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ABSTRACT Univariate multi-step time series forecasting (UMTF) has many applications, such as the
forecast of access traffic. The solution to the UMTF problem needs to efficiently capture key information in
univariate data and improve the accuracy of multi-step forecasting. The advent of deep learning (DL) enables
multi-level, high-performance prediction of complex multivariate inputs, but the solution and research of
UMTF problems is extremely scarce. Existing methods cannot satisfy recent univariate forecasting tasks
in terms of forecasting accuracy, efficiency, etc. This paper proposes a Transformer-based univariate multi-
step forecasting model: Umformer. The contributions include: (1) To maximize the information obtained
from a single variable, we propose a Prophet-based method for variable extraction, additionally considering
some correlated variables for accurate predictions. (2) Gated linear units variants with three weight matrices
(GLUV3) are designed, as a gating to improve the function of selective memory in long sequences, thereby
obtaining more helpful information from a limited number of univariate variables and improving prediction
accuracy. (3) Shared Double-heads Probsparse Attention (SDHPA) mechanism reduces memory footprint
and improves attention-awareness. We combine the latest research results of current DL technology to
achieve high-precision prediction in UMTF.Extensive experiments on public datasets from five different
domains have shown that five metrics demonstrate that the Umformer approach is significantly better than
existing methods. We offer a more efficient solution for UMTF.

INDEX TERMS Multi-step, univariate, time series forecasting, transformers.

I. INTRODUCTION

Time series data (TSD) is applied widely in agriculture, busi-
ness, meteorology, and many other fields [1], [2]. Researchers
were asked to focus on discovering internal patterns in TSD
and making predictions [3]. Traditional univariate prediction
methods usually use the TSD from the previous steps as
model input, the data from the next step as labels. Due
to the minimal number of features in the univariate data,
traditional models for solving the UMTF problem learn very
little information, resulting in inaccurate results. Moreover,
some other challenges have remained. For example, applying
the latest multivariate time series forecasting [4], [5], [6] to
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specific univariate forecasting is hard, including extracting
features and improving accuracy.

UMTF currently faces two key challenges: one is to be
able to effectively extract some of the features that influence
prediction from the limited data available. The second is
to improve the multi-step prediction accuracy of the model
to meet the current and growing needs of society. These
challenges require researchers to provide:

1) a mechanism for univariate variable feature extraction
scientifically extracting feature variables in TSD;

2) a DL model dedicated to UMTF, which has efficient
computing power.

Recent studies have found that the Prophet algorithm [7]
can effectively extract time variables, and the TFT model [8]
can accurately predict multivariate data in multiple steps. The
Prophet algorithm is based on the time series decomposition
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technology, which decomposes each data in a TSD into four
parts, i.e., seasonal, trend, holiday, and remaining. Its data
decomposition method excels in univariate forecasting and
is currently one of the most popular tools for data analysts.

The TFT model introduces a variety of heterogeneous
techniques into the structure of the Transformer [9]. It pro-
vides inputs of known variables for prediction in the future
and improves the training capability by performing feature
selection and weight calculation of different variables. TFT is
a significant innovation in time series forecasting. Although
TFT has emerged as a sophisticated method for solving
multivariate prediction problems, it cannot solve the UMTF
problem. The reasons include:

1) Univariate data limits the learning capability and cannot
provide the variety of variables necessary for the TFT.

2) The Gated Linear Unit (GLU) [10] module in TFT
mimics and improves upon the LSTM [11] in terms of selec-
tively remembering and acquiring information about long
sequences. However, when the feature variables are limited,
the GLU is less effective in accurately extracting the critical
information for the UMTF.

3) The Interpretable Multi-Head Attention mechanism
used by TFT has high time complexity. It is also unable to
capture long-term dependent focus when making univariate
predictions.

This paper proposes a Transformer-based univariate multi-
step prediction framework: Umformer. Based on the above
two models, the method achieves high performance predic-
tion for univariate data. Contributions are as follows.

1) This paper proposes a data processing method based
on the Prophet algorithm, followed by setting variables at
specific time points. We considered the impact of multiple
real-world variables on the forecast, combining the specificity
of UMTF data and specific problems, the added feature
variables are classified into Static seasonal variables, Past
observed variables, and Known time variables, which can
effectively overcome the feature limitations of TSD.

2) GLUV3 is defined to replace the original gated linear
unit. The new variant is more conducive to meeting the
denoising targets of the pre-training phase and improves the
model’s accuracy.

3) The SDHPA mechanism is presented to ensure low time
complexity and improve the attention-aware capability and
prediction accuracy.

4) On various real data sets we show how umformer can
be applied in practice, as well as comparing existing methods
and demonstrating the advantages of the proposed approach.

Il. RELATED WORK

A. UNIVARIATE TIME SERIES FORECASTING

Time series forecasting methods are categorized into uni-
variate and multivariate forecasting. The methods [12] are
used for univariate forecasting [13], [14], [15] based on
the observation data of a given sequence. The multivariate
forecasting methods [16], [17] combine the observation data
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of exogenous variables for prediction [18]. This paper mainly
studies the methods of univariate sequence prediction.

The Autoregression (AR) [19] is a linear regression model
that describes random variables at a future time in terms
of a linear combination of random variables at a particular
time in the previous period, which was the standard method
used in early time series forecasting [20], [21]. However,
it has high requirements for data autocorrelation and can only
be used to predict scenarios that are heavily influenced by
historical factors, but not those that are heavily influenced
by social, natural, and other factors. Moving average(MA)
[22], [23] uses a moving average of white noise to simulate
TSD and calculates the average of the historical data as the
forecast for the next period. When there are more forecast
data, a large amount of data needs to be stored. Many studies
have shown that the forecast accuracy of moving averages
is low [24]. Autoregressive Moving Average (ARMA) [25],
[26] combine AR and MA models to reduce the number of
past parameters, Autoregressive Integrated Moving Average
Model(ARIMA) [27], [28], [29], [30] is a model built by
regressing the lagged values of the dependent variable on the
present and lagged values of the random error term, both of
them require the TSD to be stable after differentiation and
can only capture linear relationships. Exponential smoothing
(ES) [31], [32], [33] is a forecasting method that introduces
the smoothing factor, a simplified weighting factor, to obtain
a time series of averages based on the actual quantity and
the forecast quantity for the current period of a particular
indicator. It is a particular weighted average method in which
historical data closer to the forecast period is given with a
larger weight, and the weight decreases exponentially. But it
cannot discriminate the data turning point and is mainly used
for short-term forecasting.

In recent years, models based on deep learning have been
used for time series forecasting, including convolutional neu-
ral networks(CNNs) and recurrent neural networks(RNNs).
The LSTM [34], [35], a kind of special RNN, is currently
used in practical prediction applications for the future by
selectively memorizing sequences [36]. However, one of the
main limitations of using LSTM to predict time series is that
the model relies heavily on asymptotic forecasting, so remote
forecasting may not be effective. Moreover, it is highly prone
to hysteresis [37]. In recent years, the Transformer [38], [39]
has gradually been used for time series prediction [40]. The
seq2seq [41] model based on the Attention mechanism has
emerged in prediction [42], but it has not yet been used in
univariate time series prediction. A study [43] comparing
Transformer and LSTM solutions to prediction problems
pointed out the limitations of Transformer in terms of com-
putation and parameter handling.

B. MULTI-STEP TIME SERIES FORECASTING

Based on the above discussion, there is another vital issue: an
inaccurate grasp of data characteristics affects the accuracy
of multi-step time series prediction. TBPTT [44] does not
modify the input when calculating the gradient and only uses
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the gradient from the previous step to estimate the current
weight update. The literature [45] used the auxiliary loss to
learn the dependencies in the sequence and add auxiliary to
strengthen the gradient flow. But its performance is still not
optimistic. Other attempts include explaining the breadth of
Graph neural networks [46] to learn long-term dependencies.
These methods try to improve the long-path gradient flow of
the recursive network, but in the UMTF problem, the perfor-
mance is limited due to the increase of the predicted time step.
CNN-based methods [47], [48], [49] use convolutional filters
to capture long-term dependence, and their receptive fields
increase exponentially with the number of layers, which
impairs the alignment between sequences. In the multi-step
accurate prediction, the main task is to extract the required
data from multiple input time steps, which requires more
output. Therefore, the above methods cannot be directly used
for univariate multi-step forecasting. Attention-based mod-
els proposed addictive attention [50] to improve the word
alignment of the encoder-decoder structure in translation
tasks. The self-attention-based Transformer [9] has recently
been proposed as a new idea of sequence modeling and has
achieved great success, especially in NLP. Various studies
have proved that it has better sequence tracking capabilities.

In order to reduce the time complexity, many researchers
presented heuristic methods to reduce the complexity of the
self-attention mechanism to O(LlogL) [51], but their effi-
ciency is limited. Reformer [52] achieves O(LlogL) through
locally sensitive hash self-attention, but its application scope
has been limited. Using the hidden auxiliary state to capture
remote dependencies [53] may increase the time complexity,
but it may not necessarily improve efficiency. The Prob-
Sparse self-attention [54] reduces the time complexity and
space complexity. It maintains the original accuracy but does
not consider interpretability. In the Interpretable Multi-Head
Attention of the TFT [8], multi-head attention shares the
value of each head, and aggregates all the heads to enhance
the interpretability. However, it does not consider accuracy
and efficiency when self-attention is used.

In our work, a Transformer-based Umformer is proposed
for multi-step accurate prediction. The most relevant works
[55], [56] all use Transformer in TSD, but as they use an
ordinary Transformer, multi-step prediction is not very effec-
tive. In addition, other works [27], [52], [57] have noted
the scarcity of self-attention mechanisms and discussed them
in the main context of long-term dependencies based on
Transformers, such as a sparse cluster-based Transformer for
remote dependency encoding [40].

1Il. PREDEFINE
Our research aims to provide a solution to the UMTF problem
by addressing the problem of temporal feature decomposition
in this domain and improving the accuracy of multi-step
prediction.

To begin with, we need to define the UMTF problem.
We provide the machine input: I = {x;—,q1,..., X2,
X¢—1,X¢}, where each x is univariate data observed before
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the current timestamp ¢. Then the predicted output values
are output by the prediction model: ¥ = {y;41, yr+2, ...,
Yi+m}, Where each y in the model output Y is the value
of the data for an equal time difference after the current
timestamp 7.We assume that n observations are input to the
model, predicting values for m future time steps. Specifically,
we input n timestamps and corresponding label values up to
the current timestamp ¢ into the model, and the model predicts
and outputs the values at m time steps in the future to complete
the prediction.

IV. METHODOLOGY

The initial methods used for time series forecasting were
mainly mathematical and statistical models, including AR
[58], MA [59], ARMA [60], and ARIMA [28]. In recent
years, recurrent neural networks (RNNs) [35] and convolu-
tional neural networks (CNNs) [61] have also been gradually
used in prediction. The Attention mechanism-based seq2seq
model [62] and the Transformer lead to a new round of
research on time series forecasting.

This paper is dedicated to addressing the challenges of
current univariate prediction methods and finding optimal
solutions. We propose an Umformer framework(Future 1)
that is unique and novel in terms of feature engineering,
model construction, etc. Major components of Umformer are

(1) Univariate TSD feature engineering: This includes
prophet-based feature decomposition, data pre-processing,
data classification, and feature selection. The consideration
of multiple variables greatly improves the effectiveness of
univariate prediction.

(2) Sequence to sequence: The encoder and decoder are
used for the input and output of the time series respectively,
predicting the change in TSD based on the first few inputs.

(3) GLUV3: as a gating to improve the function of selective
memory in long sequences, thereby obtaining more helpful
information from a limited number of variables.

(4) Transformer decoder: The designed Static Variable
Enhancement GRN (SVEGRN) considers the effect of sea-
sonal variables, and the proposed SDHPA reduces memory
footprint and improves attention-awareness, increasing pre-
diction accuracy.

Figure 1 demonstrates the entire process of univariate
multi-step prediction by the Umformer model. First, uni-
variate data with feature expansion is classified. After the
feature selection, the static seasonal variables enter the sep-
arate GRN encoders. Different vectors are generated and
enter the seq2seq model. the Static Variable Enhancement
GRN(SVEGRN) enhances the temporal characteristics of
static seasonal variables. The Known time variables enter the
encoder, and the known dynamic variables are used for fea-
ture selection. The output from SVEGRN enters the SDHPA
after the GLUV3 and GRN layers. In this process, Static
seasonal variables affect the calculation of GRN again and
enhance the static characteristics. After the feature variable
selection and the LSTM-based encoder/decoder, the informa-
tion is screened through a layer of GRN. Finally, the results of

101349



IEEE Access

M. Li et al.: Umformer: A Transformer Dedicated to Univariate Multistep Prediction

Univariate TSD feature engineering

v

Data feature expansion

[ Univariate
| time-series
data

Prophet
feature
extraction

set period
variable

Static seasonal variables

Known time variables

| Past observed variables

Data Classification
GRN encoder

AT
| Feature
selection
A—y
Feature ‘

selection | 4

Transformer
output values: decoder

.ylﬂ' y‘ﬂ o ym

1l

uv3

Shared
Double-
heads
Probsparse |
Attention
(SDHPA)

<
<——

=——1

Residual
Network
(SVEGRN)

FIGURE 1. Umformer framework.

the Attention mechanism are input into GLUV3, GRN, and
GLUV3 in turn, and the predicted value is output through a
dense layer.

A. UNIVARIATE TSD FEATURE ENGINEERING

1) FEATURE DECOMPOSITION AND DATASET
PREPROCESSING

In this stage, multiple data features are extracted and
expanded by Prophet algorithm from the original data. Sup-
pose y () is a time series, s () is the periodicity in weeks
or years, g (#) is non-periodical change trend of y (¢), h (¢) is
whether there are holidays in the day, and &, is the error term.

yO) =s®+g®+h@)+e ey

Umformer selectively extracts characteristic variables
from the feature extraction of Prophet. We also added time
terms such as year, month, week, and day to the original
variable.

In addition, we use research methods such as scientific
reasoning and practical analysis to add fundamental variables
that affect the prediction outcomes of specific data sets, such
as bool-type holidays and major events. For univariate predic-
tion, we combine deep learning and mathematical statistics
techniques to achieve data feature extraction and scaling.

The Prophet is based on time series decomposition and
machine learning for univariate time series forecasting. Its
internally improved time series decomposition technology
provides us with new solutions. The time series y (¢) are
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decomposed into the following parts, The period term s (¢)
represents the periodicity in weeks or years; the trend term
g (t) represents the non-periodical change trend of the time
series; the holiday term 4 (f) represents whether there are
holidays in the day; the remaining term &; represents the error
term or is called the residual term, when y (t) = s (¢)+g (1) +
h (t) + &, the Prophet algorithm is to fit these items, and then
finally add them to get the predicted value of the time series.
We use the variable processing method of the algorithm to
apply to data preprocessing and decompose the data to obtain
multivariate time series data.

In conclusion, we have solved one of the bottlenecks of
univariate time series forecasting - univariate TSD cannot be
predicted with existing multivariate time series forecasting
models, it has too few correlated variables. We extracted
some important relevant variables through the prophet feature
extraction method, and added periodic variables, which will
improve the predictive ability of the model.

2) DATA CHARACTERISTICS CLASSIFICATION
This paper divides the data into Static seasonal variables, Past
observed variables, and Known time variables.

1) Static seasonal variables are seasonally relevant charac-
teristics. As seasonal variables remain constant over a given
continuous-time data, they can be used as static covariates to
control the overall situation. The model will pay more atten-
tion to changes in data characteristics within the same season,
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FIGURE 2. Model input and output.

reduce the prediction error caused by seasonal changes and
improve the model’s ability to fit cyclical factors.

2) Past observed variables are known and observed as the
dynamic variables before the prediction point. In this part, the
variables are impossible to know when predicting the future
time. Past observed variables are essential features that affect
the model’s prediction, so it is necessary to input the dynamic
variables from the previous period to predict the label value
for a period later.

3) Known time variables are known in advance through-
out the forecasting system. Such variables can influence the
training of the model parameters prior to forecasting. They
can provide the model with data on variables at various future
time points, such as annual, monthly, and daily variables
known at the various times around the forecast time ¢.

Figure 2 shows more clearly how the classified data play
a role in the novel model and the Umformer model on how
to learn these variables after expanding and classifying the
data. First, variables and labels developed by the Prophet
algorithm are used as the Past observation variables and
become the historical data affecting the future forecasting.
The static seasonal variable is the time points, including
spring, summer, autumn, and winter. Since seasonal terms do
not change over a continuous period and the volume of data
is large, they can be used as a global coordination feature.
Known time variables can be used in the past or future to
influence forecasting.

3) FEATURE SELECTION NETWORK

Past observed variables p, Static seasonal variables s, and
Known time variables k are pre-processed with univariate
data from the Umformer model and then efficiently extract
information through a feature selection network consisting
of a series of gated residual networks (GRN). The GRN is
used as a component to allow the model to be flexible for
non-linear processing. The input to the GRN is defined to
consist of two parts, one is the main input i, and the other is
the auxiliary input c (the data after the static covariate passes
through the encoder) and yields,

GRN,, (i, ¢) = LayerNorm (i + GLUV3,, (1))  (2)
N = ELU (W2,a)i + W3,wc + bZ,w) (4)
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where ELU is the exponential linear unit(ELU) activation
function, ny, 72 € RAmodel gre intermediate layers, LayerNorm
is standard layer normalization, and w is an index to denote
weight sharing. ELU activation will act as an identity function
when Ws i+ W3 »c+ b2, > 0, and will produce a constant
output when Wy i + W3 4 + b2, < 0, resulting in linear
layer behaviour. We present a GLUV3-based component gat-
ing layer to suppress the flexibility of any part of the structure
not necessary for a given dataset. Thus GRN can play the role
of variable feature selection.

Umformer passes the Past observation variables p, Static
seasonal variable s and Known time variables k after classi-
fication independently through the feature selection network.
Let p(T’) € Rdmodel denotes the transformed input of the j-th

: _ o7 Gnar) "
variable at moment 7, and P = py’ ,...,py being

the flattened vector of all past observation inputs at time 7.
Feeding both Pr and static covariate c; to GRN, followed by
a Softmax layer, variable selection weights w,; is obtained
that

wys; = Softmax (GRNys (Pr, ¢y)) @)

Ateach time step, an additional non-linear processing layer
is added, feeding p(T/) into its GRN that

1 =R, (o) ®

where ;(Tl) is the processed feature vector for variable j.
Each variable has its calculation, sharing weights at all time
steps T. The processed features are weighted and combined
according to their variable selection weights as follows:
~ ()
Jmax X1

pr= > o) @)
j=1

where a),(,’s)T is the j-th element of vector w,,, .

The strengths of TFT are mainly reflected in the feature
selection of GRN, similar to principal component analysis
(PCA) and the explainable multi-head self-attention mech-
anism. Moreover, its GRN, as a threshold device in TFT,
is more like a replacement for the Dense layer. However, com-
pared with the Dense layer, it extracts the effective compo-
nents and improves the performance and learning efficiency
of the model.

The TFT framework is shown in Figure 3. Different types
of variables are fed into the corresponding variable selection
network. After the sequence-to-sequence model, the multi-
head self-attention mechanism gets the weight of each vari-
able into multiple gate and GRN layers, and finally into a
multi-step time series prediction value.

Next, in order to make accurate predictions for spe-
cific data after univariate feature decomposition, this work
improves the GLU layer and the Multi-headed Attention
mechanism to increase the accuracy of multi-step prediction.
We propose GLUV3 to replace the original GLU to improve
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the model’s selective memory and forgetting functions in long
sequences. Moreover, the SDHPA mechanism improves the
attention-aware ability of the Attention mechanism under the
premise of ensuring time complexity.

B. SEQUENCE TO SEQUENCE
Umformer integrates seasonal information for seasonal vari-
ables using a separate GRN encoder, which generates four
different vectors cy, c., c¢, cp,. these vectors are sent to dif-
ferent locations so that the four vectors play different roles in
different layers. Specifically, this includes c; that influences
the choice of variables for each variable, c., ¢, for local
processing of temporal features and c, used in SVEGRN for
seasonal information enhancement. For example, ¢ is used as
the output of the variable selection network and the ¢ vector is
encoded by GRN (¢) for output. Except for the static seasonal
variables, the other variables are generated by the LSTM
encoder and decoder to produce vectors into the next layer.
In TSD, the label values of each timestamp are usually
related to the values around them. However, as past and future
inputs are different, this prevents them from being entered
together as the same characteristic variable. Therefore, our
work applied a seq2seq model to handle these differences
with X;_, : X; going into the encoder and X;1+1 : Xi4m
into the decoder. A consistent set of temporal features is
generated, which are used as inputs to the next layer. Con-
sidering T € {t—h:t+ m}, t is the current time point,
h is the maximum time step known before 7, and m is the
maximum time step predicted after ¢.this can also be used
as an alternative to the standard position coding to provide
an appropriate inductive bias for the time sequence of the
input. o7 € 9t —h),...,0(t),..., @ (t +m), where ¢r
is the output of encoder and decoder at a certain point in
time. In addition, in order to allow seasonal variable data to
affect processing, we use c., ¢, vectors from the above GRN
encoder to initialize the cell state and hidden state of the first
LSTM in the layer. It also uses gated skip connections after
this layer

¢ = LayerNorm (X7 + GLUV 3 (¢1)) 3
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C. GLUV3

GLU was initially proposed in language model [10]. Its
availability keeps information strictly according to the time
sequence position when performing sequential data pro-
cessing, improving performance and speeding up the oper-
ation through the parallel processing structure. GLU was
initially defined as the component product of two linear
input transformations, and one is activated by the Sigmoid
function. The descriptor ignores the activation and calls it the
“bilinear” layer [63], which has been explained in a study.
Recent studies have proved that GLU can also be changed by
using a different activation function instead of the Sigmoid
function [64].

This paper proposed GLUV3 to improve the ability to
retain important information in chronological order when
processing data, and the capacity to selectively forget and
remember information is also enhanced.

GLUV3 (a) = Wi [(ax Wy + ) ® Gelu(ax W3 + )] + x
©

where a indicates the output of the previous layer and the
input of this layer,W;, W, and W3 are the convolutions kernel
parameter, «, B and x are the bias parameters, Gelu is
the Gelu activation function [65]. We replace the Sigmoid
activation with a Gelu activation and add a one-dimensional
product calculation.

To solve the gradient disappearance of the Sigmoid func-
tion, we selected the Gelu function. As an activation function
that adjusts the output through a gating mechanism, the idea
of random regularity of the Gelu can more conveniently
improve the speed of gradient descent and learning. No matter
how large the input value is, its derivative will not tend to
be 0. To a certain extent, it avoids the problem of gradient
disappearance, and its fitting ability is faster and better than
Sigmoid.

Figure 4 shows the specific structure of GLUV3. The input
of this layer is a series of continuous TSD. A vector represents
the original series data. The calculation of the hidden layer is
calculated according to the above formula.

The output of each layer has a linear projection a x W> + «
modulated by the gated Gelu a * W3 4 B. Similar to LSTM,
these gates multiply each element of the matrix. In addition,
we add an overall linear projection, so these layers are passed
through three weight matrices to improve the accuracy of the
calculation.

Our method wraps the convolution and GLU in a
pre-activated residual block and adds the input of the residual
block to the output. One of the most effective choices is using
the Gelu layer and adding a one-dimensional weight matrix,
which does training and testing faster and more accurate.

D. SDHPA

This paper has employed a self-attentive mechanism to learn
long-term relationships between different time steps, and
modified the transformer-based architecture. We propose
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SDHPA specifically applied to the UMTF problem, using the
probsparse self-attention mechanism and the double-heads
Attention mechanism when performing the feature weight
calculation for the Attention mechanism. The Probsparse
self-attention mechanism was proposed in the study of
Informer [54]. Due to the traditional Scaled Dot-Product self-
attention mechanism resulting in a time complexity and mem-
ory usage of O (L?) per layer, The PorbSpare self-attention
mechanism to efficiently replace the canonical self-attention
mechanism achieves a time complexity and memory con-
sumption of O (LlogL). We experimentally demonstrate that
this approach gives more accurate predictions than Scaled
Dot-Product Attention for the UMTF problem, even though
it reduces time complexity and memory usage. To improve
interpretation and speed up operations, we summed and
averaged each head in the calculation of the Double-heads
attention. Due to the limitations of univariate TSD, there
is relatively little information represented. When there are
too many heads, this can lead to a reduced impact of the
representation subspace in each head, not capturing important
representations effectively and even leading to overfitting,
so we choose a two-headed attention mechanism to pay more
attention to important representations.

General, the Attention mechanism is based on the rela-
tionship between the key K € RV*%m and the query
Q € RN*dam  extended for the value V. e RN*dam,
Attention (Q, K, V) is generally calculated from the tradi-
tional scaled dot product attention [9].

The proposal SDHPA is presented as follows. For self-
attention, considering random sampling, randomly select
u — th K, get k,, and evaluate M for ¢; € Q with respect
to k, that

M (gi. Ky) aiki’
i u) = max ;
! Nz

Lk T

1 qikj
- — 10
LKZ Vd (10

j=1

where k; € Ky, L is the length of the sampled K. Find
the largest ¥ number of Q; in M, form Q, and calculate
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Attention (Q, K, V) according to Kj,:

T
Vd

where Q is a sparse matrix of the same size as Q, containing

Attention (Q, K, V) = softmax(

)4 an

only u queries under the sparse metric M (g;, K,,).Q,, is the
matrix composed of the selected # number of ¢;, and the
unselected g; is initialized to the original O, matrix by finding
the mean value after Attention (Q, K, V), and the non-zero
values in the Q,, matrix are updated to the Q, matrix to obtain
the final Q matrix. In fact, in the self-attentive computation,
the input lengths of queries and keys are usually equal, i.e.
Ly = Lg = Ly, making the total time complexity and space
complexity of ProbSparse self-attentive O (LInL).

Multi-headed attention is used to enable models to jointly
focus on information from different representation subspaces
at different locations, which is extremely important in the
NLP domain for semantic extraction and can also be effective
in the UMTF domain when adequately utilized, i.e.

MultiHead (Q, K, V) = [H1, ..., HuulWu  (12)

and

H, = Attention (QWQ“”, KWie®, VWV(h)> (13)

where W}é € RYmodet*damm Wé € RYmodet*damn Wf‘l/ c
Rmodet *damnare head-specific weights for key, querie and
value, and Wy € RUmH ‘dV)de"df’, combine the outputs of
all heads Hj. As mentioned above, because each head uses
a different value, the weight of attention alone does not guar-
antee that the importance of a particular feature is reflected
and exploited. Therefore, the interpretability is enhanced
by modifying multi-head attention to shared values in each
head and additive aggregation of all heads when seeking a
two-head Attention mechanism.

The formula for finding double-headed attention is as
follows:

Doublehead(Q, K, V) = HWy (14)

1
=5 [Attention (QWQ‘,K Wil v WV1>

+ Attention (QWQZ, K Wi,V sz)] (15)

where Wy € Rfmoderxdv are value weights shared across
heads, and Wy € RAam>dmodel gre used for final linear
mapping. It can be found that different temporal patterns can
be learned between the two heads while noticing a common
set of input features, which can be interpreted as a simple
aggregation of attention.

The final value Doublehead (Q, K, V), output by the
Attention mechanism, goes to the next level of computation.
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E. TRANSFORMER DECODER

In order to be able to consider the effect of seasonal variables
on forecasts globally, the SVEGRN we built integrates c,
variables and sequence to sequence outputs to improve the
efficiency of the model’s fit to the variables.

SVNGRN7 = GRN (¢, c¢) (16)

After making the seasonal information augmented,
we applies self-attention. All input temporal features are first
grouped into single matrix 9 (f) = [0k, - .., 61+m], When
Or is time feature, T € (t — h, ..., t + m), Double-headed
interpretable Attention mechanism applied to each prediction
time.

B (t) = DoubleHead (9 (1), 9 (1) , ¥ (1)) (17)

Denote B(t) = [Bi—h,---, Bi+m], decoder masking is
applied to the multi-headed attention layer to ensure that each
temporal dimension can only notice the previous features.
After the self-attention layer, an additional gating layer is
applied to facilitate training that

yr = LayerNorm (SVEGRN7 4+ GLUV3,, (yr)) (18)

Our approach applies additional non-linear processing and
GRN operations to the output of the self-attention layer, and
we also apply a gated residual connection that skipped the
entire transformer module, providing a direct path to the
seq2seq layer.

Y = LayerNorm (¢7 + GLUV 3y, (Y7)) (19)

F. OUTPUT AND LOSS

The output of Umformer uses quantile prediction, which is
realized by three percentiles, 0.1, 0.5, and 0.9, where Y7 =
v(g. T) = Wy - Y7 + by, by is the linear coefficient of the
specified quantile g. The T is different from the previous
one in that ranges only between {r 4 1 : ¢ + m}, because the
forecast must be at a point in time after 7. For different
datasets, we find that the prediction levels are different for
different quartiles, and we choose the quartile with the best
result as the final prediction output.

The quantile loss is defined as

E; = tar — pred,; (20)
L = max((q; — 1) -E, g; - E) (21)
n
> L
loss = =L (22)
n

where far is the label value, i takes the value 0,1,2, pred; are
the model prediction output value of the i-th q, and q takes
the value 0.1,0.5,0.9.

V. EXPERIMENT

A. DATASETS

We conduct experiments on datasets from three different
domains. These data consist of only two columns, including
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TABLE 1. Experimental parameters.

Parameters Value
ratio of partition(train: validate: test) 6:2:2
Batch size 32
Dropout rate 0.5
Learning rate 0.0001
LSTM layersrate 2
Quantilesrate 0.1,0.5,0.9

each timestamp and the corresponding label value, and are
univariate TSD. The next task is to conduct comparative
experiments on our method in these univariate datasets.

1) VISITS

The time series data of daily visits to Peyton Manning’s
Wikipedia homepage (2007/12/10-2016/01/20). Each vari-
able in the original data for this dataset is a logarithmic (log)
value of specific access data.

2) TEMPERATURE

This dataset is called the “Daily Minimum Temperature
Dataset”, which describes the minimum daily temperature
in Melbourne, Australia, for ten years (1981-1990). The unit
is Celsius, and there are 3650 observations in total from
Australia’s Bureau of Meteorology.

3) SUNSPOT

This dataset is called the “Monthly Sunspot Dataset”, which
describes the monthly count of the number of sunspots
observed in the past 230 years (1749-1983). A total of 2,820
observations were counted in the unit.

4) ECN:(A EUROPEAN CITY CORE NETWORK)

Data (in bits) from a private ISP in 11 cities in Europe.
The data correspond to transatlantic links and were collected
between 7 June 2005, 06:57 and 31 July 2005, 11:17. Data
were collected at 5-minute intervals. There are 14,772 data
items.

5) TAXI

New York City taxi demand dataset, recording the number
of taxis in demand in the city at different times, covering
the period 2014-07-01 to 2015-01-32. data was collected at
30 minute intervals. A total of 10,321 data items are available.

B. ENVIRONMENT

The pytorch framework version 1.9.0, combined with CUDA
version 11.1 and cuDNN version 8.0, can be used to run
the code for this article. The model training and inference
in this paper are performed on NVIDIA RTX 3080 and
intel 19-9900k@5GHz. NVIDIA RTX 3080 has 4352 CUDA
cores and 10GB of GDDR6X video memory, 320 bit width,
760GB/s maximum bandwidth, and 320W TGP. The Intel
19-9900k has eight cores and sixteen threads. Umformer are
trained on CPUs in all datasets and can be deployed with
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TABLE 2. Components level comparison table.

Components SDA+GLU SDA+GLUV2
Metric MSE RMSE MAE MAPE MSE RMSE MAE MAPE
20 0.166 0.408 0.334 4.201 0.135 0.368 0.274 3.485
30 0.180 0.424 0.355 4.451 0.110 0.332 0.263 3.312
40 0.201 0.448 0.369 4.629 0.142 0.377 0.286 3.635
learning cycle 50 0.222 0.471 0.389 4.903 0.132 0.363 0.281 3.564
60 0.143 0.379 0.312 3.920 0.103 0.321 0.254 3.210
70 0.281 0.531 0.440 5.523 0.133 0.364 0.275 3.506
80 0.163 0.403 0.322 4.066 0.147 0.384 0.292 3.726
Components SDA+GLU3 SDPA+GLU
Metric MSE RMSE MAE MAPE MSE RMSE MAE MAPE
20 0.136 0.368 0.288 3.681 0.232 0.482 0.398 4.909
30 0.118 0.345 0.269 3.419 0.214 0.463 0.362 4.581
40 0.166 0.407 0.323 4.101 0.189 0.435 0.337 4.264
learning cycle 50 0.204 0.452 0.365 4.623 0.200 0.448 0.359 4.490
60 0.297 0.545 0.455 5.727 0.197 0.444 0.353 4.432
70 0.304 0.552 0.455 5.711 0.166 0.408 0.311 3.928
80 0.150 0.387 0.299 3.814 0.182 0.426 0.329 4.139
Components SDPA+GLUV2 SDPA+GLUV3
Metric MSE RMSE MAE MAPE MSE RMSE MAE MAPE
20 0.258 0.508 0.401 5.124 0.143 0.379 0.288 3.641
30 0.351 0.593 0.507 6.238 0.156 0.395 0.311 3.943
40 0.195 0.441 0.348 4.455 0.097 0.311 0.236 3.002
learning cycle 50 0.208 0.456 0.3578 4.574 0.097 0.311 0.252 3.178
60 0.180 0.424 0.325 4.162 0.087 0.295 0.221 2.824
70 0.162 0.402 0.307 3.928 0.106 0.326 0.238 3.043
80 0.156 0.395 0.300 3.822 0.123 0.351 0.260 3.308

“4SDA:Scaled Dot-Product Attention.

bSDPA:Shared Double-heads Probsparse Attention.

¢GLU:Gated Linear Unit.

4GLUV2:Gated Linear Unit Variants with two weight matrix matrices.
¢GLUV3:Gated Linear Unit Variants with three weight matrix matrices.
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FIGURE 5. Training and validation loss.

non-large computational resources. Of course, the computing
speed and results are better in a GPU environment and with
specific hardware environment optimizations.

C. EXPERIMENTAL DETAILS

We split all the time series into three parts for each dataset: the
training set for learning, the validation set for hyperparameter
tuning, and a reserved test set for performance evaluation.
We finally determine the experimental parameters, as shown
in tablel

VOLUME 10, 2022

(b) Temperature loss

(c) Sunspot loss

In this paper, we have conducted ablation experiments,
i.e., six sets of experiments, to compare the accuracy of the
results obtained by our proposed components and the original
components. In order to better demonstrate the accuracy
of the prediction, we use mean square error (MSE), root
means square error (RMSE), mean absolute error (MAE),
mean absolute perceivable error (MAPE) and symmetric
mean absolute percentage error (SMAPE), these five pre-
dictive evaluation indicators as benchmarks. The following
shows the prediction results of related experiments we have
done.
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TABLE 3. Model comparison results table.

Methods Umformer TFT
time steps MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.086 0.293 0.231 3.051 3.123 0.061 0.248 0.198 2.664 2.686
60 0.069 0.263 0.221 2912 2.909 0.083 0.288 0.225 2.922 2.955
| 90 0.079 0.281 0.228 2914 2.918 0.087 0.295 0.23 2.929 2.954
120 0.086 0.294 0.232 2.927 2.947 0.109 0.331 0.269 3.327 3.365
135 0.086 0.293 0.227 2.845 2.869 0.127 0.356 0.293 3.589 3.643
185 0.094 0.307 0.234 2.88 2.919 0.167 0.408 0.335 4.003 4.092
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.156 0.395 0.305 4.246 4.318 0.147 0.383 0.305 4.491 4.374
5 60 0.189 0.435 0.341 4.525 4.534 0.247 0.497 0.397 5.435 5.265
90 0.22 0.469 0.379 4.782 4.732 0.266 0.516 0.424 547 5.296
120 0.237 0.487 0.396 4.691 4.633 0.324 0.569 0.469 5.657 5.473
135 0.247 0.497 0.399 4.557 4.497 0.335 0.579 0.474 5.502 5.327
185 0.352 0.593 0.484 4.8 4.711 0.489 0.699 0.585 5.848 5.652
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 159.094 12.613 9.658 10.787 10.948 839.357 28.972 27.385 23.668 27.226
3 60 253.261 15.914 12.493 17.3 15.885 581.616 24.117 21.237 20.327 23.214
90 286.597 16.929 13.605 20.021 20.564 1050.375 32.409 28.57 29.701 37.269
120 364.196 19.084 15.567 22.297 24.088 1595.054 39.938 34.867 34.569 44.868
135 382.972 19.57 16.024 22.002 23.527 1469.998 38.341 32.818 32.21 41.554
185 426.72 20.657 16.85 20.458 21.629 1151.395 33.932 27.599 26.866 33.567
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.002 0.043 0.035 0.163 0.163 0.022 0.148 0.136 0.629 0.627
4 60 0.007 0.081 0.069 0.315 0.316 0.013 0.112 0.091 0.421 0.42
90 0.01 0.102 0.09 0.413 0414 0.008 0.088 0.073 0.335 0.334
120 0.009 0.093 0.079 0.362 0.363 0.009 0.095 0.074 0.342 0.342
135 0.008 0.09 0.076 0.348 0.349 0.009 0.093 0.074 0.338 0.338
185 0.006 0.08 0.066 0.303 0.303 0.007 0.083 0.064 0.292 0.292
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.211 0.46 0.404 4.582 4.493 0.672 0.82 0.624 6.67 7.087
5 60 0.193 0.439 0.383 4.316 4.232 0.602 0.776 0.567 6.069 6.441
90 0.157 0.396 0.348 3.852 3.781 0.416 0.645 0.427 4.567 4.819
120 0.146 0.382 0.326 3.602 3.533 0.444 0.667 0.445 4.748 5.016
135 0.143 0.378 0.325 3.568 3.5 0.399 0.632 0412 4.395 4.632
185 0.193 0.439 0.37 4.064 3.964 0.368 0.607 0.397 4.226 4.439
30 0.142 0.377 0.313 30.139 37.431 0.241 0.491 0.247 30.993 30.195
60 0.157 0.396 0.327 99.506 64.407 0.275 0.524 0.341 83.103 76.343
| 90 0.14 0.375 0.312 145.465 89.605 0.14 0.375 0.312 145.465 89.605
120 0.221 0.47 0.374 170.805 109.057 0.221 0.47 0.374 170.805 109.057
135 0.248 0.498 0.4 188.552 114.906 0.248 0.498 0.4 188.552 114.906
185 0.476 0.69 0.538 438.01 124.5 0.476 0.69 0.538 438.01 124.5
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.866 0.931 0.754 10.706 11.705 6.564 2.562 2.119 31.377 26.978
5 60 0.866 0.931 0.754 10.706 11.705 4.987 2.233 1.766 24.116 23.31
90 2.769 1.664 1.49 17.662 19.806 6.819 2.611 1.999 24.673 24.978
120 2.987 1.728 1.582 17.6 19.647 6.285 2.507 1.905 22.291 22.615
135 3.625 1.904 1.75 18.633 20.874 6.771 2.602 1.988 22.152 22.238
185 0.023 0.153 0.131 46.091 29.755 6.682 2.585 2.004 20.007 20.318
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 178.996 13.379 11.811 13.727 12.596 1665.928 40.816 34.092 42.053 34.444
3 60 581.424 24.113 20.425 31.448 24.859 1818.58 42.645 35.171 45.602 42.469
90 3513.537 59.275 44.399 96.211 50.068 2673.534 51.706 42.124 51.903 62.158
120 5500.447 74.165 58.096 118.099 59.018 3166.385 56.271 46.122 73.177 74.322
135 4982.304 70.585 54.091 107.514 54.58 3243.22 56.949 47.106 73.239 71.563
185 4020.305 63.406 48.986 86.768 49.871 3366.006 58.017 48.244 73.147 65.722
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.177 0421 0.331 1.519 1.525 0.005 0.07 0.06 0.274 0.274
4 60 0.199 0.446 0.362 1.662 1.654 0.05 0.223 0.169 0.775 0.78
90 0.283 0.532 0.397 1.822 1.802 0.145 0.381 0.305 1.399 1.414
120 0.322 0.568 0.447 2.048 2.022 0.2 0.447 0.378 1.73 1.751
135 0.314 0.561 0.445 2.038 2.013 0.188 0.434 0.366 1.677 1.697
185 0.29 0.538 0.437 2.003 1.978 0.265 0.515 0.442 2.024 2.025
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TABLE 3. Model comparison results table.

MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.733 0.856 0.663 7.056 7.506 0.626 0.791 0.589 6.326 6.717
5 60 0.661 0.813 0.601 6.403 6.808 0.557 0.747 0.537 5.779 6.125
90 0.457 0.676 0.453 4.814 5.089 0.386 0.621 0.406 4.355 4.588
120 0.486 0.697 0.47 4.987 5.279 0.41 0.64 0.425 4.555 4.803
135 0.435 0.66 0.432 4.582 4.841 0.37 0.608 0.398 4.264 4.481
185 0.402 0.634 0.412 4.368 4.601 0.341 0.584 0.387 4.144 4.337
30 0.122 0.35 0.281 3.984 3.873 0.115 0.339 0.27 3.83 3.727
60 0.354 0.595 0.489 6.96 6.626 0.327 0.572 0.467 6.626 6.32
1 90 0.872 0.934 0.752 10.727 9.925 0.813 0.901 0.721 10.223 9.483
120 1.028 1.014 0.85 12.144 11.195 0.945 0.972 0.809 11.484 10.622
135 1.11 1.053 0.889 12.713 11.689 1.015 1.007 0.844 11.975 11.051
185 1.458 1.208 0.992 14.219 1291 1.323 1.15 0.932 13.225 12.059
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 4415 2.101 1.78 22.488 23.337 4.575 2.139 1.815 23.021 23.774
2 60 3.244 1.801 1.471 18.571 18.993 3.346 1.829 1.487 18.923 19.199
90 5.462 2.337 L7777 22.428 22.626 5.637 2.374 1.794 23.013 22.848
120 7.07 2.659 2.041 25.747 24.482 7.525 2.743 2.093 27.042 25.137
135 9.744 3.122 2.381 30.038 26.981 10.566 3.251 2.467 32.043 28.036
185 17.81 4.22 3.251 41.01 33.095 19.83 4.453 3.435 45.247 35.316
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 172.114 13.119 10.692 10.415 10.169 171.329 13.089 10.64 10.377 10.118
3 60 1088.657 32.995 26.173 25.491 31.839 1084.682 32.935 26.103 25.447 31.775
90 2770.535 52.636 43.126 42.003 62.498 2763.466 52.569 43.051 41.966 62.439
120 3439913 58.651 49.329 48.043 74.473 3431.689 58.581 49.251 48.009 74.416
135 3302.341 57.466 48.341 47.081 69.831 3295.676 57.408 48.278 47.06 69.785
185 2942.983 54.249 45.642 44.452 60.272 2939.017 54.213 45.604 44.453 60.247
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.013 0.112 0.104 0.477 0.476 0.011 0.103 0.095 0.437 0.436
4 60 0.011 0.106 0.095 0.437 0.437 0.012 0.111 0.097 0.449 0.449
90 0.026 0.16 0.14 0.648 0.65 0.036 0.189 0.16 0.74 0.743
120 0.033 0.182 0.16 0.745 0.747 0.049 0.222 0.192 0.889 0.893
135 0.033 0.183 0.16 0.745 0.747 0.046 0.215 0.185 0.856 0.86
185 0.322 0.567 0.394 1.836 1.806 0.286 0.535 0.388 1.805 1.781
MSE RMSE MAE MAPE SMAPE MSE RMSE MAE MAPE SMAPE
30 0.215 0.463 0.373 4.156 4.048 0.206 0.454 0.355 3.982 3.868
5 60 0.549 0.741 0.595 6.486 6.565 0.534 0.731 0.578 6.305 6.389
90 0.47 0.686 0.574 6.236 6.231 0.455 0.674 0.558 6.059 6.059
120 0.477 0.691 0.585 6.342 6.37 0.466 0.683 0.572 6.196 6.231
135 0.492 0.701 0.603 6.532 6.52 0.479 0.692 0.59 6.384 6.379
185 0.507 0.712 0.627 6.781 6.727 0.494 0.703 0.615 6.643 6.598

@1 is the Visits dataset

b2 is the Temperature dataset
€3 is the Sunspot dataset

44 is the ECN dataset

¢5 is the Taxi dataset

In table 2, we divided the training counts into seven cate-
gories and respectively trained [20,30,40,50,60,70,80] times
on the training set and tested them on the test set. The final
prediction results are compared for different components and
different training times.The experimental results demonstrate
that the SDHPA and GLUV3 proposed in this paper have
a better performance compared to the traditional attention
mechanism and gating unit.

The figure5 shows the loss of Umformer model training
and validation in each dataset.

1) BASELINES

Based on the three data sets above, we chose five-time
series forecasting methods for comparison, including TFT,
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DeepAR, Prophet, ARMA, and ARIMA, to better demon-
strate the model’s performance in multi-step time series fore-
casting in univariate data sets. We calculate the result set of
each model prediction in sections and calculate the average
error of 30, 60, 90, 120, 135, and 185 time steps respec-
tively. In order to better show the accuracy of the prediction,
we use MSE, RMSE, MAE, MAPE and SMAPE as bench-
marks. The experimental results are shown in Table 3. The
results demonstrate the advantages of umformer on UMTF
problems.

2) FEATURE SELECTION

For univariate datasets, feature selection often needs to
be performed after univariate feature decomposition, and
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the methods used are generally different for the various
datasets. We add to different datasets their large number
of relevant attributes that affect the final prediction results.
And in the prophet-based feature decomposition method
mentioned above, the output features are to some extent
unknown in terms of their impact on the prediction results.
We need to extract the relevant features that are useful for
prediction, and discard irrelevant and redundant features.
This will help to improve model accuracy, reduce algorithm
learning time and also increase the interpretability of the
model.

In the experimental process, we mainly used a Decision
Tree(DT) based feature selection method, using information
gain as the evaluation function. For example, The C4.5 algo-
rithm is used in the training set until the DT grows suffi-
ciently, and then pruning is performed using the evaluation
function. Finally, the concatenation of all feature subsets
appearing on the path of any one leaf node is the result of
feature selection.

The DT lists all feasible solutions to the decision problem
and the various possible states of nature, as well as the
expected values of each feasible method in the various states,
and provides a visual representation of the entire decision
problem at different stages of the decision process in time and
decision sequence. Figure 7,Figure 8 shows a graph of the
weights of each feature after the model features have been
selected. To improve the ease of operation and generalisa-
tion of the model, we have embedded the feature selection
algorithm into the model. This includes algorithms such as
ID3, C4.5, CART, etc. To ensure the scientific nature of the
experimental results, we uniformly used random forest for
feature selection in our comparison experiments. It is worth
noting that other algorithms can also achieve satisfactory
results in practical applications.

3) HYPERPARAMETER OPTIMISATION ALGORITHMS

All the research described above in this paper is an optimisa-
tion of the algorithm itself. In addition, finding the optimal
hyperparameters is also an essential part of the research.
Taking different values of the hyperparameters has different
effects on the performance of the model, and grid search and
stochastic search are important ways of optimising the hyper-
parameters. Finding the optimal hyperparameters from the
hyperparameter space, grid search can be seen almost as vio-
lently trying to select the most optimal set of hyperparameters
from each set of parameters in the parameter space, which
is obviously not efficient. Stochastic search has been shown
in our experiments to be a more efficient method, which
allows the computational cost to be chosen independently of
the number of parameters and possible values, and adding
parameters that do not affect performance does not reduce
efficiency. To fulfil the experimental requirements of this
study, we chose to use stochastic search for hyperparameter
optimisation. Previous research has provided us with a great
deal of assistance [66].
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FIGURE 6. Friedman and nemenyi test.

4) FRIEDMAN AND NEMENYI TEST

In order to compare the generalisation performance of differ-
ent learning algorithms across the board, it is not enough to
rely on a measure of sexiness on a particular dataset. We need
to use hypothesis testing, which provides an important basis
for our algorithm comparisons. Also we generally need to
compare the performance of multiple algorithms on multiple
datasets, and here the Friedman test and the Nemenyi test are
often used for comparison.

We tested the MSE of the results of each model in 185 long
series predictions. The hypothesis test rejected the hypothesis
that the performance of the six algorithms did not differ across
the five data sets. This indicates that the algorithms perform
significantly differently, at which point a follow-up test is
required to further distinguish each algorithm. We calculated
the critical value domain CD = 3.372 for the difference in
mean ordinal values by the Nemenyi test and the Friedman
plot is shown figure 6. It is demonstrated that the algorithms
differ significantly directly and that umformer has a greater
advantage over the other algorithms.

5) ANALYSIS OF CHARACTERISTIC VARIABLES

During the experiment, we specifically analyzed the influ-
ence of various variables on the experiment. We analyze all
the features extracted in feature engineering and examine the
weights of variables affecting predictions. It enables us to
deeply analyze the influence of various variables on the pre-
diction results, and to more flexibly select various variables
to input into the model when solving practical problems.

As shown in the figure 7 and 8, the influence degree of
each variable on the prediction is displayed. We use the
visualization tool to show the influence weight of different
variables on the prediction result. This is the input after we
remove some variables with small influence. For different
datasets, our input variables to the model are different. The
results show that known future variables have an impact on
the predicted results, especially some cyclical variables, it is
necessary to input into the model.
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For the three data sets, we entered 11, 8, and 8 related
variables respectively. It can be seen that the effect of periodic
terms such as weeks and months is higher than that of other
variables. For datasets with strong periodicity, it is necessary
for us to enter the periodic term when entering.

D. RESULTS ANALYSIS

Table 2 shows a comparison between our improved compo-
nent and the original component. We show the results of the
impact of different epochs through experiments comparing

the accuracy of different components on the same dataset.
It is finally demonstrated that SDHPA and GLUV3 as an

VOLUME 10, 2022

improved Attention mechanism and gated linear units result
in more significant prediction accuracy after the model is
trained to a certain level. It is worth noting that Scaled Dot-
Product Attention4+GLUV2 may also be helpful at certain
times that require further research in the future. SDHPA and
GLUV3 in the Umformer model are excellent structures to
use for prediction.

Table 3 summarizes the prediction evaluation results for
the three datasets across the six methods. As the demand
for predictive power increases, we gradually lengthen the
prediction time step. The best results are highlighted in
bold. Compared with some existing models, the results of

101359



IEEE Access

M. Li et al.: Umformer: A Transformer Dedicated to Univariate Multistep Prediction

umformer for univariate prediction are satisfactory. When
solving specific problems in life, we need to consider the
impact of correlated variables on predictions. Most univariate
data have strong periodicity, which makes us need to consider
various cyclical variables, as well as various continuous vari-
ables, when making predictions. Furthermore, dividing past
variables and future variables is a very efficient approach for
model training. When the model predicts, it is necessary for
us to input known time variables, as shown in Figure 2, which
can greatly improve model performance.

VI. CONCLUSION

This paper studies the univariate multi-step time series pre-
diction and proposes a Umformer Framework. Specifically,
we propose a temporal feature extraction approach based
on the Prophet algorithm to decompose the univariate time
series, design a SDHPA to deal with the complexity, inter-
pretability, and accuracy problems in the Attention mecha-
nism in Transformer, and design GLUV3 as a novel network
layer to play the role of feature information extraction in
the model. We demonstrate the optimism of the method’s
predictive power in univariate temporal prediction problems
with several publicly available datasets.
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