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ABSTRACT The arc-fault phenomenon in photovoltaic (PV) systems has emerged as a major problem in
recent years. Existing studies on arc-fault detection in conventional PV systems primarily focus on detecting
typical stable arc-faults. Low-energy arc-faults are more challenging to detect than stable arc-faults because
of their low current distortions, short durations, and nonlinear properties. These low-energy arc-faults, which
are precursors to stable arc-faults, could even inflict serious damage on the system components. Here,
a transfer learning-based low-energy arc-fault detection network (TL–LEDarcNet) using a two-stage training
method is proposed to proactively detect series DC arc-faults by considering low-energy arc-faults. A one-
layer long short-term memory network combined with a lightweight one-dimensional convolutional neural
network was developed to detect low-energy arc-faults by only using the sensed current information. The
results of offline and online experiments conducted with a commercial grid-connected PV inverter indicate
that the proposedmethod can perform real-time operations on a single-board computer and detect low-energy
arc-faults with an accuracy of 95.8%, which is higher than previous methods considered in this study.
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INDEX TERMS Long short-term memory, low-energy arc-fault, photovoltaic systems, proactive detection,
transfer learning.

I. INTRODUCTION15

Renewable energy is a promising solution to the climate16

change problems caused by the overuse of fossil fuels. Solar17

power generation accounts for a peak of 600 GW, which is18

more than 3% of the global power-generation output [1], [2].19

Despite the improvement and steady development of20

related technologies in the photovoltaic (PV) fields, arc-21

faults are a severe problem as they reduce the lifespan of PV22

systems. Most arc-faults in PV systems have been observed23

in electrical conversion devices, such as inverters and com-24

biners, and in junction boxes consisting of different types25

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Tucci .

of connectors [3]. Arc-faults are typically attributed to wire 26

damage caused by external factors (e.g., long-term weath- 27

ering and aging or wiring problems), which produce high- 28

temperature plasma through an unexpected ionization process 29

and continually damage the internal system components. 30

In terms of the arc-fault characteristics according to the 31

circuit type, as shown in Fig. 1, the parallel arc-fault current 32

is generally higher than the series arc-fault current. Thus, the 33

input current can be readily cut off using a physical circuit 34

breaker. In addition, the detection of arc-faults is relatively 35

easier at zero-crossing points for a series AC circuit [4]. 36

In contrast, it is difficult for a protection relay to detect arc- 37

faults in the case of a series DC circuit because there are 38

no zero-crossing points in the input current. Furthermore, 39
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FIGURE 1. Photovoltaic (PV) system indicating possible locations of
series and parallel arc-faults.

arc-faults are difficult to detect in most commercial inverters40

owing to the large amount of electronic noise and ripple41

currents they generate [5]. Therefore, the UL1996B standard42

was established in the USA to provide guidelines for arc-fault43

detection in PV systems [6].44

Various arc-fault detection methods have been proposed,45

including physical modeling, time–frequency domain anal-46

ysis, and artificial intelligence (AI) methods. For example,47

Uriarte et al. analyzed the arc-fault generated in a microgrid48

while controlling the speed and gap in an arc-fault genera-49

tor in the time domain and verified the arc-fault properties50

through simulations by modeling the results [7]. In addi-51

tion, impedance modeling and empirical methods have been52

employed to solve DC low-power and low-voltage arc-fault53

problems [8]. Most notably, the effects of the contact material54

properties, current, voltage, arc-fault speed, and arc-fault gap55

on the arc-to-glow evolution process were demonstrated [8].56

Fault detection methods that make use of sensor signal-57

based preprocessing analysis have also been studied. For58

example, a statistically varying threshold-based fault detec-59

tion method using a microgrid consisting of multiple60

sources and loads was proposed [9]. Additionally, [10],61

[12], [13], arc-fault detection approaches using both time-62

and frequency-domain analysis were introduced based on63

short-time Fourier transform (STFT) and discrete wavelet64

transform. However, these techniques are limited because65

they depend on the frequency band and specific character-66

istics of the device, such as the switching noise from the67

inverter, control signals, and background noise signals [14].68

In addition, several methods to improve the optimization69

performance of rule-based fault detection methods and solve70

the uncertainty in the real environment were presented [15],71

[16], [17].72

In an attempt to address these shortcomings, AI-based arc-73

fault detection methods have recently garnered considerable74

interest [18]. For example, machine learning (ML) algorithms75

based on an ensemble tree were investigated [19], and a76

stacking ensemble model was proposed. However, the arc-77

fault data were created and evaluated using simulation-based78

circuit design, which presented various drawbacks. In [20],79

[21], and [22], various arc-fault detection methods were pro-80

posed using the support vector machine (SVM) technique81

with the input current in the time-frequency domains. How-82

ever, compared to deep learning (DL) approaches based on83

deep neural networks (DNNs), existing ML-based methods84

are inefficient for solving nonlinear problems because their85

preprocessing approaches are highly complex and require 86

expert domain knowledge. This motivated the development 87

of various DL-based methods for arc-fault detection [23], 88

[24], [25], [26] as well as fault diagnosis [27]. In section II, 89

we introduce existing DL methods for arc-fault detection 90

and analyze their weaknesses particularly with respect to the 91

detection of low-energy arc-faults. Furthermore, we discuss 92

the contributions of the proposed detection method by con- 93

sidering the characteristics of low-energy arc-faults. 94

II. RELATED WORK AND PROPOSED CONCEPT 95

Arc-fault detection methods based on convolutional neural 96

networks (CNNs), have recently garnered considerable atten- 97

tion as DL-based methods. One approach involves analyzing 98

the arc characteristics from reconstructed two-dimensional 99

(2D) images in the time–frequency domains [23], [24]. Other 100

than this, Lu et al. [25] introduced an approach that expanded 101

the formation of a training dataset and improved the arc-fault 102

detection accuracy by generating dummy arc-fault data using 103

a domain adaptive deep convolutional generative adversarial 104

network. 105

However, previous studies focusedmainly on typical stable 106

arc-faults and did not consider low-energy arc-faults in detail. 107

Low-energy arc-faults precede stable arc-faults and occur 108

when the fault energy is not sufficient. In contrast to stable 109

arc-faults, low-energy arc-faults are nonlinear, have low dis- 110

tortions, and short durations [26]. The same researchers [26] 111

discovered that low-energy arc-faults are the precursors to 112

stable arc-faults and are capable of damaging system com- 113

ponents. In this regard, low-energy arc-fault detection by 114

analyzing the DC is a challenging problem as commercial 115

inverters generally produce high ripple currents and a large 116

amount of switching noise in a real environment. 117

Various studies [8], [11], [28], [29], [30] were devoted to 118

the experimental analysis of the input current and arc voltage 119

characteristics of low-energy arc-faults and the effects of 120

these characteristics on the systems were studied. A data- 121

driven method was recently introduced [26] to detect low- 122

energy arc-faults; however, this method was restricted to AC 123

circuits, and no distinction was made between low-energy 124

arc-faults and stable arc-faults. Furthermore, the trained 125

model was not tested in a real environment owing to the 126

complexity of the preprocessing procedures for the SVM 127

classifier. 128

Therefore, a detailed analysis of the nonlinear phenomena 129

associated with low-energy arc-faults and the development 130

of an efficient method to detect these faults accurately in 131

real time has become necessary. This study extends existing 132

arc-fault detection capability, including low-energy series DC 133

arc-faults, to improve the reliability of PV systems, and led 134

to the proposal of a new proactive arc-fault detection method 135

named the transfer learning (TL)-based low-energy arc-fault 136

detection network (TL–LEDarcNet). 137

TL allows new problems to be solved more efficiently 138

by using knowledge acquired in the past. Generally, when a 139

deep neural network (DNN) is successfully trained, it usually 140
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contains valuable information in the form of internal weights141

that have already been learned. In most cases, a DNN-based142

TL technique for solving classification problems reuses most143

of the remaining architecture of the already trained DNN144

model with multiple convolutional layers. Hence, pretrained145

DNN models that have acquired a wealth of knowledge are146

widely used in the field of TL. Following the aforementioned147

approach to TL, we propose a two-stage training method148

combining a one-dimensional convolutional neural network149

(1D CNN) and long short-term memory (LSTM) based150

on TL.151

The main contributions of this study are as follows:152

1) This study extends the range of arc-fault detection to153

incorporate low-energy arc-faults and improve con-154

ventional approaches, which are generally sensitive155

to stable arc-faults. The detection of low-energy arc-156

faults, which can cause the reliability of PV systems to157

deteriorate, is crucial to prevent severe damage to these158

systems.159

2) The input current is analyzed in the time–frequency160

domain through visualization using gradient-weighted161

class activation mapping (Grad-CAM), which is162

employed in the field of explainable AI [31]. The163

results of the visualization analysis are extracted from164

the spectrogram image in the frequency region by165

activating a heatmap of the arc-fault class below the166

20-kHz frequency band, and are used as the basis for167

designing a lightweight arc-fault detection model.168

3) A proactive arc-fault detection method named169

TL–LEDarcNet is proposed. This method analyzes the170

arc-fault characteristics from an energy perspective171

and distinguishes between low-energy and stable arc-172

faults. In addition, an improvement in the accuracy173

is successfully demonstrated by conducting real-time174

experiments using a lightweight model.175

The remainder of this paper is organized as follows:176

Section III describes the arc-fault detection platform and177

presents the analysis from the energy perspective. Section IV178

explains the architecture and optimization procedure of179

TL–LEDarcNet. Section V presents the evaluation of the per-180

formance of TL–LEDarcNet in an actual online/offline test181

environment. Section VI contains our concluding remarks.182

III. DATA ACQUISITION AND ANALYSIS183

This section describes the data acquisition platform used to184

develop the proposed proactive arc-fault detection algorithm.185

The low-energy series DC arc-faults are analyzed statistically186

based on the time-domain data, and a labeling method is187

introduced based on the energy perspective proposed in this188

study.189

A. ARC-FAULT DATA ACQUISITION AND190

EXPERIMENTAL PLATFORM191

As shown in Fig. 2, the series DC arc-fault detection plat-192

form comprised four parts: series DC arc-fault generator,193

FIGURE 2. Series DC arc-fault detection platform.

PV emulator, grid-connected commercial inverter, and intel- 194

ligent arc-fault detection module. In the figure, varc denotes 195

the arc voltage, iinput denotes the input current of the inverter, 196

and vDC denotes the series DC bus voltage, which was 600 V. 197

The rated power of the grid-connected inverter was 3.8 kW. 198

Additionally, a series DC arc-fault generator was imple- 199

mented based on the UL1699B standard [6]. Arc-faults 200

with a small gap length or low speed are more likely 201

to exhibit low-energy series DC arc-fault characteristics, 202

as demonstrated previously [8]. Therefore, experiments were 203

conducted repeatedly to generate statistical arc-fault data 204

consisting of arc-fault gap lengths ranging from 0.4–1.1 mm 205

and control motor speeds ranging from 0.4–1.1 mm/s. Lastly, 206

the intelligent arc-fault detection module used to mount the 207

proposed TL–LEDarcNet was implemented using a single- 208

board computer. Section V-B presents a detailed verification 209

of the real-time arc-fault detection performance. 210

B. ARC-FAULT FEATURE ANALYSIS 211

Fig. 3 shows the arc voltage, varc, and the input current 212

of the inverter, iinput , measured at a sampling frequency of 213

fs = 100 kHz under the experimental conditions presented in 214

Section III-A. 215

FIGURE 3. Measurements recorded using the platform in Fig. 2. (a) Series
DC arc voltage. (b) Input current of inverter.

Fig. 3 indicates that the measured data could be classified 216

based on the energy level as being in a normal state, ENormal 217

(0∼ ta), a low-energy arc-fault state, ELow (ta ∼ td ), or a sta- 218

ble arc-fault state, EStable (after td ), where EStable includes the 219

transient phase in which the input current increases rapidly. 220
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The ELow state was produced owing to a lack of arc-fault221

energy in the ionization process, and it exhibited nonlinear222

and low distortion characteristics [8], [23]. Conversely, when223

the arc-fault energy accumulated and preheating occurred224

completely, it developed into the EStable state through the225

transient phase. The pattern of the arc voltage and input226

current gradually converged and stabilized in the EStable state.227

In this regard, the current fluctuation in this stabilized EStable228

state existed within the range allowed by the protection relay229

[4]. Furthermore, the experimental results show that the input230

current variation of the ELow state is similar to that of the231

EStable state.232

To analyze the characteristics of the low-energy arc-fault,233

the ELow state was calculated with a time duration of 50 ms,234

as follows:235

ELow =
1

tc − tb

∫ tc

tb
varc(t) · iinput (t)dt, (1)236

where ELow represents the arc-fault energy between times tb237

and tc, varc denotes the arc voltage, and iinput denotes the input238

current.239

To simplify the energy calculation, the arc voltage and240

input current data were approximated using their root mean241

square (RMS) values, denoted vRMS and iRMS . Similarly,242

EStable was calculated via (1) using the data from te to tf .243

Table 1 presents the statistical analysis of themeasured arc-244

fault energies, in which 500 samples with a time duration of245

50 ms were analyzed for ELow and EStable. Fig. 4 illustrates246

the energy densities of series DC arc-faults for two classes247

in a grid-connected PV system. The results in Table 1 and248

Fig. 4 indicate that the ELow values are primarily distributed249

between 22 J and 56 J, and the average energy is approxi-250

mately 42 J.251

TABLE 1. Comparative statistical analysis of ELow and EStable.

FIGURE 4. Comparison of arc-fault energy densities.

Therefore, the upper boundary forELow (Ea ≈ 56 J) and the 252

lower boundary for EStable (Eb ≈ 97 J) were defined as the 253

95% confidence interval corresponding to each population. 254

More importantly, ELow continuously affected the system 255

adversely and could have developed into the EStable state. 256

Therefore, based on statistical analysis from the perspective 257

of the arc-fault energy, developing a fast and accurate arc- 258

fault detection algorithm is essential to solving this problem. 259

IV. PROPOSED PROACTIVE ARC-FAULT 260

DETECTION METHOD 261

A. ARC-FAULT SIGNAL ANALYSIS USING 262

GRAD-CAM TECHNIQUE 263

The characteristics of the series DC arc-fault data in the time– 264

frequency domain were analyzed by applying the Grad-CAM 265

technique, which is used in the explainable AI field. The 266

analysis of the arc-fault characteristics consisted of a stage for 267

preprocessing the time–frequency input data, a training stage 268

that employed a 2D CNN model, and a Grad-CAM applica- 269

tion stage, as shown in Fig. 5. First, to simultaneously observe 270

the characteristics of the input current in the time–frequency 271

domains, STFT signal preprocessing was applied to the input 272

current as follows: 273

STFT {x(t)} (τ,w) =
∫
∞

−∞

x(t)w(t−τ )e−jwtdt, (2) 274

where x(t) is the input current, w(τ ) is the window function, 275

and τ is the time index. A sampling rate of 100 kHz and a 276

time duration of 50 ms were used. 277

Subsequently, the spectrogram image generated using (2) 278

was input into the 2D CNN model presented in Fig. 5, and 279

the classifier was used for arc-fault detection training in 280

three categories: ENormal , ELow, and EStable. The Grad-CAM 281

technique visually analyzed the arc-fault data with a class 282

activation heatmap. Grad-CAM provided important regional 283

information on the arc-fault class in the spectrogram image 284

by extracting the feature map, Fk , of the last convolutional 285

FIGURE 5. Arc-fault analysis architecture built by applying the Grad-CAM
technique.
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layer. It also calculated the gradient average of the class for286

all the extracted feature map channels as shown in (3).287

αck =
1
z

∑
i

∑
j

∂yk

∂Fki,j
, (3)288

where yc is the probability value for class c and Z is a normal-289

ization factor. Accordingly, the gradient was first calculated290

by performing backpropagation on yc, and the weighting αck291

with the feature map channel was obtained by calculating the292

average gradient for each channel.293

A linear combination was then performed to multiply the294

importance of each channel (αck ) by the corresponding chan-295

nel of the feature map (Fk ) and generate a spatial heatmap for296

the arc-fault class as follows:297

LcGrad−CAM = ReLU(
∑

k
αckF

k ), (4)298

where ReLU denotes rectified linear unit [32].299

Fig. 6 shows the spectrogram images of ENormal , ELow, and300

EStable obtained by implementing the Grad-CAM technique.301

In the figure, the important regional information that was302

used for classification is highlighted in red. It was found that303

the devised 2D CNN model avoided the 32 kHz switching304

noise of the inverter in the high-frequency domain andmainly305

utilized frequency information of less than 20 kHz for arc-306

fault detection.307

FIGURE 6. Heatmap visualization for the arc-fault classes using the
Grad-CAM technique: (a) ENormal state, (b) ELow state, (c) EStable state.

According to the results of the Grad-CAM visualization308

analysis, the complexity of the data preprocessing and the309

training model architecture can be effectively reduced by310

selecting the appropriate frequency range of the arc-faults.311

B. DESIGN OF TL–LEDarc NET FOR PROACTIVE ARC-FAULT312

DETECTION313

This section describes the structure and optimization proce-314

dure of TL–LEDarcNet. First, based on the analysis results315

presented in Section IV-A, a 20-kHz lowpass filter was used316

to pass the low-frequency components of the input current.317

Considering the mean value of the input current, data nor-318

malization for preprocessing was then performed by apply-319

ing mean subtraction normalization (MSN) to the lowpass320

filtered data as follows:321

x̃i(n) = xi(n)−
1
N

∑N

j=1
xj, (5)322

where xi(n) represents the discrete time-sequence sample 323

feature for the input current x(t), N denotes the total number 324

of points per sample feature, and x̃i(n) denotes the MSN 325

output feature of a sample i. To maintain the existing signal 326

characteristics (e.g., the standard deviation) while ensuring 327

that the average for sample i is zero, the arc-fault data were 328

normalized by considering only the mean value of the input 329

data, as indicated in (5). 330

The network architecture of TL–LEDarcNet, shown in 331

Fig. 7, is now explained in detail. 1) Stage 1 performs pre- 332

training, in which the normal state and the arc-fault state 333

are binarized in a lightweight 1D CNN model consisting of 334

two convolutional layers. 2) A pretrained 1D CNN network, 335

which is a feature extractor, is loaded into only one LSTM 336

layer. 3) Stage 2 detects a series DC arc-fault based on 337

the training using the three-class classifier. TL is performed 338

based on prior knowledge of the local features of the arc-fault 339

extracted from Stage 1 using normal and arc-fault data as the 340

training dataset. This process retrains the sequence associa- 341

tion between the arc-fault features to differentiate between 342

ELow and EStable. 343

FIGURE 7. Complete architecture of TL–LEDarcNet for two-stage training.

The network architecture of TL–LEDarcNet shown in 344

Stage 1 was composed of two 1D convolutional layers and 345

a two-class classifier. Batch normalization [33] was used for 346

all the convolutional layers to prevent the vanishing gradient 347

problem. In addition, a max-pooling layer was added after 348

batch normalization to reduce the spatial dimensionality of 349

the convolutional layer output, which preserved relevant fea- 350

tures and removed irrelevant details. The kernel size for the 351

convolution operation in the first convolutional layer was set 352

to 5, and the stride was set to 2. In the second convolutional 353

layer, the kernel size of the 1D convolution window was set 354

to 3, and the stride was set to 2. 355
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The convolutional operation in the convolutional layer is356

given by357

z(n) = x̃(n) ∗ w(n)358

=

∑l

m=−l
x̃(m)w(n− m), (6)359

where x̃i(n) denotes a normalized 1D input current using (5),360

w(n) denotes a kernel function with a window size of l, and361

z(n) represents a 1D feature map resulting from a convolu-362

tional layer calculated using x̃i(n) and w(n).363

The exponential linear unit (eLU) was used as an activation364

function in this study [34]. The advantage of this activation365

function is that it can increase the speed of training in the366

designed networks and produce higher recognition account-367

ability than the original ReLU [32].368

Finally, a classifier was introduced to include two fully369

connected layers and a dropout layer to perform binary370

classification, which ensured that overfitting did not occur.371

In Stage 2, ELow was detected by an LSTMmodel and a clas-372

sifier that performed three-class classification, in which a TL373

technique with a pretrained 1D CNN model was considered.374

In this study, the LSTM network was applied with feedback375

neural connections to effectively train the sequence between376

the pretrained arc-fault features in Stage 1. The LSTMmodel377

is based on the existing recurrent neural network (RNN)378

model, but it has additional cell state memory in the hidden379

state, making it more efficient for extracting long-term fea-380

tures for time-series data than the existing RNN. The LSTM381

network designed in Stage 2 consisted of one layer composed382

of 128 hidden neurons and 256 features extracted from the 1D383

CNN module.384

Here, the input gateway of a cell constituting the LSTM385

was composed of a forget gate, input gate, and output gate386

[35]. These respective components are defined as:387

it = σ (wi[ht−1, zt ]+ bi),388

ft = σ (wf [ht−1, zt ]+ bf ),389

ot = σ (wo[ht−1, zt ]+ bo), (7)390

where it denotes the input gate, ft denotes the forget gate, ot391

denotes the output gateway, zt denotes the output of the 1D392

CNN module in Stage 2 of Fig. 7, σ represents the sigmoid393

function,wi,wf , andwo denote the weights for input zt at each394

gate, respectively, ht−1 denotes the output value of the previ-395

ous LSTM cell, and bi, bf , and bo denote the respective bias396

values for the input zt at each gate. In the LSTM structure, the397

input gateway determines whether to store the current infor-398

mation, the forget gateway determines whether to utilize past399

information, and the output gateway determines which value400

to present as output. For example, in the forget gateway, the401

sigmoid function utilizes past information when the output402

value is one. Additionally, a cell state (Ct ) corresponds to403

memory, which refers to the storage space occupied by the404

information determined by the input and forget gates. In the405

output gate, the cell gate performs the ot ∗ tanh(Ct ) function406

and determines its value to determine the value of the model407

output in (7).408

The classifier in Stage 2 used two fully connected layers, 409

while batch normalization was applied to prevent the problem 410

of vanishing gradients. Additionally, a dropout was applied 411

to prevent the arc-fault detection model from overfitting the 412

data. Lastly, the final output layer used a probability-based 413

softmax function to perform the three-class classification, 414

distinguishing the ENormal , ELow, and EStable states. 415

To optimize the proposed two-stage training model, cat- 416

egorical cross entropy used for multi-classification was 417

applied as a loss function, defined as follows: 418

Categorical Cross Entropy = −
1
N

∑
i
yi· log(ỹi), (8) 419

where N is the total number of samples, ỹi denotes the 420

predicted class probability, and yi denotes the actual class. 421

During model training, TL–LEDarcNet weights were itera- 422

tively adjusted to minimize the cross-entropy loss between 423

ỹi and yi. In this regard, the Adaptive Moment Estimation 424

(Adam) optimizer was adopted in TL–LEDarcNet [36]. The 425

Adam optimizer, which served to minimize the loss, is a 426

stochastic gradient descent method based on the adaptive 427

estimation of first- and second-order moments. The advan- 428

tages of this optimizer are that it is straightforward, easy to 429

use, and requires less memory than other optimizers. Most 430

importantly, it is a robust optimizer and well suited for non- 431

convex optimization problems such as our problem in the 432

field of ML and DL. The overall learning procedure for the 433

proposed method is summarized in Algorithm 1. 434

Algorithm 1 Two-Stage Training Procedure for Proactive
Arc-Fault Detection Employed by TL–LEDarcNet
• Stage 1: Train the 1D CNN model to extract compressed
regional features of the arc-fault signal from time-series cur-
rent data.

1) Configure the 1D CNN module and the two-class clas-
sifier, as shown in Fig. 7.

2) Extract arc-fault features from the 1D convolutional
layers using the convolutional operation of (6).
• Stage 2: Retrain the LSTM network coupled with the
pretrained 1D CNN module for three-class classification.

1) Load the feature extractor of the pretrained 1D CNN
module into the one-layer LSTM, as shown in Fig. 7.

2) Optimize the model weights using the Adam opti-
mizer through the retraining process using TL-based prior
knowledge.

V. EXPERIMENTAL RESULTS AND ANALYSIS 435

This section presents the verification of the performance of 436

TL-LEDarcNet by conducting online and offline experiments. 437

The offline experiments with a 3-phase PV inverter operating 438

at 3.8 kW (vDC = 500 V, iinput = 7.5 A, fsw = 32 kHz) 439

were executed to verify the superior performance of the 440

proposed TL-LEDarcNet compared with existing ML- and 441

DL-based methods. In addition, online experiments were also 442
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performed to verify the real-time arc-fault detection capabil-443

ity of the proposed method using a single-board computer444

(NVIDIA Jetson Nano). The NVIDIA Jetson Nano is config-445

ured with a 1.43 GHz Quad-core ARM Cortex A57 MPCore,446

4 GB memory, and a 10 W power unit.447

A. OFFLINE EXPERIMENTAL RESULTS448

The offline experiments utilized input current data from the449

experimental platform, as shown in Fig. 2. The training and450

test datasets were collected using the intelligent arc-fault451

detection module. The input current was first measured using452

a current sensor (LEMHX 15-p) with a 50-kHz bandwidth,453

and analog-to-digital conversion with 20-kHz lowpass filter-454

ing of the input current was performed using a processor455

module (NI sbRIO-9606). The dataset consisted of 10,279456

ENormal , 10,018 ELow, and 10,062 EStable data values. The test457

dataset used for the model evaluation comprised 3,036 data458

values sampled from the total collected data, and the remain-459

ing data values were used to train the model. Furthermore,460

the validation dataset used for hyperparameter optimization461

in the training process comprised 10% of the training data.462

The Adam learning algorithm was applied to each stage,463

and the initial learning rate was set to 0.0001 to perform464

60 training epochs. In this case, to ensure that the algorithm465

accurately and rapidly converged to the optimal point, the466

adaptive learning rate technique was applied. In other words,467

the adaptive learning rate was decreased step-wise by 1/10468

from the initial learning rate. Fig. 8(a) shows the loss of469

training and verification data as a function of the number470

of epochs, and Fig. 8(b) depicts the accuracy of the training471

and verification data. The results shown in Fig. 8 indicate472

that overfitting or underfitting for a given verification dataset473

did not occur. This is because the training was performed by474

optimizing the hyperparameters of TL–LEDarcNet.475

FIGURE 8. Variation in the (a) loss and (b) accuracy for the training and
verification data with the number of epochs.

The performance accuracy of TL–LEDarcNet was then476

determined using the statistical multi-class classification477

evaluation method [37]: accuracy, sensitivity (recall), speci-478

ficity, and fallout (false alarm). Table 2 presents the confusion479

matrix results for the proposed method, of which 3,036 test480

data values were randomly extracted for the evaluation of the481

TABLE 2. Confusion matrix results.

model. Among the data values in the test set, 1,015 ENormal , 482

1,007 ELow, and 1,014 EStable data values were used for the 483

evaluation. The experimental results are presented in Table 2, 484

which indicates the average of a total of five experiments. 485

As shown in Table 2, the results of the diagnostic performance 486

evaluation of the ELow class of TL–LEDarcNet presented an 487

overall accuracy of 95.8% and a sensitivity of 93.3%. If all 488

the arc-fault states are integrated into the positive class, and 489

the normal states are redefined as the negative class, then the 490

binary classification performance of the arc-fault detection 491

model produced an overall accuracy of 99.6%, and a sensi- 492

tivity of 99.8%. Note that the sensitivity indicator represents 493

the result of the trained model, i.e., its ability to predict the 494

input sample as an arc-fault in the actual arc-fault class. 495

The arc-fault detection accuracy of TL–LEDarcNet was 496

compared with that of five representative ML-based and 497

three DL-based methods in the offline experiment. First, 498

Table 3 compares the arc-fault detection performance of 499

TL–LEDarcNet with that of existing ML-based methods: 500

SVM, random forest (RF), light gradient boosting machine 501

(Light GBM), extra gradient boost (XGBoost), and a stacked 502

ensemble model composed of RF, XGBoost, and Light 503

GBM submodels. In this case, all the existing ML meth- 504

ods employed the following five features: average, median, 505

variation, RMS, and the difference between the maximum 506

and minimum values for the time-domain input current 507

(introduced in [19]). The optimized ML training parameters 508

obtained using grid search with cross-validation were also 509

applied to each corresponding ML method. 510

TABLE 3. Comparison of arc-fault detection accuracy of TL–LEDarcNet
with that of existing ML and DL methods.

In addition, the arc-fault detection performance of 511

TL–LEDarcNet was compared with that of DL-based meth- 512

ods such as 2D CNN, 1D CNN, and direct-coupled 1D 513

VOLUME 10, 2022 100731



Y. Sung et al.: TL–LEDarcNet: Transfer Learning Method for Low-Energy Series DC Arc-Fault Detection

TABLE 4. Performance comparison between TL–LEDarcNet and the 2D
CNN model for each class of arc-faults.

CNN as well as LSTM models. In the case of the 2D CNN514

model in Table 3, the spectrogram image was used with the515

STFT method for the input data and a design involving three516

convolutional layers, similar to the structure presented in517

Section IV. Subsequently, Stage 1 in Fig. 7 without TL was518

applied to the time-domain input current in the case of the 1D519

CNN model. Lastly, the direct-coupled 1D CNN and LSTM520

models used a simple combination of the 1DCNN and LSTM521

models described in Stage 2 without TL except for Stage 1,522

as shown in Fig. 7.523

In terms of the arc-fault detection accuracy, the overall524

performance of the DL-based methods was superior to that525

of the existing ML-based methods, as indicated in Table 3.526

Among the DL-based methods, the proposed TL–LEDarcNet527

delivered the best performance with a detection accuracy of528

95.8%, attributed to the stage-wise training approach using529

TL. This result confirmed that TL–LEDarcNet is a more530

efficient training method than the direct-coupled model of 1D531

CNN and LSTM as well as the 2D CNN model.532

Table 4 compares the results of TL–LEDarcNet and the 2D533

CNN model using the STFT-based spectrogram, which was534

analyzed by applying the statistical classification evaluation.535

The experimental results indicate that the overall accuracy of536

TL–LEDarcNet was 2.9% higher than that of the 2D CNN537

model. Notably, in the case of the sensitivity for the ELow538

class, the detection accuracy was 6.7% higher, and the false539

alarm rate was 0.9% lower, indicating that the false detection540

performance was lower than that of the 2D CNN model.541

Considering the number of parameters as an indicator of542

the complexity of a model, TL–LEDarcNet was 24.4% more543

lightweight compared to the 2D CNN model. Given that TL–544

LEDarcNet utilized only the time-domain input current, the545

computational complexity of O(TN log2N ) corresponding to546

the STFT transformation was further reduced, unlike the 2D547

CNN model. Here, T denotes the window size for the STFT548

conversion, and N denotes the number of samples.549

Finally, a model operation experiment was conducted on550

the NVIDIA Jetson Nano to verify the superiority of the551

proposed algorithm in terms of complexity. The inference552

times in Table 5 demonstrate the remarkable performance553

of the proposed model, which required 23.11 ms for infer-554

ence; that is, our model is 15.7 ms faster than the 38.81 ms555

elapsed time for 2D CNN inference. Even more remarkable,556

preprocessing every input current data value for each method557

TABLE 5. Comparison of processing time between 2D CNN and
TL-LEDarcNet.

shortens the total elapsed time, including the inference time 558

for the proposed method, to 20.82 ms, which is 46.2% faster 559

than the 2D CNN using the STFT preprocessing. 560

Consequently, TL–LEDarcNet outperformed the conven- 561

tional 2DCNNmethod because the proposed approach used a 562

lightweight 1D CNN as a preprocessor as part of the TL tech- 563

nique and applied an additional one-layer LSTM to improve 564

the training accuracy. 565

B. ONLINE ARC-FAULT DETECTION 566

EXPERIMENTAL RESULTS 567

This subsection presents the results of the online arc-fault 568

detection experiments, which were conducted to verify the 569

online performance of the trained TL–LEDarcNet. The exper- 570

iments considered various initial conditions such as several 571

normal states, the arc-gap length, and motor speed. 572

In this case, the ‘‘TensorFlow Lite’’ [38] open-source DL 573

framework, which generates an optimized inference model 574

for a given trained model, was applied to TL–LEDarcNet to 575

perform real-time inference on the NVIDIA JetsonNano. The 576

intelligent arc-fault detection module generated the test sam- 577

ples using preprocessing and inferred time-domain current 578

data collected within a 10-ms window interval in real time. 579

The prediction result using the proposed inference model 580

was output as a 3.3-V level signal from the general-purpose 581

input/output (GPIO) of the NVIDA Jetson Nano. 582

First, to perform an actual environmental experiment 583

using the intelligent arc-fault detection module, the follow- 584

ing three normal states in PV systems were considered. 585

1) Turn-on state: the grid-connected inverter turns on owing 586

to the increase in solar radiation; 2) turn-off state: the 587

grid-connected inverter turns off owing to the reduction in 588

solar radiation; and 3) step-up and 4) step-down states: 589

rapid fluctuations in the input current because of changes in 590

the solar radiation (e.g., owing to shading), detected using 591

commercial inverter-controlled maximum power point track- 592

ing [39]. 593

Fig. 9 presents the results of real-time verification with 594

TL–LEDarcNet for the above-mentioned four representative 595

normal state conditions. As shown in Fig. 9(a) and (b), nei- 596

ther of the ELow and EStable arc-fault detection signals were 597

activated, even though the input current either increased grad- 598

ually or decreased drastically according to the grid-connected 599

inverter operation. Similarly, in the experiments shown in 600

Fig. 9(c) and (d), TL–LEDarcNet successfully classified the 601

observed input current of the inverter as the ENormal class 602

despite rapid fluctuations. 603
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FIGURE 9. Results of online detection experiments for ENormal:
(a) turn-on, (b) turn-off, (c) step-down, (d) step-up states.

FIGURE 10. First set of online experimental results for arc-fault detection.
The arc-fault gap length and control motor speed were 0.5 mm and
0.8 mm/s, respectively.

Fig. 10 and 11 present the real-time arc-fault detection604

performance of TL–LEDarcNet corresponding to the two rep-605

resentative experimental conditions for actual arc-fault cur-606

rents. The arc-fault detection experiment was first performed607

with an arc-fault gap length of 0.5 mm and a control motor608

speed of 0.8 mm/s, as shown in Fig. 10. As a result, the609

ELow state with the arc voltage of 3 V was observed from610

time ta to tb, where the average energy value using (1) was611

approximately 23 J. The arc voltage of 21 V and input current612

of 11 A, corresponding to 162 J, were then observed at613

time tb in the EStable state. The online experimental result614

FIGURE 11. Second set of online experimental results for arc-fault
detection. The arc-fault gap length and control motor speed were 0.8 mm
and 0.8 mm/s, respectively.

indicates that the proposed lightweight inference model can 615

successfully perform fast arc-fault detection within tens of ms 616

by distinguishing the ELow and EStable states. 617

The results of the second online arc-fault detection exper- 618

iment are presented in Fig. 11, in which the arc-fault gap 619

length was 0.8 mm, and the control motor speed was 620

0.8 mm/s. The ELow state was observed at time ta, and 621

returned to the EStable state at time tc via a continuous ion- 622

ization process. In this experiment, the average value of the 623

arc voltage was greater than that in the first online experiment 624

(Fig. 10) because the arc-fault gap length was longer than that 625

in the first case. In particular, the arc voltage increased instan- 626

taneously to 22 V at tb and then decreased rapidly. Instanta- 627

neously, an input current of 14.5 A was observed at time tb; 628

this current was higher than the current of the transient phase 629

in the EStable state (11 A). Additionally, the arc-fault energy 630

at time tb was 62.3 J, which fell within the common range of 631

the category corresponding to the ELow and EStable states. 632

Development of the arc-fault detection algorithm such 633

that it considers only input current amplitude information 634

would limit it to the reliable detection of the ELow state at 635

time ta. In this work, we overcame this drawback by imple- 636

menting a training architecture that can differentiate between 637

ELow and EStable by training with the energy amplitude 638

and with the variation in the energy over time. Ultimately, 639

TL–LEDarcNet successfully distinguished ELow, even when a 640

high transient input current occurred momentarily, as shown 641

in Fig. 11. 642

Fundamentally, TL–LEDarcNet learned the regional level 643

characteristics of the input current and trends (i.e., tem- 644

poral changes in the energy) to ensure that ELow can be 645

reliably detected even in real environments. Furthermore, 646

TL–LEDarcNet can detect the ELow state in real time within 647

63 ms and the EStable state within 38 ms on a single-board 648

computer. 649
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VI. CONCLUSION650

This study proposed TL–LEDarcNet, a proactive DC arc-fault651

detection method for PV systems using a commercial652

PV inverter. In this approach, the meaningful informa-653

tion in the frequency domain was visually extracted from654

the arc-fault data by applying the Grad-CAM technique.655

TL–LEDarcNet was then employed to classify series DC656

arc-faults according to their energy levels. In Stage 1,657

a lightweight 1D CNN model classifies the normal and658

arc-fault states by automatically extracting important non-659

handcrafted regional features. In Stage 2, the LSTM network660

coupled with the 1D CNN model implements a step-by-661

step training process based on TL to distinguish among662

three classes of states. This process involves analyzing the663

change in energy over time between the compression features664

extracted from the pretrained 1D CNN model of Stage 1.665

In an offline environment, TL–LEDarcNet exhibited a mean666

overall arc-fault detection accuracy of 95.8%, considerably667

higher than that of the existing methods considered in pre-668

vious studies. Lastly, an online experiment verified that669

TL–LEDarcNet was able to classify the arc-fault signal in670

real-time within 63 ms on a single-board computer. These671

results conclusively demonstrated the capability of TL–672

LEDarcNet to detect a low-energy arc-fault state with high673

accuracy as well as a stable arc-fault state based on the energy674

characteristics of each type of arc-fault. This new approach is675

expected to improve the stability and reliability of PV systems676

from an energy perspective and is expected to find application677

in prognostics and health management technologies of future678

renewable energy systems.679
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