IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 13 June 2022, accepted 9 September 2022, date of publication 20 September 2022, date of current version 6 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208167

== RESEARCH ARTICLE

A Decentralized Solution for Epidemiological
Surveillance in Campus Scenarios

ANDREA FORNAIA ™, GIOVANNI MAROTTA ™, GIUSEPPE PAPPALARDO -,
AND EMILIANO TRAMONTANA

Dipartimento di Matematica e Informatica, University of Catania, 95125 Catania, Italy
Corresponding author: Giovanni Marotta (giovanni.marotta@phd.unict.it)

This work was supported by the Project TEAMS—TEchniques to Support the Analysis of Big Data in Medicine, Energy and
Structures—Piano di incentivi per la ricerca di Ateneo 2020/2022.

ABSTRACT Throughout the various containment phases of a pandemic, such as Covid-19, digital tools
and services have proven to be essential measures to counteract the ensuing disrupting effects in social
and working interactions. In such scenarios, Nausica@DApp, the comprehensive solution proposed in this
paper, eases compatibility of the in-presence activities of a campus-based corporation with the organizational
constraints posed by the virus during the pandemic, or at a later endemic stage. This is accomplished
throughout several intervention areas, such as personnel contact tracing, crowd gathering surveillance,
and epidemiological monitoring. These operational requirements, in particular indirect contact tracing and
overcrowd monitoring, call for the adoption of an absolute device localization paradigm, which, in the
proposed solution, has been devised on top of the campus WiFi infrastructure, proving to be encouragingly
accurate in most cases. Absolute localization, on the other hand, entails a certain amount of server-
based centralized operations, which might affect the preservation of user data privacy. The novelty of
the proposed solution consists in maximizing confidentiality and integrity in the handling of sensitive
personal information, in spite of the centralized aspects of the localization system. This is accomplished by
decentralizing contact tracing matching operations, which are entirely carried out locally, by apps running
on the users’ mobile devices. Contact data are pseudonymized and their authenticity is guaranteed by a
blockchain. Furthermore, the proposed novel solution improves privacy preservation by eschewing recourse
to the Bluetooth app-to-app channel for user data exchange, in fact a typical choice of most current contract
tracing solutions. Thanks to a sensible use of the blockchain features, integrated into Nausica@DApp’s
microservice-based back-end, a higher degree of operation transparency can be relied upon, thus boosting
the user’s level of trust and enhancing the availability and reliability of data about people gathering within
the campus premises. Moreover, contact tracing only requires the mobile device WiFi interface to be on,
so that users are neither forced to adopt new habits, nor to grant additional device access permissions to
contact tracing apps (potentially undermining their own privacy). The overall system has been analysed in
terms of performance and costs, and the experiments have shown that its adoption is viable and effective.

INDEX TERMS Blockchain, contact tracing, data analysis, decentralized apps, distributed systems, epi-
demiological surveillance, localization, mobile applications, smart contracts.

I. INTRODUCTION
From the very beginning of the Covid-19 pandemic manifes-
tations, the healthcare, industrial and academic communities

The associate editor coordinating the review of this manuscript and

approving it for publication was Shajulin Benedict

103806 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

have converged toward a shared understanding that pin-
points the development of ad-hoc mobile apps in personal
user devices as a means to provide an efficient and reliable
response to contact tracing and epidemiological surveillance.

Nowadays, even though several vaccines have entered the
scene, we are also aware that the virus will circulate at

VOLUME 10, 2022

https://orcid.org/0000-0001-6034-855X
https://orcid.org/0000-0003-3092-6579
https://orcid.org/0000-0001-6634-068X
https://orcid.org/0000-0002-7169-659X
https://orcid.org/0000-0002-2543-2710

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

IEEE Access

alternate endemic levels until the herd immunity will be
achieved, if ever. In the meantime, it is essential to main-
tain well-established practices, such as compliance to social
distancing rules, avoidance of overcrowding, preventive swab
campaign, and forward and bidirectional contact tracing.

Among these best practices, digital tools and services for
risk control should still play a central role in the overall game,
in spite of mixed results in the level of acceptance among
users so far. In fact, from the early days of the pandemic,
national contact-tracing apps have instilled some privacy pre-
serving concerns, especially if de-anonymized and linkable
information are available to central authorities for contagion
risk follow-ups [1], [2], [3].

It is well-known that a centralized solution can provide
more effective responses to epidemiological surveillance
issues, especially when coupled with absolute user localiza-
tion. Unfortunately, such solutions, culturally accepted only
in specific contexts, are more prone to well-known privacy
concerns [4], [5].

For instance, South Korea’s Col00 relies on GPS or cel-
lular network localization data with the aim of providing
a publicly available website (https://coronamap.site), which
tracks infected people trajectories. Though initially encrypted
and anonymized, this information can be unveiled and pro-
vided to health authorities for contact tracing. Similarly,
Singapore’s TraceTogether, which implements relative user
localization and a very sophisticated encryption protocol for
data exchange [6], can enable the central server, owned by the
Ministry of Health, to de-anonymize user identities.

In addition to individual privacy concerns, centralized
solutions do not encourage users to trust the veracity of
the publicly available aggregated data, particularly about the
effects of the pandemic spread, and nowadays of the vaccine
campaign, on the number of infected people and deaths.
Consequently, such solutions need to implement transparency
measures to guarantee and demonstrate that sensitive per-
sonal information and aggregated data are collected and used
without counterfeiting them [7], [8].

Similar privacy and trust concerns can also be encoun-
tered in private environments where digital applications for
pandemic monitoring are deployed. Known solutions in
the literature do not tackle such issues. This is the case
with WiFiTrace [9], which monitors personnel flow in a
campus environment, based on a server-centric architec-
ture for data exchange, storage and processing. Similarly,
vContact (https://repository.hkust.edu.hk/ir/Record/1783.1-
113518) uses WiFi to recognise smartphones and a mobile
app to store location data and check whether a location later
marked as infected had been visited.

A significant shift in user perception can be brought about
only by promoting a shared understanding of collected data
treatment. The blockchain technology [10], with its trans-
parency, based on mutually shared trustworthiness, can open
new frontiers in this territory [11]. The World Health Organi-
zation, for instance, has been involved with major technology
companies and governments in the design and deployment of

VOLUME 10, 2022

MiPasa [12], a worldwide control and communication plat-
form fuelled by the blockchain technology, which has been
employed to enable individuals, state authorities and health
institutions to gather, share and correlate data to determine
early detection of Covid-19 carriers and infection hot-spots.

Furthermore, a significant number of blockchain-based
contact tracing applications have been proposed as an alter-
native to centralised solutions, as described in more detail
in Section VII. This alternative and viable approach can
help solution designers to heighten the trust level that users
would acknowledge to the application they are supposed to
download and activate in their personal devices [13]. In such
a way, a higher degree of adoption rate of contact tracing apps
should be consequently achieved, thus allowing the solution
to be fully effective.

The solution proposed in this paper, named Nausica@-
DApp, provides significant and viable answers to the chal-
lenges posed by an epidemiological surveillance scenario
on campus premises. Its original design [14] is meant to
trace personal contacts and handle overcrowding in university
activities according to the following key choices.

o A hybrid decentralized approach in the implemented
contact tracing algorithm, so as to prevent the typical
privacy preserving issues related to centralized solutions
in this application arena.

e An ad-hoc, tailored approach to user localization
through WiFi sensing of the campus infrastructure. Such
a feature enables the presence of Covid-19 positive
users to be detected and localizes them in time and
space, for the purpose of both direct and indirect contact
tracing.

o The integration of Nausica@DApp’s back-end with
specifically designed blockchain components. This
allows extra decentralization, trustworthiness and trans-
parency features to be added to the handling of the
user information collected by the system and distributed
among involved actors; such additional features include:
(i) absolute localization; (ii) contact tracing data;
(iii) aggregated data for epidemiological follow-ups.
The blockchain features are cleverly chosen in order not
to compromise the overall system performance, scala-
bility and affordability.

The remainder of this paper is organized as follows.
Section II introduces the background on blockchain tech-
nology. Section III explains the system design choices and
solution features. Section IV presents the back-end design.
Section V describes in some detail the implemented software,
focusing on blockchain-related aspects. Section VI shows
the experimental results obtained putting to work the solu-
tion prototype. Relevant related work is outlined and com-
pared in Section VII, before drawing the final conclusions
in Section VIIIL.

Il. BACKGROUND ON BLOCKCHAINS
This section presents the core features of blockchain and
smart contracts technology and pinpoints its main limitations.

103807

IEEE Access

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

A. BLOCKCHAIN FEATURES

A blockchain is technically a peer-to-peer distributed ledger
that registers cryptographically signed transactions in a
sequence of linked blocks, namely the chain, in an append-
only fashion. Each of the chained blocks stores data—such
as a timestamp, a nonce or a set of transactions—and a
cryptographic reference to the previous block’s hash. Since
every hash is unique, every block is linked to a unique parent
all the way up to the “genesis block”, which is the first one
in the chain. Blockchain technology combines different well-
known concepts such as digital signatures, cryptographic
hashing functions, and decentralized consensus algorithms,
which validate all the registered transactions without requir-
ing a central authority. The addition of new data to the chain
is in fact a decentralized activity carried out by all peer nodes
running the agreed-upon consensus algorithm, whose global
convergence ensures the reliability of the blockchain and
the correctness of the data saved in the blocks, once each
transaction has been validated and included in a new block.

The two most popular blockchain platforms, Bitcoin
[15], [16] and Ethereum [17], were designed on the basis of
the Proof of Work (PoW) consensus algorithm [18], which is
a computationally intensive mechanism. The resulting high
energy consumption, while discouraging dishonest nodes to
transmit malicious blocks to the network, represents a major
drawback that has led to the adoption of alternative con-
sensus algorithms [18], such as Proof of Stake (PoS) and
Delegated Proof of Stake (DPoS), Proof of Authority (PoA),
and so on.

The properties provided by the hash function render the
blockchain practically immutable, thus making this technol-
ogy suitable to ensure authenticity of the stored data.

Blockchains can be public (or permissionless) and private
(or permissioned). In a public blockchain, anyone can view
the transactions, write data, or run a validator node. Private
blockchains, usually managed by few permissioned nodes,
may become more scalable and secure, but at the expense
of decentralization, according to the blockchain trilemma,
which is better explained in Subsection II-C.

B. SMART CONTRACTS

Ethereum is the first distributed ledger technology that has
introduced the possibility to run smart contacts, namely pro-
grams of arbitrary length and complexity, whose executable
code is saved in the blockchain storage [19].

Each smart contract is identified by a unique storage
address, which references an account to which digital coins
and storage space are linked. At low level, any smart con-
tract is compiled to bytecode and sequentially executed by
a virtual machine, which runs in each node of the network,
once it has been invoked by a transaction sent to its address.
The language complexity of smart contracts and the virtual
machine architecture make the latter a Turing-complete sys-
tem that could potentially run in infinite loops and never

103808

terminate, potentially freezing the entire network. To prevent
this, Ethereum has introduced a unit, called gas, which mea-
sures the amount of computational effort required to execute
specific operations on its virtual machine. Each bytecode
instruction is associated with a cost, called gas cost, measured
in gas units, which users must reward the validating node
with when they ask to execute a smart contract’s code. Gas
costs of instructions are predetermined by the network and
only alterable through a protocol upgrade. When users send
a transaction (e.g. to invoke a smart contract), they must set
the gas price, i.e., the price in gwei they are willing to pay
for the gas unit cost of their transaction. A gwei (gigawei)
is worth 10~ Eth (Eth stands for Ether, Ethereum’s native
coin). Of course, the transaction takes place when some miner
accepts the user’s offered price. As a result, the average
amount (in gwei) paid for a gas unit fluctuates over time,
as shown by trackers such as https://etherscan.io/gastracker.
Besides gas price, users set a maximum amount of gas
units planned for execution, called gas limit. If an execu-
tion requires more gas than the gas limit specified by the
user, a special out-of-gas exception is thrown and the virtual
machine’s state is reverted to one prior to the execution.
In this case, the user will still have to pay the gas to the
validating node as a countermeasure against potential Denial
of Service attacks [20]. Note that a block gas limit is also
enforced by Ethereum’s blockchain protocol, which provides
an upper bound to the possible amount of data and process-
ing that any transaction can incur during a smart contract
execution.

C. BLOCKCHAIN LIMITATIONS

Blockchain technology, in its constantly evolving stages, tries
to address several issues. First and foremost, the one known
as the “blockchain trilemma” initially formulated by Vita-
lik Buterin, states that, regarding scalability, security and
decentralization, any improvement in one of these aspects
will negatively impact on at least one of the other two [21].
This means that a fine tuning of these three factors has to be
performed when designing a blockchain system solution.

Although the introduction of gas limits the amount of
data and computational effort that can be spent to process
a single block, a major issue is represented by transac-
tion costs, which can also drastically rise during network
congestion. Transaction fees can range from a few frac-
tions to hundreds of dollars and have exhibited an uptrend
over time (https://blockchair.com/ethereum/charts/average-
transaction-fee-usd).

In the blockchain domain, program bugs trigger some
peculiar software development challenges. Due to the
immutability feature of blockchains, once a smart contract
has been deployed on the blockchain, it cannot be modi-
fied (although it can be deleted). Consequently, patching a
deployed contract is impossible, and for this reason, a signif-
icant number of smart contracts are considered to be vulnera-
ble. In 2016, a symbolic execution analysis tool showed that

VOLUME 10, 2022

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

IEEE Access

45% of 19,366 smart contracts were vulnerable with at least
one security issues [22].

Ill. THE NAUSICA@DAPP SOLUTION

From a system architecture perspective, Nausica@DApp is a
mixed decentralized solution, in which contact tracing algo-
rithms are run at the mobile DApp side, while the back-end
server supports user absolute localization, real-time monitor-
ing of premises occupation and collected data aggregation.

Nausica@DApp does not leverage the Bluetooth channel
for proximity detection, as in most similar solutions, thus
eschewing the typical privacy concerns related to such a tech-
nology [23], [24]. Rather, Nausica@DApp uses the combined
app-to-server and server-to-app channels supported by the
campus WiFi infrastructure or the cellular network.

The adopted absolute localization of active devices allows
the proposed solution to fulfil satisfactorily the major require-
ments of our project, which are listed below:

« direct (i.e., synchronous) contact tracing;

« indirect contact tracing (i.e., asynchronous, within the

contagiousness time-frame);

« premises occupation counting with overcrowding condi-

tions detection.

A. SYSTEM OVERVIEW

A simplified view of the system architecture is depicted
in Figure 1, which shows the dominant information flows
between system components.

Microservice Back-end

overcrowd Location Data Aggregator
hash-pointer storage @ f ﬂ

Notification i .
N pandemic data's
Service positive Location COVID-19
e Positive
notification Resolver .
Handling

pandemic
data storage

Blockchain

WiFi positive
fingerprint presence data
overcrowd and positive alert ic data :
> D SRR R LR ‘
—~\
@ > WiFi Scan data's hash-p s
PN €
> >
- . mobile push
WiFi Access Points === pull
App

FIGURE 1. Mutual interactions of Nausica@DApp system components.

The administration back-end has been implemented in
accordance with a microservice architecture, which is more
extensively detailed in Section IV. It interacts with an exter-
nal Notification Service, which provides a scalable solution
to send push notifications to the mobile Nausica@DApp-
enabled devices. It also interfaces with System DB in Figure 1,
the adopted database (whether centralized or decentralized)
in which pandemic-related data are stored at the disposal of
authorized parties. Presence anonymized data are hashed and
hashes are used as keys to refer to them in blockchain-related
operations. For this reason they will be termed hash-pointers
hereafter.

VOLUME 10, 2022

The design incorporates ad-hoc blockchain wallet and
smart contract capabilities into the system architecture.
In particular, these added features enable the back-end server
to expose, in a decentralized and unforgeable storage, the
hash-pointers to the anonymized proximity data needed by
the mobile DApps to perform the internal matching opera-
tions for contact tracing. Furthermore, the blockchain com-
ponents will allow other involved stakeholders, such as the
academic community and the health authorities, to retrieve
aggregate data about pandemic trends in a transparent and
shared consensus-driven environment.

B. DEVICE LOCALIZATION

The proposed solution displays, among other features, indi-
rect contacts tracing and real-time monitoring of premises
occupation, which inherently require absolute localization of
devices, i.e., positioning them in space within determined
time intervals. WiFi sensing has proven to be an appropriate
choice to fulfil such a requirement, both when it leverages the
WiFi enterprise campus infrastructure already in place and
when it relies on external service providers.

Even though scientific literature warns that WiFi indoor
localization may be a complex task to accomplish [25], our
basic idea is that an Access Point (AP for short) deployed
in a closed environment (e.g., a laboratory) will emerge—
most of the times—as the one radiating the most pow-
erful signal strength, to such an extent that the device
absolute position can be comfortably determined by the
system software. Subsection VI-A of this paper will make
it experimentally evident that such a choice is compati-
ble with most indoor areas within the campus premises.
In order to deal with the unlucky case of garbled WiFi loca-
tions or outdoor spots, our solution’s localization algorithm
resorts to an external WiFi positioning provider (https://en.
wikipedia.org/wiki/Wi-Fi_positioning_system) via standard
RESTful APIs.

The mobile DApp side features a GPS-driven mechanism
which triggers the WiFi fingerprinting collection as soon
as the device enters the monitored premises (this could be
required for compliance with privacy and/or campus admis-
sion rules).

Each active instance of the DApp, in the initialization
phase, first registers with the central administration server;
in response, it gets back a registration user-ID that uniquely
and anonymously identifies it.

After that, as shown in Figure 2, the mobile DApp initiates
device localization operations by scanning the surrounding
WiFi signals from APs and measuring signal intensity or
RSSI (Received Signal Strenght Indicator) (step 1). Then,
the DApp sends the Location Resolver service the collected
WiFi fingerprint data, made up of RSSIs measured in four
consecutive scans (step 2).

The Location Resolver then performs the following logical
steps:

« it determines the Access Point’s MAC/BSSID with the

strongest RSSI among the four scans;

103809

IEEE Access

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

4. location
counter or
overcrowd
detection

....... 3¢ location | Room 1 (5/10)
counter update | Room 2 (20/25)
Room 3 (22/20)

Location data

Location Data
Aggregator

Notification
Service

Location Resolver

2. WiFi
fingerprint

3a. location

N —>» push
resolution

--% pull

5. counter notification
or overcrowd alert

3b. presence | To: Room 2

2D data tipdate | T1: Room 2
fad T WEE: Qean T2: Room 3
= 1. WiFi Scan
= mobile Presence
WiFi Access Points App History

FIGURE 2. Absolute device localization process in normal or overcrowd
conditions (red text): information flow among system components.

« it checks whether the anonymous user-ID has already
been associated with the same AP, a different one,
or none;

« it looks up in a pre-loaded table which indoor location
(e.g., hall, corridor, etc.) corresponds to the selected
Access Point;

« it sends the selected dominant AP’s MAC/BSSID, along
with the associated location name, to the originating
device (step 3a), which, in turn, updates its local pres-
ence history records (step 3b).

Following the absolute localization of a device, two more
actions occur.

At the server side, a dedicated service, the Location Data
Aggregator, updates the counters related to the involved
Access Points for overcrowd monitoring (step 3c). For each
monitored location, if the counter exceeds a configurable
threshold, (i.e. Room 3’s counter), all the active devices
will be notified with an overcrowd alert or, conversely,
the devices will only be notified with the updated counter
(steps 4 and 5).

At the mobile DApp side, the selected dominant AP’s
MAC/BSSID will be used to build and temporarily store
an internal object, named Presence Data, which can be
represented, in a loose JSON notation, as:

{AP-BSSID, Timestamp, Time-To-Live}

to be exploited in the contact tracing matching phase,
as explained in Subsection III-C. The collection of these
internal objects makes up the Presence History, defined
as the temporally ordered sequence of presences stored on a
device and not yet expired.

C. CONTACT TRACING WORKFLOW
Figure 3 shows the contact tracing process, made up of the
steps discussed below:

1) if a positive-tested user wishes to adhere to the con-
tainment program, they should send their Presence
History to the central server provided that the app
has been authorized beforehand by means of a code
released by an administrator;

103810

3. presence history event

Notification 2a. presence Covid-19 Positive
Service { history upload Handling
- > 2b.
4. positive — b pre.sence 1. presence
notification s history's hash .
ystem history tx
broadcast upload
DB
Sb.presence
history download
(,53,-,9[9,5,%’!99 history's]
hash download @_@
mobile App - mobile App
(a generic user) Blockchain (a positive user)
To: Room 1 To: Room 2
T1: Room 3 | ©- Presence IT1: Room 3
T2: Room 3 | history match IT2: Room 2
Presence . _)’ g;fh Presence
History History

FIGURE 3. Contact tracing process, involving smart contracts (blue text
and arrows), with positive matching (red entries in presence histories).

2) the server writes the Presence History of the
positive user to a newly created DB item (2a) and stores
a hash-pointer to the latter in a blockchain dedicated
data structure (2b);

3) the indexed references to the stored blockchain infor-
mation are then transmitted by the server to the
Notification Service;

4) the Notification Service pushes a contagion risk noti-
fication to the user apps along with the indexed refer-
ences to the blockchain data structure which, in turn,
contains the hash-pointer to the Presence History
of the positive user;

5) each notified app pulls the Presence History
of the new positive user from the relevant DB loca-
tion (5b), through the hash-pointer previously retrieved
from the blockchain (5a);

6) each app correlates, according to a given heuristics,
places and times in the Presence Data contained in
the pulled Presence History of the positive user
with its locally stored own, in order to detect direct and
indirect contacts.

IV. SYSTEM BACK-END

The overall back-end architecture is made up of three major
components: a microservice-based central server, which acts
as an administration entity for the whole system; a noti-
fication service, and a blockchain platform, which extends
the back-end original design by adding the immutability and
tamper-proof properties to the management of contact tracing
and overcrowd conditions.

Figure 4 shows the central server microservice architecture.

Microservices have been implemented using the well
known Spring (https://spring.io) Java Framework to obtain
small and process-independent services.

The central server interacts with an external Notifi-
cation Service, hosted by the Firebase Cloud Messag-
ing (https://firebase.google.com/products/cloud-messaging)
platform, which provides a scalable solution to send push
notification to the mobile DApp devices.

VOLUME 10, 2022

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

IEEE Access

-

—_—
System
DB

pandemic
data storage

pandemic data retrieval

Microservice Back-end

v
mobile| presence API positive | microservice | async blockchain | microservice
PP | history tx Gateway | notification tr request bl

A

A periodical crowd

H gathering measure

' location microservice presence history

resolver

i blockchain

. I t ti
crowd and positive alert | Notification ransaction

Service @ _@

'l hash-pointer to pandemic data retrieval

FIGURE 4. Back-end architecture with blockchain integration (blue items).

Three microservices have been implemented:

1) a microservice-manager responsible for managing
notifications from infected users;

2) a microservice-notification interacting with the Notifi-
cation Service to both prepare the notifications for the
mobile DApp users and periodically measure gather-
ings at university locations to be later forwarded to the
blockchain;

3) a microservice-blockchain, which adds a back-end
component to the decentralized app architecture and is
responsible for:

o the sending of pandemic data to the system
database and hash-pointers the blockchain storage;

o the creation of the blockchain transactions
upon asynchronous requests issued by the
microservice-manager;

« the interaction with the microservice-notification
to start the alert process towards the Dapp clients.

A. BLOCKCHAIN COMPONENTS

As introduced in Subsection III-A Nausica@DApp is a com-
plete contact tracing solution whose decentralized approach
is enhanced by the introduction of blockchain elements,
which add new features of open trustworthiness among dis-
tinct involved entities.

In our prototype, Ethereum (https://ethereum.org/en) has
been identified as the development blockchain platform due
to its mature programming model and its account-based
paradigm, which characterizes its virtual machine and storage
design [19]. Moreover, the availability of advanced envi-
ronments for smart contract deployment and testing, such
as the Kovan (https://kovan.etherscan.io) and the Ropsten
(https://ropsten.etherscan.io) testnets, has further prompted
the choice of the Ethereum ecosystem for our experiments.

In our decentralized approach, enabled by the deployed
smart contract logic, user presence information can now
be collected in either a centralized or distributed storage
and made reachable to the involved parties in a transpar-
ent, authenticated and unforgeable manner. Moreover, crowd

VOLUME 10, 2022

gathering data can be aggregated and stored on similar data
repositories and exposed for further processing to any con-
cerned individual or organization by means of a blockchain-
driven access mechanism.

Hereafter, the features of the smart contracts that have been
integrated in our solution, and their mutual interactions, are
described. A graphical representation is given in Figure 5.

report notification department hash

report hash
i timestamp
Health Authorities logs T
periodical _ Oven;;rowdReporl
(feeding
______ Smart Contract
new report |)
Notification Microservice | EOA :
Service on positive Back-end ;Wallet;
detection _____~--oe- - - PresenceHistory
L on positive M
detection Smart Contract
positive notification | | blockehain logs | pseudonym hash
) presence data hash
> ELLJJIISh timestamp

mobile App

FIGURE 5. Interactions of smart contracts with system components in
two scenarios: positive detection (red) and overcrowd reporting (black).

The smart contract design envisages two smart contracts,
one for each working scenario, namely “‘contact tracing’” and
“overcrowd monitoring”.

In the contact tracing scenario a PresenceHistoryMan-
ager contract is used. It is a single-instance smart contract
deployed and interacted with through the relevant blockchain
back-end microservice which, in turn, is associated with an
Ethereum Externally Owned Account (EOA) [19]. The sce-
nario flows according to the following operations:

1) each time the server receives a notification from a
positive-tested user’s device it securely stores the rel-
evant Presence History (see Subsection III-C)
in a DB item, whose related hash-pointer is now
computed;

2) the server’s microservice-blockchain sends the hash-
pointer and the SHA3 hash of the anonymized user ID
to the PresenceHistoryManager, by triggering a proper
transaction containing the associated function call;

3) as soon as the block containing the above transaction
is validated, the PresenceHistoryManager creates an
event containing the two received hashes and the block
timestamp that are included in the blockchain transac-
tion logs, according to the Ethereum Virtual Machine
programming paradigm, for external applications to
retrieve them;

4) upon confirmation of the execution of the triggered
transaction, the microservice-blockchain sends the
Notification Service the hash-pointer to the stored
Presence History; this will be notified to all
Nausica@DApp-enabled mobile devices, so that they

103811

IEEE Access

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

microservice- microservice- microservice-

manager blockchain notification
positive user's
presence history write re
quest D
message - . —
" positive user's Syst
mob_ll_e App presence history ystem
(a positive user) DB
hash-pointer to P:,’s'e"‘:e
Notification presence history istory
N <« Manager
Service Contract
L Blockchain
hash-pointer to
presence history forward
mobile App positive request with
(a generic user) hash-pointer to presence history

FIGURE 6. Positive user reporting workflow through system components.

can download the Presence History from the DB
through the received hash-pointer;

5) finally, the mobile devices can perform contact tracing
matching with their own locally stored data.

B. POSITIVE DETECTION WORKFLOW

A simplified workflow of the scenario presented in the previ-
ous subsection is depicted in Figure 6, with regard to how the
distributed system services and components interact.

The process starts when a Nausica@DApp-enabled device,
belonging to a positive user, notifies the microservice-
manager and transmits its locally collected Presence
History linked to the anonymized user-ID.

These user data are first passed onto the microservice-
blockchain, by means of an internal write request message,
hashed and then stored in the hash-referable System DB.
The distinctive behavior driven by the introduction of the
blockchain features starts now: the microservice-blockchain,
through its Externally Owned Account (EOA) component,
creates the transaction carrying the hash-pointer to the DB
location storing the Presence History, and sends the
created transaction to the PresenceHistoryManager smart
contract. This, in turn, emits the event logging the hashed
information needed by the Nausica@DApp-enabled devices
to retrieve the positive user’s anonymized Presence
History from the system DB.

Upon reception of a transaction completion message,
the microservice-blockchain sends the hashed information,
stored in the blockchain transaction logs, to the microservice-
notification. This calls the Notification Service to alert all
the registered users that fresh data is coming in from a new
infected user. The notification payload envelops the hash-
pointer to the Presence History along with a timestamp
returned by the blockchain.

Integration of both centralized and decentralized sys-
tem DBs has been tried and successfully accomplished in
the prototype system. A cloud-based MongoDB’s instance
(https://www.mongodb.com) has been tested as a centralized
key-value solution to host pandemic bulk data off-chain.

103812

As an experimental decentralized counterpart, the InterPlan-
etary File System (IPFS) (https://ipfs.io) has been selected.
The centralized option is advisable when additional access
rules to the stored data are required by the application context;
on the other hand, adopting a decentralized DB extends the
decentralization paradigm advocated in our approach up to
the main storage component.

Dissemination of the overcrowd monitoring data follows
a similar business logic as the previously described ones.
A specialized OvercrowdReportManager contract, owned by
the microservice-blockchain EOA, periodically (e.g. twice a
day) creates transactions that deal with the SHA3 hash of
contagion-related aggregate data, such as the occupation rates
of each monitored location. An occupation rate data object
is typically made up of a site-ID, a timestamp, and
aggregation values such as maximum number and aver—
age number of attendees. The smart contract execution and
the notification service are very similar to the contact tracing
scenario’s. The stored data will be made publicly available to
a variety of stakeholders (health authorities, students, audi-
tors, etc.) who can access them through a blockchain-enabled
reference mechanism and additional system DB access con-
trol rules.

V. SYSTEM SOFTWARE

This section gives more detailed specifications about the
system software, especially with regard to the blockchain-
related code.

A. MICROSERVICE-BLOCKCHAIN SOFTWARE

Figure 7 shows a microservice-blockchain’s code fragment
withthe InfectionManagerBlockchainService ()
constructor creating the Presence Manager Contract.
The developed Java classes import the Web3j library
(https://github.com/web3j/web3j) that wraps, at a higher
programming level, the JSON-RPC APIs exposed by the
Ethereum nodes to access the blockchain.

public class InfectionManagerBlockchainService {
private InfectionManager infectionManager;
public InfectionManagerBlockchainService () {
HttpService httpService = new HttpService (AppConfig.BLOCKCHAIN_ENDPOINT_URL)

Web3j web3j = Web3j.build(httpService);

Credentials cred = Credentials.create (AppConfig.
BLOCKCHAIN_MAIN_ACCOUNT_SECRET_KEY) ;

infectionManager = InfectionManager.load (AppConfig.
INFECTION_CONTRACT_ADDRESS, web3j, cred, Constants.GAS_LIMIT,
Constants.GAS_PRICE); }}

FIGURE 7. Creation of the presence manager contract.

As mentioned in Subsection IV-A, an Externally Owned
Account (EOA), managed by a digital wallet facility, needs
to be linked to the microservice in order to enable the
creation, the deployment and the interaction with the Pres-
ence Manager Contract. The EOA is created, in our proto-
type testbed, by means of the MetaMask browser extension
(https://metamask.io), which handles the EOA balance, and

VOLUME 10, 2022

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

IEEE Access

digitally signs the transaction generated by the microservice-
blockchain of the administration server.

Our code uses the Web37j.build (httpService)
method call to establish a connection between the micro-
service-blockchain software and a http end-point, which,
in turn, acts as an access point to the blockchain network. The
endpoint is provided by the cloud-based Infura infrastructure
(https://infura.io), which is semantically equivalent to a proxy
Ethereum node.

B. SMART CONTRACTS

The smart contracts employed by Nausica@DApp have been
developed, deployed and tested by means of specialized tool-
ing such as Remix (https://remix.ethereum.org). Deployment
and testing on the Kovan and Ropsten testnets have been
carried out with the intermediation of Metamask. Here we
discuss PresenceHistoryManager as an example, Overcrow-
dReportManager having a basically similar structure.

The code listing in Figure 8 refers to the contact trac-
ing scenario in which, as an outcome of the execution of
function newInfection (), the PresenceHistoryManager
emits the event newHistoryInserted (), thus storing in
the transaction logs, inside the Receipt Trie of the Ethereum
blockchain, the following parameters:

1) pseudonymHash, the infected user’s hashed pseudo-

nym, for indexed research of associated events;

2) presenceHistoryHash, representing the hash-

pointer to the JSON Presence History DB object;

3) timestamp, corresponding to the block’s time regis-

tration in the chain.

Once the transaction has been successfully completed,
the microservice-blockchain can initiate the presence history
notification process, previously discussed in Subsection IV-A
and depicted in Figure 4. This will eventually supply the
mobile apps with all the references to the blockchain trans-
action logs, which contain hash-pointers to DB items storing
the anonymized infected user’s Presence History.

contract PresenceHistoryManager {
address payable public owner;

event newHistoryInserted (bytes32 indexed pseudonymHash, bytes32
presenceHistoryHash, uint timestamp);
constructor ()
owner = msg.sender; }

function newInfection (bytes32 pseudoHash, bytes32 presenceHash) external {
emit newHistoryInserted(pseudoHash, presenceHash, block.timestamp); }
function destroy() external {
require (msg.sender == owner);
selfdestruct (owner); }}

FIGURE 8. Presence history smart contract.

Figure 9 shows a fragment of JavaScript test code mim-
icking the interaction of microservice-blockchain with the
above PresenceHistoryManager contract. In the script, the
transaction call (to the contract’s newInfection () func-
tion) is fed with test data (uid, prs). Parameters (cf. 1-3
above) of the just triggered infection event will be emit-
ted by the smart contract, and consequently stored in the
transaction logs, to be thereafter made available to client

VOLUME 10, 2022

const contractAddress = '0x82081399%ad2blc28415a

const metadata = JSON.parse (await remix.call(’fi
P or 1ger.json’));

or

let contract = new web3.eth.Contract (metadata.abi, contractAddress);

const receipt = await contract.methods.newInfection (pseudo, presence).send({
from: contract.defaultAccount});

FIGURE 9. Test code sending data to a smart contract.

apps for contact matching. The code makes use of a
few web3.js (https://web3js.readthedocs.io) library methods,
which hide the JSON-RCP APIs, as previously discussed in
the microservice-blockchain case.

The design of smart contract PresenceHistoryMan-—
ager endeavors to keep things simple and effective, thus
optimizing the overall cost of the Ethereum Virtual Machine
operations, as better detailed in Subsection VI-B. From the
security point of view, storing data hashes in the public
blockchain guarantees that the information stored in the sys-
tem database is not tampered with. Moreover, the choice to
store the bulk data in a separate database fosters the adoption
of extra security features, such as data confidentiality and
access user authentication, which are not inherently provided
by public blockchains instead.

C. CLIENT SOFTWARE

The client software workflow follows a pattern that starts
from the server-side Notification Service, as discussed in
Subsection III-C, and depicted in Figures 3 through 5. It is
this service that prompts the client apps to pull, from the
blockchain transaction logs, the hash-pointer to either the
contact tracing data or the overcrowd report data, as appli-
cable. Client apps will thus be able to de-reference the data
structures stored in the system DB, possibly after honoring
additional DB access rules, and perform data authentication
of any DB item by comparison with its unforgeable hash-
pointer stored in the blockchain.

The front-end code of the mobile DApp client has been
developed in the Java language under the Android Stu-
dio IDE (https://developer.android.com/studio). As said for
microservice-blockchain, the DApp’s front-end exploits the
Web3;j library to smoothly interface with the Ethereum’s
JSON-RPC APIs exposed by the blockchain nodes.

const contractAddress = ‘0x82081399 2blc28415a

const metadata = JSON.parse (await remix.call(’fileV
PresenceHistoryManager.json’));

let contract = new web3.eth.Contract (metadata.abi, contractAddress);

const events = await contract.getPastEvents(’newHistoryInserted’, {
filter: { from: contractAddress,
pseudonymHash:

" 0xk Tbef7fedel4d52825920b5¢c55650dc753047c9a9£900£9b83

fromBlock: 0 })

events.forEach (element => {
console.log(element.returnvalues [’ prese
console.log(element .returnvalues[’times

FIGURE 10. Test code to pull transaction logs generated by a smart
contract.

The Javascript test code fragment in Figure 10 simu-
lates the essential behavior of a web app pulling previously

103813

IEEE Access

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

logged data from the blockchain, by calling the web3.js
getPastEvents () method. The example code extracts
from the blockchain a hash-pointer to Presence History
items in the database.

VI. EXPERIMENTAL RESULTS

A. ABSOLUTE LOCALIZATION TESTS

The strategic decision to adopt an absolute localization
paradigm, relying on the WiFi campus infrastructure, has
been validated by the tests carried out on the Nausica@DApp
system prototype. Some experimental results are described in
this subsection.

The adopted localization methodology is based on the idea
that, inside any campus indoor location (e.g., classroom or
laboratory), the internal WiFi AP will be the one radiating
the dominant signal strength or RSSI. Thus, WiFi finger-
prints that mobile devices periodically send to the Location
Resolver service (see Figure 2) easily enable it to precisely
locate devices using a simple maximum-signal logic. In prin-
ciple, however, there is scope to implement more sophisti-
cated localization strategies (including Al-based ones) within
the Location Resolver.

Location information is used by back-end services Loca-
tion Data Aggregator for occupation rate monitoring, and
Covid-19 Positive Handling to support direct and indirect
contact tracing operations.

The testbed setting involved six people, equipped with
Nausica@DApp-enabled Android devices, wandering within
and among lecture halls. Each device creates a WiFi finger-
print by performing four consecutive WiFi scan requests and
collecting their outcomes in a JSON scan quadruple

Anonymous—-User—-ID: {

Scan-Time-1: "[AP1-RSSI,..,APn-RSSI]",
Scan-Time-2: "[AP1-RSSI,..,APn-RSSI]",
Scan-Time—-3: "[AP1-RSSI,..,APn-RSSI]",
Scan-Time—-4: "[AP1-RSSI,..,APn-RSSI]"

}
which is sent to the Location Resolver back-end service in
charge of absolute localization. This process is repeated about
every two minutes.

The experimental setup on a testing client machine con-
sists of a variety of (python, awk, sed, bash) scripts. At the
client, WiFi scan data are first collected, as the server stores
them, by a per-user Firebase listener, then suitably processed
by a set of filters, and finally fed to gnuplot for real-time
visualization.

Figure 11 plots the results of a trial pattern in which a single
device moves from lecture hall LH3 to LH4 then LH2, while
being monitored by the listening service.

The plotted RSSI strengths (in dBm) of signals from the
Access Points, collected over a suitable time interval, show
how the user device, as long as it is within a lecture hall,
always receives the internal AP’s signal as the strongest one,
whereas the crossing points between different RSSI plots
reveal that the user is moving to a new hall.

103814

AP-LH3 AP-LH4 AP-LH2 AP-LH1 AP-LH24
I SE—

I |
|| ﬂ | 3 .ll' I. t - =70
o Pk A e '*-,a"lir " \I\l/.l .
LT aa A . JY .

iy izl | g0

! A
e ',
L ho— Nl 50

1110 11:20 11:300 11:40 11:50 12:00: 1210 120

FIGURE 11. Access point signals (in dBm) detected by a user device
wandering across three different lecture halls in a suitable time interval.

The plot reports just one of the replicated measurement
tests carried out independently by all six devices in various
locations within the campus premises. These tests all showed
the same reassuring results. Other tests involved positioning
the six devices in different spots of the same lecture hall,
to verify that at all spots the dominant signal would be that
of the hall’s AP.

These converging experimental results confirmed that it
is sensible to implement a maximum-signal logic, within
Nausica@DApp, to identify the “local” AP’s MAC to be
included in the Presence Data.

B. GAS CONSUMPTION TESTS
The storage capabilities of the two Nausica@DApp smart
contracts have been limited to the writing on transaction
logs of references (the hash-pointers) to bulk data stored
elsewhere. The rationale behind this design choice, besides
the security concerns discussed in Subsection IV-A, lies in
the well-known gas-related issues with the Ethereum Vir-
tual Machine, when it comes to permanently storing bulk
data in its data structures. According to Ethereum’s yellow
paper [17], writing data to the permanent storage of a smart
contract is by far more expensive than using, for the same pur-
pose, the transaction logs, stored in the blockchain’s Receipt
Trie. This was confirmed by the experimental results pre-
sented below on the dichotomy between the (smart) contract
storage Vvs. transaction logs solutions.

An early, experimental version of our system [26] exhibits
a more articulated smart contract design, which stores con-
tact tracing and overcrowding data right to contract storage.
Although a quite refined storage management was imple-
mented, in that an unneeded user presence history could be
removed from the blockchain by destroying its associated
contract, the gas used for a typical transaction execution
would end up exceeding the block gas limit, due to the size
of stored data.

However, even in a later refinement, in which bulk data
were instead stored in transaction logs, gas usage would still
easily ramp up beyond any sensible limit.

VOLUME 10, 2022

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

IEEE Access

2.000.000
7000000
£.000.000
5.000.000

4.000.000

Gas Units

3.000.000
2.000.000
1.000.000

Input Data {Bytes) r;
montrac torage. 212087

EReceptlogs 204.383

FIGURE 12. Comparison of gas consumption for storage of transaction
data: smart contracts vs. transaction logs.

In Figure 12 gas consumptions, for both the said storage
solutions, are plotted against the amount of data transferred
from the server-side by microservice-blockchain.

Note that the “contract storage” solution runs out of gas
as soon as data size exceeds 10,000 Bytes (hence the miss-
ing blue bars in the graph), causing the transaction not to
be completed by the Ethereum Virtual Machine. The graph
shows that storing to ‘“‘transaction logs” performs better, but
data larger than 100,000 Bytes (the graph’s upper bound) still
prevent transactions from completing.

In real terms, considering the gas price and the Ether
market value at the time of writing, a transaction storing
10,000 Bytes on-chain would cost (in US $), for each of the
two above-mentioned solutions:

« Contract Storage:

6, 682, 982[gas unit] * 8[gwei/gas unit]
% 1.43 - 1075[$/gwei] = 76.45[9]

o Transaction Logs:

630, 701[gas unit] * 8[gwei/gas unit]
x1.43 - 107°[$/gwei] = 7.22[$]

Even the second solution is by far too expensive to legiti-
mate storing bulk data in the blockchain transaction logs.

Notice that both the previous, unviable, solutions are purely
on-chain, storage-wise. The solution presented in this paper,
instead, is a mixed on-chain/off-chain one, for it stores essen-
tial hashed data in the transaction logs and bulk data in the
system DB. This turns out to yield, for our sample transaction,
a fixed gas usage of 25,257 gas units, whose current price in
US dollars is:

o Mixed on-/off-chain (Nausica@DApp):

25,257 gas unit] x 8[gwei/gas unit)
%1.43 - 1075[$/gwei] = 0.28[$]

therefore an acceptable cost per transaction for the Ethereum
ecosystem, dramatically lower than the computed costs of the
previous solutions. This reduced cost results from the com-
bined effect of employing the transaction logs as a storage
repository (as in the “transaction logs” solution), and strictly
limiting the amount of data stored in the blockchain.

VOLUME 10, 2022

VII. RELATED WORK
In the present section an overview of comparable solutions
is proposed, loosely classified according to their application
scope (i.e. indoor/outdoor) or technical approach (i.e. central-
ization/decentralized).

A. INDOOR CENTRALIZED SOLUTIONS

EPIC is a solution [27] that focuses on providing a
fine-grained response to user localization in direct-only con-
tact tracing by exploiting short-range wireless technolo-
gies, namely WiFi and Bluetooth. EPIC follows a diffused
approach, with localization data collected and stored at client
side and contact tracing data processing transferred to the
server upon positive user detection. Much emphasis is there-
fore placed on cryptographic techniques when data are to be
moved from the client to the server side.

WifiTrace is a network-centric solution for contact tracing
where user localization is based on passive WiFi sensing and
data processing, strongly relying on WiFi enterprise network
logs, does not involve any client intervention [9]. It mainly
addresses post-processing of device trajectories of campus
attenders.

The approach of the above indoor solutions are strongly
dependant on users fully trusting central and third-party
authorities. None of the two integrates blockchain compo-
nents. Conversely, Nausica@DApp does not have to face
trust concerns about fully reliable central entities, since it
is a decentralized solution with regard to contact tracing
assessment and relies on strong de-anonymization of user
information. It also enhances data authenticity and operation
transparency because of the blockchain elements in the solu-
tion back-end. Furthermore, for privacy preserving reasons,
the configuration information of the WiFi infrastructure will
only be used to localize the anonymized users within the
campus premises, but by no means to track users.

B. OUTDOOR CENTRALIZED SOLUTIONS
One of the earliest and most controversial contact tracing
solutions is South Korea’s Corona-100m. Its central server
collects the absolute locations of users by means of the
GPS or cellular networks with the aim of making them
available at a public website to help people track where
(anonymized) infected people have moved about. These data
can be de-anonymized for the benefit of health investigators
who can thus bypass the preservation of individual privacy
(https://koreaherald.com/view.php?7ud=20200311000132).
Singapore’s TraceTogether (https://tracetogether.gov.sg) is
another relevant solution in which contact tracing assessment
and contagion risk alerts are centrally carried out. Differ-
ently from Corona-100m, relative localization data are col-
lected at user side and cryptographically exchanged with the
server. Similarly to the Korean solution, information about
reported positive users can be de-anonymized by the Ministry
of Health, for more effective epidemiological surveillance
actions [6].

103815

IEEE Access

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

These two centralized solutions have very little in common
in terms of privacy choices with Nausica@DApp, which has
been designed to provide anonymity and authenticity to user
data, even though tracing of indirect contacts is obtained
centrally in terms of absolute localization data.

C. OUTDOOR DECENTRALIZED SOLUTIONS

BeepTrace [28] is a very sophisticated blockchain-based
solution, which makes use of two different chains. The
first chain, named tracing blockchain, allows users to store
their anonymized localization data, additionally encrypted
with sophisticated protocols involving PKI Central Author-
ities. Upon virus-positive finding, user localization data must
be endorsed by a diagnostician, who further de-anonymize
them before storing in the second chain, named notifi-
cation blockchain, to the benefit of specialized players
(i.e. geodata solvers) who can, in turn, assess the contagion
risk rate available to the involved users from the notification
blockchain.

BeepTrace is a very comprehensive technological proposal
that adopts quite complex mechanisms to address stringent
security issues. However, the complexity of the proposed
solution raises performance and scalability issues, so that
a lightweight consensus protocol, such as Direct Acyclic
Graph, is advised.

An interesting proposal by Song et al. [29] exploits the
blockchain as a trustless repository to store location-based
and individual-based information for both direct and indirect
contact tracing, as well as for risk contagion assessment,
to be further processed by the central server. This heavy data
burden on the blockchain affects the performance and the
scalability of the whole system. The solution also features an
algorithm that operates on the collected data.

Nausica@DApp, instead, makes a more confined use of
the blockchain functionalities; it is in fact designed with
the idea in mind that their adoption must be traded off
against the overall system performance. Decentralization of
contact tracing processing and storing of only reference
data in the blockchain are choices that converge towards
this target.

Another relevant proposal by Marbouh et al. [30] imple-
ments a blockchain-based system that makes use of Ethereum
smart contracts and oracles (https://docs.ethhub.io/built-on-
ethereum/oracles/what-are-oracles) to assess the reliability
and trustworthiness of the information received by the public
and government agencies. The main goal of the solution is
then to allow dashboards and DApps to retrieve aggregate
data only coming from registered external sources, which
have incrementally obtained a high degree of reputation,
according to a specific logic developed on a specific smart
contract. This solution does not deal at all with contract
tracing and crowd gathering monitoring, hence does not share
the same goals as ours. Indeed, it shows some interesting
oracle features that can be taken into consideration for further
development.

103816

VIil. CONCLUSION

This paper presented Nausica@DApp, a comprehensive solu-
tion for epidemiological monitoring within the premises
of a University campus (or similar corporate sites). The
proposed system suits the overcrowd surveillance needs
and complements recommended health-related best prac-
tices for community activities, especially as contagion
risks presently seem to be not fully contained by vaccine
campaigns.

Nausica@DApp is a decentralized app solution capable
of tracing both direct person-to-person contacts and indirect,
location-based ones, by taking advanced privacy and security
measures. These include the adoption of a decentralized and
deanonymized design to store and process user data, and
the introduction of blockchain functionalities to enforce user
data integrity and operation transparency. Data exchange via
secure app-to-server and server-to-app channels, rather than
the direct app-to-app Bluetooth one, enhances the overall
security features of the presented solution.

In our proposal, a public blockchain technology, such
as PoW-based Ethereum, has been specifically used as a
secured, transparent, immutable shared repository of limited
and specific data. Having chosen not to overuse the Ethereum
storage capabilities, but only to leverage those operations
bringing out the key feature for which the blockchain usage is
widely recognized, i.e., data integrity assurance in a publicly
consensus-driven environment, it is fair to assert that the
adoption of the presented smart contracts design is experi-
mentally viable.

On the network performance side, more enhancements,
in terms of scalability, transaction costs and security, can be
achieved replacing the public blockchain of Nausica@DApp
by one with PoS or PoA consensus mechanisms. E.g., the
emerging Ethereum 2.0 (https://ethereum.org/en/upgrades)
is a proper choice for applications in the healthcare arena,
where the decentralization dimension of the ‘“‘blockchain
trilemma” can be downsized in favor of scalability
and security. Similar results can be obtained through
a consortium blockchain (https://analyticssteps.com/blogs/
what-consortium-blockchain), in which the consensus level
is managed by validators belonging to multiple organizations
operating in the same sector.

Further enhancements of the proposed solution have
successfully explored various alternatives to store the tamper-
proof bulk data in key-value storage systems, such as a cloud-
based, centralized DB or a P2P decentralized architecture,
where ad-hoc user authentication policies can be added to
guarantee a more regulated and secure access, as adopted in
many blockchain-based healthcare solutions.

Overall, the proposed solution leaps forward other existing
contact tracing ones, and the implemented improvements are
numerous. These include the technology used for localizing
users, the ability to timely distribute aggregated data with-
out compromising the decentralized system performance and
communication costs, the ability to preserve user privacy,

VOLUME 10, 2022

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

IEEE Access

as well as to efficiently notify users whenever a contact with
a positive user is detected.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, “A survey on
privacy protection in blockchain system,” J. Netw. Comput. Appl., vol. 126,
pp. 45-58, Jan. 2019.

L. Garg, E. Chukwu, N. Nasser, C. Chakraborty, and G. Garg, ‘‘Anonymity
preserving IoT-based COVID-19 and other infectious disease contact trac-
ing model,” IEEE Access, vol. 8, pp. 159402-159414, 2020.

Q. Tang, “Privacy-preserving contact tracing: Current solutions and open
questions,” 2020, arXiv:2004.06818.

H. Cho, D. Ippolito, and Y. W. Yu, “Contact tracing mobile apps
for COVID-19: Privacy considerations and related trade-offs,” 2020,
arXiv:2003.11511.

M. Zastrow, “‘South Korea is reporting intimate details of COVID-19 cases:
Has it helped?”” Nature, Mar. 2020, doi: 10.1038/d41586-020-00740-y.

J. Bay, J. Kek, A. Tan, C. S. Hau, L. Yongquan, J. Tan, and T. A. Quy,
“BlueTrace: A privacy-preserving protocol for community-driven con-
tact tracing across borders,” Government Technol. Agency, Singapore,
Tech. Rep., Apr. 2020.

A. Khurshid, “Applying blockchain technology to address the crisis of
trust during the COVID-19 pandemic,” JMIR Med. Informat., vol. 8, no. 9,
Sep. 2020, Art. no. €20477.

T. McGhin, K.-K. R. Choo, C.Z. Liu, and D. He, “‘Blockchain in healthcare
applications: Research challenges and opportunities,” J. Netw. Comput.
Appl., vol. 135, pp. 6275, Jun. 2019.

A. Trivedi, C. Zakaria, R. Balan, A. Becker, G. Corey, and P. Shenoy,
“WiFiTrace: Network-based contact tracing for infectious diseases using
passive WiFi sensing,” in Proc. ACM Interact., Mobile, Wearable Ubiqui-
tous Technol., vol. 5, no. 1, 2021, pp. 1-26.

1. Bashir, Mastering Blockchain: Distributed ledger Technology, Decen-
tralization, and Smart Contracts Explained. Birmingham, U.K.: Packt,
2018.

L. Ricci, D. D. F. Maesa, A. Favenza, and E. Ferro, “Blockchains for
COVID-19 contact tracing and vaccine support: A systematic review,”
IEEE Access, vol. 9, pp. 37936-37950, 2021.

G. Singh and J. Levi, “MiPasa project and IBM blockchain team on
open data platform to support COVID-19 response,” IBM, Armonk,
NY, USA, Tech. Rep., Mar. 2020. [Online]. Available: https:/
www.ibm.com/blogs/blockchain/2020/03/mipasa-project-and-ibm-
blockchain-team-on-open-data-platform-to-support-covid-19-response/
A. Chawla and S. Ro, “Coronavirus (COVID-19)-is blockchain a true sav-
ior in this pandemic crisis,” SSRN, Jul. 2020, doi: 10.2139/ssrn.3655337.
G. Marotta, F. Billeci, G. Criscione, F. Merola, G. Pappalardo, and
E. Tramontana, “NausicaApp: A hybrid decentralized approach to manag-
ing covid-19 pandemic at campus premises,” in Proc. Asia Conf. Comput.
Commun. (ACCC), Sep. 2020, pp. 124-129.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Tech. Rep., 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf
A.M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurren-
cies. Sebastopol, CA, USA: O’Reilly Media, 2014.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1-32, Apr. 2014.
D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A review
on consensus algorithm of blockchain,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern. (SMC), Oct. 2017, pp. 2567-2572.

A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and Dapps. Sebastopol, CA, USA: O’Reilly Media, 2018.
L.Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives in
the consensus computer,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2015, pp. 706-719.

Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16440-16455, 2020.

S. Badruddoja, R. Dantu, Y. He, K. Upadhayay, and M. Thompson,
“Making smart contracts smarter,” in Proc. IEEE Int. Conf. Blockchain
Cryptocurrency (ICBC), May 2021, pp. 254-269.

G. Kwon, J. Kim, J. Noh, and S. Cho, “Bluetooth low energy security
vulnerability and improvement method,” in Proc. IEEE Int. Conf. Consum.
Electronics-Asia (ICCE-Asia), Oct. 2016, pp. 1-4.

VOLUME 10, 2022

(24]

[25]

[26]

(27]

(28]

(29]

(30]

S. Vaudenay, “Analysis of DP3T,” Cryptol. ePrint Arch., Paper 2020/399,
2020. [Online]. Available: https://eprint.iacr.org/2020/399

D. Jaisinghani, R. K. Balan, V. Naik, A. Misra, and Y. Lee, “Experiences
& challenges with server-side WiFi indoor localization using existing
infrastructure,” in Proc. 15th EAI Int. Conf. Mobile Ubiquitous Syst.,
Comput., Netw. Services, Nov. 2018, pp. 226-235.

G. Marotta, A. Fornaia, A. Moschitta, G. Pappalardo, and E. Tramontana,
“NausiChain: A mobile decentralized app ensuring service continuity to
university life in covid-19 emergency times,” in Proc. 4th Int. Conf. Softw.
Eng. Inf. Manage., Jan. 2021, pp. 74-81.

T. Altuwaiyan, M. Hadian, and X. Liang, “EPIC: Efficient privacy-
preserving contact tracing for infection detection,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2018, pp. 1-6.

H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, and M. A. Imran,
“BeepTrace: Blockchain-enabled privacy-preserving contact tracing for
COVID-19 pandemic and beyond,” IEEE Internet Things J., vol. 8, no. 5,
pp. 3915-3929, Mar. 2020.

J. Song, T. Gu, Z. Fang, X. Feng, Y. Ge, H. Fu, P. Hu, and P. Mohapatra,
“Blockchain meets COVID-19: A framework for contact information
sharing and risk notification system,” 2020, arXiv:2007.10529.

D. Marbouh, T. Abbasi, F. Maasmi, I. A. Omar, M. S. Debe, K. Salah,
R. Jayaraman, and S. Ellahham, “Blockchain for COVID-19: Review,
opportunities, and a trusted tracking system,” Arabian J. Sci. Eng., vol. 45,
pp. 1-17, Dec. 2020.

ANDREA FORNAIA received the B.S., M.S., and
Ph.D. degrees in computer science from the Uni-
versity of Catania, Italy, in 2011, 2014, and 2018,
respectively. He is currently an Adjunct Professor
with the Department of Mathematics and Com-
puter Science, University of Catania. In 2009,
he won a Scholarship with the National Institute of
Nuclear Physics (INFN), Catania, where he mainly
worked on monitoring solutions for data centers
and on application porting over grid and cloud

infrastructures. In 2012, he won a Scholarship with the GARR Consortium,
the Italian Academic and Research Telecommunication Network, by propos-
ing a solution for a cloud-based recovery as a service (RaaS service) capable
of building an on-demand private cloud over existing grid resources. He is
the author of about 30 journals and conference papers. His research interests
include software quality, covering subjects, such as software testing, static
analysis, and code refactoring. He is also strongly interested in distributed
systems technologies and IT infrastructures.

GIOVANNI MAROTTA received the B.S. degree
in computer science and the M.S. degree in physics
from the University of Catania, in 1987 and 2010,
respectively, where he is currently pursuing the
Ph.D. degree with the Department of Mathematics
and Computer Science, on leave from teaching.
He was a Visiting Researcher at AT&T Bellcore,
making contribution to metropolitan area networks
services, a Resident Researcher at the HP Labora-
tories, working on network security and commu-

nication protocols, and the Project Manager at Nokia Networks, dealing
with system integration solutions. His current research interests include
the design and prototyping of blockchain decentralized solutions in non-
financial sectors, such as document management, healthcare and green
energy market, with special focus on decentralized storage, digital identities,
and messaging architectures. He is the corresponding author of three papers
in the blockchain field.

103817

http://dx.doi.org/10.1038/d41586-020-00740-y
http://dx.doi.org/10.2139/ssrn.3655337

IEEE Access

A. Fornaia et al.: Decentralized Solution for Epidemiological Surveillance in Campus Scenarios

GIUSEPPE PAPPALARDO received the M.S.
degree in electrical engineering from the Univer-
sity of Catania, in 1983, and the Ph.D. degree in
computing science from the University of New-
castle, Newcastle upon Tyne, U.K. He began his
research activity in the field of computer science
with the University of Catania, the Polytechnic
of Milan, and the University of Newcastle, where
he was a Researcher. Then, he was a University
Researcher and an Associate Professor in infor-
mation processing systems at the Faculty of Engineering, University of
Reggio Calabria, and an Associate Professor. Since 2002, he has been a
Full Professor in computer science with the Department of Mathematics
and Information Technology (DMI), University of Catania. His research
interest includes the area of distributed systems. He has been involved in
formal specification and verification techniques, fault tolerance, software
architectures, image processing, robotic systems, and smart cities. He is the
author of over 150 scientific publications in the field of computer science.
He was and is the Scientific Manager of the DMI or the University of Catania
of various research projects, including PRIN, POR, and PON, in the IT and
smart cities sectors.

EMILIANO TRAMONTANA is currently an
Associate Professor with the Department of Math-
ematics and Computer Science, University of
Catania. He was a Full Professor with National
Agency. He was a Research Associate with the
Department of Computing Science, Newcastle
University, Newcastle upon Tyne, U.K., for three
years. In the past, he was a Visiting Researcher
at The University of Tokyo, Japan, and University
of Waseda, Japan. He is the Appointed Teacher
of software engineering for the degree course in computer science at the
University of Catania, and distributed system engineering for the master’s
degree course in computer science. Since 2005, he has been the Co-Chair
of various editions of the thematic tracks dedicated to distributed systems
and software engineering techniques at the IEEE WETICE and ACM SAC
international conferences. He is the Chief Editor of Scientific Programming
journal (Hindawi) and the Editorial Board of Concurrency and Computation
Practice and Experience (Wiley). He is the author of over 150 scientific
publications, and he has been responsible for several research projects funded
after a competitive selection.

Open Access funding provided by ‘Universita degli Studi di Catania’ within the CRUI CARE Agreement

103818

VOLUME 10, 2022

