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ABSTRACT The rapid growth ofmulti-modal data in recent years has driven the strong demand for retrieving
semantic-related data within different modalities. Therefore, cross-modal hashing has attracted extensive
interest and studies due to its fast retrieval speed and good accuracy.Most of the existing cross-modal hashing
models simply apply neural networks to extract the features of the original data, ignoring the unique semantic
information attached to each data by the labels. In order to better capture the semantic correlation between
different modal data, a novel cross-modal hashing model called deep label feature fusion hashing (DLFFH)
is proposed in this article.We can effectively embed semantic label information into data features by building
label networks in different modal networks for feature fusion. The fused features canmore accurately capture
the semantic correlation between data and bridge the semantic gap, thus improving the performance of cross-
modal retrieval. In addition, we construct feature label branches and the corresponding feature label loss to
ensure that the generated hash codes are discriminative. Extensive experiments have been conducted on three
general datasets and the results demonstrate the superiority of the proposed DLFFH which performs better
than most cross-modal hashing models.

14 INDEX TERMS Cross-modal retrieval, feature fusion, feature label branch, hashing.

I. INTRODUCTION15

The exponential growth of various modal data such as text,16

image, video and audio has greatly promoted the development17

of cross-modal retrieval technique, which can retrieve the18

relevant data of other types when you input one type of data19

as the query [1], [2]. Generally speaking, the same event or20

concept can be described with data of different modalities.21

For example, we can use multi-modal data such as text and22

photos provided by news media or ordinary audiences to23

describe the concept ‘‘Beijing Olympic Games’’. Although24

these different types of data have heterogeneous properties,25

they are semantically relevant and complement each other,26

which can be helpful for the users to better understand the27

target events or topics. However, due to the ‘‘heterogeneous28

gap’’ of various modal data, how to effectively implement29

cross-modal retrieval is still a challenging task.30

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianluigi Ciocca .

Representational learning [3] is a usual way to eliminate 31

the heterogeneity gap in cross-modal retrieval. It transforms 32

different modal data into value representations in the same 33

semantic space, and semantically similar data have more sim- 34

ilar values. Many algorithms of such type are listed in litera- 35

ture [4], such as Canonical CorrelationAnalysis (CCA) learns 36

the common space by maximizing the pairwise correlation 37

between two sets of heterogeneous data. As the dimension 38

of multi-modal data increases, the storage of large-scale data 39

and the speed of data retrieval are very important. There- 40

fore, the cross-modal hashing method has attracted extensive 41

attention of a large number of researchers due to its lower 42

memory cost and high retrieval speed. We can obtain the 43

Hamming distance by performing a simple bit-wise XOR 44

operations [5] on the two hash codes, and then judge whether 45

the two original data are similar. A small Hamming distance 46

means that the two data are similar and vice versa. The 47

heterogeneity of different modalities makes it difficult to 48

compare the similarity directly. Therefore, the main research 49
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work at present is how to generate efficient hash codes to50

make cross-modal retrieval more accurate and extensible.51

Traditional hashing models [6], [7], [8], [9], [10], [11]52

generate hash codes based on hand-crafted features, which53

lack sufficient discrimination ability and cannot represent54

original data effectively. In addition, a major disadvantage55

of these models is that the feature learning process and the56

hash code generation process are separated from each other.57

For the past few years, with the excellent performance of58

deep learning in feature extraction and representation, deep59

cross-modal hashing models [12], [13], [14], [15], [16], [17],60

[18] have made great progress. On this basis, experiments61

show that the features based on deep network learning are62

more representative than the traditional hashing models.63

However, most of the deep cross-modal hashing models use64

a single neural network to extract the features of the original65

data. This ignores the unique semantic information attached66

to each data, so the generated features cannot accurately67

represent the original data. The label of each data makes68

it unique in the dataset, so how to make full use of this69

effective information in the feature learning process is the70

key to improve the retrieval efficiency. In order to bridge the71

semantic gap, we construct label networks and embed seman-72

tic label information into data features through feature fusion.73

The fused features can better capture the semantic correlation74

between different modal data and improve the accuracy of the75

model. In addition, in order to make the hash codes generated76

by the model consistent and distinguishable, we divide the77

output end of each network into hash code branch and feature78

label branch to ensure that the hash codes with the same labels79

are as similar as possible and the hash codes with different80

labels are discriminative. The main contributions of this work81

can be summarized as follows:82

• The proposed deep label feature fusion hashing83

(DLFFH) embeds semantic label information into data84

features through feature fusion between label networks85

and feature learning networks. In this way, we can better86

capture the semantic correlation between data and bridge87

the semantic gap. Our DLFFH integrates the data feature88

learning process and hash code generation process into89

a unified deep framework.90

• We creatively divide the network output into hash code91

branch and feature label branch, and guide the genera-92

tion of more discriminative hash codes according to the93

proposed feature label loss.94

• Numerous experiments on three general datasets prove95

that this innovative DLFFH performs better than other96

models.97

The rest of this article is organized as follows.98

Section 2 reviews the related work. Section 3 introduces the99

innovative DLFFH. The experimental results and correspond-100

ing analysis are presented in Section 4. Finally, the conclusion101

is given in Section 5.102

II. RELATED WORK103

Depending on whether data labels are applied to model104

training, cross-modal hashing can be generalized into two105

categories [19]. One is unsupervised models, the other is 106

supervised models. Unsupervised models refer to the absence 107

of data labels in the process of training retrieval mod- 108

els. To be specific, Collective Matrix Factorization Hashing 109

(CMFH) [20] obtains one different modal common semantic 110

space through collective matrix factorization, and then learns 111

the hash mapping of each modality in this space. Latent 112

Semantic Sparse Hashing (LSSH) [21] applies sparse encod- 113

ing to process image data and matrix decomposition to pro- 114

cess text data, followed by mapping into a common semantic 115

space to learn hashing. Semantic Topic Multimodal Hashing 116

(STMH) [22] applies clustering and matrix factorization to 117

get semantic themes in image and text data respectively, 118

and then learns the relationship between the two modalities 119

data in common subspace through semantic topics. Finally, 120

the mapping of original data to the common subspace is 121

established to obtain the hash code representation. 122

In contrast, supervised cross-modal hashing can guide the 123

generation of more representative hash codes by applying 124

data labels in the training process. For example, Seman- 125

tic Correlation Maximization (SCM) [23] guides hash 126

code learning by calculating correlations between data 127

labels of different modalities. Semantic Preserving Hashing 128

(SePH) [24] translates the cross-modal distance of semantic 129

similarity and Hamming space into two probability distri- 130

butions respectively, and then gets the hash code mapping 131

by decreasing relative entropy of both distributions. Cross- 132

modalityMetric Learning using Similarity-Sensitive Hashing 133

(CMSSH) [25] applies boosting strategy to obtain similar 134

hash codes between similar data. 135

In recent years, the development of deep learning tech- 136

nology provides a new direction for this field. Many 137

cross-modal models have been innovated based on deep 138

learning and achieved good performance. Deep Cross-Modal 139

Hashing (DCMH) [26] builds a network that performs the 140

entire process of converting hash codes from original data. 141

Pairwise Relationship Guided Deep Hashing (PRDH) [27] 142

maintains similarities between and within modalities of 143

data. Deep Multi-Level Semantic Hashing (DMSH) [28] 144

constructs a high-level semantic supervision matrix in the 145

training process, which contains more information than 146

the general similarity matrix. Self-Supervised Adversarial 147

Hashing (SSAH) [29] successfully combines self-supervised 148

networks and adversarial learning into a network. Mask 149

Cross-Modal Hashing (MCMH) [30] applies Mask R-CNN 150

to extract image features. Deep Multiscale Fusion Hashing 151

(DMFH) [31] extracted convolution features at different 152

scales for each image data to represent the image data 153

more accurately. Triplet-Based Deep Cross-Modal Retrieval 154

(TDCMR) [32] applies the improved triplet constraint to gen- 155

erate more accurate hash codes. Semantics-Preserving Hash- 156

ing based on Multi-Scale Fusion (SPHMF) [33] constructs 157

pairwise loss and inter-modal loss of tag generation network 158

to guide hash code learning. Multi-attention based Semantic 159

Deep Hashing (MSDH) [34] designs a multi attention block 160

to extract more semantic related features from the data. 161
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FIGURE 1. Network structure of DLFFH.

Multi-label Modality enhanced Attention based self-162

supervised deep Cross-modal Hashing (MMACH) [35] first163

used multi-label cross-modal triplet loss to guide hash code164

learning, and proposed multi-label modality enhanced atten-165

tion module to integrate multi-modal data features and label166

features. Vision and Scene Text Aggregation for Cross-Modal167

Retrieval (ViSTA) [36] proposed an effective visual and168

scene text aggregation transformer for cross-modal retrieval.169

Learning the Best Pooling Strategy for Visual Semantic170

Embedding [37] learns the best pool strategy to automatically171

adapt to different data and features through generalized172

pool operator. Discrete Joint Semantic Alignment Hashing173

(DJSAH) [38] obtains a distinctive hash code by integrating174

the high-level semantics of the data.175

Although the above models can show good performance,176

there are still some aspects to be improved. The innovations177

of our model are as follows: First, DLFFH embeds semantic178

label information into data features through feature fusion,179

so that each data feature has its unique semantic label attribute180

and can more accurately represent original data. Second,181

we apply hash code branches and feature label branches to182

generate more discriminative hash codes, where the hash183

codes of the same labels are more similar, and vice versa.184

III. PROPOSED DLFFH185

In this section, we will introduce the DLFFH and discuss it186

in the two most frequently used modalities: image and text.187

Figure 1 shows the network structure of our DLFFH, which is188

divided into two segments: image network and text network. 189

We demonstrate the details of the model in the following 190

section. 191

A. NOTATION 192

In this article, vectors are represented by lowercase bold 193

letters (e.g., m) and matrices are represented by uppercase 194

bold letters (e.g., M). M transpose is MT , the element in ith 195

row and jth column of matrixM is represented byMij. ‖ · ‖F 196

denotes the Frobenius norm. sign (·) represents the sym- 197

bolic function, which outputs −1 if its input is negative else 198

outputs 1. 199

B. PROBLEM DEFINITION 200

Suppose there exist N data pairs made up of images and text. 201

LetX= {x1,. . . ,xN } ∈ RN×Dx refers to the image data, where 202

Dx denotes the dimension of xi. Y = {y1,. . . ,yN } ∈ RN×Dy 203

stands for the text data, where Dy is the dimension of yj. 204

L = {l1,. . . ,lN } ∈ {0, 1}N×C refers to the label matrix, 205

we apply C to stands for the total number of label categories. 206

S stands for the semantic similarity matrix, Sij = 1means that 207

xi and yj have at least one same label. Conversely, they are 208

dissimilar and Sij = 0. The Hamming distance between two 209

hash codes reflects their similarity of image data and text data, 210

a small Hamming distancemeans that two data are similar and 211

vice versa. For different hash codes, we can use the following 212
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formula to calculate their Hamming distance:213

dis
〈
hi,hj

〉
=

1
2
(k −

〈
hi,hj

〉
) (1)214

where
〈
hi,hj

〉
denotes the inner product of two vectors. k215

denotes hash code length, hi and hj stands for image xi hash216

code and text yj hash code respectively.217

Given dataset X, Y, L and its semantic similarity matrix S,218

the DLFFH model can train two hash functions: f (xi, li) and219

g(yj, lj) for image modality and text modality respectively.220

Therefore, each modal data can generate the corresponding221

hash code according to its hash function.222

C. FEATURES LEARNING PART223

For image network, it is composed of image feature learning224

network, label network, hash code branch and feature label225

branch. Specifically, we select the first seven layers in the226

CNN-F [39] model as the image feature learning network,227

including five convolution layers and two fully connected228

layers. The initialization parameters of the image feature229

learning network are trained on ImageNet [40] in advance,230

and we can obtain the basic image features through this231

network. The label network is a two-layer fully connected232

network (4096→4096), which is applied to extract the unique233

semantic label information of each data. Then feature fusion234

(concatenating the label features and the image features)235

is performed to embed the semantic label information into236

the image features, as shown in Figure 2. Finally, the fused237

features are connected to two fully connected networks (hash238

code branch and feature label branch) to generate corre-239

sponding hash codes and feature labels, where the number240

of neurons is hash code length and the label category number241

respectively.242

For text network, it includes text feature learning network,243

label network, hash code branch and feature label branch.244

We first apply Bag-of-Words model to convert the text data245

and label data into vector representations that can be extracted246

by text network. The text feature learning network is a247

two-layer fully connected network (8192→4096) for learn-248

ing the text features of data. The remaining label network,249

hash code branch and feature label branch are the same as250

those in the image network. Under the action of feature251

fusion, the semantic label information in the text data can252

be effectively embedded into text features to generate more253

accurate text representations.254

D. HASH CODE GENERATION PART255

To ensure that the hash code generated by DLFFH can reflect256

the relationship between original data more accurately, the257

objective function can be set into three parts: semantic sim-258

ilarity loss, feature label loss and hash code discrete loss.259

In this article, U∗i = f
(
xi, li; θx , θx_hash

)
denotes the image260

feature output by hash code branch in image network, where261

θx represents the total parameters of image feature learning262

network and label network, and θx_hash represents the param-263

eters of the hash code branch. Lx
∗i = f

(
xi, li; θx , θx_label

)
264

FIGURE 2. Process of feature fusion.

denotes the image feature label output by the feature label 265

branch in image network, where θx represents the total param- 266

eters of image feature learning network and label network, 267

and θx_label represents the parameters of the feature label 268

branch. Furthermore, V∗j = g
(
yj, lj; θy, θy_hash

)
denotes the 269

text feature output by hash code branch in text network, where 270

θy represents the total parameters of text feature learning net- 271

work and label network, and θy_hash represents the parameters 272

of the hash code branch. Ly
∗j = g

(
yj, lj; θy, θy_label

)
refers 273

to the text feature label output by the feature label branch 274

in text network, where θy represents the total parameters of 275

text feature learning network and label network, and θy_label 276

represents the parameters of the feature label branch. 277

Semantic gaps between different modal data make it 278

impossible to compare directly, so we measure the data sim- 279

ilarity by mapping them into a common semantic space. The 280

likelihood function of image data feature and text data feature 281

is shown below: 282

p(Sij|U∗i,V∗j) =

{
σ (8ij), Sij = 1
1− σ (8ij), Sij = 0.

(2) 283

where 8ij =
1
2U

T
∗iV∗j and σ (8ij) = 1

1+e−8ij
, when Sij = 1 284

denotes the inner product (similarity) between U∗i and V∗j 285

is larger and vice versa. To facilitate the training of model, 286

we apply the negative log likelihood function (semantic sim- 287

ilarity loss Js) of the above equation to get the similarity 288

between image data and text data: 289

Js = −
N∑

i,j=1

(Sij8ij − log(1+ e8ij )) (3) 290

where 8ij =
1
2U

T
∗iV∗j. Minimizing the negative log like- 291

lihood (equivalent to maximizing the likelihood function) 292

above can reduce the Hamming distance between similar 293

image data and text data, thereby improving the accuracy of 294

the model. 295

Furthermore, we improve the discrimination of hash codes 296

by constraining the distance between the feature label matrix 297

generated by the feature label branch and label matrix. Effec- 298

tively making hash codes with the same label more similar 299

and vice versa. The feature label loss is defined as follows: 300

Jl =
∥∥Lx − L

∥∥2
F +

∥∥Ly − L
∥∥2
F (4) 301
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where Lx refers to image feature label matrix, Ly refers to302

text feature label matrix.303

Next, there is a certain quantization error when the con-304

tinuous variables output from the network are converted into305

hash binary codes. And balancing the −1 and 1 values can306

effectively maximize the information of hash codes. There-307

fore, we propose the hash code discrete loss:308

Jq =
∥∥Hx
− U

∥∥2
F +

∥∥Hy
− V

∥∥2
F309

+‖UE‖2F + ‖VE‖
2
F (5)310

where Hx
= sign(U), Hy

= sign(V), E denotes a vector311

with all values of 1. Inspired by Jiang and Li [26], we let312

H = Hx
= Hy in the training phase.313

Finally, in combination with the semantic similarity loss314

Js, feature label loss Jl and hash code discrete loss Jq, the315

objective function of DLFFH is shown below:316

min
H,θx ,θx_label ,θx_hash,θy,θy_label ,θy_hash

J = Js + γ Jl + ηJq (6)317

where γ , η denote the hyper-parameters.318

E. OPTIMIZATION319

On account of the hash binary code H is discrete variable,320

we apply the alternate learning strategy to settle the problem321

that H is not easy to optimize. In each step, only update the322

parameters in one modality at a time and fix other parameters.323

The back-propagation (BP) algorithm based on mini-batch324

stochastic gradient descent (SGD) is applied to update the325

algorithm. Algorithm 1 summarizes the optimization proce-326

dure of DLFFH.327

1) OPTIMIZE θx , θx_hash AND θx_label , WITH OTHER328

PARAMETERS FIXED329

For each image modal data xi, the derivative of the objective330

function can be obtained:331

∂J
∂U∗i

=
1
2

N∑
j=1

(σ (8ij)V∗j − SijV∗j)332

+2η(U∗i −H∗i + UE) (7)333

334

∂J
∂Lx
∗i
= 2γ (Lx

∗i − L∗i) (8)335

Then we can apply the chain rule to derive ∂J
∂θx

, ∂J
∂θx_hash

336

and ∂J
∂θx_label

.337

2) OPTIMIZE θy , θy_hash AND θy_label , WITH OTHER338

PARAMETERS FIXED339

For each text modal data yj, the derivative of the objective340

function can be obtained:341

∂J
∂V∗j

=
1
2

N∑
i=1

(σ (8ij)U∗i − SijU∗i)342

+2η(V∗j −H∗j + VE) (9)343

Algorithm 1 Optimization Procedure of DLFFH
Input: Image set X, text set Y, label set L and semantic

similarity matrix S.
Output: Parameters θx , θx_hash, θx_label , θy, θy_hash, θy_label
of two networks, and hash code matrix H.
Initialization
Initialize parameters θx , θx_hash, θx_label , θy, θy_hash,
θy_label , γ , η, mini-batch size Nx , Ny, maximum itera-
tion number Tmax , image network iteration number Tx =
dn/Nxe and text network iteration number Ty =

⌈
n/Ny

⌉
.

repeat
for iter = 1, 2, · · ·,Tx do

Randomly select Nx samples from X.
Calculate U∗i = f

(
xi, li; θx , θx_hash

)
and

Lx
∗i = f

(
xi, li; θx , θx_label

)
by forward propagation.

Compute the corresponding derivatives using (7), (8).
Update θx , θx_hash and θx_label by BP algorithm.
end for

for iter = 1, 2, · · ·,Ty do
Randomly select Ny samples from Y.
Calculate V∗j = g

(
yj, lj; θy, θy_hash

)
and

Ly
∗j = g

(
yj, lj; θy, θy_label

)
by forward propagation.

Compute the corresponding derivatives using (9), (10).
Update θy, θy_hash and θy_label by BP algorithm.
end for
Learn H using (12).

until a fixed number of iterations

344

∂J

∂Ly
∗j
= 2γ (Ly

∗j − L∗j) (10) 345

Then we can apply the chain rule to derive ∂J
∂θy

, ∂J
∂θy_hash

346

and ∂J
∂θy_label

. 347

3) OPTIMIZE H, WITH OTHER PARAMETERS FIXED 348

The objective function is equivalent to the following formula: 349

max
H

tr(HT (η(U+ V))) = tr(HTP) =
∑
i,j

HijPij 350

s.t. H ∈ {−1,+1}k×N (11) 351

where P = η(U+V). Therefore, the hash code matrix can be 352

optimized by the following formula: 353

H = sign(η(U+ V)) (12) 354

F. OUT-OF-SAMPLE EXTENSION 355

The trained DLFFH can generate hash codes for the data 356

outside the training set. We can take an instance of anyone 357

modality as the input of the network and generate the cor- 358

responding hash code through forward propagation. Specif- 359

ically, when given an instance xq of image modality and its 360

corresponding label lq, its hash code can be obtained by the 361
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following formula:362

hxq = sign(f (xq, lq; θx , θx_hash)) (13)363

Similarly for text modality yq, we have:364

hyq = sign(g(yq, lq; θy, θy_hash)) (14)365

IV. EXPERIMENTS366

A. DATASETS367

The MIRFLICKR-25K dataset [41] contains 25000 image-368

text pairs collected from the Flickr website, and each data369

pair is associated with a corresponding label. We eliminate370

the data with less than 20 text descriptions in the dataset and371

convert the text descriptions into 1386-dimensional Bag-of-372

Words (BOW) text vectors. A total of 20015 data pairs of data373

are used in the experiment after processing, each data pair374

contains at least one of the 24 labels.375

The NUS-WIDE dataset [42] is a collection of 269648 data376

pairs, each of which contains an image, text description377

and corresponding labels. Here, 195834 data belonging to378

the 21 most common labels are selected for the experi-379

ment. The text description of each data is converted into380

a 1000-dimensional Bag-of-Words vector.381

The IAPR TC-12 dataset [43] contains 20000 image-text382

pairs, and each data pair has at least one of 255 labels. Each383

text description is converted into a 2912-dimensional Bag-of-384

Words vector. Table 2 summarizes the detailed settings of the385

above three datasets in the experiment.386

B. EVALUATION PROTOCOL AND BASELINE387

1) EVALUATION PROTOCOL388

In this article, we apply two classical cross-modal hashing389

evaluation protocols: Hamming ranking and hash lookup to390

verify the validity of DLFFH.391

Hamming ranking refers to the ascending order of the392

Hamming distance between the query data and the retrieval393

dataset. The accuracy of Hamming ranking can be calculated394

by applied the Mean Average Precision (MAP) [44], which395

can be obtained by averaging the average accuracy. TheMAP396

calculation equation is as follow:397

MAP =
1
n

n∑
i=1

AP(qi) (15)398

AP =
1
K

N∑
s=1

M(s)R(s) (16)399

where n denotes the number of query data, qi refers to the ith400

query data, N denotes the number of retrieved data. K refers401

to the number of retrieved data related to query data. M (s) is402

the accuracy of the first s retrieved data. If the sth retrieved403

data is similar to the query data,R(s) = 1, otherwiseR(s) = 0.404

The hash lookup protocol returns retrieved results within405

the specified Hamming radius, and its performance is mea-406

sured by the Precision-Recall curve. We can obtain the cor-407

responding precision and recall by changing the Hamming408

radius, and draw the Precision-Recall curve on this basis.409

2) BASELINE 410

In order to prove the performance of DLFFH, we compare 411

it with seven currently representative models. According to 412

the model structure, these can be divided into hand-crafted 413

models (CMFH [20], SCM [23], SePH [24]) and deep 414

network models (DCMH [26], SSAH [29], MSDH [34], 415

MMACH [35]). 416

C. IMPLEMENTATION DETAILS 417

In this article, we build the DLFFH based on the TensorFlow 418

framework. Except that the image feature learning network 419

adopts the trained parameters, other network parameters are 420

randomized. The hyper-parameters of the objective function 421

is set to: γ = 1, η = 0.1, the detailed hyper-parameter 422

analysis will be explained in the following sections. The 423

mini-batch size is 128 and the number of model training 424

iterations is 300. The learning rate decreases from 10−2 to 425

10−6 with the increase of iterations. For all models, we run 426

five times in turn to get the average. 427

For activation functions applied in DLFFH, we apply iden- 428

tity function in hash code branches. Sigmoid function is 429

adopted in feature label branches, and the remaining neural 430

networks all apply the Rectified Linear Unit (ReLU) [45]. 431

D. PERFORMANCE 432

1) HAMMING RANKING 433

Table 1 records the MAP values (16 bits, 32 bits, 64 bits) 434

of DLFFH and seven baselines in two cross-modal retrieval 435

tasks on MIRFLICKR-25K, NUS-WIDE and IAPR TC- 436

12 datasets. ‘‘I→T’’ refers to apply images to retrieve 437

the corresponding text, and ‘‘T→I’’ refers to apply text 438

to retrieve the corresponding images. It can be seen from 439

the table that the MAP values of DLFFH on the three 440

datasets are greater than those of other baselines, achieving 441

excellent performance. Compared with hand-crafted models, 442

deep network models perform better because of their excel- 443

lent performance in feature learning process. Specifically, 444

onMIRFLICKR-25K, comparedwith themost representative 445

deep network model DCMH, the MAP values of DLFFH 446

on the two retrieval tasks increased by 9.25%/11.02% on 447

average, and increased by 1%/8.62% on average compared 448

with the most advanced MMACH. On NUS-WIDE, the 449

MAP for ‘‘I→T’’/‘‘T→I’’ achieves an average increase of 450

34.64%/23.50% and 23.13%/21.28% compared with DCMH 451

and MMACH. Similarly, there is an average increase in 452

18.10%/16.77% (DCMH) and 2.55%/7.34% (MMACH) on 453

IAPR TC-12, demonstrating the effectiveness of DLFFH. 454

Although the deep network models can achieve good per- 455

formance, they lack the unique label features of each data in 456

the feature learning process. On the contrary, we embed the 457

semantic label information into the hash code through feature 458

fusion and set feature label branches to further increase the 459

discrimination of hash codes. Therefore, the performance of 460

DLFFH can be effectively improved. In addition, the perfor- 461

mance of most models is positively correlated with the length 462
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TABLE 1. Performance comparison of MAP values.

FIGURE 3. Precision-recall curves with 16 bits hash codes.

of hash codes, which indicates that longer hash codes can463

contain more discrimination information.464

2) HASH LOOKUP465

Figure 3 plots the Precision-Recall curves with 16 bits466

hash codes on three general datasets. The area under the467

Precision-Recall curve is positively correlated with the per- 468

formance of the model. We can see that the Precision-Recall 469

curve of DLFFH is higher than other curves, which fully 470

demonstrates that our innovative model is superior to 471

other baselines and further verifies the results of MAP 472

comparison. 473
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FIGURE 4. Sensitivity analysis of hyper-parameters with 16 bits hash codes.

FIGURE 5. Training efficiency of DLFFH and DCMH. The code length is 16 bits.

TABLE 2. Detailed setup of datasets.

E. SENSITIVITY TO PARAMETERS474

In this section, we perform sensitivity analysis on the hyper-475

parameters γ and η. The experimental process is divided into476

two stages, and only one of the hyper-parameters is changed477

in each stage. The variation range of hyper-parameters is478

set to 0.01, 0.1, 1, 2. The experimental results are shown in479

Figure 4, where we take MIRFLICKR-25K as the training480

set and the hash code length is 16 bits. We can see that481

DLFFH is not sensitive to parameters, which relatively proves482

the stability and validity of our model. Therefore, we set the483

hyper-parameters to γ = 1 and η = 0.1.484

TABLE 3. MAP comparison of DLFFH and its variants.

F. ABLATION STUDY 485

To verify the effect of feature fusion and feature label 486

branches in DLFFH, we design two variants for comparison: 487

(a) DLFFH-1 removes the label network and feature fusion 488

in each modality; (b) DLFFH-2 is constructed by deleting the 489

feature label branch and only retaining the hash code branch. 490

VOLUME 10, 2022 100283



D. Ren et al.: Deep Label Feature Fusion Hashing for Cross-Modal Retrieval

FIGURE 6. Convergence curve of DLFFH.

Table 3 shows the MAP values of DLFFH and its variants491

in different retrieval tasks onMIRFLICKR-25K dataset, from492

which we can find: (1) the MAP performance of DLFFH is493

better than that of DLFFH-1. We can conclude that feature494

fusion can effectively embed the semantic label informa-495

tion learned by the label network into the data features and496

make up the semantic gap. Therefore, the fused features with497

semantic label information can more accurately represent498

the original data and improve the efficiency of the model.499

(2) DLFFH performs better than DLFFH-2. The reason is500

that more discriminative hash codes can be generated under501

the action of feature label branches, which improves the502

performance to a certain extent.503

G. TRAINING EFFICIENCY504

Figure 5 shows the changes of MAP with training time505

between DLFFH and DCMH on MIRFLICKR-25K. It can506

be seen from the figure that DLFFH can train a model with507

higher accuracy in a shorter time and achieve convergence508

faster. Compared with DCMH, DLFFH can better capture the509

semantic correlation between different modal data and bridge510

the modal gap through feature fusion. Therefore, the training511

efficiency of our model can be effectively improved.512

H. CONVERGENCE ANALYSIS513

To verify the convergence of DLFFH, we perform experi-514

ments on three datasets with 16 bits hash codes. The exper-515

imental results are shown in Figure 6. In order to better516

intuitively show the convergence of the model, we apply517

relative loss to record. The relative loss is to divide all the518

objective function values by the first iteration value. It can519

be seen from the figure that the relative loss of DLFFH520

decreases rapidly and converges gradually with the increase521

of iteration times, which also verifies that the model has522

excellent training efficiency.523

V. CONCLUSION524

In this article, we propose an innovative model called525

DLFFH. Compared with other models, DLFFH embeds526

semantic label information into the feature learning process527

through label network and feature fusion, which can make the 528

data features generated by the network more representative. 529

This can more effectively capture the semantic correlation 530

and make up the semantic gap between multi-modal data. 531

In addition, the feature label branch makes the generated hash 532

codes more discriminative. Numerous experimental results 533

on three general datasets prove that the deep label feature 534

fusion hashing achieves satisfactory performance. 535
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