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ABSTRACT Controller Area Network (CAN) is the de facto standard for in-vehicle networks. However,
it is inherently vulnerable to various attacks due to the lack of security features. Intrusion detection systems
(IDSs) are considered effective approaches to protect in-vehicle networks. IDSs based on advanced deep
learning algorithms have been proposed to achieve higher detection accuracy. However, those systems gen-
erally involve high latency, require considerable memory space, and often result in high energy consumption.
To accelerate intrusion detection and also reduce memory and energy costs, we propose a new IDS system
using Binarized Neural Network (BNN). Compared to full-precision counterparts, BNNs can offer faster
detection, smaller memory cost, and lower energy consumption. Moreover, BNNs can be further accelerated
by leveraging Field-Programmable Grid Arrays (FPGAs) since BNNs cut down the hardware consumption.
The proposed IDS is based on a BNN model that suits CAN traffic messages and takes advantage of
sequential features of messages rather than each individual message. We also explore various design choices
for BNN, including increasing network width and depth, to improve accuracy as BNNs typically sacrifice
accuracy. The performance of our IDS is evaluated with four different real vehicle datasets. Experimental
results show that the proposed IDS reduces the detection latency (3 times faster) on the same CPU platform
while maintaining acceptable detection rates compared with full-precision models. We also examine the
proposed IDS on multiple platforms, and our results show that using FPGA hardware reduces the detection
latency dramatically (128 times faster) with lower power consumption compared to an embedded CPU
device. Furthermore, we evaluate BNNs with different designs. Results demonstrate that wider or deeper
models definitely improve accuracy at the cost of increased latency and model sizes to varying degrees.
Applications are recommended to choose the appropriate model design they need depending on available
resources they have.

INDEX TERMS Automotive security, intrusion detection, in-vehicle network, controller area network
(CAN), binary neural networks, machine learning.

I. INTRODUCTION
With the rapid development of new mobility services as
well as autonomous and connected vehicle technologies,
the transportation industry is experiencing a revolutionary
transformation. New types of mobility promise to virtually
eliminate some chronic problems in the current landscape of
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the automotive world, such as crashes and fatalities. To sup-
port emerging mobility services, more software modules
and external interfaces are added to modern vehicles, and
in-vehicle networks can communicate with the outside world.
As in-vehicle networks are no longer in isolated environ-
ments, new attack surfaces emerge [1], [2], [3], [4], [5].
Consequently, in-vehicle networks can be vulnerable to vari-
ous cyber-attacks which may result in serious consequences.
Automotive manufacturers have to first eliminate malicious
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actors and minimize their impact in order to deliver these
promising and advanced services. Automotive cybersecu-
rity has become a significant problem in today’s automotive
industry.

A modern automobile has tens to over a hundred of Elec-
tronic Control Units (ECUs) which are connected by the
in-vehicle network to control electrical subsystems [2], [6].
Researchers have demonstrated that attackers can intention-
ally control a target victim vehicle via a malicious node
connected to the in-vehicle network [2], [6], [7], [8]. Those
attacks show that the security of in-vehicle networks becomes
a critical concern as it closely relates with the safety of drivers
and passengers. Attackers are able to access Controller Area
Network (CAN) (which is the most predominant in-vehicle
bus communication protocol) through Bluetooth, Wi-Fi or
other surfaces. Since CAN has no security features by design,
such as encryption and authentication, attackers can exploit
CAN vulnerabilities to launch vehicle cyber attacks. For
example, they can control subsystems of a victim vehicle
by injecting malicious messages via the on-board diagnostic
(OBD-II) port physically or wireless communication systems
remotely. Attackers are able to further compromise normal
ECUs by reprogramming their firmware, and then they can
manipulate the compromised ECUs to interrupt the normal
operations by sending arbitrary CAN messages or even con-
trol the vehicle [4], [6], [9], [10], [11], [12].

Several studies attempt to protect in-vehicle networks
by encryption and authentication approaches to ensure the
integrity and confidentiality of transmitted data frames. How-
ever, due to the very limited space in the data frame (a CAN
message has 8-byte data at most) and the demanding real-time
requirement of CAN bus, it is still a challenging job to have
a practical deployable solution for encryption and authenti-
cation. Parallel to encryption and authentication approaches,
intrusion detection system (IDS) is considered an effective
approach that can protect in-vehicle networks by detecting
malicious messages [3], [13]. Advanced machine learning
techniques, such as Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) [13], [14], [15], have
been used to create models for IDSs to identify attacks.
Neural networks have shown remarkable capabilities in com-
plicated applications including image classification, seman-
tic segmentation and object detection [16], [17]. However
they generally suffer from high computational complexity,
usually require considerable computing resources, and often
result in large power consumption. A neural network model
can require hundreds of Megabytes (MBs) of memory [18],
[19], [20], [21]. This requirement for memory accesses is
often the bottleneck of system performance as well as energy
efficiency [22]. Therefore, it can be difficult to deploy neu-
ral networks on resource-constrained devices in embedded
environments. Considering the constraints of ECUs’ memory
and the demand of real-time communications of in-vehicle
networks, an IDS for in-vehicle networks should be small
in size and have a fast responding time during the detection
process.

To overcome those limitations of deep-learning based IDSs
and protect CAN against vehicle cyber attacks, we propose
a new IDS based on Binarized Neural Network (BNN) that
uses binary values for activations and weights instead of full-
precision values. The BNN model can accelerate intrusion
detection and reduce memory requests as well as energy
consumption compared with the corresponding full-precision
neural networks.

To allow our BNN model to learn and process CAN traffic
for intrusion detection, we create an input generator to assem-
ble CAN data to input frames that can be processed by our
BNN model. Since this input generator converts bit-stream
data of CAN traffic to a grid format rather than a feature
vector format, the BNNmodel can learn the temporal sequen-
tial pattern without the need for extra data preprocessing.
Moreover, besides the acceleration offered by BNN, our
scheme can be further accelerated with Field Programmable
Gate Arrays (FPGAs), a promising hardware acceleration
technique. FPGAs implementation benefits from converting
floating-point multiplication operations to inexpensive bit-
shift operations. Due to the low power consumption and high
flexibility compared with CPUs and GPUs, FPGAs imple-
mentation meets the demands of embedded systems espe-
cially. However, current FPGAs cannot be used to accelerate
complex neural network models as FPGAs cannot offer large
enough computing and memory resources. Since BNNs have
bitwise activations and weights, our BNN-based IDS is able
to be further accelerated by FPGAs [23], [24], [25], [26], [27],
[28], [29], [30], [31].

BNNs are compact and efficient due to binarized weights
and activations. However, accuracy is usually sacrificed to
some degree. Improvement strategies can be applied to miti-
gate the loss of accuracy [32], [33]. As our goal is to utilize
BNNs with higher accuracy while maintaining relatively low
latency and memory cost, we explore various design choices
of BNNs, including increasing network width and depth
methods, to investigate if and how thosemethods can improve
accuracy.

To evaluate the proposed model, we collect datasets from
four real vehicles from different car manufactures. Our exper-
imental results show that the proposed IDS can achieve satis-
fying detection rates as well as low latency. We also test our
IDS on FPGAs and other platforms to show the performance
of accelerated inferences, and we evaluate the memory uti-
lization, power consumption on different platforms, including
CPUs, GPUs and FPGAs. Moreover, we investigate BNNs
with different design choices to see how they can improve
accuracy performance. Our experimental results demonstrate
that wider and deeper models provide better accuracy per-
formance at the cost of increased latency and model sizes to
varying degrees.

This paper makes the following contributions:

• To the best of our knowledge, this is the first work
applying BNN to IDS for in-vehicle networks. We adopt
the BNN model [34], [35] and convert CAN bit-stream
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traffic to the sequential pattern of CANmessages to feed
into our BNN model.

• Our BNN-based IDS has lower latency (3 times faster)
compared with another full-precision NN-based IDS.
It also requests smaller memory size as well as lower
power consumption. Small model size and low power
consumption are important for in-vehicle network envi-
ronments as they consist of resource-constrained embed-
ded devices. Moreover, the proposed BNN-based IDS
can be further accelerated by executing on FPGA hard-
ware (128 faster than on an embedded CPU).

• We perform comprehensive evaluations with real CAN
traces collected from four real vehicles, while most pre-
vious studies either use simulated data or data collected
from no more than two vehicles.

• We evaluate and analyze various BNN models to
determine how the width and the depth of a BNN
can affect performance. Our experiments show that
both deeper or wider models can offer higher accu-
racy. Different applications can choose different mod-
els according to their specific needs and available
resources.

A preliminary version of this article appeared in [36].
Organization.This paper is organized as follows. Section II

provides an overview of CAN and its security risks.
Section III reviews related work. Section IV details the adver-
sary model. Section V provides the design of the proposed
IDS. Section VI details the insights into the implementation
and evaluation metrics of the proposed scheme. Section VII
discusses the proposed IDS. Finally, we conclude the paper
in Section VIII.

II. BACKGROUND
A. CONTROLLER AREA NETWORK
As a message broadcast bus, CAN provides reliable inter-
connections among ECUs by a multi-master broadcast serial
bus system [37], [38], [39], and it is the most widely used
in-vehicle communication protocol.

1) CAN MESSAGE
Each CAN message can carry up to 64-bit data. CAN mes-
sages transmitted in the bus maintain data consistency and
deliver information among ECUs regarding making control
decisions. As shown in Figure 1, the format of a CAN
message includes: Start-of-Frame (1 bit), Identifier (11 bits
or 29 bits), Control Field (6 bits), Data Field (0-8 bytes),
CRC Field (16 bits), ACK Field (2 bits), End-of-Frame (7
bits) and Inter-Frame Space (3 bits). Note that there are
two message formats depending on the number of identifier
bits: base frame format (with 11-bit ID) and extended frame
format (with 29-bit ID). Based on the CAN standard, the
implementation of CAN must accept the base frame format
and must tolerate the extended frame format. Besides this
original CAN, CAN-FD, an extension to the original CAN,
extends the data field to up to 64 bytes. This work focuses on
the classical CAN.

FIGURE 1. CAN message format.

2) MESSAGE BROADCAST
CAN bus is a message-oriented network, and CAN messages
have no addressing scheme. Each frame is assigned a CAN ID
instead of relying on sender and receiver address information
to communicate. Each ECU is configured to accept CAN
messages with specific CAN IDs and disregard others at
compile time. CAN bus gets flexibility as operations (such
as adding, replacing or removing an ECU node) do not affect
other nodes. When a CAN message is broadcast, all ECUs in
the bus can receive it. If the message is not on a predefined
receiving list of a certain ECU, that ECU will discard it. Oth-
erwise, the message will be accepted and further processed.
Figure 2 shows a typical CAN bus data transfer process.
ECU 1 broadcasts a message, then both ECU 2 and ECU
3 receive the message. ECU 2 checks the message ID and
discards it because the ID is not recorded in its specifications.
ECU 3 accepts the message after verifying the ID as it was
configured to accept messages with that ID.

FIGURE 2. CAN Bus topology.

3) CAN BUS ARBITRATION
As a broadcast communication network, CAN uses message
priority for collision detection and arbitration. When an ECU
prepares to send a message, the ECU needs to check the
bus status. The message will only be sent if the bus is idle.
Otherwise, the ECU has to wait for the next opportunity. CAN
arbitration solves collisions where multiple messages are sent
at the same time. The arbitration is based on the priority of
CANmessages defined by their IDs, and themessagewith the
smaller ID value has the higher priority [37], [38], [39], [40].
For example, when three CAN messages with ID 0x0001,
0x022 and 0x00FF are sent to the idle bus simultaneously, the
message with ID 0x0001 can dominate the bus and broadcast
itself. The other two messages with the lower priority have to
wait for the next time. Car manufacturers decide the alloca-
tion of the message priority.

4) TYPICAL CAN SETUP
A typical CAN setup is that each ECU sends messages with
a unique set of IDs. Each message from an ECU is assigned
with an ID from the unique set of that ECU. Messages with
the same ID must be sent from the same ECU, because the
unique set of IDs for each ECU is non-overlapped with each
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other. Similarly, each ECU is also configured to accept and
process messages with a set of message IDs. However, those
sets can be overlapped among different ECUs. As a result,
a CANmessage can only be sent from one ECU, but it can be
accepted and processed by multiple ECUs.

B. CAN VULNERABILITIES AND ATTACKS
Even though CAN physical layer has strong error detection
through CRC, bit stuffing, etc., it has no security protection.
Most of CAN vulnerabilities come from those facts: it is
a broadcast bus; all messages are broadcast to all nodes;
each message has an ID without sender information, and
each node decides if it should process the message. Such a
design introduce vulnerabilities for the CAN communication:
1) all nodes see the whole traffic, which allows eavesdrop-
ping and learning patterns of certain ECUs; 2) any node
deployed on the CAN bus can send any arbitrary message
and no one knows who send that message; 3) the broadcast
nature and relying on arbitration to win bus access make DoS
attack possible; 4) answers to standard challenges that are
needed for authentication when doing sensitive things, such
as reflashing components or firmware update, are stored in
memory, etc. Those vulnerabilities provide opportunities for
attackers to mount attacks for certain purposes. For example,
due to the lack of sender ECU identification, the attacker who
compromises an ECU can send malicious messages that can
disrupt the bus and even cause control system failure without
leaving a trace.

FIGURE 3. Typical CAN bus attack scenario.

Figure 3 shows a general attack procedure for the CAN
bus. The procedure can be divided into three phases [5], [41],
[42]: investigation phase, preparatory phase and attack phase.
In the investigation phase, to access the target in-vehicle
network, attackers need to determine an interface that can
be leveraged, such as the OBD-II port, the telematics system
(e.g., Ford’s Sync and GM’s OnStar), etc. Then, attackers
can build a malicious node through the chosen interface. The
malicious node can be an external device (such as a laptop,
an external ECU) or an internal ECU (such as a compro-
mised ECU, a telematics system infected by malware). In the
preparatory phase, attackers leverage the malicious node to
eavesdrop and analyze CAN messages transmitted on the
bus. All transmitted CAN messages can be eavesdropped
and recorded because of the broadcast nature of CAN. Based
on that, attackers are able to further analyze historical CAN
messages and then design malicious messages with certain

purposes. In the attack phase, adversaries can implement var-
ious types of attacks based on their design, such as injecting
malicious messages. It is noted that malicious messages for
a specific victim vehicle cannot be reused to attack other
vehicle models, because the implementation of CAN varies
by model.

C. INTRUSION DETECTION SYSTEM
An IDS protects a network from attacks or malicious activi-
ties by monitoring the traffic of the network. When an intru-
sion is detected, an alarm will be raised. Machine learning
algorithms have been used extensively as a powerful mathe-
matical tool for various tasks, such as classification, regres-
sion, and clustering. As intrusion detection is a classification
task, those algorithms can be used to build classifiers and can
be developed as IDSs. In the automotive environment, IDSs
classify the currently transmitted messages in two categories:
normal or malicious, which is a well-known binary classifica-
tion task. Those machine learning-based IDSs generally need
more computing resources, and their detection processes may
be time-consuming. However, advanced machine learning
algorithms, such as neural networks, have unique advan-
tages in providing accurate results. Researchers have pro-
posed various IDSs based on machine learning algorithms for
in-vehicle networks, including ANN, DNN and CNN, etc.

III. RELATED WORK
CAN security becomes more critical with the recent advance-
ments in the automotive industry and the introduction of
autonomous and connected vehicle technologies. Today’s
vehicles are no longer isolated mechanical systems as elec-
tronic controls and x-by-wire systems can control almost
every aspect of vehicles. A driver will not be required to
control the car, and every car is going to be connected and
communicate to other cars and other things (V2X). These
developments make automotive cybersecurity become a crit-
ical topic. In order to evaluate the capability of attackers,
several studies have demonstrated that attackers are able to
access the CAN network via a variety of attacking inter-
faces, such as the Tire Pressure Monitoring System (TPMS),
Bluetooth, telematics, and OBD-II, and intentionally launch
attacks or even take the whole control of the victim vehi-
cle [4], [6], [9], [10], [11]. Miller et al. present the attack
process that attackers can control a driving Jeep Cherokee on
highway by remotelymanipulating compromised ECU(s) [6].
Nie et al. mount several remote attacks on the Tesla Model
S/X in both parking and driving mode [4], [9]. Their studies
show that attackers are able to access the Autopilot ECU(s)
in the vehicle and execute remote attacks through exploiting
vulnerabilities.

A. INTRUSION DETECTION SYSTEM FOR CAN
IDS is one of the major defense mechanisms commonly
used to secure CAN from attacks. Most IDSs are based on
anomaly detection where the IDS identifies attacks by com-
paring normal behaviors with abnormalities. Depending on
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the different detection methods used, IDSs for CAN can be
categorized into two main categories for anomaly detection:
1) rule-based; 2) machine learning-based. Rule-based IDSs
exploit different characteristics of CANmessages. Some pro-
posals leverage the fact that most CAN messages are sent
periodically with fixed intervals [3], [43], [44], [45]. Schemes
proposed in [43], [45], and [46] apply entropy-based methods
to detect intrusions bymonitoring the changes in intervals and
entropy. Abnormal changes in system entropy and relative
entropy are counted as intrusions. Song et al. detect message
injection attacks by analyzing traffic anomalies based on an
assumption that all CAN messages are generated at regular
frequency or interval [44]. The clock-based IDS proposed
in [3] uses the periodical nature of many CAN messages to
detect anomalies as well as to fingerprint ECUs. The scheme
proposed in [47] measures device-specific delay time as a
mechanism for anomaly detection. In particular, the delay is
measured with a resolution that is implemented on FPGAs
as measurement using software may miss messages when
processing. Although lightweight, all these approaches may
not be effective for attacks with aperiodic messages. In sum-
mary, the aforementioned schemes can offer fast response
and usually work well with specific threat models. However,
they generally cannot cover all possible types of attacks. They
cannot detect attacks that are not included in the specific
threat models.

As cars become more connected and complicated, new
and sophisticated attacks are emerging. Machine learning
methods, such as Support Vector Machines (SVM), random
forests and decision tree, have been introduced to design
CAN IDSs [48], [49]. However, IDSs based on these clas-
sical machine learning algorithms, including both general
IDSs [15], [50], [51], [52] and CAN IDSs [13], [14], gen-
erally cannot offer high enough accuracy. For better per-
formance, advanced data analytic techniques such as deep
neural networks are considered to improve the detection
rate. They are able to detect more sophisticated attacks or
unknown attacks that can evade detection methods rely-
ing on regularity, periodicity, or other data characterises,
such as simple sequence patterns. Machine learning-based
IDSs for in-vehicle networks have been proposed [1], [13],
[14], [53], [54], [55], [56], [57], [58]. These schemes use
different machine learning algorithms as well as various
data features to train their model for intrusion detection.
Wasicel et al. [55] propose an IDS based on an artificial neu-
ral network that uses data extracted from the OBD-II port
to train the machine learning models to detect anomalous
activities in vehicles. The data used have clear semantic
meaning, which adds delay in data processing. The authors
of [56] propose a vehicular intrusion detection system based
on Long Short-TermMemory (LSTM), a type of RNN, which
takes time frequency difference between CAN messages as
input. Kang et al. [14] present an IDS by applying the bit
pattern of the data field (64-bit) as feature vectors for DNN.
Their results show that the DNN-based approach outperforms
traditional ANN-based approaches on the detection accuracy.
Song et al. propose a CNN-based IDS using the sequential

pattern of the CAN traffic [13]. They use every 29 consecu-
tive CAN IDs to build frames for both training and testing.
However, since their IDS only covers the ID field of CAN
messages, it has no ability to detect malicious messages with
the valid ID and malicious data. Zhang et al. propose a
hybrid IDS consisting of two stages. The first stage is used
to quickly detect attack messages that violate the established
rules while the DNN-based second stage is used to detect
attack messages that fall out of the scope covered by the first
stage. Experimental results show that the proposed hybrid
framework can achieve advantages of both rule-based and
machine learning-based approaches [59], [60].

B. INTRUSION DETECTION MODEL BASED ON
SEQUENTIAL PATTERN
Machine learning techniques have proven to be successful
at conducting intrusion detection throughout the years, and
intrusion detection using sequential pattern is one of the
research directions. Oliveira et al. propose an approach by
using sequential pattern of data, and their results show that
anomaly detection can be better addressed from a sequential
perspective [61]. Xing et al. categorize three types of classi-
fication methods based on the sequence pattern of data [62].
The first one is the feature-based method that transforms
sequences to feature vectors through feature selections, and
then applies classification methods. This method introduces
an additional preprocessing step before the classification.
The second method is the distance-based method that exam-
ines the similarity among sequences. This method may not
work effectively in environments that involve a large-scale
database as it is difficult to calculate distances of all ref-
erence sequences. The last method utilizes machine lean-
ing algorithms, such as naive bayes, markov model, hidden
markov model and neural networks, to build sequence mod-
els for sequences classification. However, for high accuracy,
they usually involve high computation cost and require large
amount of data in the training process. Wang et al. propose
a malicious traffic classification method using CNN [63].
By transforming the raw network traffic data as images for
their training and testing of the CNN classifier, there is no
necessity to introduce any hand-designed features or feature
selections. To protect CAN in particular, with the similar
deign, an IDS based on CNN is proposed [13]. CAN traffic
data are converted to image-like frames with grid structure
rather than feature vectors, so therefore their CNN classifier
is able to learn the sequential patterns of CAN traffic to detect
intrusions. Their experiments demonstrate that the proposed
IDS has low false negative rates and error rates.

C. ACCELERATING NEURAL NETWORK
1) BINARIZED NEURAL NETWORK
Due to the high computation cost and the large model
size, advanced neural network techniques can be difficult
to deploy in embedded environments. Some studies aim on
making deep learning faster and smaller without sacrificing
overmuch accuracy. Han et al. [64] discuss that neurons not
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contributing much to the network can be removed from
the network. Pruning network is sparser and potentially
smaller with fewer calculation. Iandola et al. [65] present
a method to reduce the number of parameters for network
size reduction. Both methods aforementioned can make the
model size smaller to some extent, but they cannot guar-
antee a big size reduction when most neurons in the net-
work significantly contribute to the network or the model
is not over-parametered. Researchers [35], [66] propose a
quantized network in the extreme case: Binarized Neural
Network. They introduce a method to train neural networks
with binary weights and activation. The result of BNNs is
obvious [66], in comparison with 32-bit DNNs. BNNs can
require up to 32 times smaller memory size and 32 times
fewer memory accesses. However, BNNs may not be able
to provide higher accuracy compared to their correspond-
ing full-precision models. Various of methods have been
reported to improve BNN accuracy [33]. Some studies focus
on improve model structure. Bulat et al. [33] design a hierar-
chical network and suggest make each layer wider by adding
more neurons in hidden layers. Tang et al. [67] propose to
use partial binarization during training, and only binarizing
groups of kernels that have a greater impact on overall per-
formance. Another direction of improving accuracy of BNNs
is to extend core principals of binarization itself, such as
scaling with a gain term. Gain terms [31] can be used to
give more capacity to a network when multiple gain terms
are used within a dot product or to form a linear combination
of parallel dot products.

2) DEEP LEARNING ON FPGAs
Deep-learning applications with demanding real-time
responses rely on parallelism computing in inference
phases [29]. In the early years, since GPUs were specifically
designed for videos and images rendering, using GPUs for
deep learning became well-accepted. GPUs are able to pro-
cess numerous arithmetic operations in parallel so that they
can offer considerable acceleration. However, comparing
with Application-Specific Integrated Circuits (ASICs), which
are specially optimized for deep learning applications, GPUs
do not deliver as much energy efficiency as ASICs at the same
performance. While there is no single hardware architecture
working perfectly for all deep learning applications, FPGAs
provide distinct advantages over GPUs and ASICs in certain
use cases. FPGAs offer flexibility and cost efficiency with
circuitry that can be reprogrammed for desired functional-
ities. Comparing with GPUs, FPGAs provide decent perfor-
mance in deep learning applications in which low latency and
high power efficiency are critical. Comparing with ASICs,
FPGAs can be fine-tuned even after being manufactured
to set a balance of power efficiency and performance with
specific requirements. As accelerator devices, FPGAs can
be used in the deep training phase, which has already been
widely deployed in the cloud server by leading technology
companies, such as Microsoft Azure [68]. It is also feasible
to use FPGAs as embedded devices in the inference phase.
In our case, we propose to use an FPGA device as an

in-vehicle IDS deep learning accelerator. Unlike powerful
and expensive FPGAs in cloud servers, embedded FPGAs
have limited logic resources and memory bandwidth, which
makes them difficult to perform a full-size, full-precision
deep learning inference [27]. To bridge this gap, one of the
approaches [69], [70] is to optimize deep learning computa-
tion and memory access in FPGAs by efficiently increasing
the utilization of the design space. Another approach [71] is to
simplify the deep learning model by reducing the precision of
floating-point operations and fit this size-reduced model onto
an embedded FPGA device.

IV. ADVERSARY MODEL
We consider general adversary models which can cover most
known attack scenarios targeting the CAN communication.
In this work, we assume that the attacker already has access to
the CAN bus of the target victim vehicle and can manipulate
the malicious node to launch the attack by injecting mali-
cious messages. The malicious node can be either an external
device, such as a laptop, an external ECU connecting to the
bus, or an internal ECU, such as a compromised ECU [2], [3],
[4], [6], [7], [8], [9], [11], [41]. Due to the broadcast nature of
the CAN communication, malicious CAN messages injected
by attackers are broadcast on the bus, and other ECUs cannot
distinguish who the sender is.

Based on the adversary’s different levels of capabilities and
different content of CAN messages, attacks can be classified
as follows:

A. RANDOM ID ATTACK
When an attacker does not understand the semantic meaning
of CAN messages of the target victim vehicle and has no
possession of previous CAN traffic traces, he can only launch
attacks by using simple messages. In this attack, the attacker
generates randomCAN IDmessages and injects them into the
CAN bus. The attacker does not need to have prior knowledge
of the target vehicle. The objective of this attack is to disturb
normal functions of certain subsystems or to compromise the
usability of normal CAN messages.

B. ALL ZERO ID ATTACK
When an attacker considers the priority of CAN messages
and CAN arbitration, he can launch attacks using all zero ID
messages. Those messages have the highest priority as the
lower ID value represents the higher priority. The attacker
aims to occupy the bus and achieve a DoS (denial-of-service)
effect resulting in severe safety consequences.

C. REPLAY ATTACK
When an attacker has previous CAN traffic data, he can
mount attacks by replaying those messages. In this attack, the
attacker injects valid messages transmitted in the bus before
to the bus. This attack can be realized easily, because CAN
bus lacks freshness protection mechanisms.

D. SPOOFING ATTACK
When an attacker can access current or previous traffic traces
or has knowledge about the specification of certain CAN
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IDs either through reverse engineering or learning from other
sources such as the proprietary Database Container (DBC)
file, also known as CAN database files, he can spoof certain
functions by using spoofed messages to harass the CAN bus
or control the vehicle behaviors. In this attack, the attacker
injects spoofed messages pretending to be from a valid ECU.
To create a valid spoofed message, the attacker needs to
understand the messages sent from the victim ECU. This
attack can allow the attacker to intentionally control the target
vehicle which results in critical safety issues.

V. OUR DESIGN
Our objective is to build an in-vehicle network IDS to protect
the CAN bus by detecting suspicious or malicious activities
in the bus. Meanwhile, this IDS aims to have low latency on
the detection process. It is supposed to be placed on a central
gateway or installed on an ECU as a node of the CAN bus
that can monitor the CAN traffic.

We propose a new IDS using BNN to identify intru-
sions in order to overcome limitations on existing machine
learning-based IDSs and protect in-vehicle networks against
vehicle attacks. BNNs are types of neural networks using
one-bit quantization for weights and activations, and they can
provide shorter inference time and smaller memory requests
than corresponding full-precision neural networks. The actual
IDs and data of a vehicle’s CAN messages depend on the
manufacturer’s design, and this information (usually defined
in manufacturer’s proprietary DBC file) is kept strictly and
not published for security reasons. We use raw CAN mes-
sages that are transmitted on the CAN bus and leverage the
sequential patterns of messages to detect malicious intrusions
without the need for DBC files.

As illustrated in Figure 4, the proposed BNN-based IDS
consists of two steps: 1) the training step and 2) the detection
step. In the training step, we use labeled inputs for training.
It can be challenging for the BNN model to directly learn
CAN messages. Therefore, we design an input generator
that assembles ten consecutive CAN messages and attaches
corresponding labels to build input frames. If one or more
attack messages are in one input frame, the frame label is set
as malicious. Otherwise, the label is set as normal. In this
way, BNN is able to learn sequential patterns during the
training process. Note that training can be performed offline
as training a classifier is considered time-consuming. Once
the training process is completed, the trained BNN model is
used in the detection process. In the detection step, the input
generator only assembles current traffic messages as inputs
without attaching labels. Those inputs are processed by the
trained BNN model where the topology and parameters are
learned from the training step. The model can be deployed in
general-purpose hardware such as CPUs, GPUs or FPGAs.
The output of the model is a prediction of whether the input
is malicious or not. If an input is identified as malicious,
an alarm will be raised.

A. INPUT GENERATOR
Neural networks are able to take raw data as inputs without
any extra hand-designed features. Our goal is to process raw

FIGURE 4. Workflow of the proposed IDS.

CAN traffic data without feature engineering efforts that also
save the corresponding processing time.

As described in Section IV, an attacker can launch var-
ious attack types by injecting different types of malicious
messages. Figure 5 provides two CAN traffic log segments
without and with attacks. Each line shows one message.
Both ‘‘normal’’ and ‘‘attacks’’ segments are collected for
7 ms. In normal conditions, the number of message with ID
064 occurrences is 2. However, when there is an attack, the
number of message occurrences increases to 9messages. As a
result, the sequential pattern of the CAN traffic is changed,
which can be exploited to detect attacks.

FIGURE 5. CAN traffic log without attack (left) and with attack (right).

To enable the BNN model to exploit the sequential pattern
of CAN traffic, we design an input generator that transforms
consecutive CANmessages to grid structure frames, and then
the BNN model learns the sequential pattern of these input
frames. Each input frame contains data bits extracted from
N consecutive messages and padding bits. In our design, the
generator extracts 11 bits from the ID section and 64 bits from
the data section, and the bit representation of each message is
as follows:

M = bid0 · · · b
id
10b

data
0 · · · bdata63 (1)

We conduct experiments to find the proper size N of the
input frames and report details in Section VI-D. Based on
experiments, we setN = 10, i.e. the input generator assembles
every ten sequential CAN messages into an input frame.
Figure 6 shows an example input frame. In the last ten consec-
utive CANmessages, the generator extracts 75 bits from each
message (11-bit ID section and 64-bit data section) for a total
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FIGURE 6. An example input frame generated by the input generator.

of 750 bits from ten messages, plus 34 bits for padding. Then,
the generator builds a 28× 28 bitwise frame by stacking these
784 bits. By utilizing this input generator, no hand-designed
features are needed, and our IDS can also be more efficient
through batch processing compared to other IDSs [59], [60],
because multiple CAN messages in a frame are processed at
once during detection.

Many CAN IDSs [13], [44], [72] only rely on the ID field
of CANmessages for intrusion detection. Therefore, they are
ineffective to detect malicious messages that contain valid ID
andmalicious data content, such as spoofedmessages. Unlike
those schemes, our IDS learns from input frames that include
full information of each message and is able to detect such
attacks.

Using the signal data (0 or 1), rather than decoded val-
ues, does not introduce extra prepossessing. Considering
that thousands of messages are transmitted per second on
a CAN bus, such computational efficiency should be taken
into account for an IDS design. Furthermore, neural net-
works generally need to normalize data to improve accuracy,
because a dominating feature with a bigger scale compared
with other features causes low accuracy. Our model does
not need normalization for input data, which also further
improves efficiency by avoiding the computation cost on
normalization as all inputs consist of only 0 or 1. In addition,
the 0 or 1 data helps our IDS map to FPGA hardware more
efficiently because these data make bit manipulation easier
for the hardware.

B. BINARIZED NEURAL NETWORK
Unlike common neural networks which calculate the param-
eters in floating-point format, BNNs use binarized weights
and activations instead of full-precision ones. By using bit-
wise operations, BNNs can substantially reduce computa-
tion cost and improve efficiency. In full-precision neural
networks, the basic operations usually can be expressed as
Equation 2, where z is the output tensor and σ represents
a non-linear function. w and a represent the weight tensor
and activation tensor, and their outer product is decoded
as ⊗.

z = σ (w⊗ a) (2)

In BNN, during the forward propagation stage, floating-
point weights w and activations a are replaced by wb
and ab that are all 1-bit long, which can be defined as
follows:

Qw(w) = αwb,Qa(a) = βab (3)

A BNN can be reformulated in the regular DNN format as
follows:

z = σ (Qw(w)⊗ Qa(a)) = σ (αβ(wb � ab)), (4)

where � is an inner product for vectors that operate using
XNOR-Bitcount [73].

1) BINARIZATION IN BNN
The essential idea of BNN is to set weights and activations to
+1 or −1 [34], [35]. Two binarization methods have been
introduced: stochastic or deterministic. We use the deter-
ministic method as it does not require hardware to generate
random bits during quantization. Since the output from our
input generator is either 0 or 1 without any normalization
process, the first input of BNN and the rest of layers can be
both formulated as Equation 5:

xb = Sign(x) =

{
1 for x ≥ 1
−1 for otherwise

(5)

The problem is that the derivative of the sign func-
tion gets almost zero everywhere while in the back
propagation process. [34] uses Straight-Through Estima-
tor (STE) in a deterministic way, which is called hard
tanh (HTanh):

HTanh(x) =


1 for x ≥ 1
x for − 1 < x < 1
−1 for x ≤ −1

(6)

Using STE, the 32-bit floating-point weights, denoted as
W32bit , are updated with an optimization strategy. During a
large portion of training, a positive value of W32bit is evalu-
ated to have a positive gradient, and that value is increased in
every update. If values inW32bit are not bounded, they will be
accumulated to large numbers. For this reason, BNNs clip the
values of W32bit between −1 and +1. This keeps the values
of W32bit closer to binarized weightW1bit .

2) MODEL DESIGN
We design a simple but powerful fully-connected network.
As shown in Figure 7, this network takes input frames (each
frame consists of ten consecutive CAN messages) from the
input generator and outputs a binary decision indicating
whether or not there are any malicious messages among the
ten messages. We set three hidden layers for the network and
1024 nodes for each hidden layer as a baseline BNN model.
In each hidden layer, there are three sub-layers: 1) a binarized
dense layer. It is deeply connected with its preceding layer.
All weights and activations are binary values, except for the
first binarized dense layer where only weights are binarized;
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FIGURE 7. Baseline BNN structure.

2) a batch normalization layer. It standardizes the inputs to
a layer for each mini-batch, which helps prevent overfitting;
3) a dropout layer with a 15% dropout rate. It is to reduce
overfitting and improve the generalization of deep neural
networks.

We adopt training strategies described in [66] including
shift-based batch normalizing and AdaMax. To train our
model, and make it more efficient to be mapped to FPGAs
without affecting the network accuracy, additional optimiza-
tions are applied:

• Converting the input frames to 0 or 1 through the input
generator makes it easier for hardware to process the bit-
wise operations. Then 1-bit values are used for all input
activations, weights, and output activations to make the
model full binarization, where an unset bit represents -1
and a set bit represents +1.

• Based on [30], the summation of a binary dot product
can be implemented on hardware by a popcount opera-
tion where the set bits are counted by avoiding signed
arithmetic accumulation.

In the detection step, almost all parameters in the BNN are
binarized during the inference stage. There are 3.95 million
multiply-accumulate operations, but 3.12 million of them are
binary multiply-accumulate, which makes the network work
fast if it is deployed on custom BNN hardware.

3) BNN INFERENCE ON FPGAs
While a BNN model is trained on powerful computational
devices, mostly onCPUs orGPUs, the trainedmodel is able to
be deployed on general hardware. Previous studies [29], [30],
[31] show that the BNN can work on resource-constrained
devices, such as embedded CPUs, ASICs or FPGAs. FPGAs
are considered as one of the most widely used platforms for
BNNs. FPGAs offer hardware customization and can be pro-
grammed to deliver performance similar to GPUs or ASICs.
The reconfigurable nature of FPGAs lends itself well to the
rapidly evolving AI landscape and marketing requirement.
In this work, we utilize an FPGA inference framework from
Xilinx [35], which is originally designed for computer vision
tasks, such as image classification. Because the input gener-
ator transforms the CAN traffic to input frames, we make our
BNN-based IDS also work on this framework while enjoying
the further acceleration from the FPGA during the inference.
Figure 8 illustrates the general workflow of converting a
trained IDS into an FPGA accelerator. IDS supplies frames
and a trained BNN to Finn synthesizer. The synthesizer
first determines the resource allocation by Matrix–Vector–
Threshold Unit (MVTU), a computational core for the accel-
erator hardware design, to meet the frames per seconds (FPS)
target and applies the optimizations. And then it produces a
synthesizable network description of a heterogeneous stream-
ing architecture [30], an FPGA parallel optimizing design.
In the last step, with the hardware library and Vivado HLx
design suite, the data stream can be processed on the target
FPGA platform.

Although the size of a full-precision neural networkmay be
practically implemented on some advanced FPGA hardware,
a smaller model size is always beneficial for CAN IDSs,
given the constraints of ECU memory, the need for real-time
communication of in-vehicle networks and budget friendly
considerations [74] (advanced FPGAs can be high-cost). Our
BNN-based IDS takes advantage of neural networks and
can accelerate CAN intrusion detection with a lower power
consumption, a smaller model size, as well as lower budgets.

FIGURE 8. FPGA inference workflow.

C. ENERGY CONSUMPTION AND MEMORY COST
Improving computing performance is still challenging for
neural networks on various tasks. Power consumption has
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TABLE 1. Details of datasets.

been one of the constraints on performance over the last
decade, and many studies aim to reduce the energy consump-
tion of neural networks.

BNN can reduce power consumption for two main rea-
sons: 1) most 32-bit arithmetic operations are replaced with
bit-wise operations in BNN which has binarizing weights
and activations. As fewer system resources are involved for
computation, it leads to an increase in power efficiency;
2) data movement in memory is more expensive than com-
putation. As reported from [75], in neural networks such as
GoogLeNet, only 10% of the total energy is consumed due to
computation. In comparison, 68% of the total energy is con-
sumed from moving the feature maps. Compared with full-
precision DNNs, the proposed BNN-based IDS can request
less memory space to fit with on-chip memory, which reduces
the power waste due to memory access.

VI. IMPLEMENTATION AND EVALUATION
A. DATA COLLECTION AND ANALYSIS
We use a CAN Analyzer tool - a CANalyst-II device to
collect data via the OBD-II port. As an on-board diagnostic
standard, the OBD-II port has been mandatory for all vehi-
cles sold in the US since 1996. Even though it is mainly
used for diagnostic and emission measurements, it can pro-
vide additional information, including engine control, body
control, and chassis control information. By connecting the
CAN Analyzer with the OBD-II port of a vehicle under
normal operations, we collect the CANmessage data without
the need of any prior knowledge about the target in-vehicle
network. To show that the applicability of the proposed
IDS is not limited to a specific vehicle model, we conduct
experiments on four datasets collected from different vehicle
models of different manufacturers. All are collected when a
vehicle is driven under normal operations for twenty to forty
minutes. For example, the dataset of Honda Civic 2018 was
collected while we were driving under normal operations for
four round trips on the road segment on campus, as shown in
Figure 9. Table 1 provides details of each dataset. The third
row depicts the total number of messages in each dataset. The
fourth row lists the number of unique message IDs which are
dependent on manufacturers and vehicle models.

B. ATTACK STRATEGY
Attackers can mount attacks by injecting malicious CAN
messages to the bus via an extra ECU or a compromised

FIGURE 9. Driving path for data collection.

ECU. As shown in Figure 10, malicious messages (in red)
can change the traffic sequential pattern.

FIGURE 10. CAN traffic without and with attacks.

Considering realistic attacks in the real world and existing
studies on attack strategies [2], [3], [6], [8], [13], we imple-
ment 100, 200, 200, 300 intrusions on Dataset 1, 2, 3 and
4 respectively depending on their size. Each intrusion is per-
formed for 3 to 4 seconds. For the all zero ID attack, we inject
a CAN message with 11 zero bits ID every 0.3 ms. The pur-
pose of this attack is to make the network resource unavail-
able to intended normal functions. Since all zero ID is the
most dominant CAN ID in the bus, zero ID messages always
win the bus in the arbitration phase, and the DoS effect can
be achieved. Consequently, all other normal CAN messages
cannot be transmitted. For the random ID attack, we follow a
similar way to the all zero ID attack with different content of
malicious messages. ID and data of those malicious messages
are randomized. This type of attack can result in malfunctions
of the vehicle by disturbing certain functions. For both replay
and spoofing attacks, we inject malicious messages every
0.8 ms. Malicious messages of the replay attack are valid
messages transmitted previously on the bus. And malicious
messages of the spoofing attack are altered messages based
on valid messages with valid IDs and modified data. We need
to understand CAN messages and know the message format
to generate those malicious messages. We need to do reverse
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engineering as we have no access to DBC files which are
proprietary to car manufacturers. For example, we find that
CAN messages with ID 0x0C8 control the instrument cluster
speedometer in Dataset 1. As shown in red in Figure 11, for
ID 0x0C8, only the fifth and sixth bytes in the data section are
changed under normal operations. By modifying the fifth and
sixth bytes, the malicious messages can mount the spoofing
attack. For example, a spoofed CAN message can be gener-
ated with ID: 0x0C8 and Data: 0x00 0x00 0x00 0x00 0x01
0x02 0x00 0x00. For the hybrid attack, we inject a malicious
message every 0.3 ms randomly picked from all four types of
attacks.

FIGURE 11. Example message for spoofing attack.

If the attacker’s goal is to intentionally control the vehicle,
the attacker should design malicious messages with specific
ID and data to the bus. Generally, all malicious messages and
normal messages can be listened by the target victim ECU.
In order to ensure that malicious messages, instead of normal
messages, can be received, the attacker needs to send mali-
cious messages at higher frequency than normal messages.
In a typical message injection attack, the number of attack
messages should be twice the number of normal messages.
In practice, the number of attack messages can be significant
(20-100 times) higher than the normal messages [2].

C. EXPERIMENTAL DESIGN AND SETUP
We design and conduct experiments on different platforms.
To evaluate effectiveness and efficiency of the BNN-based
IDS, we use a regular desktop CPU to demonstrate the per-
formance of our IDS in terms of accuracy and inference time
on software. We use Python version 3 for the implementation
and Theano/TensorFlow as libraries for machine learning.
The BNN training device is a Linux machine running Ubuntu
20.04.2 LTS with a GPU device. For the hardware-based
acceleration evaluation, we focus on embedded computing
which aims to simulate a more realistic environment. We use
two different platforms including an embedded CPU and an
embedded FPGAwhich are low-power devices. Additionally,
we use desktop CPU/GPU devices for comparison, where we
compare IDS detection latency and power usage effectiveness
among those devices. Details of different platforms are listed
as follows:

• Embedded FPGA: Xilinx PYNQ family Artix-7 FPGA,
which has 13,300 logic slices, each with four 6-input
LUTs and 8 flip-flops

• Embedded CPU: Arm Cortex-A9 processor with
dual-core and 650MHz clock

• Desktop CPU: AMD Ryzen 3700x with 8 cores and
16 threads, base clock at 3.6GHz

• Desktop GPU: Nvidia RTX 2070 Super, 8GB DDR6
RAM

D. INPUT GENERATOR
Our input generator assembles multiple consecutive CAN
messages as input frames. Each input frame consists of N
messages and padding bits. It allows the BNN model to
leverage sequential patterns of the CAN traffic. We conduct
experiments to show its necessity and analyze the appropriate
size N of the input frame. The BNN model performs inef-
fectively when the IDS directly takes CANmessages without
the input generator. For example, without the input generator,
it achieves an accuracy of 78.43% under the hybrid attack
with Dataset 1. To find the appropriate size N , we examine
various frame sizes, such as 5, 10, 20, 50. Results indicate that
the IDS dose not perform well when N is small because those
frames may not be able to reflect sequential patterns properly.
While performance is better with larger input frames that con-
tain more messages, the performance does not consistently
improve with the frame size. Based on those experiments,
we design the input generator that produces frames with ten
consecutive CAN messages.

E. OVERFITTING
In order to prevent overfitting, we apply the following
approaches.

1) hold-out. For each dataset, we use 70% for training and
30% for testing. Considering that a CAN IDS receives CAN
messages in a continuous manner and does not randomly
access messages from the traffic trace, the first part of CAN
traffic data is used to train our IDS while the last part data
is used to test. It is noted that no cross-validation is applied
because CAN IDSs cannot access messages at random from
the traffic.

2) regularization. Using regularization during training can
mitigate overfitting. Regularization consists of various meth-
ods. We use two methods: batch normalization and drop
out layer. Batch normalization helps to prevent overfitting
by reducing the internal covariate shift and instability in
distributions of layer activations. Moreover, it also results in
the acceleration of the model optimization and better overall
performance. Drop out layers prevent overfitting by randomly
dropping predefined ratio of nodes in the network.

3) characteristics of BNNs. Adding noise to activations
and weights during training is one of methods to prevent
overfitting. In BNNs, both the activations and the weights
are binarized, which can be consider a variant of dropout
method [66]. It helps to better generalize the model and
reduce overfitting.

4) early stopping. We train our model for a large number of
epochs, and we measure how well each iteration of the model
performs. We stop the training and save the current model
when it starts to degrade, which helps to prevent overfitting.

By using those approaches, we do not find overfitted
models in experiments on four datasets, but it may happen
for CAN data of other vehicles. As this BNN-based IDS
is a scalable framework, more approaches can be applied
to prevent overfitting, such as feature selection. If neural
networks learn too many features, they can eventually overfit.
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Feature selection helps to select important features to reduce
overfitting.

F. EXPERIMENTAL RESULTS
1) BNN VS. FULL-PRECISION NN ON CPU
This experiment is to compare the inference time of BNN and
full-precision 32-bit NN with the same structure. To evaluate
the effectiveness under different types of attacks, we take
into account existing studies and some state-of-the-art work
in the CAN IDS research field [3], [46], [59]. We use three
metrics: accuracy, true positive rate (TPR, or detection
rate), and false positive rate (FPR). Accuracy is the fraction
of all correct detection results. TPR is the fraction of detected
messages that are truly malicious, and FPR is the fraction
of detected messages that are not really malicious. Accuracy
should be high as it indicates the overall detection ability, and
TPR should be high as it shows the ability to detect malicious
messages. FPR should be low as it means the low false alarm.
To calculate them, the following terms are defined:
• TP (true positive): the number of malicious messages
that are correctly detected.

• FP (false positive): the number of malicious messages
that are incorrectly detected.

• TN (true negative): the number of normal messages that
are correctly detected.

• FN (false negative): the number of normal messages that
are incorrectly detected.

Accuracy, TPR and FPR are calculated as follows:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

TPR =
TP

TP+ FN
(8)

FPR =
FP

FP+ TN
(9)

Note that high detection rate (TPR) and low false alarm
rate (FPR) are considered as major performance criteria for
IDSs generally. Low false positives are critical for in-vehicle
networks [3], especially since false positives can lead to
unnecessary panic and waste of resources, such as emergency
services.

By following the common practice, for each dataset, we use
70% for training and 30% for testing. Based on our experi-
ments, we notice that results of each dataset are comparable,
thus we report the average of their performance in Table 2.
It also demonstrates that the applicability of the our IDS is
not limited to a specific vehicle model. Results in Table 2
are calculated over 10 experiments. It can be seen that BNN
inference time is about 3 times faster than regular NN. This
is an improvement for real-time applications that are time-
sensitive. Authors of [14] report that their DNN-based IDS
has a processing latency of 2-5 ms per message, which meets
real-time requirements of CAN. Our scheme achieves shorter
processing time.

BNN has a noticeable higher false positive rate compared
to the 32-bit NN. For true positive rate, BNN outperforms

against the all zero attack and the random ID attack in com-
parison of other types of attacks. As for accuracy, BNN can
handle the random ID attack better than other attack types in
general, but there is still room to improve when comparing
with full-precision NN in terms of any attack types. The
overall performance of BNN on the spoofing attack and the
hybrid attack is not comparable with others, and it might
be because those attacks are more complicated than other
types of attacks. The proposed BNN-based IDS runs 3 times
faster in detection while trading off 2.1%-18.5% accuracy
depending on different attack types compared with the 32-bit
NN model.

Even though we focus on neural networks for higher accu-
racy, we also conduct experiments to compare the perfor-
mance of our scheme with some classical machine learning
methods, including decision tree, random forest and SVM.
These classical machine learning methods generally need
more human interaction and additional efforts, such as data
preprocessing and feature engineering, compared with neural
networks. It has been shown that neural networks outperform
classical machine learning methods, in both general IDS
tasks [15], [50], [51], [52] and CAN bus IDS tasks [13], [14].
We draw the same conclusion through our experiments.

TABLE 2. BNN-based and NN-based IDSs on CPU.

2) BNN IMPLEMENTATION ON FPGA, CPU AND GPU
In this experiment, we compare the performance of
BNN-based IDS with different platforms. The same BNN
model under the hybrid attack is used on four common
hardware platforms: desktop CPU, embedded CPU (eCPU),
FPGA, and GPU. We measure the power consumption of
the FPGA hardware by connecting a USB power monitor
to measure the total power consumption of the board and
estimate the power consumption of others based on the hard-
ware specifications, which is accurate enough to use for our
purpose [27]. It is noted that the processing delay of input
generator is not included. From the results, not surprising, the
GPU device are the fastest inference device during our test.
Inference on the FPGAdevice is 2.7 times faster than the CPU
and 128 times faster the eCPU, because of its optimization
on the bitwise operation and highly efficient parallel data
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processing. When we consider the power efficiency (mes-
sage/sec/watt), FPGAs are the best hardware solution in our
experiment, which is 6.3 times than the GPU, 55.8 times than
the CPU, and 91.6 times than the eCPU. In practical usage,
using powerful GPUs or desktopCPUs is not feasible solution
for ECU setup, therefore, compared with the eCPU platform,
which is limited on computation resources, the FPGA plat-
form becomes a recommended solution as a BNN-based IDS
inference device.

TABLE 3. BNN-based IDS on different platforms.

3) BNN MODELS WITH WIDER/DEEPER STRUCTURE
To further improve the accuracy performance of the proposed
IDS, we explore several BNN model choices with different
width and depth settings to understand if and how more
complicated network structures can provide better detection
accuracy. We evaluate those models from the perspective of
effectiveness and efficiency. We also analyze the model size
of each model.

a: EFFECTIVENESS EVALUATION
Table 4 provides the accuracy performance of different
model choices. We evaluate these models on the same
CPU platform with the same type of attack (hybrid attack)
using three metrics - FPR, TPR and accuracy. The base-
line model (3 hidden layers, 1024 neurons in each hid-
den layer) is the model evaluated in Section VI-F1.
Model 1 is a deeper model (5 hidden layers, 1024 neu-
rons in each hidden layer), and Model 2 is a wider model
(3 hidden layers, 2048 neurons in each hidden layers). As for
Model 3, it is a deeper & wider BNN model (5 layers,
2048 neurons in each hidden layers). We examine all four
models using binary and 32-bit precision options to pro-
vide comparisons between binary and full-precision models.
We also discuss the model size of these models.

Model 3 provides the most significant accuracy improve-
ment on both binary and 32-bit precision networks compared
to other models. However, the cost for Model 3 is also appar-
ent. For binary networks, Model 3 improves 5.67% accuracy
performance over the baseline model, while the model size
increases from 515 Kb to 2.79 Mb, as seen in Table 6.
Increasing width or depth independently can also improve

IDS accuracy performance. For binary networks,Model 1 and
Model 2 achieve 1.34% and 4.33% accuracy boost respec-
tively, over the baseline model. As a trade-off, these two
models’ size increases to 787 Kb and 1.76 Mb, respectively.

We also evaluate the effectiveness of each model design
choice when the network precision is 32-bit. Since the base-
line model has already reached 98.45% accuracy, increasing
the width or depth of the model cannot significantly improve
accuracy performance. On the other hand, the model size
can be expanding multiple times in pace with width and
depth adding. Even for the simplest 32-bit model, the baseline
model size becomes 15.13 Mb, 29.4 times larger than the
binary baseline model size, and 5.4 times larger than the
size of the binary Model 3 which is the best performing
binary model. This experiment shows that BNN models have
an advantage on the model size reduction and demonstrates
how we can improve accuracy performance over the baseline
model. For different applications, different model can be
selected based on resources they have to meet their needs.

TABLE 4. Effectiveness evaluation - hybrid attack.

b: EFFICIENCY EVALUATION
We evaluate efficiency performance of the baseline BNN
model, Model 1 (deeper), Model 2 (wider) and Model 3
(deeper & wider) on the same CPU platform under the same
type of attack.

As shown in Table 5, we measure the inference time/
message for four model design choices. For binary models,
the same as the effectiveness evaluation experiment, whether
it is 1-bit or 32-bit precision, Model 3 increases the inference
time of the baselinemodel themost.With themodel complex-
ity increasing, the inference time required for each message
increases. This increasing inference time needs our attention
because real-time embedded systems are usually susceptible
to such delays.

The inference time of each binary model is about three
times faster than that of the corresponding 32-bit model.
This experiment suggests using BNN can effectively decrease
processing delay.

TABLE 5. Latency evaluation (Inference time/message).

TABLE 6. Model size of different models.
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VII. DISCUSSION
As shown in Section VI, the proposed IDS can reduce
the detection latency while maintaining acceptable detection
rates, and the accuracy can be further improved. It is reason-
able to expect that the proposed IDS can be available for real-
time detection. In this section, we list some remaining open
questions, challenges and limitations:

Root cause analysis: Our IDS can respond by rais-
ing an alarm if an input is identified as malicious. How-
ever, we do not provide a root cause analysis report for
further troubleshooting. The root cause can be facilitated
by a fingerprinting approach [3] that can be complimen-
tary with our IDS. As our work focuses on intrusion
detection, root cause analysis is beyond the scope of this
research.

Data collection: We collect CAN bus data through the
OBD-II port. However, there are some practical limitations.
Firstly, a car manufacturer may define some discretionary
pins in the OBD-II port in addition to standard CAN high and
CAN low pins if a vehicle has multiple CAN buses. Infor-
mation about these pins is required in order to collect data
on all CAN buses. Secondly, data collected directly from the
OBD-II port may be limited or hindered because of different
CAN implementations by different vehicle manufacturers.
Those potential issues can be solved by connecting directly
to the CAN bus but require some levels of destruction to the
vehicle.

Various driving conditions: We collect datasets on the
clear driving roads with cautious driving. Road conditions
and driving styles can be very different in reality. These may
lead to some changes in characteristics of CAN messages
or even cause false alarms to an IDS. For example, driving
on a slippery road or unique driving styles or habits of dif-
ferent drivers may cause changes in the CAN traffic. In our
future work, we consider collecting data on various driving
conditions to understand whether and how they affect the
results.

Training model updates: Updates on the training model
for detection may be needed during the life cycle of a
vehicle. It can be a problem for all machine learning-
based IDSs. For example, replacement or maintenance of
some components may require a newly trained model. The
aging of the vehicle is another concern that may require
a refined trained model. The trained model can be gen-
erated offline by an authorized dealership. However, the
updating process may expose the system to other threats or
attacks.

Adversarial evasion: If an attacker can modify ECU(s)
and cause a ‘‘modified’’ CAN trace for the offline training,
the attacker can trick the IDS and lead to a ‘‘wrong’’ model.
Then, malicious behaviors may bypass the detection of IDS.
Our assumption is that the CAN messages collected for
training are the normal CAN traffic without any adversary’s
manipulations.

Limitations: The proposed BNN-based IDS demonstrate
fast detection and satisfying detection performance especially
for certain types of attacks as shown in experimental results.

There is a trade-off between detection performance and
processing delay. Both true detection rates and accuracy
are lower while false positive rates are still higher than
full-precision one for all types of attacks. To improve perfor-
mance, using complex neural network structure or leveraging
features derived from the semantic meaning of CAN traffic
can be a solution. In addition, there is a limitation that all
supervised learning models have, including neural networks
that are used in supervised learning for IDSs, such as ANN,
RNN and CNN [13], [14], [15]. They can be limited to
detecting unlearned types of attacks, and additional research
in this direction is needed.

VIII. CONCLUSION
This paper proposes a BNN-based IDS to secure the
in-vehicle CAN bus and protect vehicles from malicious
intrusions. The proposed IDS utilizes BNN to accelerate
intrusion detection while reducing detection latency, memory
request and system power consumption. The IDS, which is
designed to suit CAN data, can process the raw CAN data
without additional prepossessing or hand-designed features.
It learns from sequential patterns from CAN traffic rather
than individual CAN message. We evaluate the proposed
IDS on datasets collected from four real vehicles of different
models and manufacturers, which also helps validate that
our IDS’s applicability is not limited to a specific vehicle
model. Experimental results demonstrate that the IDS is able
to detect malicious behaviors with lower latency (3 times
faster) compared to full-precision neural network-based IDS
with sacrificing the accuracy (2.1%-18.5% depending on the
types of attacks) on the same CPU platform. And the model
runs 128 times faster on FPGAs than an embedded CPU.
Moreover, the experiments show a BNN model with a wider
or deeper structure can achieve better accuracy, but as a trade-
off, it increases detection latency and model size to varying
degrees. In addition, experimental results present that the
BNN model provides a significant advantage on the model
size reduction compared to 32-bit counterparts. Therefore,
different applications can select the proper model according
to their needs and resources.

Our study can serve as a proof-of-concept that our
BNN-based IDS has a potential to enhance in-vehicle security
significantly, especially considering the embedded environ-
ments of in-vehicle networks. In the future, we will explore
other improvement strategies that can improve performance
while maintaining its low latency advantages. From experi-
ment results, the hybrid attack is more difficult to be detected
than others. One of our focuses will be to reveal how the
hybrid attack leads to performance degradation, and then
design an IDS that can better defend against such attack.
We also plan to conduct research to consider other CAN
data features, such as semantic features by collaborating with
manufacturers, to improve the BNN model against sophis-
ticated attacks. Another direction of our future work is to
incorporate more attack types to evaluate the effectiveness of
our IDS, such as unknown attacks generated by adversarial
training techniques.
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