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ABSTRACT The rapid growth of multi-modal data in recent years has driven the strong demand for retrieving
semantic-related data within different modalities. Therefore, cross-modal hashing has attracted extensive
interest and studies due to its fast retrieval speed and good accuracy. Most of the existing cross-modal hashing
models simply apply neural networks to extract the features of the original data, ignoring the unique semantic
information attached to each data by the labels. In order to better capture the semantic correlation between
different modal data, a novel cross-modal hashing model called deep label feature fusion hashing (DLFFH)
is proposed in this article. We can effectively embed semantic label information into data features by building
label networks in different modal networks for feature fusion. The fused features can more accurately capture
the semantic correlation between data and bridge the semantic gap, thus improving the performance of cross-
modal retrieval. In addition, we construct feature label branches and the corresponding feature label loss to
ensure that the generated hash codes are discriminative. Extensive experiments have been conducted on three
general datasets and the results demonstrate the superiority of the proposed DLFFH which performs better

than most cross-modal hashing models.

INDEX TERMS Cross-modal retrieval, feature fusion, feature label branch, hashing.

I. INTRODUCTION

The exponential growth of various modal data such as text,
image, video and audio has greatly promoted the development
of cross-modal retrieval technique, which can retrieve the
relevant data of other types when you input one type of data
as the query [1], [2]. Generally speaking, the same event or
concept can be described with data of different modalities.
For example, we can use multi-modal data such as text and
photos provided by news media or ordinary audiences to
describe the concept “Beijing Olympic Games”. Although
these different types of data have heterogeneous properties,
they are semantically relevant and complement each other,
which can be helpful for the users to better understand the
target events or topics. However, due to the ‘“‘heterogeneous
gap” of various modal data, how to effectively implement
cross-modal retrieval is still a challenging task.
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Representational learning [3] is a usual way to eliminate
the heterogeneity gap in cross-modal retrieval. It transforms
different modal data into value representations in the same
semantic space, and semantically similar data have more sim-
ilar values. Many algorithms of such type are listed in litera-
ture [4], such as Canonical Correlation Analysis (CCA) learns
the common space by maximizing the pairwise correlation
between two sets of heterogeneous data. As the dimension
of multi-modal data increases, the storage of large-scale data
and the speed of data retrieval are very important. There-
fore, the cross-modal hashing method has attracted extensive
attention of a large number of researchers due to its lower
memory cost and high retrieval speed. We can obtain the
Hamming distance by performing a simple bit-wise XOR
operations [5] on the two hash codes, and then judge whether
the two original data are similar. A small Hamming distance
means that the two data are similar and vice versa. The
heterogeneity of different modalities makes it difficult to
compare the similarity directly. Therefore, the main research
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work at present is how to generate efficient hash codes to
make cross-modal retrieval more accurate and extensible.
Traditional hashing models [6], [7], [8], [9], [10], [11]
generate hash codes based on hand-crafted features, which
lack sufficient discrimination ability and cannot represent
original data effectively. In addition, a major disadvantage
of these models is that the feature learning process and the
hash code generation process are separated from each other.
For the past few years, with the excellent performance of
deep learning in feature extraction and representation, deep
cross-modal hashing models [12], [13], [14], [15], [16], [17],
[18] have made great progress. On this basis, experiments
show that the features based on deep network learning are
more representative than the traditional hashing models.
However, most of the deep cross-modal hashing models use
a single neural network to extract the features of the original
data. This ignores the unique semantic information attached
to each data, so the generated features cannot accurately
represent the original data. The label of each data makes
it unique in the dataset, so how to make full use of this
effective information in the feature learning process is the
key to improve the retrieval efficiency. In order to bridge the
semantic gap, we construct label networks and embed seman-
tic label information into data features through feature fusion.
The fused features can better capture the semantic correlation
between different modal data and improve the accuracy of the
model. In addition, in order to make the hash codes generated
by the model consistent and distinguishable, we divide the
output end of each network into hash code branch and feature
label branch to ensure that the hash codes with the same labels
are as similar as possible and the hash codes with different
labels are discriminative. The main contributions of this work

can be summarized as follows:
o The proposed deep label feature fusion hashing

(DLFFH) embeds semantic label information into data
features through feature fusion between label networks
and feature learning networks. In this way, we can better
capture the semantic correlation between data and bridge
the semantic gap. Our DLFFH integrates the data feature
learning process and hash code generation process into
a unified deep framework.

o We creatively divide the network output into hash code
branch and feature label branch, and guide the genera-
tion of more discriminative hash codes according to the
proposed feature label loss.

« Numerous experiments on three general datasets prove
that this innovative DLFFH performs better than other
models.

The rest of this article is organized as follows.
Section 2 reviews the related work. Section 3 introduces the
innovative DLFFH. The experimental results and correspond-
ing analysis are presented in Section 4. Finally, the conclusion
is given in Section 5.

Il. RELATED WORK
Depending on whether data labels are applied to model
training, cross-modal hashing can be generalized into two
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categories [19]. One is unsupervised models, the other is
supervised models. Unsupervised models refer to the absence
of data labels in the process of training retrieval mod-
els. To be specific, Collective Matrix Factorization Hashing
(CMFH) [20] obtains one different modal common semantic
space through collective matrix factorization, and then learns
the hash mapping of each modality in this space. Latent
Semantic Sparse Hashing (LSSH) [21] applies sparse encod-
ing to process image data and matrix decomposition to pro-
cess text data, followed by mapping into a common semantic
space to learn hashing. Semantic Topic Multimodal Hashing
(STMH) [22] applies clustering and matrix factorization to
get semantic themes in image and text data respectively,
and then learns the relationship between the two modalities
data in common subspace through semantic topics. Finally,
the mapping of original data to the common subspace is
established to obtain the hash code representation.

In contrast, supervised cross-modal hashing can guide the
generation of more representative hash codes by applying
data labels in the training process. For example, Seman-
tic Correlation Maximization (SCM) [23] guides hash
code learning by calculating correlations between data
labels of different modalities. Semantic Preserving Hashing
(SePH) [24] translates the cross-modal distance of semantic
similarity and Hamming space into two probability distri-
butions respectively, and then gets the hash code mapping
by decreasing relative entropy of both distributions. Cross-
modality Metric Learning using Similarity-Sensitive Hashing
(CMSSH) [25] applies boosting strategy to obtain similar
hash codes between similar data.

In recent years, the development of deep learning tech-
nology provides a new direction for this field. Many
cross-modal models have been innovated based on deep
learning and achieved good performance. Deep Cross-Modal
Hashing (DCMH) [26] builds a network that performs the
entire process of converting hash codes from original data.
Pairwise Relationship Guided Deep Hashing (PRDH) [27]
maintains similarities between and within modalities of
data. Deep Multi-Level Semantic Hashing (DMSH) [28]
constructs a high-level semantic supervision matrix in the
training process, which contains more information than
the general similarity matrix. Self-Supervised Adversarial
Hashing (SSAH) [29] successfully combines self-supervised
networks and adversarial learning into a network. Mask
Cross-Modal Hashing (MCMH) [30] applies Mask R-CNN
to extract image features. Deep Multiscale Fusion Hashing
(DMFH) [31] extracted convolution features at different
scales for each image data to represent the image data
more accurately. Triplet-Based Deep Cross-Modal Retrieval
(TDCMR) [32] applies the improved triplet constraint to gen-
erate more accurate hash codes. Semantics-Preserving Hash-
ing based on Multi-Scale Fusion (SPHMF) [33] constructs
pairwise loss and inter-modal loss of tag generation network
to guide hash code learning. Multi-attention based Semantic
Deep Hashing (MSDH) [34] designs a multi attention block
to extract more semantic related features from the data.
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FIGURE 1. Network structure of DLFFH.
Multi-label Modality enhanced Attention based self-

supervised deep Cross-modal Hashing (MMACH) [35] first
used multi-label cross-modal triplet loss to guide hash code
learning, and proposed multi-label modality enhanced atten-
tion module to integrate multi-modal data features and label
features. Vision and Scene Text Aggregation for Cross-Modal
Retrieval (ViSTA) [36] proposed an effective visual and
scene text aggregation transformer for cross-modal retrieval.
Learning the Best Pooling Strategy for Visual Semantic
Embedding [37] learns the best pool strategy to automatically
adapt to different data and features through generalized
pool operator. Discrete Joint Semantic Alignment Hashing
(DJSAH) [38] obtains a distinctive hash code by integrating
the high-level semantics of the data.

Although the above models can show good performance,
there are still some aspects to be improved. The innovations
of our model are as follows: First, DLFFH embeds semantic
label information into data features through feature fusion,
so that each data feature has its unique semantic label attribute
and can more accurately represent original data. Second,
we apply hash code branches and feature label branches to
generate more discriminative hash codes, where the hash
codes of the same labels are more similar, and vice versa.

lll. PROPOSED DLFFH

In this section, we will introduce the DLFFH and discuss it
in the two most frequently used modalities: image and text.
Figure 1 shows the network structure of our DLFFH, which is
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divided into two segments: image network and text network.
We demonstrate the details of the model in the following
section.

A. NOTATION

In this article, vectors are represented by lowercase bold
letters (e.g., m) and matrices are represented by uppercase
bold letters (e.g., M). M transpose is M’ , the element in ith
row and jth column of matrix M is represented by M;. || - || ¢
denotes the Frobenius norm. sign (-) represents the sym-
bolic function, which outputs —1 if its input is negative else
outputs 1.

B. PROBLEM DEFINITION

Suppose there exist N data pairs made up of images and text.
LetX = {x1,....xn} € RV*Px refers to the image data, where
Dy denotes the dimension of x;. Y = {y1,...,yn} € RN *Dy
stands for the text data, where D, is the dimension of y;.
L = {l1,....Ily} € {0, 1}V*C refers to the label matrix,
we apply C to stands for the total number of label categories.
S stands for the semantic similarity matrix, S;; = 1 means that
x; and y; have at least one same label. Conversely, they are
dissimilar and S;; = 0. The Hamming distance between two
hash codes reflects their similarity of image data and text data,
asmall Hamming distance means that two data are similar and
vice versa. For different hash codes, we can use the following
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formula to calculate their Hamming distance:
. 1
dis (h;, hj) = Sk = (hi, hy) (1)

where (h;, hj) denotes the inner product of two vectors. k
denotes hash code length, h; and h; stands for image x; hash
code and text y; hash code respectively.

Given dataset X, Y, L and its semantic similarity matrix S,
the DLFFH model can train two hash functions: f(x;, /;) and
g(j, I;) for image modality and text modality respectively.
Therefore, each modal data can generate the corresponding
hash code according to its hash function.

C. FEATURES LEARNING PART

For image network, it is composed of image feature learning
network, label network, hash code branch and feature label
branch. Specifically, we select the first seven layers in the
CNN-F [39] model as the image feature learning network,
including five convolution layers and two fully connected
layers. The initialization parameters of the image feature
learning network are trained on ImageNet [40] in advance,
and we can obtain the basic image features through this
network. The label network is a two-layer fully connected
network (4096—4096), which is applied to extract the unique
semantic label information of each data. Then feature fusion
(concatenating the label features and the image features)
is performed to embed the semantic label information into
the image features, as shown in Figure 2. Finally, the fused
features are connected to two fully connected networks (hash
code branch and feature label branch) to generate corre-
sponding hash codes and feature labels, where the number
of neurons is hash code length and the label category number
respectively.

For text network, it includes text feature learning network,
label network, hash code branch and feature label branch.
We first apply Bag-of-Words model to convert the text data
and label data into vector representations that can be extracted
by text network. The text feature learning network is a
two-layer fully connected network (8192—4096) for learn-
ing the text features of data. The remaining label network,
hash code branch and feature label branch are the same as
those in the image network. Under the action of feature
fusion, the semantic label information in the text data can
be effectively embedded into text features to generate more
accurate text representations.

D. HASH CODE GENERATION PART

To ensure that the hash code generated by DLFFH can reflect
the relationship between original data more accurately, the
objective function can be set into three parts: semantic sim-
ilarity loss, feature label loss and hash code discrete loss.
In this article, Uy; = f (xi, l;; Oy, Qx_hmh) denotes the image
feature output by hash code branch in image network, where
0, represents the total parameters of image feature learning
network and label network, and 8, _j,s, represents the param-
eters of the hash code branch. Lﬁi =f (xi, li; Oy, 9x71abe1)
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FIGURE 2. Process of feature fusion.

denotes the image feature label output by the feature label
branch in image network, where 6, represents the total param-
eters of image feature learning network and label network,
and 6y juper represents the parameters of the feature label
branch. Furthermore, V. = g (yj, j; 6y, 6y_nash) denotes the
text feature output by hash code branch in text network, where
6y represents the total parameters of text feature learning net-
work and label network, and 6)_s, represents the parameters
of the hash code branch. L}; = g (vj, [j; 0y, 0y_aber) refers
to the text feature label output by the feature label branch
in text network, where 0, represents the total parameters of
text feature learning network and label network, and 6y _iper
represents the parameters of the feature label branch.

Semantic gaps between different modal data make it
impossible to compare directly, so we measure the data sim-
ilarity by mapping them into a common semantic space. The
likelihood function of image data feature and text data feature
is shown below:

O‘((Dij), Sij =1
S;i|Usi, Vi) = 2
P(Sij|Usi, Vi) 1— U(quj), Sij —o. 2)
where ®;; = % L‘V*j and o () = +,,ij, when §;; = 1

denotes the inner product (similarity) between U,; and V;
is larger and vice versa. To facilitate the training of model,
we apply the negative log likelihood function (semantic sim-
ilarity loss Jg) of the above equation to get the similarity
between image data and text data:

N
Jy==)" (S;®y — log(l + e®i)) 3)
ij=1
where ¢; = %UL.V*j. Minimizing the negative log like-

lihood (equivalent to maximizing the likelihood function)
above can reduce the Hamming distance between similar
image data and text data, thereby improving the accuracy of
the model.

Furthermore, we improve the discrimination of hash codes
by constraining the distance between the feature label matrix
generated by the feature label branch and label matrix. Effec-
tively making hash codes with the same label more similar
and vice versa. The feature label loss is defined as follows:

R I e “)
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where L* refers to image feature label matrix, L refers to
text feature label matrix.

Next, there is a certain quantization error when the con-
tinuous variables output from the network are converted into
hash binary codes. And balancing the —1 and 1 values can
effectively maximize the information of hash codes. There-
fore, we propose the hash code discrete loss:

2 2
Jg= ”Hx - U“F + HHy - V“F
+ |UE|% + | VE| % Q)

where H* = sign(U), HY = sign(V), E denotes a vector
with all values of 1. Inspired by Jiang and Li [26], we let
H = H* = H” in the training phase.

Finally, in combination with the semantic similarity loss
Js, feature label loss J; and hash code discrete loss J,, the
objective function of DLFFH is shown below:

min J=J+yhi+nl; (6)

H.0,, Gx_label s gx_hcuh ,9)' s Gy_label B 9)’_hash

where y, n denote the hyper-parameters.

E. OPTIMIZATION

On account of the hash binary code H is discrete variable,
we apply the alternate learning strategy to settle the problem
that H is not easy to optimize. In each step, only update the
parameters in one modality at a time and fix other parameters.
The back-propagation (BP) algorithm based on mini-batch
stochastic gradient descent (SGD) is applied to update the
algorithm. Algorithm 1 summarizes the optimization proce-
dure of DLFFH.

1) OPTIMIZE 6, 6y pash AND 6y japer, WITH OTHER
PARAMETERS FIXED

For each image modal data x;, the derivative of the objective
function can be obtained:

YA
T > (0 (@) Vs — SV

Jj=1

+2n(Us; — Hy + UE) )
aJ
— =2y(L¥; — Ly) ®)
Ther; we can apply the chain rule to derive a%, aexai —
J
and aQJCJabel :

2) OPTIMIZE 6y, 6, hash AND 6y fgber, WITH OTHER
PARAMETERS FIXED

For each text modal data y;, the derivative of the objective
function can be obtained:

N

a1
WVy 24
+2n(Vy — Hy; + VE) 9)

(0(®)Uy; — S;jUs)
1
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Algorithm 1 Optimization Procedure of DLFFH

Input: Image set X, text set Y, label set L and semantic
similarity matrix S.
Output: Parameters 6y, ex_hash’ Qx_label P an ey_hash, Qy_label
of two networks, and hash code matrix H.
Initialization
Initialize parameters Oy, Oy hash» Ox_iabel> Oy, Oy_nashs
Oy_labei> ¥, 1, mini-batch size N, Ny, maximum itera-
tion number 7},,,, image network iteration number 7, =
[n/N¢] and text network iteration number Ty, = [n/N].
repeat
for iter=1,2,--- T, do
Randomly select N, samples from X.
Calculate Uy; = f (xi, li; 6x, Ox_pash) and
LY, = f (xi. Li; Ox. Ox_iaver) by forward propagation.
Compute the corresponding derivatives using (7), (8).
Update 6, Ox_hash and 6;_jqper by BP algorithm.
end for
for iter =1,2,--.,T), do
Randomly select Ny samples from Y.
Calculate Vy; = g (v}, lj: 0y, 0y_ash) and
Lij = g (¥, lj; Oy, Oy_tabet) by forward propagation.
Compute the corresponding derivatives using (9), (10).
Update 6y, 0 pasn and 0y_jape; by BP algorithm.
end for
Learn H using (12).
until a fixed number of iterations

aJ )
- =2y(L), — Ly) (10)
aLij K
Then we can apply the chain rule to derive 5’7!, 3981 "
y y_hasi
and -2 —.
dey,label

3) OPTIMIZE H, WITH OTHER PARAMETERS FIXED
The objective function is equivalent to the following formula:

max rr(H (n(U 4 V))) = tr(HP) = ZH,-jP,-j
L

s.t. He {—1,+1}N (a1

where P = 1(U + V). Therefore, the hash code matrix can be
optimized by the following formula:

H = sign(n(U + V) (12)

F. OUT-OF-SAMPLE EXTENSION

The trained DLFFH can generate hash codes for the data
outside the training set. We can take an instance of anyone
modality as the input of the network and generate the cor-
responding hash code through forward propagation. Specif-
ically, when given an instance x, of image modality and its
corresponding label [, its hash code can be obtained by the
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following formula:

h)qc = sign(f (xg, Iy Ox, Ox_nash)) (13)
Similarly for text modality y,, we have:
hz = sign(g(yy, lg; Oy, Oy_hash)) (14)

IV. EXPERIMENTS

A. DATASETS

The MIRFLICKR-25K dataset [41] contains 25000 image-
text pairs collected from the Flickr website, and each data
pair is associated with a corresponding label. We eliminate
the data with less than 20 text descriptions in the dataset and
convert the text descriptions into 1386-dimensional Bag-of-
Words (BOW) text vectors. A total of 20015 data pairs of data
are used in the experiment after processing, each data pair
contains at least one of the 24 labels.

The NUS-WIDE dataset [42] is a collection of 269648 data
pairs, each of which contains an image, text description
and corresponding labels. Here, 195834 data belonging to
the 21 most common labels are selected for the experi-
ment. The text description of each data is converted into
a 1000-dimensional Bag-of-Words vector.

The TIAPR TC-12 dataset [43] contains 20000 image-text
pairs, and each data pair has at least one of 255 labels. Each
text description is converted into a 2912-dimensional Bag-of-
Words vector. Table 2 summarizes the detailed settings of the
above three datasets in the experiment.

B. EVALUATION PROTOCOL AND BASELINE

1) EVALUATION PROTOCOL

In this article, we apply two classical cross-modal hashing
evaluation protocols: Hamming ranking and hash lookup to
verify the validity of DLFFH.

Hamming ranking refers to the ascending order of the
Hamming distance between the query data and the retrieval
dataset. The accuracy of Hamming ranking can be calculated
by applied the Mean Average Precision (MAP) [44], which
can be obtained by averaging the average accuracy. The MAP
calculation equation is as follow:

1 n
MAP = - Z AP(g)) (15)

i=1

LN

AP = ; M(5)R(s) (16)
where n denotes the number of query data, g; refers to the ith
query data, N denotes the number of retrieved data. K refers
to the number of retrieved data related to query data. M(s) is
the accuracy of the first s retrieved data. If the sth retrieved
datais similar to the query data, R(s) = 1, otherwise R(s) = 0.
The hash lookup protocol returns retrieved results within
the specified Hamming radius, and its performance is mea-
sured by the Precision-Recall curve. We can obtain the cor-
responding precision and recall by changing the Hamming

radius, and draw the Precision-Recall curve on this basis.
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2) BASELINE

In order to prove the performance of DLFFH, we compare
it with seven currently representative models. According to
the model structure, these can be divided into hand-crafted
models (CMFH [20], SCM [23], SePH [24]) and deep
network models (DCMH [26], SSAH [29], MSDH [34],
MMACH [35]).

C. IMPLEMENTATION DETAILS

In this article, we build the DLFFH based on the TensorFlow
framework. Except that the image feature learning network
adopts the trained parameters, other network parameters are
randomized. The hyper-parameters of the objective function
is set to: y = 1, n = 0.1, the detailed hyper-parameter
analysis will be explained in the following sections. The
mini-batch size is 128 and the number of model training
iterations is 300. The learning rate decreases from 1072 to
10~° with the increase of iterations. For all models, we run
five times in turn to get the average.

For activation functions applied in DLFFH, we apply iden-
tity function in hash code branches. Sigmoid function is
adopted in feature label branches, and the remaining neural
networks all apply the Rectified Linear Unit (ReLU) [45].

D. PERFORMANCE

1) HAMMING RANKING

Table 1 records the MAP values (16 bits, 32 bits, 64 bits)
of DLFFH and seven baselines in two cross-modal retrieval
tasks on MIRFLICKR-25K, NUS-WIDE and IAPR TC-
12 datasets. “I—T” refers to apply images to retrieve
the corresponding text, and “T—1" refers to apply text
to retrieve the corresponding images. It can be seen from
the table that the MAP values of DLFFH on the three
datasets are greater than those of other baselines, achieving
excellent performance. Compared with hand-crafted models,
deep network models perform better because of their excel-
lent performance in feature learning process. Specifically,
on MIRFLICKR-25K, compared with the most representative
deep network model DCMH, the MAP values of DLFFH
on the two retrieval tasks increased by 9.25%/11.02% on
average, and increased by 1%/8.62% on average compared
with the most advanced MMACH. On NUS-WIDE, the
MAP for “I—-T”/“T—1I" achieves an average increase of
34.64%/23.50% and 23.13%/21.28% compared with DCMH
and MMACH. Similarly, there is an average increase in
18.10%/16.77% (DCMH) and 2.55%/7.34% (MMACH) on
IAPR TC-12, demonstrating the effectiveness of DLFFH.
Although the deep network models can achieve good per-
formance, they lack the unique label features of each data in
the feature learning process. On the contrary, we embed the
semantic label information into the hash code through feature
fusion and set feature label branches to further increase the
discrimination of hash codes. Therefore, the performance of
DLFFH can be effectively improved. In addition, the perfor-
mance of most models is positively correlated with the length
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TABLE 1. Performance comparison of MAP values.

Task Model MIRFLICKR-25K NUS-WIDE TIAPR TC-12
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
CMFH [20] 0.5526 0.5865 0.5907 0.4427 0.4527 0.4623 0.4042 0.4168 0.4198
SCM [23] 0.6225 0.6379 0.6508 0.4807 0.4845 0.4882 0.3641 0.3655 0.3713
SePH [24] 0.6571 0.6652 0.6717 0.5752 0.5838 0.5902 0.4365 0.4472 0.4548
DCMH [26] 0.7413 0.7462 0.7549 0.5903 0.6031 0.6093 0.4837 0.4926 0.5218
=T SSAH [29] 0.7801 0.7837 0.7879 0.6322 0.6368 0.6397 0.5318 0.5419 0.5681
MSDH [34] 0.7532 0.7635 0.7813 0.6363 0.6585 0.6832 0.5315 0.5483 0.5728
MMACH [35] 0.7981 0.8107 0.8169 0.6459 0.6567 0.6689 0.5412 0.5783 0.6057
OURS 0.8023 0.8212 0.8263 0.7941 0.8117 0.8216 0.5531 0.5919 0.6243
CMFH [20] 0.5638 0.5949 0.5972 0.4515 0.4548 0.4614 0.4193 0.4251 0.4267
SCM [23] 0.6801 0.6889 0.6941 0.4895 0.4917 0.5073 0.3657 0.3723 0.3749
SePH [24] 0.7183 0.7247 0.7278 0.5883 0.5943 0.6124 0.4489 0.4544 0.4603
DCMH [26] 0.7792 0.7783 0.7805 0.6389 0.6511 0.6571 0.4970 0.5153 0.5379
Tl SSAH [29] 0.7912 0.7927 0.7948 0.6691 0.6732 0.6793 0.5339 0.5494 0.5701
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FIGURE 3. Precision-recall curves with 16 bits hash codes.

of hash codes, which indicates that longer hash codes can
contain more discrimination information.

2) HASH LOOKUP
Figure 3 plots the Precision-Recall curves with 16 bits
hash codes on three general datasets. The area under the
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(e) NUS-WIDE

(f) IAPR TC-12

Precision-Recall curve is positively correlated with the per-
formance of the model. We can see that the Precision-Recall
curve of DLFFH is higher than other curves, which fully
demonstrates that our innovative model is superior to
other baselines and further verifies the results of MAP
comparison.
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FIGURE 5. Training efficiency of DLFFH and DCMH. The code length is 16 bits.
TABLE 2. Detailed setup of datasets. TABLE 3. MAP comparison of DLFFH and its variants.
Dataset Total Training Query Labels MIRFLICKR-25K
Task  Method
MIRFLICKR-25K 20015 10000 2000 24 16Dbits 32bits 64bits
NUS-WIDE 195834 10000 2000 21 3
IAPR TC-12 20000 10000 2000 255 DLFFH 0.8023 0.8212 08261
I-T DLFFH-1 0.6768 0.7103 0.7064
DLFFH-2 0.7925 0.8167 0.8247
E. SENSITIVITY TO PARAMETERS DLFFH 0.8487 0.8695 0.8775
In this section, we perform sensitivity analysis on the hyper- T=1  DLFFH-1 0.7132 0.7148 0.7238
DLFFH-2 0.8401 0.8551 0.8641

parameters y and 7. The experimental process is divided into
two stages, and only one of the hyper-parameters is changed
in each stage. The variation range of hyper-parameters is
set to 0.01, 0.1, 1, 2. The experimental results are shown in
Figure 4, where we take MIRFLICKR-25K as the training
set and the hash code length is 16 bits. We can see that
DLFFH is not sensitive to parameters, which relatively proves
the stability and validity of our model. Therefore, we set the
hyper-parameters to y = 1 and n = 0.1.

VOLUME 10, 2022

F. ABLATION STUDY

To verify the effect of feature fusion and feature label
branches in DLFFH, we design two variants for comparison:
(a) DLFFH-1 removes the label network and feature fusion
in each modality; (b) DLFFH-2 is constructed by deleting the
feature label branch and only retaining the hash code branch.
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FIGURE 6. Convergence curve of DLFFH.

Table 3 shows the MAP values of DLFFH and its variants
in different retrieval tasks on MIRFLICKR-25K dataset, from
which we can find: (1) the MAP performance of DLFFH is
better than that of DLFFH-1. We can conclude that feature
fusion can effectively embed the semantic label informa-
tion learned by the label network into the data features and
make up the semantic gap. Therefore, the fused features with
semantic label information can more accurately represent
the original data and improve the efficiency of the model.
(2) DLFFH performs better than DLFFH-2. The reason is
that more discriminative hash codes can be generated under
the action of feature label branches, which improves the
performance to a certain extent.

G. TRAINING EFFICIENCY

Figure 5 shows the changes of MAP with training time
between DLFFH and DCMH on MIRFLICKR-25K. It can
be seen from the figure that DLFFH can train a model with
higher accuracy in a shorter time and achieve convergence
faster. Compared with DCMH, DLFFH can better capture the
semantic correlation between different modal data and bridge
the modal gap through feature fusion. Therefore, the training
efficiency of our model can be effectively improved.

H. CONVERGENCE ANALYSIS

To verify the convergence of DLFFH, we perform experi-
ments on three datasets with 16 bits hash codes. The exper-
imental results are shown in Figure 6. In order to better
intuitively show the convergence of the model, we apply
relative loss to record. The relative loss is to divide all the
objective function values by the first iteration value. It can
be seen from the figure that the relative loss of DLFFH
decreases rapidly and converges gradually with the increase
of iteration times, which also verifies that the model has
excellent training efficiency.

V. CONCLUSION

In this article, we propose an innovative model called
DLFFH. Compared with other models, DLFFH embeds
semantic label information into the feature learning process
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through label network and feature fusion, which can make the
data features generated by the network more representative.
This can more effectively capture the semantic correlation
and make up the semantic gap between multi-modal data.
In addition, the feature label branch makes the generated hash
codes more discriminative. Numerous experimental results
on three general datasets prove that the deep label feature
fusion hashing achieves satisfactory performance.
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