AC arc faults of aviation cables, we used the wavelet
energy entropy as the energy entropy feature to achieve three-
dimensional feature extraction. However, the extracted fea-
tures were affected by load type, wire type, and fault point,
so it was difficult to flexibly and effectively detect arc faults
by setting the H-I-W determination threshold alone. In addi-
tion, different types of arc currents showed different trends,
so it was impossible to apply a fixed detection threshold
value in different kinds of arcs. Therefore, based on the
advantages of CNN and LSTM neural network, we designed
a CNN-LSTM hybrid network arc detection model with a
simple structure and stable computational efficiency. The
extracted three-dimensional features were then fed into the
CNN-LSTM detection model so as to realize the intelligent
detection of AC arc faults.

Current data acquisition

¥ Y
Time domain Frequency domain Energy entropy
domain
Hurst Inter-harmonic wavelet energy
exponent variance entropy

¥

CNN-LSTM arc detection model

]

FIGURE 8. Arc fault detection scheme.

IV. ARC FAULT FEATURE EXTRACTION
Traditional arc fault detection methods are often used to
analyze a certain characteristic of arc signals, but it is difficult
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to achieve the same detection effect on different types of
arc faults with these methods. Therefore, in order to break
through the limitations of traditional arc signal feature extrac-
tion methods and achieve effective detection of different
types of AC arc faults, the time-frequency-energy of the
signals is analyzed based on the short-time Fourier trans-
form (STFT) in this section. The two-dimensional distri-
bution of time-frequency-energy provides the basis for the
selection of three-dimensional features of arc signals. Then,
the H-I-W three-dimensional features are extracted with an
improved algorithm and used as the feature data basis for fault
detection.

A. STFT AND FEATURE SELECTION ANALYSIS

As a combination of fast Fourier transform and time window,
STFT is mainly used to determine the frequency and phase of
the signal in a local area. The primary method is to select a
time-frequency local window function A(t). It is assumed that
h(t) is stationary in a short time interval. Then, 4(¢) moves in
such a way that x(¢)h(¢) is a stationary signal in different finite
times. Finally, the power spectrum is calculated at different
finite times. The discrete STFT equation is provided below:

STFT (v, f: h) = Zf X(Oh(t — D P AL, (1)
1

where 1 is the moving distance of the window function; f is
the sampling frequency; [#1, 2] is the sampling interval; x(¢)
is the sampling current; At is the sampling time step.

In order to clearly display the energy distribution trend in
the time-frequency domain, energy is calculated as:

E(t,f;h) = 10log |STFT (z,f; h)|* . )

Discrete short-time Fourier transform is performed on the
test current shown in Fig. 6. Its energy is calculated and the
time, frequency, and energy distributions are plotted in a two-
dimensional coordinate system, as shown in Fig. 9.

When an arc occurred, the time-frequency-energy distribu-
tion of the current was obviously different from that under the
normal state at the location where the arc occurred (Fig. 9).
The combination of time domain, frequency domain, and
energy clearly highlighted the unique characteristics of an
arc. Therefore, in this paper, the features were extracted
respectively from the time domain, frequency domain, and
energy domain and then combined together to obtain three-
dimensional features for arc fault detection. However, the
combinations of too many features limit generalizability and
lead to overfitting and fewer feature combinations lead to the
loss of a lot of information. Therefore, in this paper, based on
a large number of experimental simulation data and the real-
time detection requirement in UL1699 standard, a feature was
respectively selected in the time domain, frequency domain,
and energy domain and combined together in order to achieve
effective detection of arc faults.

In the time domain, compared with the representative
indicators such as kurtosis, skewness, and form factor, the
Hurst exponent introduced in this paper can better reflect the
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FIGURE 9. Time-frequency-energy distributions of arc test current:
(a) vibration test, (b) cutting test, and (c) wet arc trajectory test.

characteristics of the current. In the frequency domain, the
centroid frequency, the mean square frequency, and the root
mean square frequency all described the position distribution
of the main frequency band of the power spectrum, but they
were not suitable for arc fault detection. Furthermore, the
ability of inter-harmonic variance to identify partial changes
in signal frequency was better than that of the inter-harmonic
mean value, 3rd harmonic amplitude and 5th harmonic ampli-
tude. Therefore, in this paper, the inter-harmonic variance
was selected as the frequency domain feature. In the energy
domain, the wavelet stratification and the spatial distribution
analysis of energy entropy contributed to the extraction of
weak features of arcs, so wavelet energy entropy was chosen
to detect arc faults.

B. HURST EXPONENT FEATURE EXTRACTION

The Hurst exponent is a biased random walk proposed by
Hurst and widely applied in environmental variable predic-
tion, nonlinear analysis of the stock market, tool wear mon-
itoring, cemented carbide drilling fault monitoring, and DC
arc detection of vehicles [27], but it has not yet been applied
in the AC arc fault detection of aviation cables. The main
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methods of extracting the Hurst exponent in this paper are
introduced as follows:

Firstly, for a given time series x(i) with the length, N, x(7)
is divided into M subsequences with the length n. The mean
Mn.m Of the subsequences is expressed as:

1
P =~y X m), 3)

where x(i, m) is the i-th data in the m-th subsequence of the
signalandm =1,2,..., M.
The mean adjustment sequence is defined as follows:

Di,mZx(i,m)_,U«n,m, i=1725"'7n‘ (4)

The cumulative dispersion Z;,, of the subsequence is
expressed as:

i

Zim= ) _._ Dim i=1,2,...,n 3)
j:

Secondly, the subsequence range R;is calculated as:
Ry = max {Z;,;} — min {Z; ,}. (6)
1<i<n 1<i<n

Thirdly, the standard deviation S; of the subsequence is
calculated as:

1
Sa = \/ =D Ol m) = ). ™

Fourthly, the mean R/S for each rescaling range Ry /Sy and
all M subsequence rescaling ranges is calculated as:

1

M
RIS =+ Zm=1 Ry/Sq. (8)

Finally, the Hurst exponent of the subsequence is calcu-
lated as:

R
log§=H10gn+logC, C)

where H is the Hurst exponent and C is a constant. Taking the
current signal per cycle as a time series, the size of the time
window nis N, N/2, N/4, N/6, N/8, and N/10 in turn and the
calculation steps of Equation (3) to Equation (8) are repeated.

The slope H is estimated by linear regression with 6 differ-
ent values of n. In the value range of H, [0, 1], when0 < H <
0.5, the time series is pink noise and its power spectral density
is inversely proportional to the frequency; when H = 0.5, the
time series is a random walk and the future trend cannot be
predicted with existing data; when 0.5 < H < 1, the time
series is chaotic and future variable changes can be predicted
with existing data; when H = 1, the time series is a straight
line.

The Hurst exponent is calculated for the three test currents,
as shown in Fig. 10.

Before the arc occurred, the Hurst exponent of the cur-
rent was close to 1 and the currents in adjacent cycles
were correlated with each other (Fig. 10). When an arc
fault occurred, the value of the Hurst exponent decreased
sharply and the Hurst exponent waveform fluctuation range
was greatly increased. These changes might be interpreted as
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FIGURE 10. Hurst exponent of arc test current in various tests:
(a) vibration test, (b) cutting test, and (c) wet arc trajectory test.

follows. The occurrence of the arc decreased the correlation
between the currents at adjacent moments, so the randomness
of the Hurst exponent distribution per cycle increased. It was
found that the value of Hurst exponent of the arc cycle was
smaller than that in the normal state. The value of Hurst
exponent was always greater than 0.5, so the Hurst exponent
could be used to predict the occurrence of future arc faults.

C. INTERHARMONIC VARIANCE FEATURE EXTRACTION

The frequency-domain method is a signal analysis method
with the good real-time performance. It mainly diagnoses and
detects a fault based on the fluctuation of the content of signal
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FIGURE 11. Inter-harmonic variance of arc test current in various tests:
(a) vibration test, (b) cutting test, and (c) wet arc trajectory test.

component and its detection result has good reliability. The
main methods of extracting inter-harmonic variance in this
paper are described as follows:

Firstly, the discrete Fourier transform X(k) of the time
series x(i) is calculated as:

X(k) = ZL x(i)e W, (10)

where k = 1,2,..., N and N is the length of time series.
The intermediate harmonic components of X(k) are
selected to form a new set X;(k) of discrete Fourier trans-
forms.
Then, the inter-harmonic mean value X;(k) of the time
series is calculated as:

- 1
00 = - 30,1 KXo, ()

k=1

where N is the length of X (k).
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Finally, the inter-harmonic variance o of the time series is
calculated as:

1 N -
0 = 57 2y K10 = KiK. (12)

The above frequency domain analysis is performed with
the three test currents shown in Fig. 6 and the inter-harmonic
variance of each cycle of the current is respectively calculated
(Fig. 11).

Before an arc occurred, the distribution of the inter-
harmonic variance of currents was approximately a
horizontal line (Fig. 11). When an arc occurred, the current
inter-harmonic variance in the vibration test decreased instan-
taneously and its value was close to 0. The current inter-
harmonic variance in the cutting test and the wet arc trajectory
test increased abruptly and the fluctuation degree of the curve
increased greatly. These changes might be interpreted as
follows. The cable was separated from the terminal for a short
time in the vibration test. In addition, due to the short circuit
between lines, the current deviation degree in the cutting test
and the wet arc trajectory test became larger.

It was found that the inter-harmonic variance of the current
in the case of an arc was changed by an order of magnitude
above 10*. Therefore, the inter-harmonic variance was used
as the frequency domain feature for detecting arc faults in this

paper.

D. WAVELET ENERGY ENTROPY FEATURE EXTRACTION
Wavelet transform is an effective tool to deal with non-
stationary signals. Wavelet transform can be used to analyze
the signal at different scales and the sectional characteristics
of the signal with a better time-frequency window and realize
the detection of transient mutation and singularity of the
signal.

Information entropy is a measure to describe the com-
plexity and uncertainty of a signal. The change in entropy
indicates the change in the degree of uncertainty of a signal.
Therefore, wavelet energy entropy is an important method of
analyzing signal uncertainty in information entropy. Wavelet
energy entropy reflects the energy distribution of signals at
different scales. The main calculation methods of wavelet
energy entropy in this paper are introduced as follows:

Firstly, the energy of the i-th sampling point of the time
series at the a scale is defined as E,(7). The total energy of
the time series at the a scale is expressed as:

N .
E@=)  Ea. (13)
Then, the total energy E of the signal is calculated as:
m
E= Za:l E(a). (14)

where m is the number of dimension layers under wavelet
transform.

Finally, let p, = E(a)/E. The energy entropy of the
wavelet under the scale a is:

m
S=— Zazlpa log pa. (15)

106965



IEEE Access

X. Liu et al.: Detection of AC Arc Faults of Aviation Cables

“lof ® g
& .
‘:2, ®
%’30.5 - 1 (a)
é Oa
%0009 Lmﬁwrmmmf Toee
L
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
o IPe'riold ([I)iec'e) I
2 0.0030 | ® g
é ()
gﬁ | (b)
§ 1 - 4
M haatattaasdhatad RN

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Period (piece)
L e L B o o B T o o
®
0.006 - ® .
a =
h | J

0.004 | ®
N ©

0.002 - 4

T

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Wavelet energy entropy S

Period (piece)
@ ——Normal @—Arc

FIGURE 12. Wavelet energy entropy of arc test current in various tests:
(a) vibration test, (b) cutting test, and (c) wet arc trajectory test.

The wavelet energy entropy S is calculated based on the
current shown in Fig. 6 and the calculation result is shown in
Fig. 12.

Before the occurrence of an arc, the entropy curve of the
current was basically a horizontal line and the fluctuation was
small (Fig. 12). When an arc occurred, the wavelet energy
entropy of the current in the vibration test was increased
greatly; the wavelet energy entropy of the current in the
cutting test was increased by 1.344 to 1.875 times; the wavelet
energy entropy of the current in the wet arc trajectory test was
increased by 2.230 to 3.875 times. Therefore, when an arc
occurred, the wavelet energy entropy changed significantly,
indicating that this feature could be used to identify the arc
fault.
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TABLE 2. H-l-w features of wet arc trajectory test.

Features States Periods Loadl Load2 Load3 Load4
1 0.8976 09217 09158  0.9012

Common 2 0.8975 09213 09134  0.8962

. 3 0.8977 09215 09145 0.8924
16 0.8905  0.6529 0.8014  0.6005

Fault 17 0.8889  0.5962  0.7968  0.6435

18 0.8908  0.6637  0.7988  0.5832

1 2.5989  3.6585 2.6320  3.8989

Common 2 2.5891  3.6625 2.6547  3.6891

10* 3 2.5905  3.6405 2.6464  3.9905
16 2.8907 47750 2.8996  5.5248

Fault 17 29765 56129 3.0856  4.8759

18 2.9524 4.6782 3.0045  5.8908

1 1.2453 14657 13045  2.5823

Common 2 1.1856  1.4114 12376  2.5837

W/10° 3 1.1857 14382 1.2857  2.5856
16 5.1578  5.5789 44317 10.6487

Fault 17 4.0223  6.6893 4.8446  11.2568

18 3.8486 8.6621  5.0295  9.2267

E. FEATURE EXTRACTION ANALYSIS UNDER DIFFERENT
LOADS

In order to fully simulate the different circuit conditions in the
case of a cable arc, arc currents under different loads were
collected and analyzed, and the H-I-W three-dimensional
characteristics were calculated respectively under different
loads. Taking the wet arc trajectory test as an example, some
calculation results are shown in Table 2.

When an arc occurred, the capacitive load, inductive load,
and nonlinear load in the wet arc trajectory test could lead
to more obvious characteristic changes (Table 2). Under non-
resistive loads, the occurrence of arcs tended to be more ran-
dom and unpredictable because the fractal characteristics of
the current became weaker and the Hurst exponent decreased.
Due to the enhanced randomness and unpredictability, the
stability of the current became worse and both the har-
monic variance and the wavelet energy entropy increased
exponentially.

The H-I-W three-dimensional features were extracted
respectively from the currents of the cutting test and the
vibration test under different types of load conditions. The
analysis and comparison results showed that the H-I-W
three-dimensional features changed significantly when an arc
occurred. Statistical analysis results of multiple tests showed
that, in the same type of arc test, after an arc occurred, the
H-I-W three-dimensional feature of the current showed a sta-
ble change direction. In a word, the H-I-W three-dimensional
feature could be used to identify the occurrence of AC arc
faults.
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FIGURE 13. AC arc fault detection model of aviation cables.

V. ARC FAULT DETECTION BASED ON CNN-LSTM

The occurrence of an arc fault is random and uncertainty and
the arc fault may be affected by the type of load and wiring,
so it is difficult to identify the arc fault flexibly and efficiently
in different working environments only through manually set-
ting thresholds. A feasible method of accurately identifying
arc faults is to grasp the changes of the characteristic behavior
with intelligent identification algorithms.

Arc intelligent recognition algorithms include BP neu-
ral network (BPNN), SVM [26], DNN [29], RNN [32],
CNN [33], LSTM [36], and CNN-LSTM. Among them,
CNN-LSTM combines the advantages of CNN and LSTM
with space invariance and time invariance, so it shows more
advantages in dealing with time series and complex data.
Therefore, the arc fault detection model was established
based on CNN-LSTM in the study.

A. FAULT DETECTION MODEL AND PROCESS
The AC arc fault detection model of aviation cables based
on CNN-LSTM is shown in Fig. 13. The model is mainly
composed of an arc test, signal input layer, signal feature
extraction layer, convolution layer and pooling layer of CNN,
LSTM layer, and classification output layer. The core of the
model includes signal feature extraction, training and testing
with hybrid neural network, and fault identification.

In this paper, the arc fault detection process based on
H-I-W three-dimensional features and CNN-LSTM hybrid
neural network is introduced below:

1) Through the arc test, the arc current is collected and
saved and the current state is calibrated according to
the standard SAE AS5692A;

2) After the time window is determined, the H-I-W three-
dimensional features of the current signal are extracted.
Each feature is filled into a two-dimensional matrix of
2400 x 1250 so as to form 3 groups of feature datasets
with the size of 2400 x 1250. In the feature dataset,
2400 is the number of feature rows for three arc tests
under four types of loads and 1250 is the manually set
number of features in each row;

3) The training set (1920 x 1250) and the test set
(480 x 1250) are divided according to the ratio of 8:2
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and the dataset is labeled according to the state calibra-
tion in 1);

4) The optimal initial parameters of the model were found
with the grid search algorithm and the batch size, learn-
ing rate, iteration number W, and initialization training
number v = 1 of the CNN-LSTM network are set;

5) The training set is input into the convolution layer of the
CNN network and the secondary features are adaptively
extracted through the convolution kernel. Then the sec-
ondary features are input into the pooling layer for max-
imum pooling operation, which can reduce the feature
dimension and retain the main feature information;

6) The dimensionality reduction feature data output by the
CNN network are input into the LSTM layer in the
training process of the LSTM network and the feature
learning process;

7) The model parameters are updated with the error calcu-
lation back-propagation algorithm and the signals are
classified with the Softmax function;

8) Whether the number of training v reaches the preset
number of iterations W is determined. If it reaches the
preset number, go to the next step, otherwise return to
Step 5 to continue the iteration;

9) The test set is input into the CNN-LSTM network to
test the performance of the model. Fault identification
accuracy is calculated and the calculation result is out-
put. Finally, the calculation ends.

The detailed process of AC arc fault detection in aviation
cables is shown in Fig. 14.

B. NETWORK PARAMETER SETTINGS

Parameter setting is crucial to the training and testing results
of neural network. Based on the consideration of the char-
acteristics of arc data, the hyperparameters are selected with
the exhaustive method and the final CNN-LSTM network
parameters are set as follows:

1) CNN is designed with 5 convolutional layers. The ker-
nel size of the convolutional layer is 3 x 3 and the
activation function is ReLU. The filling method is the
same and the numbers of the channels in 5 layers are
16, 16, 64, 64, and 128, respectively.
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FIGURE 14. Flow chart of arc fault detection based on CNN-LSTM.

2) CNN has 5 pooling layers. The kernel size of the pool-
ing layer is 1 x 1 and the numbers of the channels of
5 layers are 16, 16, 64, 64, and 128, respectively. The
pooling layer adopts the maximum pooling method in
order to avoid the shift in the mean estimate caused by
small changes in the convolution kernel.

3) LSTM uses a two-layer network to learn feature
sequence information. The number of neural networks
is 128 and the activation function is Tanh. Boundary
part are filled with O in order to ensure that the output
size does not change.

4) The activation function of the Softmax layer is softmax.

5) The kernel size of the output layer is 2. The number of
channels is 1 and the output size is 2.

6) The optimal initial learning rate of 0.0001 is selected
with the grid search algorithm. The batch size is 800
and the number of iterations W = 2000. Adam opti-
mization algorithm is used to optimize the model.

In the parameter setting process, the ReLU function can
increase the network sparsity compared with the Sigmoid
function and Tanh function, thus endowing the network with
the better generalization ability. The batch size is adjusted to
train CNN-LSTM. When the batch size is 800, CNN-LSTM
has fast training speed and high detection accuracy. There-
fore, the batch size of 800 is the optimal choice. Furthermore,
H-I-W features for each of the three tests under four loads
of current are extracted and then each feature is filled in a
2400 x 1250 matrix to form a feature data set. Thus, each
group of data set contains three arc tests and four loads. The
designed arc detection model has the good generalization
ability.

In addition, ReL.U reduces the computation load and the
dependency between parameters so as to accelerate the con-
vergence and mitigate the overfitting problem. The pooling
layer reduces the number of parameters through maximum
pooling in order to prevent the CNN-LSTM network from
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overfitting. Therefore, the CNN-LSTM model can detect
faults without overfitting.

C. FAULT DETECTION RESULTS

The training set is used to train the aviation cable fault detec-
tion model and the absolute error of network training is shown
in Fig. 15.

When the number of iterations was small, the absolute error
of network training is above 0.14 (Fig. 15). When the number
of iterations exceeded 189, the absolute error of the model
decreased. As the number of iterations increased, the rate of
absolute error reduction gradually decreased. When the num-
ber of iterations reached 1200, the absolute error converged
to 0. In this way, the network model was successfully trained.

The vibration test set, cutting test set, and wet arc trajectory
test set of the same size were respectively input into the
trained CNN-LSTM neural network model for testing. The
accuracy and loss of the model test are respectively shown in
Fig. 16 and Fig. 17.
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Due to the obvious change in the characteristics of the
cutting test, when the number of iterations exceeded 1200,
the fault detection accuracy was as high as 100% (Fig. 16).
The detection accuracy of the arc fault in both the vibration
test and wet arc trajectory test was above 98.74%. When the
number of iterations exceeded 1200, the loss of the model
test converged to the minimum value and the loss value was
0.021 to 0.09 (Fig. 17).

Arc fault detection tests were repeatedly under different
types of loads. After 2000 iterations, the fault detection accu-
racy was obtained (Table 3 ). Arc fault detection accuracy
in the three tests under different loads was above 98.11%,
indicating that the method in this paper could effectively
identify and detect arc faults under different loads. The com-
prehensive average detection accuracy rate was 98.75%.

In order to verify the advantages of the combined H-I-W
features, we did not use one or two of the H-I-W three-
dimensional features for arc fault detection. The results
showed that the detection accuracy decreased when one or
two of the H-I-W three-dimensional features were not used.
Detection accuracy was decreased by 9.19% to 11.52% when
two of the H-I-W three-dimensional features were not used.
Detection accuracy was decreased by 4.24% to 6.40% when
one of the H-I-W three-dimensional features was not used.
Therefore, H-I-W features combined the advantages of three
features and overcame the shortcomings of single feature
detection. H-I-W contributed greatly to the improvement in
arc fault detection accuracy.

In the arc fault detection process, the extraction time of
Hurst exponent, inter-harmonic variance, and wavelet energy
entropy was respectively shorter than 0.059 s, 0.027 s, and
0.359 s. The extraction time of H-I-W three-dimensional
feature was shorter than 0.445 s. It took less than 0.545 s to
input H-I-W three-dimensional feature data into CNN-LSTM
for arc fault detection. Therefore, the arc fault detection could
be completed within 0.99 s, which met the real-time detection
requirement for the current level of 5 A in UL1699 standard.
Under the sampling rate of 500 KHz, the method proposed
in this paper for the three AC arc faults realized the average
detection accuracy of 98.44% and detection time of 0.132 s,
which met real-time requirements for 5 A, 10 A, and some
other current levels in UL1699 standard. All calculations
in the paper were completed on a DELL notebook (CPU
17-7500), so the proposed method could be implemented
on embedded platform like JETSON TX2. JETSON TX2
has 8 GB RAM, 59.7 GB/s memory bandwidth, and NVIDIA
Pascal GPU with 256 NVIDIA CUDA cores, which endow
JETSON TX2 with excellent neural network algorithm pro-
cessing capability.

In the actual aircraft power control system, the load cir-
cuit current was collected by SSPC in real time and then
transmitted to the CPU in the Electrical Load Management
Center (ELMC) via the bus for status monitoring, and the
ELMC then controlled the work of SSPC through feedback
commands, thus realizing real-time management of the load
circuit. The internal structure of ELMC is shown in Fig. 18.
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Therefore, the method proposed in this paper could be applied
in the CPU of the ELMC so as to monitor the arc faults in
aviation cables in real time. In addition, actual appliances
can adopt lower sampling rates (500 KHz) or neural-network
processing unit (NPU) so as to reduce the computational cost
and increase the detection speed.

D. COMPARATIVE ANALYSIS

The proposed method in this paper is compared with
advanced methods in terms of method principle, feature com-
bination, test type, maximum detection time, and average
detection accuracy. The comparison results are shown in
Table 4.

Bao et al. [13] used a fourth-order cumulative volume
algorithm to detect arc pulses at a sampling rate of 10 MHz,
but the method could not distinguish normal pulses from arc
pulses. Jiang et al. [14] combined regular coupling features
(RCFs) with SVM to determine the presence of arcs by
impulse factor analysis (IFA) and then trained the SVM to
further identify arc pulses and normal pulses by covariance
matrix analysis (CMA) and multiple frequency-band analy-
sis (MFA). This method successfully differentiated normal
pulse signals from arc fault pulse signals and reduced the
misidentification rate. However, in the vibration test and
wet arc trajectory test, when an arc fault occurred, current
pulses were scarce and the value of IFA was slightly changed,
thus causing mistaken detection of arc faults. Qu et al. [4]
achieved accurate load classification by extracting a large
number of features and learning vector quantization neural
network (LVQ-NN), and accomplished arc fault identifica-
tion by support vector machines optimized by particle swarm
optimization (PSO-SVM), but the method spent longer time
in achieving these results. Yang et al. [35] converted the
normalized one-dimensional data into two-dimensional data
and then two-dimensional grayscale image, obtained the tar-
get image by filtering and finally input it into CNN for
recognition. The method could identify the arc fault more
accurately, but it required so many computing equipment that
it was difficult to be applied in CPU. In this paper, three arc
tests were designed based on the actual induction factors of
arc faults so as to acquire more accurate simulation results.
The previous methods [4], [13], [14], and [35] were used
to detect vibrating arc, cutting arc, and wet arc trajectory
arc faults, respectively. The detection accuracy of vibration
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TABLE 3. AC Arc fault detection accuracy under different loads.

Loads Load 1 Load 2 Load 3 Load 4 Average
Vibration test 99.06% 98.32% 98.58% 98.11% 98.52%
Cutting test 100.00% 99.13% 99.26% 98.54% 99.23%
Wet arc trajectory test 98.75% 98.47% 98.62% 98.21% 98.51%
TABLE 4. Comparison between the proposed method and previous advanced detection methods.
Sources Guanghai Bao [13] Na Qu [4] Run Jiang [14] Kai Yang [35] This paper
Methods High-order cumulants ~ LVQ-NN and PSO-SVM RCFs and SVM TDV and CNN CNN-LSTM
Features Kurtosis 4 time-domain and 10 [FA+CMA-+MFA Two-dimensional HL-W

frequency-domain

Arc test types Point contact test

Ave. detection accuracy 80.6% 97.58%

Point contact test

grayscale images

Vibration test,
Cutting test, Wet
arc trajectory test

98.56%

Point contact test Point contact test

99.4% 98.7%

test arc fault of the two previous methods [13] and [14] was
below 80% and the detection time of two methods [4] and
[35] exceeded 1 s. The method proposed in this paper first
extracted the H-I-W, then the input it into CNN-LSTM for
arc fault detection, and finally achieved effective and fast AC
arc fault detection. Even under sampling rate of 500 KHz, the
average arc fault detection accuracy were still above 98.4%
and the detection speed met real-time requirements for most
of current levels in UL1699 standard.

VI. CONCLUSION

In this paper, three kinds of AC arc tests were carried out
based on the standard SAE AS5692A. After the occurrence
of AC arc faults, the current waveform changed to different
degrees and the difference between the fault current wave-
form and the normal current waveform in the wet arc track
test was the smallest. The two-dimensional time-frequency-
energy distribution of the current indicated that the combina-
tion of time domain, frequency domain, and energy entropy
could highlight arc faults and enhance the fault identification
ability. The arc fault detection method integrating H-I-W
three dimensional features with CNN-LSTM neural network
showed their combined advantages. The following conclu-
sions were drawn from the test data:

Firstly, the arc fault specific triggering factors were ana-
lyzed and based on the standard SAE AS5692A, the vibration
arc test, cutting arc test, and wet arc trajectory arc test were
designed to overcome the limitation of the traditional point
contact test.

Secondly, the introduced Hurst exponent could identify
and predict the occurrence of AC arc faults. The H-I-W
three-dimensional feature showed the combined advantages
of time domain, frequency domain, and energy entropy and
further improved the detection accuracy and robustness of the
proposed method.

Thirdly, compared with four advanced methods, the
method proposed in this paper showed the better real-time
detection performance and the average detection accuracy of
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98.56% and realized the fast and effective detection of AC arc
faults in aviation cables.

Fourthly, the feature extraction algorithm and CNN-LSTM
structure proposed in this paper were simple and met the
real-time detection requirements in UL1699 standard. The
proposed method can be applied in an actual aviation appli-
cation environment and has a certain engineering value in the
detection of AC arc faults in aviation cables.
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