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ABSTRACT Univariate multi-step time series forecasting (UMTF) has many applications, such as the
forecast of access traffic. The solution to the UMTF problem needs to efficiently capture key information in
univariate data and improve the accuracy of multi-step forecasting. The advent of deep learning (DL) enables
multi-level, high-performance prediction of complex multivariate inputs, but the solution and research of
UMTF problems is extremely scarce. Existing methods cannot satisfy recent univariate forecasting tasks
in terms of forecasting accuracy, efficiency, etc. This paper proposes a Transformer-based univariate multi-
step forecasting model: Umformer. The contributions include: (1) To maximize the information obtained
from a single variable, we propose a Prophet-based method for variable extraction, additionally considering
some correlated variables for accurate predictions. (2) Gated linear units variants with three weight matrices
(GLUV3) are designed, as a gating to improve the function of selective memory in long sequences, thereby
obtaining more helpful information from a limited number of univariate variables and improving prediction
accuracy. (3) Shared Double-heads Probsparse Attention (SDHPA) mechanism reduces memory footprint
and improves attention-awareness. We combine the latest research results of current DL technology to
achieve high-precision prediction in UMTF.Extensive experiments on public datasets from five different
domains have shown that five metrics demonstrate that the Umformer approach is significantly better than
existing methods. We offer a more efficient solution for UMTF.

17 INDEX TERMS Multi-step, univariate, time series forecasting, transformers.

I. INTRODUCTION18

Time series data (TSD) is applied widely in agriculture, busi-19

ness, meteorology, andmany other fields [1], [2]. Researchers20

were asked to focus on discovering internal patterns in TSD21

and making predictions [3]. Traditional univariate prediction22

methods usually use the TSD from the previous steps as23

model input, the data from the next step as labels. Due24

to the minimal number of features in the univariate data,25

traditional models for solving the UMTF problem learn very26

little information, resulting in inaccurate results. Moreover,27

some other challenges have remained. For example, applying28

the latest multivariate time series forecasting [4], [5], [6] to29
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specific univariate forecasting is hard, including extracting 30

features and improving accuracy. 31

UMTF currently faces two key challenges: one is to be 32

able to effectively extract some of the features that influence 33

prediction from the limited data available. The second is 34

to improve the multi-step prediction accuracy of the model 35

to meet the current and growing needs of society. These 36

challenges require researchers to provide: 37

1) a mechanism for univariate variable feature extraction 38

scientifically extracting feature variables in TSD; 39

2) a DL model dedicated to UMTF, which has efficient 40

computing power. 41

Recent studies have found that the Prophet algorithm [7] 42

can effectively extract time variables, and the TFT model [8] 43

can accurately predict multivariate data in multiple steps. The 44

Prophet algorithm is based on the time series decomposition 45
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technology, which decomposes each data in a TSD into four46

parts, i.e., seasonal, trend, holiday, and remaining. Its data47

decomposition method excels in univariate forecasting and48

is currently one of the most popular tools for data analysts.49

The TFT model introduces a variety of heterogeneous50

techniques into the structure of the Transformer [9]. It pro-51

vides inputs of known variables for prediction in the future52

and improves the training capability by performing feature53

selection and weight calculation of different variables. TFT is54

a significant innovation in time series forecasting. Although55

TFT has emerged as a sophisticated method for solving56

multivariate prediction problems, it cannot solve the UMTF57

problem. The reasons include:58

1) Univariate data limits the learning capability and cannot59

provide the variety of variables necessary for the TFT.60

2) The Gated Linear Unit (GLU) [10] module in TFT61

mimics and improves upon the LSTM [11] in terms of selec-62

tively remembering and acquiring information about long63

sequences. However, when the feature variables are limited,64

the GLU is less effective in accurately extracting the critical65

information for the UMTF.66

3) The Interpretable Multi-Head Attention mechanism67

used by TFT has high time complexity. It is also unable to68

capture long-term dependent focus when making univariate69

predictions.70

This paper proposes a Transformer-based univariate multi-71

step prediction framework: Umformer. Based on the above72

two models, the method achieves high performance predic-73

tion for univariate data. Contributions are as follows.74

1) This paper proposes a data processing method based75

on the Prophet algorithm, followed by setting variables at76

specific time points. We considered the impact of multiple77

real-world variables on the forecast, combining the specificity78

of UMTF data and specific problems, the added feature79

variables are classified into Static seasonal variables, Past80

observed variables, and Known time variables, which can81

effectively overcome the feature limitations of TSD.82

2) GLUV3 is defined to replace the original gated linear83

unit. The new variant is more conducive to meeting the84

denoising targets of the pre-training phase and improves the85

model’s accuracy.86

3) The SDHPAmechanism is presented to ensure low time87

complexity and improve the attention-aware capability and88

prediction accuracy.89

4) On various real data sets we show how umformer can90

be applied in practice, as well as comparing existing methods91

and demonstrating the advantages of the proposed approach.92

II. RELATED WORK93

A. UNIVARIATE TIME SERIES FORECASTING94

Time series forecasting methods are categorized into uni-95

variate and multivariate forecasting. The methods [12] are96

used for univariate forecasting [13], [14], [15] based on97

the observation data of a given sequence. The multivariate98

forecasting methods [16], [17] combine the observation data99

of exogenous variables for prediction [18]. This paper mainly 100

studies the methods of univariate sequence prediction. 101

The Autoregression (AR) [19] is a linear regression model 102

that describes random variables at a future time in terms 103

of a linear combination of random variables at a particular 104

time in the previous period, which was the standard method 105

used in early time series forecasting [20], [21]. However, 106

it has high requirements for data autocorrelation and can only 107

be used to predict scenarios that are heavily influenced by 108

historical factors, but not those that are heavily influenced 109

by social, natural, and other factors. Moving average(MA) 110

[22], [23] uses a moving average of white noise to simulate 111

TSD and calculates the average of the historical data as the 112

forecast for the next period. When there are more forecast 113

data, a large amount of data needs to be stored. Many studies 114

have shown that the forecast accuracy of moving averages 115

is low [24]. Autoregressive Moving Average (ARMA) [25], 116

[26] combine AR and MA models to reduce the number of 117

past parameters, Autoregressive Integrated Moving Average 118

Model(ARIMA) [27], [28], [29], [30] is a model built by 119

regressing the lagged values of the dependent variable on the 120

present and lagged values of the random error term, both of 121

them require the TSD to be stable after differentiation and 122

can only capture linear relationships. Exponential smoothing 123

(ES) [31], [32], [33] is a forecasting method that introduces 124

the smoothing factor, a simplified weighting factor, to obtain 125

a time series of averages based on the actual quantity and 126

the forecast quantity for the current period of a particular 127

indicator. It is a particular weighted average method in which 128

historical data closer to the forecast period is given with a 129

larger weight, and the weight decreases exponentially. But it 130

cannot discriminate the data turning point and is mainly used 131

for short-term forecasting. 132

In recent years, models based on deep learning have been 133

used for time series forecasting, including convolutional neu- 134

ral networks(CNNs) and recurrent neural networks(RNNs). 135

The LSTM [34], [35], a kind of special RNN, is currently 136

used in practical prediction applications for the future by 137

selectively memorizing sequences [36]. However, one of the 138

main limitations of using LSTM to predict time series is that 139

the model relies heavily on asymptotic forecasting, so remote 140

forecasting may not be effective. Moreover, it is highly prone 141

to hysteresis [37]. In recent years, the Transformer [38], [39] 142

has gradually been used for time series prediction [40]. The 143

seq2seq [41] model based on the Attention mechanism has 144

emerged in prediction [42], but it has not yet been used in 145

univariate time series prediction. A study [43] comparing 146

Transformer and LSTM solutions to prediction problems 147

pointed out the limitations of Transformer in terms of com- 148

putation and parameter handling. 149

B. MULTI-STEP TIME SERIES FORECASTING 150

Based on the above discussion, there is another vital issue: an 151

inaccurate grasp of data characteristics affects the accuracy 152

of multi-step time series prediction. TBPTT [44] does not 153

modify the input when calculating the gradient and only uses 154
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the gradient from the previous step to estimate the current155

weight update. The literature [45] used the auxiliary loss to156

learn the dependencies in the sequence and add auxiliary to157

strengthen the gradient flow. But its performance is still not158

optimistic. Other attempts include explaining the breadth of159

Graph neural networks [46] to learn long-term dependencies.160

These methods try to improve the long-path gradient flow of161

the recursive network, but in the UMTF problem, the perfor-162

mance is limited due to the increase of the predicted time step.163

CNN-based methods [47], [48], [49] use convolutional filters164

to capture long-term dependence, and their receptive fields165

increase exponentially with the number of layers, which166

impairs the alignment between sequences. In the multi-step167

accurate prediction, the main task is to extract the required168

data from multiple input time steps, which requires more169

output. Therefore, the above methods cannot be directly used170

for univariate multi-step forecasting. Attention-based mod-171

els proposed addictive attention [50] to improve the word172

alignment of the encoder-decoder structure in translation173

tasks. The self-attention-based Transformer [9] has recently174

been proposed as a new idea of sequence modeling and has175

achieved great success, especially in NLP. Various studies176

have proved that it has better sequence tracking capabilities.177

In order to reduce the time complexity, many researchers178

presented heuristic methods to reduce the complexity of the179

self-attention mechanism to O(LlogL) [51], but their effi-180

ciency is limited. Reformer [52] achieves O(LlogL) through181

locally sensitive hash self-attention, but its application scope182

has been limited. Using the hidden auxiliary state to capture183

remote dependencies [53] may increase the time complexity,184

but it may not necessarily improve efficiency. The Prob-185

Sparse self-attention [54] reduces the time complexity and186

space complexity. It maintains the original accuracy but does187

not consider interpretability. In the Interpretable Multi-Head188

Attention of the TFT [8], multi-head attention shares the189

value of each head, and aggregates all the heads to enhance190

the interpretability. However, it does not consider accuracy191

and efficiency when self-attention is used.192

In our work, a Transformer-based Umformer is proposed193

for multi-step accurate prediction. The most relevant works194

[55], [56] all use Transformer in TSD, but as they use an195

ordinary Transformer, multi-step prediction is not very effec-196

tive. In addition, other works [27], [52], [57] have noted197

the scarcity of self-attention mechanisms and discussed them198

in the main context of long-term dependencies based on199

Transformers, such as a sparse cluster-based Transformer for200

remote dependency encoding [40].201

III. PREDEFINE202

Our research aims to provide a solution to the UMTF problem203

by addressing the problem of temporal feature decomposition204

in this domain and improving the accuracy of multi-step205

prediction.206

To begin with, we need to define the UMTF problem.207

We provide the machine input: I = {xt−n+1, . . . , xt−2,208

xt−1, xt }, where each x is univariate data observed before209

the current timestamp t . Then the predicted output values 210

are output by the prediction model: Y = {yt+1, yt+2, . . . , 211

yt+m}, where each y in the model output Y is the value 212

of the data for an equal time difference after the current 213

timestamp t .We assume that n observations are input to the 214

model, predicting values form future time steps. Specifically, 215

we input n timestamps and corresponding label values up to 216

the current timestamp t into themodel, and themodel predicts 217

and outputs the values atm time steps in the future to complete 218

the prediction. 219

IV. METHODOLOGY 220

The initial methods used for time series forecasting were 221

mainly mathematical and statistical models, including AR 222

[58], MA [59], ARMA [60], and ARIMA [28]. In recent 223

years, recurrent neural networks (RNNs) [35] and convolu- 224

tional neural networks (CNNs) [61] have also been gradually 225

used in prediction. The Attention mechanism-based seq2seq 226

model [62] and the Transformer lead to a new round of 227

research on time series forecasting. 228

This paper is dedicated to addressing the challenges of 229

current univariate prediction methods and finding optimal 230

solutions. We propose an Umformer framework(Future 1) 231

that is unique and novel in terms of feature engineering, 232

model construction, etc. Major components of Umformer are 233

(1) Univariate TSD feature engineering: This includes 234

prophet-based feature decomposition, data pre-processing, 235

data classification, and feature selection. The consideration 236

of multiple variables greatly improves the effectiveness of 237

univariate prediction. 238

(2) Sequence to sequence: The encoder and decoder are 239

used for the input and output of the time series respectively, 240

predicting the change in TSD based on the first few inputs. 241

(3) GLUV3: as a gating to improve the function of selective 242

memory in long sequences, thereby obtaining more helpful 243

information from a limited number of variables. 244

(4) Transformer decoder: The designed Static Variable 245

Enhancement GRN (SVEGRN) considers the effect of sea- 246

sonal variables, and the proposed SDHPA reduces memory 247

footprint and improves attention-awareness, increasing pre- 248

diction accuracy. 249

Figure 1 demonstrates the entire process of univariate 250

multi-step prediction by the Umformer model. First, uni- 251

variate data with feature expansion is classified. After the 252

feature selection, the static seasonal variables enter the sep- 253

arate GRN encoders. Different vectors are generated and 254

enter the seq2seq model. the Static Variable Enhancement 255

GRN(SVEGRN) enhances the temporal characteristics of 256

static seasonal variables. The Known time variables enter the 257

encoder, and the known dynamic variables are used for fea- 258

ture selection. The output from SVEGRN enters the SDHPA 259

after the GLUV3 and GRN layers. In this process, Static 260

seasonal variables affect the calculation of GRN again and 261

enhance the static characteristics. After the feature variable 262

selection and the LSTM-based encoder/decoder, the informa- 263

tion is screened through a layer of GRN. Finally, the results of 264
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FIGURE 1. Umformer framework.

the Attention mechanism are input into GLUV3, GRN, and265

GLUV3 in turn, and the predicted value is output through a266

dense layer.267

A. UNIVARIATE TSD FEATURE ENGINEERING268

1) FEATURE DECOMPOSITION AND DATASET269

PREPROCESSING270

In this stage, multiple data features are extracted and271

expanded by Prophet algorithm from the original data. Sup-272

pose y (t) is a time series, s (t) is the periodicity in weeks273

or years, g (t) is non-periodical change trend of y (t), h (t) is274

whether there are holidays in the day, and εt is the error term.275

y (t) = s (t)+ g (t)+ h (t)+ εt (1)276

Umformer selectively extracts characteristic variables277

from the feature extraction of Prophet. We also added time278

terms such as year, month, week, and day to the original279

variable.280

In addition, we use research methods such as scientific281

reasoning and practical analysis to add fundamental variables282

that affect the prediction outcomes of specific data sets, such283

as bool-type holidays andmajor events. For univariate predic-284

tion, we combine deep learning and mathematical statistics285

techniques to achieve data feature extraction and scaling.286

The Prophet is based on time series decomposition and287

machine learning for univariate time series forecasting. Its288

internally improved time series decomposition technology289

provides us with new solutions. The time series y (t) are290

decomposed into the following parts, The period term s (t) 291

represents the periodicity in weeks or years; the trend term 292

g (t) represents the non-periodical change trend of the time 293

series; the holiday term h (t) represents whether there are 294

holidays in the day; the remaining term εt represents the error 295

term or is called the residual term, when y (t) = s (t)+g (t)+ 296

h (t)+εt , the Prophet algorithm is to fit these items, and then 297

finally add them to get the predicted value of the time series. 298

We use the variable processing method of the algorithm to 299

apply to data preprocessing and decompose the data to obtain 300

multivariate time series data. 301

In conclusion, we have solved one of the bottlenecks of 302

univariate time series forecasting - univariate TSD cannot be 303

predicted with existing multivariate time series forecasting 304

models, it has too few correlated variables. We extracted 305

some important relevant variables through the prophet feature 306

extraction method, and added periodic variables, which will 307

improve the predictive ability of the model. 308

2) DATA CHARACTERISTICS CLASSIFICATION 309

This paper divides the data into Static seasonal variables, Past 310

observed variables, and Known time variables. 311

1) Static seasonal variables are seasonally relevant charac- 312

teristics. As seasonal variables remain constant over a given 313

continuous-time data, they can be used as static covariates to 314

control the overall situation. The model will pay more atten- 315

tion to changes in data characteristics within the same season, 316

101350 VOLUME 10, 2022



M. Li et al.: Umformer: A Transformer Dedicated to Univariate Multistep Prediction

FIGURE 2. Model input and output.

reduce the prediction error caused by seasonal changes and317

improve the model’s ability to fit cyclical factors.318

2) Past observed variables are known and observed as the319

dynamic variables before the prediction point. In this part, the320

variables are impossible to know when predicting the future321

time. Past observed variables are essential features that affect322

the model’s prediction, so it is necessary to input the dynamic323

variables from the previous period to predict the label value324

for a period later.325

3) Known time variables are known in advance through-326

out the forecasting system. Such variables can influence the327

training of the model parameters prior to forecasting. They328

can provide the model with data on variables at various future329

time points, such as annual, monthly, and daily variables330

known at the various times around the forecast time t .331

Figure 2 shows more clearly how the classified data play332

a role in the novel model and the Umformer model on how333

to learn these variables after expanding and classifying the334

data. First, variables and labels developed by the Prophet335

algorithm are used as the Past observation variables and336

become the historical data affecting the future forecasting.337

The static seasonal variable is the time points, including338

spring, summer, autumn, and winter. Since seasonal terms do339

not change over a continuous period and the volume of data340

is large, they can be used as a global coordination feature.341

Known time variables can be used in the past or future to342

influence forecasting.343

3) FEATURE SELECTION NETWORK344

Past observed variables p, Static seasonal variables s, and345

Known time variables k are pre-processed with univariate346

data from the Umformer model and then efficiently extract347

information through a feature selection network consisting348

of a series of gated residual networks (GRN). The GRN is349

used as a component to allow the model to be flexible for350

non-linear processing. The input to the GRN is defined to351

consist of two parts, one is the main input i, and the other is352

the auxiliary input c (the data after the static covariate passes353

through the encoder) and yields,354

GRNω (i, c) = LayerNorm (i+ GLUV3ω (η1)) (2)355

η1 = W1,ωη2 + b2,ω (3)356

η2 = ELU
(
W2,ωi+W3,ωc+ b2,ω

)
(4)357

where ELU is the exponential linear unit(ELU) activation 358

function, η1, η2 ∈ Rdmodel are intermediate layers, LayerNorm 359

is standard layer normalization, and ω is an index to denote 360

weight sharing. ELU activationwill act as an identity function 361

whenW2,ωi+W3,ωc+b2,ω � 0, and will produce a constant 362

output when W2,ωi + W3,ωc + b2,ω � 0, resulting in linear 363

layer behaviour. We present a GLUV3-based component gat- 364

ing layer to suppress the flexibility of any part of the structure 365

not necessary for a given dataset. Thus GRN can play the role 366

of variable feature selection. 367

Umformer passes the Past observation variables p, Static 368

seasonal variable s and Known time variables k after classi- 369

fication independently through the feature selection network. 370

Let p(j)T ∈ Rdmodel denotes the transformed input of the j-th 371

variable at moment T , and PT = p(1)T
T
, . . . , p(jmax )

T T

T being 372

the flattened vector of all past observation inputs at time T . 373

Feeding both PT and static covariate cs to GRN, followed by 374

a Softmax layer, variable selection weights ωvs is obtained 375

that 376

ωvsT = Softmax (GRNvs (PT , cs)) (5) 377

At each time step, an additional non-linear processing layer 378

is added, feeding p(j)T into its GRN that 379

∼
p
(j)
T = GRN∼

p(j)

(
p(j)T
)

(6) 380

where
∼
p
(j)
T is the processed feature vector for variable j. 381

Each variable has its calculation, sharing weights at all time 382

steps T . The processed features are weighted and combined 383

according to their variable selection weights as follows: 384

∼
pT =

jmax
∼∑(j)

T∑
j=1

ω(j)
vsT (7) 385

where ω(j)
vsT is the j-th element of vector ωvsT . 386

The strengths of TFT are mainly reflected in the feature 387

selection of GRN, similar to principal component analysis 388

(PCA) and the explainable multi-head self-attention mech- 389

anism. Moreover, its GRN, as a threshold device in TFT, 390

is more like a replacement for the Dense layer. However, com- 391

pared with the Dense layer, it extracts the effective compo- 392

nents and improves the performance and learning efficiency 393

of the model. 394

The TFT framework is shown in Figure 3. Different types 395

of variables are fed into the corresponding variable selection 396

network. After the sequence-to-sequence model, the multi- 397

head self-attention mechanism gets the weight of each vari- 398

able into multiple gate and GRN layers, and finally into a 399

multi-step time series prediction value. 400

Next, in order to make accurate predictions for spe- 401

cific data after univariate feature decomposition, this work 402

improves the GLU layer and the Multi-headed Attention 403

mechanism to increase the accuracy of multi-step prediction. 404

We propose GLUV3 to replace the original GLU to improve 405
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FIGURE 3. TFT model.

themodel’s selectivememory and forgetting functions in long406

sequences. Moreover, the SDHPA mechanism improves the407

attention-aware ability of the Attention mechanism under the408

premise of ensuring time complexity.409

B. SEQUENCE TO SEQUENCE410

Umformer integrates seasonal information for seasonal vari-411

ables using a separate GRN encoder, which generates four412

different vectors cs, ce, cc, ch,. these vectors are sent to dif-413

ferent locations so that the four vectors play different roles in414

different layers. Specifically, this includes cs that influences415

the choice of variables for each variable, cc, ch for local416

processing of temporal features and ce used in SVEGRN for417

seasonal information enhancement. For example, ζ is used as418

the output of the variable selection network and the c vector is419

encoded byGRN (ζ ) for output. Except for the static seasonal420

variables, the other variables are generated by the LSTM421

encoder and decoder to produce vectors into the next layer.422

In TSD, the label values of each timestamp are usually423

related to the values around them. However, as past and future424

inputs are different, this prevents them from being entered425

together as the same characteristic variable. Therefore, our426

work applied a seq2seq model to handle these differences427

with Xt−h : Xt going into the encoder and Xt+1 : Xt+m428

into the decoder. A consistent set of temporal features is429

generated, which are used as inputs to the next layer. Con-430

sidering T ∈ {t − h : t + m}, t is the current time point,431

h is the maximum time step known before t , and m is the432

maximum time step predicted after t .this can also be used433

as an alternative to the standard position coding to provide434

an appropriate inductive bias for the time sequence of the435

input. ϕT ∈ ϕ (t − h) , . . . , ϕ (t) , . . . , ϕ (t + m), where ϕT436

is the output of encoder and decoder at a certain point in437

time. In addition, in order to allow seasonal variable data to438

affect processing, we use cc, ch vectors from the above GRN439

encoder to initialize the cell state and hidden state of the first440

LSTM in the layer. It also uses gated skip connections after441

this layer442

φT = LayerNorm
(
XT + GLUV3φ (ϕT )

)
(8)443

C. GLUV3 444

GLU was initially proposed in language model [10]. Its 445

availability keeps information strictly according to the time 446

sequence position when performing sequential data pro- 447

cessing, improving performance and speeding up the oper- 448

ation through the parallel processing structure. GLU was 449

initially defined as the component product of two linear 450

input transformations, and one is activated by the Sigmoid 451

function. The descriptor ignores the activation and calls it the 452

‘‘bilinear’’ layer [63], which has been explained in a study. 453

Recent studies have proved that GLU can also be changed by 454

using a different activation function instead of the Sigmoid 455

function [64]. 456

This paper proposed GLUV3 to improve the ability to 457

retain important information in chronological order when 458

processing data, and the capacity to selectively forget and 459

remember information is also enhanced. 460

GLUV3 (a) = W1 [(a ∗W2 + α)⊗ Gelu (a ∗W3 + β)]+ χ 461

(9) 462

where a indicates the output of the previous layer and the 463

input of this layer,W1,W2 andW3 are the convolutions kernel 464

parameter, α, β and χ are the bias parameters, Gelu is 465

the Gelu activation function [65]. We replace the Sigmoid 466

activation with a Gelu activation and add a one-dimensional 467

product calculation. 468

To solve the gradient disappearance of the Sigmoid func- 469

tion, we selected the Gelu function. As an activation function 470

that adjusts the output through a gating mechanism, the idea 471

of random regularity of the Gelu can more conveniently 472

improve the speed of gradient descent and learning. Nomatter 473

how large the input value is, its derivative will not tend to 474

be 0. To a certain extent, it avoids the problem of gradient 475

disappearance, and its fitting ability is faster and better than 476

Sigmoid. 477

Figure 4 shows the specific structure of GLUV3. The input 478

of this layer is a series of continuous TSD. A vector represents 479

the original series data. The calculation of the hidden layer is 480

calculated according to the above formula. 481

The output of each layer has a linear projection a∗W2+α 482

modulated by the gated Gelu a ∗W3 + β. Similar to LSTM, 483

these gates multiply each element of the matrix. In addition, 484

we add an overall linear projection, so these layers are passed 485

through three weight matrices to improve the accuracy of the 486

calculation. 487

Our method wraps the convolution and GLU in a 488

pre-activated residual block and adds the input of the residual 489

block to the output. One of the most effective choices is using 490

the Gelu layer and adding a one-dimensional weight matrix, 491

which does training and testing faster and more accurate. 492

D. SDHPA 493

This paper has employed a self-attentive mechanism to learn 494

long-term relationships between different time steps, and 495

modified the transformer-based architecture. We propose 496
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FIGURE 4. GLUV3.

SDHPA specifically applied to the UMTF problem, using the497

probsparse self-attention mechanism and the double-heads498

Attention mechanism when performing the feature weight499

calculation for the Attention mechanism. The Probsparse500

self-attention mechanism was proposed in the study of501

Informer [54]. Due to the traditional Scaled Dot-Product self-502

attentionmechanism resulting in a time complexity andmem-503

ory usage of O
(
L2
)
per layer, The PorbSpare self-attention504

mechanism to efficiently replace the canonical self-attention505

mechanism achieves a time complexity and memory con-506

sumption of O (LlogL). We experimentally demonstrate that507

this approach gives more accurate predictions than Scaled508

Dot-Product Attention for the UMTF problem, even though509

it reduces time complexity and memory usage. To improve510

interpretation and speed up operations, we summed and511

averaged each head in the calculation of the Double-heads512

attention. Due to the limitations of univariate TSD, there513

is relatively little information represented. When there are514

too many heads, this can lead to a reduced impact of the515

representation subspace in each head, not capturing important516

representations effectively and even leading to overfitting,517

so we choose a two-headed attention mechanism to pay more518

attention to important representations.519

General, the Attention mechanism is based on the rela-520

tionship between the key K ∈ RN×dattn and the query521

Q ∈ RN×dattn , extended for the value V ∈ RN×dattn .522

Attention (Q,K ,V ) is generally calculated from the tradi-523

tional scaled dot product attention [9].524

The proposal SDHPA is presented as follows. For self-525

attention, considering random sampling, randomly select526

u − th K , get ku, and evaluate M for qi ∈ Q with respect527

to ku that528

−

M (qi,Ku) = max

(
qikjT
√
d

)
−

1
LK

LK∑
j=1

qikjT
√
d

(10)529

where kj ∈ Ku, Lk is the length of the sampled Ku. Find530

the largest u number of Qi in M, form Qu and calculate531

Attention (Q,K ,V ) according to Ku: 532

Attention (Q,K ,V ) = softmax(
Q̄KT
√
d

)V (11) 533

where Q̄ is a sparse matrix of the same size as Q, containing 534

only u queries under the sparse metric
−

M (qi,Ku).Qu is the 535

matrix composed of the selected u number of qi, and the 536

unselected qi is initialized to the originalQr matrix by finding 537

the mean value after Attention (Q,K ,V ), and the non-zero 538

values in theQu matrix are updated to theQr matrix to obtain 539

the final Q matrix. In fact, in the self-attentive computation, 540

the input lengths of queries and keys are usually equal, i.e. 541

LQ = LK = LV , making the total time complexity and space 542

complexity of ProbSparse self-attentive O (LlnL). 543

Multi-headed attention is used to enable models to jointly 544

focus on information from different representation subspaces 545

at different locations, which is extremely important in the 546

NLP domain for semantic extraction and can also be effective 547

in the UMTF domain when adequately utilized, i.e. 548

MultiHead (Q,K ,V ) = [H1, . . . ,HmH ]WH (12) 549

and 550

Hh = Attention
(
QWQ

(h),KWK
(h),VWV

(h)
)

(13) 551

where W h
K ∈ Rdmodel×dattn , W h

Q ∈ Rdmodel×dattn , W h
V ∈ 552

Rdmodel×dattn are head-specific weights for key, querie and 553

value, and WH ∈ R(mH ·dV )×dmodel , combine the outputs of 554

all heads Hh. As mentioned above, because each head uses 555

a different value, the weight of attention alone does not guar- 556

antee that the importance of a particular feature is reflected 557

and exploited. Therefore, the interpretability is enhanced 558

by modifying multi-head attention to shared values in each 559

head and additive aggregation of all heads when seeking a 560

two-head Attention mechanism. 561

The formula for finding double-headed attention is as 562

follows: 563

Doublehead(Q,K ,V ) = HWH (14) 564

565

=
1
2

[
Attention

(
QWQ

1,K WK
1,V WV

1
)

566

+ Attention
(
QWQ

2,K WK
2,V WV

2
)]

(15) 567

where WV ∈ Rdmodel×dv are value weights shared across 568

heads, and WH ∈ Rdattn×dmodel are used for final linear 569

mapping. It can be found that different temporal patterns can 570

be learned between the two heads while noticing a common 571

set of input features, which can be interpreted as a simple 572

aggregation of attention. 573

The final value Doublehead (Q,K ,V ), output by the 574

Attention mechanism, goes to the next level of computation. 575
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E. TRANSFORMER DECODER576

In order to be able to consider the effect of seasonal variables577

on forecasts globally, the SVEGRN we built integrates ce578

variables and sequence to sequence outputs to improve the579

efficiency of the model’s fit to the variables.580

SVNGRNT = GRN (φT , ce) (16)581

After making the seasonal information augmented,582

we applies self-attention. All input temporal features are first583

grouped into single matrix ϑ (t) = [θt−k , . . . , θt+m], when584

θT is time feature, T ∈ (t − h, . . . , t + m), Double-headed585

interpretable Attention mechanism applied to each prediction586

time.587

B (t) = DoubleHead (ϑ (t) , ϑ (t) , ϑ (t)) (17)588

Denote B (t) = [βt−h, . . . , βt+m], decoder masking is589

applied to the multi-headed attention layer to ensure that each590

temporal dimension can only notice the previous features.591

After the self-attention layer, an additional gating layer is592

applied to facilitate training that593

γT = LayerNorm
(
SVEGRNT + GLUV3γ (γT )

)
(18)594

Our approach applies additional non-linear processing and595

GRN operations to the output of the self-attention layer, and596

we also apply a gated residual connection that skipped the597

entire transformer module, providing a direct path to the598

seq2seq layer.599

ψT = LayerNorm
(
φT + GLUV3ψ (ψT )

)
(19)600

F. OUTPUT AND LOSS601

The output of Umformer uses quantile prediction, which is602

realized by three percentiles, 0.1, 0.5, and 0.9, where YT =603

y (q,T ) = Wq · ψT + bq, bq is the linear coefficient of the604

specified quantile q. The T is different from the previous605

one in that ranges only between {t + 1 : t + m}, because the606

forecast must be at a point in time after t . For different607

datasets, we find that the prediction levels are different for608

different quartiles, and we choose the quartile with the best609

result as the final prediction output.610

The quantile loss is defined as611

Ei = tar− predi (20)612

Li = max( (qi − 1) ·E, qi · E) (21)613

loss =

n∑
i=1

Li

n
(22)614

where tar is the label value, i takes the value 0,1,2, predi are615

the model prediction output value of the i-th q, and q takes616

the value 0.1,0.5,0.9.617

V. EXPERIMENT618

A. DATASETS619

We conduct experiments on datasets from three different620

domains. These data consist of only two columns, including621

TABLE 1. Experimental parameters.

each timestamp and the corresponding label value, and are 622

univariate TSD. The next task is to conduct comparative 623

experiments on our method in these univariate datasets. 624

1) VISITS 625

The time series data of daily visits to Peyton Manning’s 626

Wikipedia homepage (2007/12/10-2016/01/20). Each vari- 627

able in the original data for this dataset is a logarithmic (log) 628

value of specific access data. 629

2) TEMPERATURE 630

This dataset is called the ‘‘Daily Minimum Temperature 631

Dataset’’, which describes the minimum daily temperature 632

in Melbourne, Australia, for ten years (1981-1990). The unit 633

is Celsius, and there are 3650 observations in total from 634

Australia’s Bureau of Meteorology. 635

3) SUNSPOT 636

This dataset is called the ‘‘Monthly Sunspot Dataset’’, which 637

describes the monthly count of the number of sunspots 638

observed in the past 230 years (1749-1983). A total of 2,820 639

observations were counted in the unit. 640

4) ECN:(A EUROPEAN CITY CORE NETWORK) 641

Data (in bits) from a private ISP in 11 cities in Europe. 642

The data correspond to transatlantic links and were collected 643

between 7 June 2005, 06:57 and 31 July 2005, 11:17. Data 644

were collected at 5-minute intervals. There are 14,772 data 645

items. 646

5) TAXI 647

New York City taxi demand dataset, recording the number 648

of taxis in demand in the city at different times, covering 649

the period 2014-07-01 to 2015-01-32. data was collected at 650

30minute intervals. A total of 10,321 data items are available. 651

B. ENVIRONMENT 652

The pytorch framework version 1.9.0, combined with CUDA 653

version 11.1 and cuDNN version 8.0, can be used to run 654

the code for this article. The model training and inference 655

in this paper are performed on NVIDIA RTX 3080 and 656

intel i9-9900k@5GHz. NVIDIA RTX 3080 has 4352 CUDA 657

cores and 10GB of GDDR6X video memory, 320 bit width, 658

760GB/s maximum bandwidth, and 320W TGP. The Intel 659

i9-9900k has eight cores and sixteen threads. Umformer are 660

trained on CPUs in all datasets and can be deployed with 661
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TABLE 2. Components level comparison table.

FIGURE 5. Training and validation loss.

non-large computational resources. Of course, the computing662

speed and results are better in a GPU environment and with663

specific hardware environment optimizations.664

C. EXPERIMENTAL DETAILS665

We split all the time series into three parts for each dataset: the666

training set for learning, the validation set for hyperparameter667

tuning, and a reserved test set for performance evaluation.668

We finally determine the experimental parameters, as shown669

in table1670

In this paper, we have conducted ablation experiments, 671

i.e., six sets of experiments, to compare the accuracy of the 672

results obtained by our proposed components and the original 673

components. In order to better demonstrate the accuracy 674

of the prediction, we use mean square error (MSE), root 675

means square error (RMSE), mean absolute error (MAE), 676

mean absolute perceivable error (MAPE) and symmetric 677

mean absolute percentage error (SMAPE), these five pre- 678

dictive evaluation indicators as benchmarks. The following 679

shows the prediction results of related experiments we have 680

done. 681
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TABLE 3. Model comparison results table.
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TABLE 3. Model comparison results table.

In table 2, we divided the training counts into seven cate-682

gories and respectively trained [20,30,40,50,60,70,80] times683

on the training set and tested them on the test set. The final684

prediction results are compared for different components and685

different training times.The experimental results demonstrate686

that the SDHPA and GLUV3 proposed in this paper have687

a better performance compared to the traditional attention688

mechanism and gating unit.689

The figure5 shows the loss of Umformer model training690

and validation in each dataset.691

1) BASELINES692

Based on the three data sets above, we chose five-time693

series forecasting methods for comparison, including TFT,694

DeepAR, Prophet, ARMA, and ARIMA, to better demon- 695

strate the model’s performance in multi-step time series fore- 696

casting in univariate data sets. We calculate the result set of 697

each model prediction in sections and calculate the average 698

error of 30, 60, 90, 120, 135, and 185 time steps respec- 699

tively. In order to better show the accuracy of the prediction, 700

we use MSE, RMSE, MAE, MAPE and SMAPE as bench- 701

marks. The experimental results are shown in Table 3. The 702

results demonstrate the advantages of umformer on UMTF 703

problems. 704

2) FEATURE SELECTION 705

For univariate datasets, feature selection often needs to 706

be performed after univariate feature decomposition, and 707
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the methods used are generally different for the various708

datasets. We add to different datasets their large number709

of relevant attributes that affect the final prediction results.710

And in the prophet-based feature decomposition method711

mentioned above, the output features are to some extent712

unknown in terms of their impact on the prediction results.713

We need to extract the relevant features that are useful for714

prediction, and discard irrelevant and redundant features.715

This will help to improve model accuracy, reduce algorithm716

learning time and also increase the interpretability of the717

model.718

In the experimental process, we mainly used a Decision719

Tree(DT) based feature selection method, using information720

gain as the evaluation function. For example, The C4.5 algo-721

rithm is used in the training set until the DT grows suffi-722

ciently, and then pruning is performed using the evaluation723

function. Finally, the concatenation of all feature subsets724

appearing on the path of any one leaf node is the result of725

feature selection.726

The DT lists all feasible solutions to the decision problem727

and the various possible states of nature, as well as the728

expected values of each feasible method in the various states,729

and provides a visual representation of the entire decision730

problem at different stages of the decision process in time and731

decision sequence. Figure 7,Figure 8 shows a graph of the732

weights of each feature after the model features have been733

selected. To improve the ease of operation and generalisa-734

tion of the model, we have embedded the feature selection735

algorithm into the model. This includes algorithms such as736

ID3, C4.5, CART, etc. To ensure the scientific nature of the737

experimental results, we uniformly used random forest for738

feature selection in our comparison experiments. It is worth739

noting that other algorithms can also achieve satisfactory740

results in practical applications.741

3) HYPERPARAMETER OPTIMISATION ALGORITHMS742

All the research described above in this paper is an optimisa-743

tion of the algorithm itself. In addition, finding the optimal744

hyperparameters is also an essential part of the research.745

Taking different values of the hyperparameters has different746

effects on the performance of the model, and grid search and747

stochastic search are important ways of optimising the hyper-748

parameters. Finding the optimal hyperparameters from the749

hyperparameter space, grid search can be seen almost as vio-750

lently trying to select the most optimal set of hyperparameters751

from each set of parameters in the parameter space, which752

is obviously not efficient. Stochastic search has been shown753

in our experiments to be a more efficient method, which754

allows the computational cost to be chosen independently of755

the number of parameters and possible values, and adding756

parameters that do not affect performance does not reduce757

efficiency. To fulfil the experimental requirements of this758

study, we chose to use stochastic search for hyperparameter759

optimisation. Previous research has provided us with a great760

deal of assistance [66].761

FIGURE 6. Friedman and nemenyi test.

4) FRIEDMAN AND NEMENYI TEST 762

In order to compare the generalisation performance of differ- 763

ent learning algorithms across the board, it is not enough to 764

rely on a measure of sexiness on a particular dataset. We need 765

to use hypothesis testing, which provides an important basis 766

for our algorithm comparisons. Also we generally need to 767

compare the performance of multiple algorithms on multiple 768

datasets, and here the Friedman test and the Nemenyi test are 769

often used for comparison. 770

We tested the MSE of the results of each model in 185 long 771

series predictions. The hypothesis test rejected the hypothesis 772

that the performance of the six algorithms did not differ across 773

the five data sets. This indicates that the algorithms perform 774

significantly differently, at which point a follow-up test is 775

required to further distinguish each algorithm. We calculated 776

the critical value domain CD = 3.372 for the difference in 777

mean ordinal values by the Nemenyi test and the Friedman 778

plot is shown figure 6. It is demonstrated that the algorithms 779

differ significantly directly and that umformer has a greater 780

advantage over the other algorithms. 781

5) ANALYSIS OF CHARACTERISTIC VARIABLES 782

During the experiment, we specifically analyzed the influ- 783

ence of various variables on the experiment. We analyze all 784

the features extracted in feature engineering and examine the 785

weights of variables affecting predictions. It enables us to 786

deeply analyze the influence of various variables on the pre- 787

diction results, and to more flexibly select various variables 788

to input into the model when solving practical problems. 789

As shown in the figure 7 and 8, the influence degree of 790

each variable on the prediction is displayed. We use the 791

visualization tool to show the influence weight of different 792

variables on the prediction result. This is the input after we 793

remove some variables with small influence. For different 794

datasets, our input variables to the model are different. The 795

results show that known future variables have an impact on 796

the predicted results, especially some cyclical variables, it is 797

necessary to input into the model. 798
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FIGURE 7. Weights of visits dataset variables.

FIGURE 8. Weights of temperature dataset variables.

For the three data sets, we entered 11, 8, and 8 related799

variables respectively. It can be seen that the effect of periodic800

terms such as weeks and months is higher than that of other801

variables. For datasets with strong periodicity, it is necessary802

for us to enter the periodic term when entering.803

D. RESULTS ANALYSIS804

Table 2 shows a comparison between our improved compo-805

nent and the original component. We show the results of the806

impact of different epochs through experiments comparing807

the accuracy of different components on the same dataset.808

It is finally demonstrated that SDHPA and GLUV3 as an809

improved Attention mechanism and gated linear units result 810

in more significant prediction accuracy after the model is 811

trained to a certain level. It is worth noting that Scaled Dot- 812

Product Attention+GLUV2 may also be helpful at certain 813

times that require further research in the future. SDHPA and 814

GLUV3 in the Umformer model are excellent structures to 815

use for prediction. 816

Table 3 summarizes the prediction evaluation results for 817

the three datasets across the six methods. As the demand 818

for predictive power increases, we gradually lengthen the 819

prediction time step. The best results are highlighted in 820

bold. Compared with some existing models, the results of 821

VOLUME 10, 2022 101359



M. Li et al.: Umformer: A Transformer Dedicated to Univariate Multistep Prediction

umformer for univariate prediction are satisfactory. When822

solving specific problems in life, we need to consider the823

impact of correlated variables on predictions. Most univariate824

data have strong periodicity, which makes us need to consider825

various cyclical variables, as well as various continuous vari-826

ables, when making predictions. Furthermore, dividing past827

variables and future variables is a very efficient approach for828

model training. When the model predicts, it is necessary for829

us to input known time variables, as shown in Figure 2, which830

can greatly improve model performance.831

VI. CONCLUSION832

This paper studies the univariate multi-step time series pre-833

diction and proposes a Umformer Framework. Specifically,834

we propose a temporal feature extraction approach based835

on the Prophet algorithm to decompose the univariate time836

series, design a SDHPA to deal with the complexity, inter-837

pretability, and accuracy problems in the Attention mecha-838

nism in Transformer, and design GLUV3 as a novel network839

layer to play the role of feature information extraction in840

the model. We demonstrate the optimism of the method’s841

predictive power in univariate temporal prediction problems842

with several publicly available datasets.843
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