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ABSTRACT The arc-fault phenomenon in photovoltaic (PV) systems has emerged as a major problem in
recent years. Existing studies on arc-fault detection in conventional PV systems primarily focus on detecting
typical stable arc-faults. Low-energy arc-faults are more challenging to detect than stable arc-faults because
of their low current distortions, short durations, and nonlinear properties. These low-energy arc-faults, which
are precursors to stable arc-faults, could even inflict serious damage on the system components. Here,
a transfer learning-based low-energy arc-fault detection network (TL-LED*“Net) using a two-stage training
method is proposed to proactively detect series DC arc-faults by considering low-energy arc-faults. A one-
layer long short-term memory network combined with a lightweight one-dimensional convolutional neural
network was developed to detect low-energy arc-faults by only using the sensed current information. The
results of offline and online experiments conducted with a commercial grid-connected PV inverter indicate
that the proposed method can perform real-time operations on a single-board computer and detect low-energy
arc-faults with an accuracy of 95.8%, which is higher than previous methods considered in this study.

INDEX TERMS Long short-term memory, low-energy arc-fault, photovoltaic systems, proactive detection,
transfer learning.

I. INTRODUCTION
Renewable energy is a promising solution to the climate
change problems caused by the overuse of fossil fuels. Solar
power generation accounts for a peak of 600 GW, which is
more than 3% of the global power-generation output [1], [2].
Despite the improvement and steady development of
related technologies in the photovoltaic (PV) fields, arc-
faults are a severe problem as they reduce the lifespan of PV
systems. Most arc-faults in PV systems have been observed
in electrical conversion devices, such as inverters and com-
biners, and in junction boxes consisting of different types
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of connectors [3]. Arc-faults are typically attributed to wire
damage caused by external factors (e.g., long-term weath-
ering and aging or wiring problems), which produce high-
temperature plasma through an unexpected ionization process
and continually damage the internal system components.

In terms of the arc-fault characteristics according to the
circuit type, as shown in Fig. 1, the parallel arc-fault current
is generally higher than the series arc-fault current. Thus, the
input current can be readily cut off using a physical circuit
breaker. In addition, the detection of arc-faults is relatively
easier at zero-crossing points for a series AC circuit [4].
In contrast, it is difficult for a protection relay to detect arc-
faults in the case of a series DC circuit because there are
no zero-crossing points in the input current. Furthermore,
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FIGURE 1. Photovoltaic (PV) system indicating possible locations of
series and parallel arc-faults.

arc-faults are difficult to detect in most commercial inverters
owing to the large amount of electronic noise and ripple
currents they generate [5]. Therefore, the UL1996B standard
was established in the USA to provide guidelines for arc-fault
detection in PV systems [6].

Various arc-fault detection methods have been proposed,
including physical modeling, time—frequency domain anal-
ysis, and artificial intelligence (AI) methods. For example,
Uriarte et al. analyzed the arc-fault generated in a microgrid
while controlling the speed and gap in an arc-fault genera-
tor in the time domain and verified the arc-fault properties
through simulations by modeling the results [7]. In addi-
tion, impedance modeling and empirical methods have been
employed to solve DC low-power and low-voltage arc-fault
problems [8]. Most notably, the effects of the contact material
properties, current, voltage, arc-fault speed, and arc-fault gap
on the arc-to-glow evolution process were demonstrated [8].

Fault detection methods that make use of sensor signal-
based preprocessing analysis have also been studied. For
example, a statistically varying threshold-based fault detec-
tion method using a microgrid consisting of multiple
sources and loads was proposed [9]. Additionally, [10],
[12], [13], arc-fault detection approaches using both time-
and frequency-domain analysis were introduced based on
short-time Fourier transform (STFT) and discrete wavelet
transform. However, these techniques are limited because
they depend on the frequency band and specific character-
istics of the device, such as the switching noise from the
inverter, control signals, and background noise signals [14].
In addition, several methods to improve the optimization
performance of rule-based fault detection methods and solve
the uncertainty in the real environment were presented [15],
[16], [17].

In an attempt to address these shortcomings, Al-based arc-
fault detection methods have recently garnered considerable
interest [18]. For example, machine learning (ML) algorithms
based on an ensemble tree were investigated [19], and a
stacking ensemble model was proposed. However, the arc-
fault data were created and evaluated using simulation-based
circuit design, which presented various drawbacks. In [20],
[21], and [22], various arc-fault detection methods were pro-
posed using the support vector machine (SVM) technique
with the input current in the time-frequency domains. How-
ever, compared to deep learning (DL) approaches based on
deep neural networks (DNNs), existing ML-based methods
are inefficient for solving nonlinear problems because their
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preprocessing approaches are highly complex and require
expert domain knowledge. This motivated the development
of various DL-based methods for arc-fault detection [23],
[24], [25], [26] as well as fault diagnosis [27]. In section II,
we introduce existing DL methods for arc-fault detection
and analyze their weaknesses particularly with respect to the
detection of low-energy arc-faults. Furthermore, we discuss
the contributions of the proposed detection method by con-
sidering the characteristics of low-energy arc-faults.

Il. RELATED WORK AND PROPOSED CONCEPT

Arc-fault detection methods based on convolutional neural
networks (CNNs), have recently garnered considerable atten-
tion as DL-based methods. One approach involves analyzing
the arc characteristics from reconstructed two-dimensional
(2D) images in the time—frequency domains [23], [24]. Other
than this, Lu et al. [25] introduced an approach that expanded
the formation of a training dataset and improved the arc-fault
detection accuracy by generating dummy arc-fault data using
a domain adaptive deep convolutional generative adversarial
network.

However, previous studies focused mainly on typical stable
arc-faults and did not consider low-energy arc-faults in detail.
Low-energy arc-faults precede stable arc-faults and occur
when the fault energy is not sufficient. In contrast to stable
arc-faults, low-energy arc-faults are nonlinear, have low dis-
tortions, and short durations [26]. The same researchers [26]
discovered that low-energy arc-faults are the precursors to
stable arc-faults and are capable of damaging system com-
ponents. In this regard, low-energy arc-fault detection by
analyzing the DC is a challenging problem as commercial
inverters generally produce high ripple currents and a large
amount of switching noise in a real environment.

Various studies [8], [11], [28], [29], [30] were devoted to
the experimental analysis of the input current and arc voltage
characteristics of low-energy arc-faults and the effects of
these characteristics on the systems were studied. A data-
driven method was recently introduced [26] to detect low-
energy arc-faults; however, this method was restricted to AC
circuits, and no distinction was made between low-energy
arc-faults and stable arc-faults. Furthermore, the trained
model was not tested in a real environment owing to the
complexity of the preprocessing procedures for the SVM
classifier.

Therefore, a detailed analysis of the nonlinear phenomena
associated with low-energy arc-faults and the development
of an efficient method to detect these faults accurately in
real time has become necessary. This study extends existing
arc-fault detection capability, including low-energy series DC
arc-faults, to improve the reliability of PV systems, and led
to the proposal of a new proactive arc-fault detection method
named the transfer learning (TL)-based low-energy arc-fault
detection network (TL-LED#*Net).

TL allows new problems to be solved more efficiently
by using knowledge acquired in the past. Generally, when a
deep neural network (DNN) is successfully trained, it usually
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contains valuable information in the form of internal weights
that have already been learned. In most cases, a DNN-based
TL technique for solving classification problems reuses most
of the remaining architecture of the already trained DNN
model with multiple convolutional layers. Hence, pretrained
DNN models that have acquired a wealth of knowledge are
widely used in the field of TL. Following the aforementioned
approach to TL, we propose a two-stage training method
combining a one-dimensional convolutional neural network
(1D CNN) and long short-term memory (LSTM) based
on TL.
The main contributions of this study are as follows:

1) This study extends the range of arc-fault detection to
incorporate low-energy arc-faults and improve con-
ventional approaches, which are generally sensitive
to stable arc-faults. The detection of low-energy arc-
faults, which can cause the reliability of PV systems to
deteriorate, is crucial to prevent severe damage to these
systems.

2) The input current is analyzed in the time—frequency
domain through visualization using gradient-weighted
class activation mapping (Grad-CAM), which is
employed in the field of explainable AI [31]. The
results of the visualization analysis are extracted from
the spectrogram image in the frequency region by
activating a heatmap of the arc-fault class below the
20-kHz frequency band, and are used as the basis for
designing a lightweight arc-fault detection model.

3) A proactive arc-fault detection method named
TL-LED*“Net is proposed. This method analyzes the
arc-fault characteristics from an energy perspective
and distinguishes between low-energy and stable arc-
faults. In addition, an improvement in the accuracy
is successfully demonstrated by conducting real-time
experiments using a lightweight model.

The remainder of this paper is organized as follows:
Section III describes the arc-fault detection platform and
presents the analysis from the energy perspective. Section IV
explains the architecture and optimization procedure of
TL-LED*“Net. Section V presents the evaluation of the per-
formance of TL-LED**Net in an actual online/offline test
environment. Section VI contains our concluding remarks.

Ill. DATA ACQUISITION AND ANALYSIS

This section describes the data acquisition platform used to
develop the proposed proactive arc-fault detection algorithm.
The low-energy series DC arc-faults are analyzed statistically
based on the time-domain data, and a labeling method is
introduced based on the energy perspective proposed in this
study.

A. ARC-FAULT DATA ACQUISITION AND
EXPERIMENTAL PLATFORM

As shown in Fig. 2, the series DC arc-fault detection plat-
form comprised four parts: series DC arc-fault generator,
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FIGURE 2. Series DC arc-fault detection platform.

PV emulator, grid-connected commercial inverter, and intel-
ligent arc-fault detection module. In the figure, v, denotes
the arc voltage, #j,,; denotes the input current of the inverter,
and vpc denotes the series DC bus voltage, which was 600 V.
The rated power of the grid-connected inverter was 3.8 kW.

Additionally, a series DC arc-fault generator was imple-
mented based on the UL1699B standard [6]. Arc-faults
with a small gap length or low speed are more likely
to exhibit low-energy series DC arc-fault characteristics,
as demonstrated previously [8]. Therefore, experiments were
conducted repeatedly to generate statistical arc-fault data
consisting of arc-fault gap lengths ranging from 0.4-1.1 mm
and control motor speeds ranging from 0.4—1.1 mm/s. Lastly,
the intelligent arc-fault detection module used to mount the
proposed TL-LED*“Net was implemented using a single-
board computer. Section V-B presents a detailed verification
of the real-time arc-fault detection performance.

B. ARC-FAULT FEATURE ANALYSIS
Fig. 3 shows the arc voltage, v,., and the input current
of the inverter, i;u,;, measured at a sampling frequency of

fs = 100 kHz under the experimental conditions presented in
Section III-A.
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FIGURE 3. Measurements recorded using the platform in Fig. 2. (a) Series
DC arc voltage. (b) Input current of inverter.

Fig. 3 indicates that the measured data could be classified
based on the energy level as being in a normal state, Enxopmai
(0 ~ t,), alow-energy arc-fault state, Ey,,, (f; ~ tz), or a sta-
ble arc-fault state, E;,qpj. (after t;), where Esyqpie includes the
transient phase in which the input current increases rapidly.
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The Ep,, state was produced owing to a lack of arc-fault
energy in the ionization process, and it exhibited nonlinear
and low distortion characteristics [8], [23]. Conversely, when
the arc-fault energy accumulated and preheating occurred
completely, it developed into the Egp state through the
transient phase. The pattern of the arc voltage and input
current gradually converged and stabilized in the Eg;,p;. State.
In this regard, the current fluctuation in this stabilized Eszp1e
state existed within the range allowed by the protection relay
[4]. Furthermore, the experimental results show that the input
current variation of the Ej,, state is similar to that of the
Esiupie State.

To analyze the characteristics of the low-energy arc-fault,
the Ej,,, state was calculated with a time duration of 50 ms,
as follows:

Erow =

te
[ )t
e —1p Jy,
where EJ,, represents the arc-fault energy between times t,
and fc, v4r denotes the arc voltage, and ij,,,; denotes the input
current.

To simplify the energy calculation, the arc voltage and
input current data were approximated using their root mean
square (RMS) values, denoted vgpys and igys. Similarly,
Esiaple was calculated via (1) using the data from #, to tr.

Table 1 presents the statistical analysis of the measured arc-
fault energies, in which 500 samples with a time duration of
50 ms were analyzed for Ej,,, and Egspi.. Fig. 4 illustrates
the energy densities of series DC arc-faults for two classes
in a grid-connected PV system. The results in Table 1 and
Fig. 4 indicate that the Ey,,, values are primarily distributed
between 22 J and 56 J, and the average energy is approxi-
mately 42 J.

TABLE 1. Comparative statistical analysis of E;,,, and Egzgp/e-

Standard
State Mean L 5% energy 95% energy
deviation
Erp. 4217 99171 2217 55917
Esapie 149.8J 26.1] 97.81] 1927
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FIGURE 4. Comparison of arc-fault energy densities.
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Therefore, the upper boundary for Ez,,, (E, ~ 56J) and the
lower boundary for Egspie (Ep =~ 97 J) were defined as the
95% confidence interval corresponding to each population.
More importantly, Ej,, continuously affected the system
adversely and could have developed into the Egpj. state.
Therefore, based on statistical analysis from the perspective
of the arc-fault energy, developing a fast and accurate arc-
fault detection algorithm is essential to solving this problem.

IV. PROPOSED PROACTIVE ARC-FAULT

DETECTION METHOD

A. ARC-FAULT SIGNAL ANALYSIS USING

GRAD-CAM TECHNIQUE

The characteristics of the series DC arc-fault data in the time—
frequency domain were analyzed by applying the Grad-CAM
technique, which is used in the explainable Al field. The
analysis of the arc-fault characteristics consisted of a stage for
preprocessing the time—frequency input data, a training stage
that employed a 2D CNN model, and a Grad-CAM applica-
tion stage, as shown in Fig. 5. First, to simultaneously observe
the characteristics of the input current in the time—frequency
domains, STFT signal preprocessing was applied to the input
current as follows:

o

STFT {x(¢)} (z, w):/ x(Ow(t—1)e M dt, 2)

—0oQ

where x(¢) is the input current, w(t) is the window function,
and 7 is the time index. A sampling rate of 100 kHz and a
time duration of 50 ms were used.

Subsequently, the spectrogram image generated using (2)
was input into the 2D CNN model presented in Fig. 5, and
the classifier was used for arc-fault detection training in
three categories: Enormals ELow, and Esaple. The Grad-CAM
technique visually analyzed the arc-fault data with a class
activation heatmap. Grad-CAM provided important regional
information on the arc-fault class in the spectrogram image
by extracting the feature map, F¥, of the last convolutional

Softmax

3x3 CNN block (128)

--. Input time-frequency data

FIGURE 5. Arc-fault analysis architecture built by applying the Grad-CAM
technique.

Grad-CAM

Classifier
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layer. It also calculated the gradient average of the class for
all the extracted feature map channels as shown in (3).

=iy ®
o = — _—
k= L j OFf,

where y© is the probability value for class ¢ and Z is a normal-
ization factor. Accordingly, the gradient was first calculated
by performing backpropagation on y¢, and the weighting o
with the feature map channel was obtained by calculating the
average gradient for each channel.

A linear combination was then performed to multiply the
importance of each channel () by the corresponding chan-
nel of the feature map (F¥) and generate a spatial heatmap for
the arc-fault class as follows:

Lira—cam = ReLUCY  afF"), 4

where ReLLU denotes rectified linear unit [32].

Fig. 6 shows the spectrogram images of Enormais ELow, and
Essapie obtained by implementing the Grad-CAM technique.
In the figure, the important regional information that was
used for classification is highlighted in red. It was found that
the devised 2D CNN model avoided the 32 kHz switching
noise of the inverter in the high-frequency domain and mainly
utilized frequency information of less than 20 kHz for arc-
fault detection.

Frequency (kHz)

Time (ms)

() (b) ©)

FIGURE 6. Heatmap visualization for the arc-fault classes using the
Grad-CAM technique: (a) Enormal State, (b) Ej oy, state, () Esgaple State.

According to the results of the Grad-CAM visualization
analysis, the complexity of the data preprocessing and the
training model architecture can be effectively reduced by
selecting the appropriate frequency range of the arc-faults.

B. DESIGN OF TL-LED® NET FOR PROACTIVE ARC-FAULT
DETECTION

This section describes the structure and optimization proce-
dure of TL-LED*“Net. First, based on the analysis results
presented in Section IV-A, a 20-kHz lowpass filter was used
to pass the low-frequency components of the input current.
Considering the mean value of the input current, data nor-
malization for preprocessing was then performed by apply-
ing mean subtraction normalization (MSN) to the lowpass
filtered data as follows:

N

N 1
Xin) = xi(n) — & ijl X» &)
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where x;(n) represents the discrete time-sequence sample
feature for the input current x(¢), N denotes the total number
of points per sample feature, and Xx;(n) denotes the MSN
output feature of a sample i. To maintain the existing signal
characteristics (e.g., the standard deviation) while ensuring
that the average for sample i is zero, the arc-fault data were
normalized by considering only the mean value of the input
data, as indicated in (5).

The network architecture of TL-LED**“Net, shown in
Fig. 7, is now explained in detail. 1) Stage 1 performs pre-
training, in which the normal state and the arc-fault state
are binarized in a lightweight 1D CNN model consisting of
two convolutional layers. 2) A pretrained 1D CNN network,
which is a feature extractor, is loaded into only one LSTM
layer. 3) Stage 2 detects a series DC arc-fault based on
the training using the three-class classifier. TL is performed
based on prior knowledge of the local features of the arc-fault
extracted from Stage 1 using normal and arc-fault data as the
training dataset. This process retrains the sequence associa-
tion between the arc-fault features to differentiate between
Epow and Esypie.

Binary classification

Fully connected
Dropout, 0.3
Batch normalization
eLU
Fully connected
8 =
Global max pooling % g?-':
eLU 3 5
; L s
P 1 x 2 Max pooling ﬁ @)
= Batch nor

=

E 1x 3 1D convolution (256) <z
=

= LU ————— T
4 1 x 2 Max pooling Transfer I(@23) = o
@) Learning 2 e
)| stish s e . —— 53

—
1x 5 1D convolution (128) 1D CNN Module 8 g
‘s
I E £
b O —— PO 01 ot g bt o ot Nt £

Input current preprocessed using Eq. 5 after 20
KHz low-pass filtering.

Input current preprocessed using Eq. 5 after 20
KHz low-pass filtering.

Stage 1 Stage 2

FIGURE 7. Complete architecture of TL-LED®"“Net for two-stage training.

The network architecture of TL-LED*“Net shown in
Stage 1 was composed of two 1D convolutional layers and
a two-class classifier. Batch normalization [33] was used for
all the convolutional layers to prevent the vanishing gradient
problem. In addition, a max-pooling layer was added after
batch normalization to reduce the spatial dimensionality of
the convolutional layer output, which preserved relevant fea-
tures and removed irrelevant details. The kernel size for the
convolution operation in the first convolutional layer was set
to 5, and the stride was set to 2. In the second convolutional
layer, the kernel size of the 1D convolution window was set
to 3, and the stride was set to 2.
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The convolutional operation in the convolutional layer is
given by

z(n) = x(n) * wn)
= Z;?l Fmyw(n — m), (6)

where X;(n) denotes a normalized 1D input current using (5),
w(n) denotes a kernel function with a window size of /, and
z(n) represents a 1D feature map resulting from a convolu-
tional layer calculated using X;(n) and w(n).

The exponential linear unit (eLU) was used as an activation
function in this study [34]. The advantage of this activation
function is that it can increase the speed of training in the
designed networks and produce higher recognition account-
ability than the original ReL.U [32].

Finally, a classifier was introduced to include two fully
connected layers and a dropout layer to perform binary
classification, which ensured that overfitting did not occur.
In Stage 2, Ey,,, was detected by an LSTM model and a clas-
sifier that performed three-class classification, in which a TL
technique with a pretrained 1D CNN model was considered.
In this study, the LSTM network was applied with feedback
neural connections to effectively train the sequence between
the pretrained arc-fault features in Stage 1. The LSTM model
is based on the existing recurrent neural network (RNN)
model, but it has additional cell state memory in the hidden
state, making it more efficient for extracting long-term fea-
tures for time-series data than the existing RNN. The LSTM
network designed in Stage 2 consisted of one layer composed
of 128 hidden neurons and 256 features extracted from the 1D
CNN module.

Here, the input gateway of a cell constituting the LSTM
was composed of a forget gate, input gate, and output gate
[35]. These respective components are defined as:

ir = o(wilh—1, 2] + by),
fi = owrlhi—1, 2] + by),
0r = o(Wolhi—1, 2] + bo), @)

where i; denotes the input gate, f; denotes the forget gate, o;
denotes the output gateway, z; denotes the output of the 1D
CNN module in Stage 2 of Fig. 7, o represents the sigmoid
function, w;, wr, and w, denote the weights for input z; at each
gate, respectively, i, denotes the output value of the previ-
ous LSTM cell, and b;, by, and b, denote the respective bias
values for the input z; at each gate. In the LSTM structure, the
input gateway determines whether to store the current infor-
mation, the forget gateway determines whether to utilize past
information, and the output gateway determines which value
to present as output. For example, in the forget gateway, the
sigmoid function utilizes past information when the output
value is one. Additionally, a cell state (C;) corresponds to
memory, which refers to the storage space occupied by the
information determined by the input and forget gates. In the
output gate, the cell gate performs the o; * tanh(C;) function
and determines its value to determine the value of the model
output in (7).
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The classifier in Stage 2 used two fully connected layers,
while batch normalization was applied to prevent the problem
of vanishing gradients. Additionally, a dropout was applied
to prevent the arc-fault detection model from overfitting the
data. Lastly, the final output layer used a probability-based
softmax function to perform the three-class classification,
distinguishing the Enormais ELow, and Esgpie states.

To optimize the proposed two-stage training model, cat-
egorical cross entropy used for multi-classification was
applied as a loss function, defined as follows:

1
Categorical Cross Entropy = Y Ziyr log), (8)

where N is the total number of samples, y; denotes the
predicted class probability, and y; denotes the actual class.
During model training, TL-LED*“Net weights were itera-
tively adjusted to minimize the cross-entropy loss between
y; and y;. In this regard, the Adaptive Moment Estimation
(Adam) optimizer was adopted in TL-LED*“Net [36]. The
Adam optimizer, which served to minimize the loss, is a
stochastic gradient descent method based on the adaptive
estimation of first- and second-order moments. The advan-
tages of this optimizer are that it is straightforward, easy to
use, and requires less memory than other optimizers. Most
importantly, it is a robust optimizer and well suited for non-
convex optimization problems such as our problem in the
field of ML and DL. The overall learning procedure for the
proposed method is summarized in Algorithm 1.

Algorithm 1 Two-Stage Training Procedure for Proactive
Arc-Fault Detection Employed by TL-LED*“Net
« Stage 1: Train the 1D CNN model to extract compressed
regional features of the arc-fault signal from time-series cur-
rent data.

1) Configure the 1D CNN module and the two-class clas-
sifier, as shown in Fig. 7.

2) Extract arc-fault features from the 1D convolutional
layers using the convolutional operation of (6).
o Stage 2: Retrain the LSTM network coupled with the
pretrained 1D CNN module for three-class classification.

1) Load the feature extractor of the pretrained 1D CNN
module into the one-layer LSTM, as shown in Fig. 7.

2) Optimize the model weights using the Adam opti-
mizer through the retraining process using TL-based prior
knowledge.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the verification of the performance of
TL-LED*“Net by conducting online and offline experiments.
The offline experiments with a 3-phase PV inverter operating
at 3.8 kW (vpc =500V, ijpur = 7.5 A, fow = 32 kHz)
were executed to verify the superior performance of the
proposed TL-LED*“Net compared with existing ML- and
DL-based methods. In addition, online experiments were also
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performed to verify the real-time arc-fault detection capabil-
ity of the proposed method using a single-board computer
(NVIDIA Jetson Nano). The NVIDIA Jetson Nano is config-
ured with a 1.43 GHz Quad-core ARM Cortex A57 MPCore,
4 GB memory, and a 10 W power unit.

A. OFFLINE EXPERIMENTAL RESULTS
The offline experiments utilized input current data from the
experimental platform, as shown in Fig. 2. The training and
test datasets were collected using the intelligent arc-fault
detection module. The input current was first measured using
a current sensor (LEMHX 15-p) with a 50-kHz bandwidth,
and analog-to-digital conversion with 20-kHz lowpass filter-
ing of the input current was performed using a processor
module (NI sbRIO-9606). The dataset consisted of 10,279
Enormal, 10,018 Ef 4y, and 10,062 E;qp. data values. The test
dataset used for the model evaluation comprised 3,036 data
values sampled from the total collected data, and the remain-
ing data values were used to train the model. Furthermore,
the validation dataset used for hyperparameter optimization
in the training process comprised 10% of the training data.
The Adam learning algorithm was applied to each stage,
and the initial learning rate was set to 0.0001 to perform
60 training epochs. In this case, to ensure that the algorithm
accurately and rapidly converged to the optimal point, the
adaptive learning rate technique was applied. In other words,
the adaptive learning rate was decreased step-wise by 1/10
from the initial learning rate. Fig. 8(a) shows the loss of
training and verification data as a function of the number
of epochs, and Fig. 8(b) depicts the accuracy of the training
and verification data. The results shown in Fig. 8 indicate
that overfitting or underfitting for a given verification dataset
did not occur. This is because the training was performed by
optimizing the hyperparameters of TL-LED**“Net.

0.7 1

0.6 0.95
0.9
0.5

0.85
0.4

0.8

Loss

0.3

Accuracy

0.75
0.2

0.7

0.1 ~— Train 0.65
—— Test

FIGURE 8. Variation in the (a) loss and (b) accuracy for the training and
verification data with the number of epochs.

The performance accuracy of TL-LED*“Net was then
determined using the statistical multi-class classification
evaluation method [37]: accuracy, sensitivity (recall), speci-
ficity, and fallout (false alarm). Table 2 presents the confusion
matrix results for the proposed method, of which 3,036 test
data values were randomly extracted for the evaluation of the
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TABLE 2. Confusion matrix results.

Predicted class

Class Enormal Eron Esapie Total

ENormal 1,011 4 0 1,015

Actual Eow 12 942 53 1,007
class Espie 0 58 956 1,014
Total 1,023 1,004 1,009 3,036

model. Among the data values in the test set, 1,015 Enppmals
1,007 Erow, and 1,014 Egqp. data values were used for the
evaluation. The experimental results are presented in Table 2,
which indicates the average of a total of five experiments.
As shown in Table 2, the results of the diagnostic performance
evaluation of the Ej,,, class of TL-LED*“Net presented an
overall accuracy of 95.8% and a sensitivity of 93.3%. If all
the arc-fault states are integrated into the positive class, and
the normal states are redefined as the negative class, then the
binary classification performance of the arc-fault detection
model produced an overall accuracy of 99.6%, and a sensi-
tivity of 99.8%. Note that the sensitivity indicator represents
the result of the trained model, i.e., its ability to predict the
input sample as an arc-fault in the actual arc-fault class.

The arc-fault detection accuracy of TL-LED*“Net was
compared with that of five representative ML-based and
three DL-based methods in the offline experiment. First,
Table 3 compares the arc-fault detection performance of
TL-LED*“Net with that of existing ML-based methods:
SVM, random forest (RF), light gradient boosting machine
(Light GBM), extra gradient boost (XGBoost), and a stacked
ensemble model composed of RF, XGBoost, and Light
GBM submodels. In this case, all the existing ML meth-
ods employed the following five features: average, median,
variation, RMS, and the difference between the maximum
and minimum values for the time-domain input current
(introduced in [19]). The optimized ML training parameters
obtained using grid search with cross-validation were also
applied to each corresponding ML method.

TABLE 3. Comparison of arc-fault detection accuracy of TL-LED®"Net
with that of existing ML and DL methods.

ML Light Stacked
SVM RF XGBoost
Methods GBM Ensemble
Accuracy
71.8 75.0 81.0 83.6 88.5
(%)
Directed- )
2D 1D TL-LED**“Net
DL Methods Coupled 1D
CNN  CNN (Ours)
CNN and LSTM
Accuracy
92.9 92.1 92.8 95.8
(%)

In addition, the arc-fault detection performance of
TL-LED**“Net was compared with that of DL-based meth-
ods such as 2D CNN, 1D CNN, and direct-coupled 1D
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TABLE 4. Performance compatrison between TL-LED3'“Net and the 2D
CNN model for each class of arc-faults.

TABLE 5. Comparison of processing time between 2D CNN and
TL-LED?"Net.

Methods  Class Accuracy Sensitivity Specificity Fallout Parameters
Eormal 990 98.7 99.2 0.8

2DCNN  Ep,, 92.9 86.8 96.0 4.0 440,067
Estabie 93.9 93.2 94.2 5.8
TL- Enoma~~ 99.5 99.5 99.5 0.5

LED*“Net F,,, 95.8 93.5 96.9 3.1 332,803
(Ours)  Eg. 96.3 94.2 97.4 2.6

CNN as well as LSTM models. In the case of the 2D CNN
model in Table 3, the spectrogram image was used with the
STFT method for the input data and a design involving three
convolutional layers, similar to the structure presented in
Section IV. Subsequently, Stage 1 in Fig. 7 without TL was
applied to the time-domain input current in the case of the 1D
CNN model. Lastly, the direct-coupled 1D CNN and LSTM
models used a simple combination of the 1D CNN and LSTM
models described in Stage 2 without TL except for Stage 1,
as shown in Fig. 7.

In terms of the arc-fault detection accuracy, the overall
performance of the DL-based methods was superior to that
of the existing ML-based methods, as indicated in Table 3.
Among the DL-based methods, the proposed TL-LED**“Net
delivered the best performance with a detection accuracy of
95.8%, attributed to the stage-wise training approach using
TL. This result confirmed that TL-LED*“Net is a more
efficient training method than the direct-coupled model of 1D
CNN and LSTM as well as the 2D CNN model.

Table 4 compares the results of TL-LED*“Net and the 2D
CNN model using the STFT-based spectrogram, which was
analyzed by applying the statistical classification evaluation.
The experimental results indicate that the overall accuracy of
TL-LED*“Net was 2.9% higher than that of the 2D CNN
model. Notably, in the case of the sensitivity for the Er,,,
class, the detection accuracy was 6.7% higher, and the false
alarm rate was 0.9% lower, indicating that the false detection
performance was lower than that of the 2D CNN model.

Considering the number of parameters as an indicator of
the complexity of a model, TL-LED*“Net was 24.4% more
lightweight compared to the 2D CNN model. Given that TL—
LED*Net utilized only the time-domain input current, the
computational complexity of O(TN logaN) corresponding to
the STFT transformation was further reduced, unlike the 2D
CNN model. Here, T denotes the window size for the STFT
conversion, and N denotes the number of samples.

Finally, a model operation experiment was conducted on
the NVIDIA Jetson Nano to verify the superiority of the
proposed algorithm in terms of complexity. The inference
times in Table 5 demonstrate the remarkable performance
of the proposed model, which required 23.11 ms for infer-
ence; that is, our model is 15.7 ms faster than the 38.81 ms
elapsed time for 2D CNN inference. Even more remarkable,
preprocessing every input current data value for each method
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Method w/ preprocessing delay (ms) w/o preprocessing delay (ms)
2D CNN 45.04 38.81
TL-LED**Net 24.22 23.11

shortens the total elapsed time, including the inference time
for the proposed method, to 20.82 ms, which is 46.2% faster
than the 2D CNN using the STFT preprocessing.

Consequently, TL-LED**Net outperformed the conven-
tional 2D CNN method because the proposed approach used a
lightweight 1D CNN as a preprocessor as part of the TL tech-
nique and applied an additional one-layer LSTM to improve
the training accuracy.

B. ONLINE ARC-FAULT DETECTION

EXPERIMENTAL RESULTS

This subsection presents the results of the online arc-fault
detection experiments, which were conducted to verify the
online performance of the trained TL-LED*“Net. The exper-
iments considered various initial conditions such as several
normal states, the arc-gap length, and motor speed.

In this case, the “TensorFlow Lite”” [38] open-source DL
framework, which generates an optimized inference model
for a given trained model, was applied to TL-LED*“Net to
perform real-time inference on the NVIDIA Jetson Nano. The
intelligent arc-fault detection module generated the test sam-
ples using preprocessing and inferred time-domain current
data collected within a 10-ms window interval in real time.
The prediction result using the proposed inference model
was output as a 3.3-V level signal from the general-purpose
input/output (GPIO) of the NVIDA Jetson Nano.

First, to perform an actual environmental experiment
using the intelligent arc-fault detection module, the follow-
ing three normal states in PV systems were considered.
1) Turn-on state: the grid-connected inverter turns on owing
to the increase in solar radiation; 2) turn-off state: the
grid-connected inverter turns off owing to the reduction in
solar radiation; and 3) step-up and 4) step-down states:
rapid fluctuations in the input current because of changes in
the solar radiation (e.g., owing to shading), detected using
commercial inverter-controlled maximum power point track-
ing [39].

Fig. 9 presents the results of real-time verification with
TL-LED*“Net for the above-mentioned four representative
normal state conditions. As shown in Fig. 9(a) and (b), nei-
ther of the Ej,,, and Eg;,p. arc-fault detection signals were
activated, even though the input current either increased grad-
ually or decreased drastically according to the grid-connected
inverter operation. Similarly, in the experiments shown in
Fig. 9(c) and (d), TL-LED*“Net successfully classified the
observed input current of the inverter as the Enymmaqr class
despite rapid fluctuations.
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Fig. 10 and 11 present the real-time arc-fault detection
performance of TL-LED**“Net corresponding to the two rep-
resentative experimental conditions for actual arc-fault cur-
rents. The arc-fault detection experiment was first performed
with an arc-fault gap length of 0.5 mm and a control motor
speed of 0.8 mm/s, as shown in Fig. 10. As a result, the
Er,. state with the arc voltage of 3 V was observed from
time 7, to #,, where the average energy value using (1) was
approximately 23 J. The arc voltage of 21 V and input current
of 11 A, corresponding to 162 J, were then observed at
time #, in the Eg;p state. The online experimental result
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indicates that the proposed lightweight inference model can
successfully perform fast arc-fault detection within tens of ms
by distinguishing the Ef,,, and Eg;,p;e states.

The results of the second online arc-fault detection exper-
iment are presented in Fig. 11, in which the arc-fault gap
length was 0.8 mm, and the control motor speed was
0.8 mm/s. The Ej,, state was observed at time f,, and
returned to the Es;,p. state at time ¢, via a continuous ion-
ization process. In this experiment, the average value of the
arc voltage was greater than that in the first online experiment
(Fig. 10) because the arc-fault gap length was longer than that
in the first case. In particular, the arc voltage increased instan-
taneously to 22 V at 1, and then decreased rapidly. Instanta-
neously, an input current of 14.5 A was observed at time #;
this current was higher than the current of the transient phase
in the Egipe state (11 A). Additionally, the arc-fault energy
at time #, was 62.3 J, which fell within the common range of
the category corresponding to the Ey,,, and Es;p. states.

Development of the arc-fault detection algorithm such
that it considers only input current amplitude information
would limit it to the reliable detection of the Ej,,, state at
time 7,. In this work, we overcame this drawback by imple-
menting a training architecture that can differentiate between
Erow and Egype by training with the energy amplitude
and with the variation in the energy over time. Ultimately,
TL-LED*“Net successfully distinguished E},,,, even when a
high transient input current occurred momentarily, as shown
in Fig. 11.

Fundamentally, TL-LED*“Net learned the regional level
characteristics of the input current and trends (i.e., tem-
poral changes in the energy) to ensure that Ej,, can be
reliably detected even in real environments. Furthermore,
TL-LED*“Net can detect the Ej,,, state in real time within
63 ms and the Egupj. state within 38 ms on a single-board
computer.
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VI. CONCLUSION

This study proposed TL-LED*“Net, a proactive DC arc-fault
detection method for PV systems using a commercial
PV inverter. In this approach, the meaningful informa-
tion in the frequency domain was visually extracted from
the arc-fault data by applying the Grad-CAM technique.
TL-LED*“Net was then employed to classify series DC
arc-faults according to their energy levels. In Stage 1,
a lightweight 1D CNN model classifies the normal and
arc-fault states by automatically extracting important non-
handcrafted regional features. In Stage 2, the LSTM network
coupled with the 1D CNN model implements a step-by-
step training process based on TL to distinguish among
three classes of states. This process involves analyzing the
change in energy over time between the compression features
extracted from the pretrained 1D CNN model of Stage 1.
In an offline environment, TL-LED*“Net exhibited a mean
overall arc-fault detection accuracy of 95.8%, considerably
higher than that of the existing methods considered in pre-
vious studies. Lastly, an online experiment verified that
TL-LED*“Net was able to classify the arc-fault signal in
real-time within 63 ms on a single-board computer. These
results conclusively demonstrated the capability of TL-
LED#*“Net to detect a low-energy arc-fault state with high
accuracy as well as a stable arc-fault state based on the energy
characteristics of each type of arc-fault. This new approach is
expected to improve the stability and reliability of PV systems
from an energy perspective and is expected to find application
in prognostics and health management technologies of future
renewable energy systems.
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