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ABSTRACT This paper presents the design of a novel H∞-based control framework for state regulation
of continuous-time linear systems with completely unknown dynamics. The proposed method solves the
regulation problem with the desired convergence rate and simultaneously seeks to attenuate the adverse
effect of disturbance on the system. The H∞ regulation problem assumes a cost function that considers
regulation with a guaranteed rate of convergence as well as disturbance attenuation. The problem is then
turned into a two-player zero-sum game optimization problem that can be solved by solving the associated
algebraic Riccati equation (ARE), which provides a model-based solution. To solve this problem in a model-
free way, a novel integral reinforcement learning (IRL) algorithm is designed to learn the solution online
without requiring any prior knowledge of the system dynamics. It is shown that the model-free method (i.e.,
IRL-based method) provides the same solution as the model-based method (i.e., ARE). The effectiveness
of the proposed method is ascertained through simulation examples; it is shown that the proposed method
effectively addresses the problem for both stable and unstable systems.

INDEX TERMS Convergence rate, disturbance attenuation, H∞ control, regulation problem, integral
reinforcement learning.

I. INTRODUCTION
Optimal regulation involves developing a controller that
ensures the system states optimally converge to zero, bal-
ancing the system costs and the control efforts. Solving
optimal control problems requires solving the Hamilton-
Jacobi-Bellman (HJB) equation. For the linear systems, this
can be achieved through solving the linear quadratic regu-
lation (LQR) problem using the algebraic Riccati equation
(ARE), as the simplified version of the HJB equation [1],
[2], [3], [4]; however, for the nonlinear systems, due to lack
of analytical solution, the HJB equation should be solved
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numerically. The disadvantage of this approach is the need
for an explicit knowledge of the system model; therefore,
model-free methods working based on the concept of rein-
forcement learning (RL) have been proposed in the literature.
This method has been effectively used to solve the regula-
tion problem for the nonlinear systems and learn the optimal
control solution in real-time while cutting the need for the
complete knowledge of the system dynamics [5], [6], [7], [8],
[9], [10], [11], [12].

Reinforcement learning has been widely employed as a
machine learning technique for solving complex optimization
problems [13]. As it is commonly known, RL has been used
as a tool to solve optimal control problems by solving the HJB
equations iteratively using either the policy iteration (PI) [5],
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[14], [15] or value iteration (VI) [2], [16], [17] techniques.
Hence, RL can provide a real-time solution to the HJB equa-
tion, by optimizing the control cost RL iteratively, and under
the assumption of unknown system dynamic [18], [19], [20].
In both PI and VI algorithms the policy evaluation and policy
improvement steps are carried out iteratively until an optimal
solution is achieved. Another merit of leveraging RL for feed-
back control problems is its ability to address the ‘‘curse of
dimensionality’’ in such problems [21].

A. LITERATURE REVIEW
The off-policy integral reinforcement learning (IRL) algo-
rithm is first introduced in [22] and [23] to avoid the time
derivatives in continuous-time (CT) systems and to design
an optimal state-feedback controller. The authors of [24]
present an online IRL algorithm to find the solution to
the tracking-constrained HJB equation for partially-unknown
systems with a bounded control input. This algorithm pro-
duces observations using a policy that differs from the eval-
uated one, thus the term off-policy is coined to this method.
In [25], the authors apply the IRL algorithm, which provides
the solution to the HJB equation, to learn the CT optimal
control solution for nonlinear systems with an infinite hori-
zon cost and incomplete knowledge of the system dynamics.
IRL is also used in [26] to solve the linear quadratic track-
ing (LQT) problem. A PI-based IRL algorithm is presented
in [27] to solve the Nash equilibrium for a two-player zero-
sum differential game. The authors of [28] focused on output
regulationwith the help of the IRL algorithmwithout the need
for a discounting factor to design a model-free controller for
the linear systems. Integral RL algorithm is also employed
in [29] for adaptive control of high-order multivariable non-
linear systems with unknown control coefficients.

A discussion on Q-learning and IRL algorithms for
discrete-time (DT) and CT systems has been provided in [30].
The authors of [31] developed a model-free off-policy RL
algorithm to solve ARE for robustly stabilizing a DT linear
system affected by bounded and mismatched uncertainties.
In [32], the optimal tracking control of DT nonlinear sys-
tems is studied under the condition of unknown system drift
dynamics; the tracking problem is turned into a regulation
problem by augmentation, and the associated HJB equa-
tion is solved by applying a new RL-based scheme using
an actor-critic neural network structure. Discrete-time LQR
problem is also studied in [33], in which the focus is on
achieving the robustness utilising a new off-policymodel-free
RL algorithm, called optimistic least-squares policy iteration,
for a system with additive stochastic noise.

Reinforcement learning and adaptive dynamic program-
ming (ADP) techniques are studied in [34] to achieve
an optimal output regulation controller for linear systems
with unmeasurable disturbances and unknown dynamics.
An ADP-based dynamic output feedback scheme is also
developed in [35] for the linear quadratic regulation of CT
systems; the solution is model-free and uses measurable
input-output data to find the optimal control parameters.

In [36], the authors developed an off-policy model-free
IRL algorithm to learn the optimal output-feedback (OPFB)
solution for CT linear systems without the knowledge of sys-
tem dynamics; the algorithm is applied to both regulation and
tracking problems based on a discounted performance func-
tion and a discounted ARE. In addition, the authors of [37]
presented an IRL-based online algorithm for learning a sub-
optimal OPFB H∞ control law to address CT linear tracking
problems under disturbances; the IRL solves the game ARE
online, which gives a Nash equilibrium solution related to the
optimization problem. The same scheme is also developed
in [38] but for OPFB control of CT linear systems with input
delay. Furthermore, the authors of [39] developed an H∞
tracking controller for CT nonlinear systems by developing
a tracking Hamilton-Jacobi-Isaac (HJI) equation and solv-
ing it through an online off-policy RL algorithm without the
need for the system dynamic; they show that the algorithm
does not require a specified disturbance input. In [40], the
authors employed an RL algorithm to solve the H∞ track-
ing problem in real-time for a nonlinear system without the
need for the system dynamics. This is also the case in [41],
in which the authors used an event-triggered RL algorithm to
solve the tracking HJI equation. Moreover, IRL-based event-
triggered ADP is introduced in [42] to cut the need for drift
dynamics and to control a CT nonlinear systemwith saturated
input. In [43], the authors considered a CT neural network
parameter update law based on variable gain gradient descent
augmented with robust terms for model-free IRL-based H∞
optimal tracking control problem of a CT nonlinear system
with unknown dynamics for disturbance rejection.

The convergence rate or speed of regulation is an important
consideration, and it is hoped that the convergence rate is
as fast as possible. In [44], an RL-based method for solv-
ing the regulation problem with a guaranteed convergence
rate for CT linear systems is developed. Also, an off-policy
model-free RL-based solution for solving the LQR problem
is developed in [45] for a DT linear system with a guaranteed
convergence rate of the state variables. However, the adverse
effect of disturbance is ignored in both works.

B. MAIN CONTRIBUTIONS
Reviewing the literature shows that the majority of previous
studies have focused on either guaranteeing the convergence
rate or attenuating the disturbance, but not both concurrently.
Hence, the contributions of this paper are as follows:

• This paper proposes an H∞-based control method for
solving the regulation problem with a guaranteed con-
vergence rate for CT linear systems through leveraging
a novel model-free IRL algorithm; therefore, no knowl-
edge of system dynamics is required. The poof of regu-
lation with the desired convergence rate is also provided.

• This paper considers the system to be adversely affected
by an unknown time-varying disturbance and shows that
the proposed method not only attenuates the disturbance
but also ensures regulation with a desired convergence
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rate. Simulation results will also demonstrate the effec-
tiveness of the proposed method for various unknown
harsh disturbances.

C. MANUSCRIPT LAYOUT
The remainder of this manuscript is organized as follows.
Section II formulates the regulation problem with guaranteed
convergence rate under the effect of disturbance. Section III
presents the novel model-based solution to this problem with
proofs. The proposed model-free method of this paper is pro-
posed in Section IV and Section V provides some examples
to support the proposed method. Finally, the manuscript is
concluded in Section VI, and some related future research
directions are provided.

II. PROBLEM FORMULATION
This section of the manuscript presents the basics of
the state-feedback regulation control strategy. The CT
state-evolution equation of the system can be written as

ẋ(t) = Ax(t)+ Bu(t)+ Dω(t), (1)

where x(t) ∈ Rn×1 is the vector of system states, x(0) = x0 is
the vector of initial states, u(t) ∈ Rm×1 is the vector of control
input, and ω(t) ∈ Rp×1 is the vector of disturbance.
Assumption 1: The pair (A,B) is stabilizable.
The objective of the regulation problem is to design a con-

trol input u(t) such that the trajectories of system dynamics
tend to zero, i.e., limt→∞ x(t) = 0. The control input is
represented by

u(t) = Kux(t), (2)

in which Ku ∈ Rm×n is the gain matrix of the feedback loop.
Definition 1:The system is called normal if it is not directly

affected by disturbance, i.e., ω(t) = 0.
Considering (2) as the control input and letting (1) be nor-

mal, (1) can be rewritten as

ẋ(t) = (A+ BKu)x(t), (3)

which is called the closed-loop equation of the system.
It should be noted that the feedback gain Ku guarantees the

regulation of the system dynamics at a convergence rate faster
than e−αt if all eigenvalues of the closed-loop system (3) are
located on the left-hand side of the line s = −α in the s-
plane, i.e., max{Re[λ(A + BKu)]} < −α, thus guaranteeing
the convergence rate of the regulation problem.

Given α and γ as predetermined values, the problem is
to devise a control strategy (2) for the defined CT linear
system (1) such that:

1) Regulation is achieved at least with the rate of e−αt

as t approaches to∞, i.e., limt→∞ eαtx(t) = 0 when
ω(t) = 0.

2) The following bounded L2-gain condition should be
satisfied when ω(t) ∈ L2[0,∞):∫

∞

0 eβτ ||Z (τ )||2 dτ∫
∞

0 eβτ ||ω(τ )||2 dτ
≤ γ 2, (4)

where ||Z (t)||2 = xT (t)Qx(t) + uT (t)Ru(t) is the per-
formance output, Q = QT ≥ 0 and R = RT > 0 are
weight matrices, α is the minimum degree of stability,
β is the rate of disturbance attenuation, and γ is the
level of disturbance attenuation.

III. H∞ REGULATION CONTROL WITH GUARANTEED
CONVERGENCE RATE
The above-mentioned H∞ regulation problem can be
regarded as a two-player zero-sum game. Therefore, with
regard to the second condition of the problem, the cost func-
tion for this problem can be defined as

J
(
x(t), u(t), ω(t)

)
=

∫
∞

0
eβτ

[
xT (τ )Qx(t)+ uT (τ )Ru(τ )

− γ 2ωT (τ )ω(τ )
]
dτ. (5)

Since the satisfaction of the second condition of H∞ reg-
ulation problem is equivalent to minimizing the cost func-
tion (5), the optimization problem turns into the following:

min J
(
x(t), u(t), ω(t)

)
s.t. (1). (6)

By choosing β = 2α, the cost function (5) can be written
in the following form:(
x(t), u(t), ω(t)

)
=

∫
∞

0

[(
eατ x(τ )

)TQ(eατ x(τ ))+ (eατu(τ ))TR(eατu(τ ))
− γ 2(eατω(τ ))T (eατω(τ ))] dτ. (7)

In order to proceed with the solution, x̄(t), ū(t), ω̄(t), and
Ā are introduced as

x̄(t) = eαtx(t), ū(t) = eαtu(t),

ω̄(t) = eαtω(t), Ā = A+ αI , (8)

and substitute them in (7); consequently, the cost function can
be written as

J
(
x̄(t), ū(t), ω̄(t)

)
=

∫
∞

0

[
x̄T (τ )Qx̄(τ )+ ūT (τ )Rū(τ )

− γ 2ω̄T (τ )ω̄(τ )
]
dτ. (9)

Now, by taking the derivative of x̄(t),

d
dt

(
x̄(t)

)
=

d
dt

(
eαtx(t)

)
= αeαtx(t)+ eαt ẋ(t)

= αeαtx(t)+ eαt
(
Ax(t)+ Bu(t)+ Dω(t)

)
= (A+ αI )eαtx(t)+ B

(
eαtu(t)

)
+ D

(
eαtω(t)

)
= Āx̄(t)+ Bū(t)+ Dω̄(t), (10)

the optimization problem turns into the following:

min J
(
x̄(t), ū(t), ω̄(t)

)
s.t. (10). (11)

As mentioned previously, the H∞ regulation problem can
be regarded as a two-player zero-sum game in the sense
that the minimizing player is the control input ū(t) and the
maximizing player is the disturbance ω̄(t). In other words,
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ω̄(t) attempts to maximize the cost function (9) while ū(t)
aims to minimize it. Besides, due to the linearity of the sys-
tem, the value function is quadratic with the following form:

V
(
x̄(t)

)
= J

(
x̄(t), ū(t), ω̄(t)

)
= x̄T (t)Px̄(t). (12)

Consequently, the solution to the optimization problem (11)
is equivalent to the solution to the min-max optimization
problem

V ∗
(
x̄(t)

)
= J

(
x̄(t), ū∗(t), ω̄∗(t)

)
= min

ū(t)
max
ω̄(t)

J
(
x̄(t), ū(t), ω̄(t)

)
, (13)

where V ∗
(
x̄(t)

)
is the optimal value of V

(
x̄(t)

)
.

In order for this optimization problem to have a unique
solution, a game-theoretic saddle point must exist, i.e., the
following condition must hold:

V ∗
(
x̄(t)

)
= min

ū(t)
max
ω̄(t)

J
(
x̄(t), ū(t), ω̄(t)

)
= max

ω̄(t)
min
ū(t)

J
(
x̄(t), ū(t), ω̄(t)

)
. (14)

Now, taking (10), (11), and (12) into account, the Hamil-
tonian function can be written as

H
(
x̄(t), ū(t), ω̄(t)

)
=

(
dV
(
x̄(t)

)
dx̄(t)

)T d
dt

(
x̄(t)

)
+ x̄T (t)Qx̄(t)+ ūT (t)Rū(t)− γ 2ω̄T (t)ω̄(t), (15)

and continuing by differentiating from (12), the following
Bellman equation is achieved:

H
(
x̄(t), ū(t), ω̄(t)

)
=
(
Āx̄(t)+ Bū(t)+ Dω̄(t)

)TPx̄(t)
+ x̄(t)TP

(
Āx̄(t)+ Bū(t)+ Dω̄(t)

)
+ x̄T (t)Qx̄(t)

+ ūT (t)Rū(t)− γ 2ω̄T (t)ω̄(t) = 0. (16)

The minimizing (optimal) control input and the maximiz-
ing (worst-case) disturbance can be achieved by applying the
stationary conditions ∂H (·)/∂ ū(t) = 0 and ∂H (·)/∂ω̄(t) = 0,
which results in:

ū∗(t) = −R−1BTPx̄(t) = K∗u x̄(t), (17)

ω̄∗(t) =
1
γ 2D

TPx̄(t) = K∗ωx̄(t). (18)

The substitution of (17) and (18) into (16) produces the fol-
lowing equality

x̄T (t)
[
ĀTP+PĀ+ Q−PBR−1BTP+

1
γ 2PDD

TP
]
x̄(t) = 0,

which can be then simplified to an ARE as shown below:

(A+ αI )TP+ P(A+ αI )+ Q−PBR−1BTP

+
1
γ 2PDD

TP = 0. (19)

Theorem 1: Consider the CT linear system (1). By means
of the control input signal (2), the H∞ regulation problem is
solved if

K∗u = −R
−1BTP, (20)

where P = PT > 0 is the solution to the ARE (19).
The proof is required to show that the optimal control input

signal (17) satisfies both conditions of the problem; therefore,
the proof is separated into two parts.
Proof of Theorem 1 (part 1): The first condition of the

problem disregards the disturbance, i.e., considers the system
normal. Since if ω(t) = 0 then ω̄(t) = 0, (10) can be written
as

˙̄x(t) = Āx̄(t)+ Bū(t), (21)

and by substituting (17) in (21), the dynamic representation
of the system changes into

˙̄x(t) = Āx̄(t)−BR−1BTPx̄(t) = Acx̄(t), (22)

where Ac = Ā−BR−1BTP. Now, considering the quadratic
value function (12) as a Lyapunov candidate, its derivative
yields to

V̇
(
x̄(t)

)
= ˙̄xT (t)Px̄(t)+ x̄T (t)P ˙̄x(t)

=
[
(Ā−BR−1BTP)x̄(t)

]TPx̄(t)
+ x̄T (t)P

[
(Ā−BR−1BTP)x̄(t)

]
= x̄T (t)(Ā−BR−1BTP)TPx̄(t)

+ x̄T (t)P(Ā−BR−1BTP)x̄(t)

= x̄T (t)(ĀTP+ PĀ− 2PBR−1BTP)x̄(t). (23)

Since the system is considered normal, the ARE (19) reduces
to

ĀTP+ PĀ+ Q−PBR−1BTP = 0, (24)

and the substitution of (24) in (23) produces

V̇
(
x̄(t)

)
= x̄T (t)(−Q−PBR−1BTP)x̄(t), (25)

for which V̇
(
x̄(t)

)
< 0 due to Q ≥ 0, P > 0, and R > 0;

thus limt→∞ x̄(t) = 0. Now, since x̄(t) = eαtx(t), it can be
concluded that limt→∞ eαtx(t) = 0. Hence, the first part of
the proof is completed.
Proof of Theorem 1 (part 2): Considering the optimal val-

ues ū∗(t) and ω̄∗(t), the Hamiltonian function (15) can be
represented as follows:

H
(
x̄(t), ū(t), ω̄(t)

)
=
(
ū(t)− ū∗(t)

)TR(ū(t)− ū∗(t))
− γ 2
||ω̄(t)− ω̄∗(t)||2 + H

(
x̄(t), ū∗(t), ω̄∗(t)

)
.

(26)

Regarding (16), (17), and (18), it is known that
H
(
x̄(t), ū∗(t), ω̄∗(t)

)
= 0. Consequently, in order to com-

plete the proof, it is sufficient to show that (17) is the solution

VOLUME 10, 2022 122379



A. Rahdarian et al.: Regulation With Guaranteed Convergence Rate for CT Systems

to theH∞ regulation problem. To continue the proof, (15) can
be rewritten as

H
(
x̄(t), ū(t), ω̄(t)

)
=

dV
(
x̄(t)

)
dt

x̄T (t)Qx̄(t)+ ūT (t)Rū(t)− γ 2ω̄T (t)ω̄(t).

(27)

Considering (26) and (27), the following equality holds:

x̄T (t)Qx̄(t)+ ūT (t)Rū(t)− γ 2ω̄T (t)ω̄(t)+
dV
(
x̄(t)

)
dt

=
(
ū(t)− ū∗(t)

)TR(ū(t)− ū∗(t))− γ 2
||ω̄(t)− ω̄∗(t)||2.

(28)

Considering ū∗(t) = K∗u x̄(t) with (20), (28) produces

dV
(
x̄(t)

)
dt

+ x̄T (t)[Q+ K∗u
TRK∗u ]x̄(t)− γ

2ω̄T (t)ω̄(t)

= −γ 2
||ω̄(t)− ω̄∗(t)||2 ≤ 0. (29)

Taking into account (8) and (12), the first term of (29) can be
written as

dV
(
x̄(t)

)
dt

=
d
dt

(
x̄T (t)Px̄(t)

)
=

d
dt

(
e2αtxT (t)Px(t)

)
=

d
dt

(
e2αtV

(
x(t)

))
, (30)

and by considering (8), (29), and (30), the following inequal-
ity can be introduced:

d
dt

(
e2αtV

(
x(t)

))
+ e2αtxT (t)[Q+ K∗u

TRK∗u ]x(t)

− e2αtγ 2ωT (t)ω(t) ≤ 0. (31)

Applying integration to both sides of the inequality (31)
results in∫ tf

0

d
dτ

(
e2ατV

(
x(τ )

))
dτ

+

∫ tf

0
e2ατ xT (τ )[Q+ K∗u

TRK∗u ]x(τ ) dτ

− γ 2
∫ tf

0
e2ατωT (τ )ω(τ ) dτ ≤ 0, (32)

which leads to

e2αtf V
(
x(tf )

)
− V

(
x(0)

)
+

∫ tf

0
e2ατ xT (τ )[Q+ K∗u

TRK∗u ]x(τ ) dτ

− γ 2
∫ tf

0
e2ατωT (τ )ω(τ ) dτ ≤ 0. (33)

Since e2αtf V
(
x(tf )

)
≥ 0 for every tf > 0 and ω(t) ∈

L2[0,∞), one can conclude that∫ tf

0
e2ατ xT (τ )[Q+ K∗u

TRK∗u ]x(τ ) dτ

≤ γ 2
∫ tf

0
e2ατωT (τ )ω(τ ) dτ + V

(
x(0)

)
, (34)

in which β = 2α, tf = ∞, and V
(
x(0)

)
can regarded zero

without the loss of generality; hence, the second part of the
proof is also completed.
Remark 1:Up until now, the validity of Theorem 1 has been

proved, and it has been demonstrated that the ARE (19) solves
the H∞ regulation problem. Therefore, all eigenvalues of the
closed-loop systemwill be located on the left-hand side of the
line s = −α in the s-plane, i.e., max{Re[λ(A+ BK )]} < −α,
thus guaranteeing the convergence rate of the regulation prob-
lem. However, (19) depends on A and B, i.e., the system
dynamics. In this regard, a method will be proposed in the
next section that is independent of the system dynamics.

IV. ONLINE OFF-POLICY MODEL-FREE INTEGRAL
REINFORCEMENT LEARNING
This section focuses on developing an online off-policy
model-free integral reinforcement learning (IRL) algorithm.
This algorithm enables the ARE to be solved using measured
data in real time without needing prior knowledge of the
system dynamics.

In order to develop the IRL algorithms, (10) can be rewrit-
ten as

d
dt

(
x̄(t)

)
= Āx̄(t)+ Bū(t)+ Dω̄(t)

= Āx̄(t)+ Būk (t)+ Dω̄k (t)

+B
(
ū(t)− ūk (t)

)
+ D

(
ω̄(t)− ω̄k (t)

)
, (35)

where ū(t) is the behavior policy applied to the system for
data generation, ω̄(t) is the actual disturbance affecting the
system, ūk (t) = Ku,k x̄(t) is the control policy, ω̄k (t) =
Kω,k x̄(t) is the disturbance policy, and, lastly, k indicates
the iteration of the algorithm as it is a recursive algorithm.
Data generated by the behavior policy is used to evaluate and
update control and disturbance policies.

In addition, the value function can be rewritten as

Vk
(
x̄(t)

)
= x̄T (t)Pk x̄(t), (36)

and its differentiation can be written as

dVk
(
x̄(t)

)
dx̄(t)

= 2Pk x̄(t), (37)

dVk
(
x̄(t)

)
dx̄(t)

dx̄(t)
dt
= V̇k

(
x̄(t)

)
= 2Pk x̄(t)

dx̄(t)
dt

, (38)

which can be further represented as

V̇k
(
x̄(t)

)
=
(
2Pk x̄(t)

)T (Ax̄(t)+ Būk (t)+ Dω̄k (t))
+
(
2Pk x̄(t)

)TB(ū(t)− ūk (t))
+
(
2Pk x̄(t)

)TD(ω̄(t)− ω̄k (t)). (39)

The Bellman equation (16) can be rewritten as

H
(
Pk , ūk (t), ω̄k (t)

)
=
(
2Pk x̄(t)

)T (Āx̄(t)+ Būk (t)+ Dω̄k (t))+ x̄T (t)Qx̄(t)
+ ūTk (t)Rūk (t)− γ

2ω̄Tk (t)ω̄k (t) = 0, (40)
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Algorithm 1 Online off-Policy Model-Free Integral Rein-
forcement Learning for Solving the H∞ Regulation Problem
With a Guaranteed Convergence Rate
Definitions:
• Fk = ||Pk − Pk−1|| + ||ūk+1(t)− ūk (t)||

+ ||ω̄k+1(t)− ω̄k (t)||
• η = predetermined error bound

Initialization: k ← 0
Step 1. Regarding (10), apply an initial stabilizing control
input u0(t) for collecting the required data (system states) in
N sample times.
Step 2. Given uk (t) and ωk (t), solve the Bellman equa-
tion (45) for Pk , Ku,k+1, and Kω,k+1 concurrently.
Step 3. If Fk < η, stop; otherwise, set k = k + 1 and return
to Step 2.
Step 4. Set u∗(t) = uk (t) and ω∗(t) = ωk (t) on convergence.

and with regard to (17) and (18), ūk+1(t) and ω̄k+1(t) can be
determined as

ūk+1(t) = −R−1BTPk x̄(t), (41)

ω̄k+1(t) =
1
γ 2D

TPk x̄(t). (42)

Therefore, (39) can be rewritten as

V̇k
(
x̄(t)

)
= −x̄T (t)Qx̄(t)− ūTk (t)Rū(t)

+ γ 2ω̄Tk (t)ω̄(t)− 2ūTk+1(t)R
(
ū(t)− ūk (t)

)
+ 2γ 2ω̄Tk+1(t)

(
ω̄(t)− ω̄k (t)

)
. (43)

In order to determine the Bellman equation for the IRL
algorithm, the integral of (43) over the interval [t, t + 1] is
calculated as follows:

Vk
(
x̄(t +1)

)
− Vk

(
x̄(t)

)
= −

∫ t+1

t

(
x̄T (τ )Qx̄(τ )+ ūTk (τ )Rū(τ )

− γ 2ω̄Tk (τ )ω̄(τ )
)
dτ

− 2
∫ t+1

t
ūTk+1(τ )R

(
ū(τ )− ūk (τ )

)
dτ

+ 2γ 2
∫ t+1

t
ω̄Tk+1(τ )

(
ω̄(τ )− ω̄k (τ )

)
dτ . (44)

Now, with the consideration of (8), (12), (34), (40), (41),
and (42), one can rewrite (44) as

e2α(t+1)xT (t +1)Pkx(t +1)− e2αtxT (t)Pkx(t)

= −

∫ t+1

t
e2ατ

(
xT (τ )Qx(τ )+

(
Ku,kx(τ )

)TR(Ku,kx(τ ))
− γ 2(Kω,kx(τ ))T (Kω,kx(τ ))) dτ
− 2

∫ t+1

t
e2ατ

((
Ku,k+1x(τ )

)TR(u(τ )− Ku,kx(τ ))) dτ
+ 2γ 2

∫ t+1

t
e2ατ

((
Kω,k+1x(τ )

)TR(ω(τ )
−Kω,kx(τ )

))
dτ . (45)

FIGURE 1. Flowchart diagram of Algorithm 1.

Now that the preliminaries of the online off-policy model-
free IRL algorithm are completed, the step-by-step proce-
dure of the algorithm can be demonstrated in Algorithm 1.
A graphic demonstration of the Algorithm 1 is also depicted
in Fig. 1 as a flowchart diagram. Algorithm 1 employs the
IRL Bellman equation (45) to iteratively solve the Bellman
equation (16). The online implementation of the Algorithm 1
employs least squares and is similar to the practice described
in [28], thus omitted.
Theorem 2: Algorithm 1 ensures the convergence of
{Pk ,Ku,k+1,Kω,k+1}∞k=1 to {P

∗,K∗u ,K
∗
ω}, in which P∗ is the

unique solution to ARE (19).
Proof of Theorem 2: The proof follows the practice

described in [39] and is therefore omitted.

V. NUMERICAL EVALUATIONS
In this section, the effectiveness of the proposed approach is
illustrated through two examples: a four-state stable system
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TABLE 1. Comparison of the effect of two α values for Example 1.

and a two-state unstable system. Algorithm 1, which is a
model-free algorithm, is used to solve the H∞ regulation
problem, and the results are compared with the model-based
solution obtained by (19) and (20).

This paper considers two different types of disturbance,
(i) sawtooth waveform, (ii) sinusoidal waveform (both are
plotted in Fig. 2). The sawtooth disturbance has a bounded
amplitude range and constant frequency, and it can be pre-
sented by the following equation

ω1(t) =


0, 0 ≤ t < 4
t − 4, 4 ≤ t < 6
t − 6, 6 ≤ t < 8
t − 8, 8 ≤ t < 10.

(46)

The sinusoidal waveform, on the other hand, has increasing
amplitude and frequency, and is demonstrated through the
following equation:

ω2(t) =


0, 0 ≤ t < 4
sin(π t), 4 ≤ t < 6
2 sin(2π t), 6 ≤ t < 8
3 sin(5π t), 8 ≤ t < 10.

(47)

A. AN EXAMPLE OF STABLE SYSTEMS
The first example is a stable systemwith its state-space matri-
ces given as follows:

A =


0 8 0 0
0 −3.66 3.66 0
−6.86 0 −13.736 −13.736
0.6 0 0 0

 ,

x0 =


1
−1
−1.5
1.5

 , B =


0
0

13.736
0

 , D =


0
0
1
0

 .

FIGURE 2. The disturbance waveforms.

The eigenvalues of this system are −14.8474, −0.5260 ±
3.2531i, and −1.4967. Also, the weight matrices for this
example are Q = I4×4 and R = I1×1 with γ = 10.

In order to show the efficacy of the proposed IRL algo-
rithm, a comparison between the model-based method and
the model-free method is given by comparing the solutions
that both methods provide to the H∞ regulation problem.
Besides, two values for α are considered for this system in
order to compare the effect of α on the speed of regulation
and disturbance attenuation.

Fig. 3 shows the convergence of the model-free solutions
to the model-based solutions for the two values of α. More
details are provided in Table 1. According to this table, the
model-free method achieves the same solution as the model-
based (the table shows the solution achieved in the 10th iter-
ation). Fig. 4 and Fig. 5 depict the response of the states
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FIGURE 3. Convergence of Pi and Ku,i to their optimal values for
α = 1 and α = 3 for Example 1.

FIGURE 4. System states for Example 1 under the effect of ω1(t) for
α = 1 and α = 3.

for different values of α under both disturbances. Regarding
Table 1, Fig. 4, and Fig. 5, it can be seen that the eigenvalues
are always on the left half of the line s = −α, and by increas-
ing α, the speed of regulation increases and also disturbance
is attenuated in a better way.

In addition, note thatKu,0 values for α = 1 and α = 3 have
been selected as

[
−6 −10 −10 −9

]
and

[
−8 −7 −1 −40

]
,

respectively.

B. AN EXAMPLE OF UNSTABLE SYSTEMS
The second example is an unstable systemwith its state-space
matrices given as follows:

A =
[
0 1
1 0

]
, x0 =

[
−2
3

]
, B =

[
0
2

]
, D =

[
0
1

]
.

FIGURE 5. System states for Example 1 under the effect of ω2(t) for
α = 1 and α = 3.

FIGURE 6. Convergence of Pi and Ku,i to their optimal values for
α = 3 and α = 5 for Example 2.

The eigenvalues of this system are −1 and +1. Also, the
weight matrices for this example are Q = I2×2 and R = I1×1
with γ = 10.

Similar to the previous example, the same comparison
between the model-based and model-free methods is pro-
vided here with two different values for α.

Fig. 6 shows the convergence of the model-free solutions
to the model-based solutions for the two values of α. Model-
based and model-free solutions are also compared in Table 2
(the table shows the solution achieved in the 10th iteration).
Fig. 7 and Fig. 8 depict the response of the states for different
values of α under both disturbances. Furthermore, it can be
observed that the eigenvalues always lie within the left half of
the line s = −α, and by increasing α, the speed of regulation
increases and the disturbance is attenuated in a better way.

In addition, note thatKu,0 values for α = 3 and α = 5 have
been selected as

[
−40 −8

]
and

[
−100 −14

]
, respectively.
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TABLE 2. Comparison of the effect of two α values for Example 2.

FIGURE 7. System states for Example 2 under the effect of ω1(t) for
α = 3 and α = 5.

FIGURE 8. System states for Example 2 under the effect of ω2(t) for
α = 3 and α = 5.

VI. CONCLUSION AND FUTURE WORK
In this paper the problem of designing a model-free H∞
controller for the state regulation of continuous-time linear

systems with a guaranteed convergence rate in the pres-
ence of disturbance is studied. Both regulation and distur-
bance attenuation problems are addressed in a single unified
cost function by formulating it as a two-player zero-sum
game optimization problem. Then the optimization problem
is solved using the associated algebraic Riccati equation,
which provides a model-based solution. A novel model-free
integral reinforcement learning algorithm was developed to
learn the solution in real-time using no prior knowledge of
the system dynamics. The results show that the algorithm sub-
stantially attenuates the adverse effect of the disturbance on
the system performance and also guarantees a predefined rate
of regulation. The efficacy of the proposed method for both
a stable and unstable systems is verified numerically. The
approach proposed in this paper may serve as an effective tool
to study the optimal control design problemwith a guaranteed
convergence rate for a wide range of applications such as
robotics, industrial manufacturing systems, process control,
and so forth. In future, this development could be extended
for systems with input delay. In addition, developing a similar
method for systems with bounded inputs or constrained states
could be an important area of research.
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