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ABSTRACT The greatest challenge faced by the Simultaneous Wireless Information and Power Transfer
(SWIPT) system during implementation is hardware impairment. This article proposes a bio-inspired digital
pre-distortion scheme to overcome the high power amplifier nonlinearity and in-phase and quadrature
imbalances in the SWIPT system. Here, the memory polynomial model characterises the high power
amplifier. The digital pre-distortion algorithm uses the latest bio-inspired methods: Dingo Optimization,
Jumping Spider Optimization, Seagull Optimization, Mexican Axolotl Optimization, and Black Widow
Optimization. The power conversion efficiency, harvested energy, and rate energy region at the receiver
side analyse the efficiency of bio-inspired digital pre-distortion enabled SWIPT. Among the various bio-
inspired algorithms, the Seagull Optimisation Algorithm gave a maximum harvested energy of 35.95 µW,
keeping a Bit Error Rate of 1.33× 10−6 for the 32-QAM scheme. The Seagull Optimisation Algorithm also
showed a maximum improvement of 6.45% in power conversion efficiency compared to the conventional
digital pre-distortion scheme.
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INDEX TERMS Bio-inspired, digital pre-distortion (DPD), energy harvesting, high power amplifier
(HPA) nonlinearity, hardware impairments, in-phase and quadrature (IQ) imbalance, simultaneous wireless
information and power transfer (SWIPT).

I. INTRODUCTION16

The Simultaneous Wireless Information and Power Trans-17

fer (SWIPT) enabled Energy Harvesting (EH) is a trending18

technology and a possible candidate for 6G enabled wireless19

communication networks [1]. The SWIPT technology, which20

performs information transfer and power extraction simulta-21

neously, was initially proposed in ‘‘Transporting information22

and energy simultaneously’’ by Varshney [2]. It is inspired by23

green communications that create self-sustainable wireless24

nodes. The SWIPT technology can provide power to far away25

nodes that face severe fading conditions26

The practical implementation of SWIPT is performed27

mainly through two architectures: Time Switching (TS) and28

Power Splitting (PS). The separation of information and29

energy is performed in the time domain for TS architecture.30

The associate editor coordinating the review of this manuscript and

approving it for publication was Agustin Leobardo Herrera-May .

Conversely, the separation is accomplished through the power 31

domain in PS architecture. In Kang et al. [3], the ideal infor- 32

mation transmissionmodel based on SWIPT PS and TS archi- 33

tectures is discussed. However, as given in Perera et al. [4], 34

the practical implementation of SWIPT brings in many chal- 35

lenges in the form of hardware impairments such as IQ 36

(In-phase and Quadrature-phase) imbalance and High Power 37

Amplifier (HPA) nonlinearities. 38

The IQ imbalance that is caused due to the non- 39

orthogonality of I and Q branches at transmitter and receiver 40

sections is elaborated in Schenk [5]. This non-orthogonality 41

is expressed in terms of amplitude imbalance and phase 42

imbalance. The IQ imbalance distorts signal constellation 43

during decoding operation and affects symbol detection rate. 44

For 0.2 dB imbalance in amplitude and 20 of imbalance 45

in phase at transmitter produces 25dB of carrier suppres- 46

sion. This imbalance will reduce the signal-to-noise ratio 47

(SNR) by 1dB at the receiver side, as mentioned in Tsou [6]. 48
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In Nair et al. [7], the estimation and compensation with49

SNR and BER (Bit Error Rate) performance analysis for50

the SWIPT PS system under IQ imbalance is investigated.51

Also, a bio-inspired approach to analyze energy harvesting52

in SWIPT system under IQ imbalance was performed in53

Nair et al. [8]. For the last few years, despite the mentions in54

the literature about IQ imbalance problems that affect SWIPT55

performance, a few have tried to address them.56

The SWIPT must use high-power transmitters to harvest57

significant energy during implementation. So the impair-58

ments due to HPA nonlinearities gain more importance in59

SWIPT systems when compared to typical wireless commu-60

nication systems. Also, the efficiency of the SWIPT system is61

dependent on HPA performance. The initial efforts to study62

the effect of HPA nonlinearities and HPA harmonics in the63

SWIPT system were made in Jang et al. [9] and Nair and64

Kirthiga [10] respectively. Here the power spectrum showed65

a decrease of 23 dBc in the presence of HPA nonlinearity66

and approximately 3dB reduction in output power. There are67

multi-tone methods suggested in Park et al. [11] for compen-68

sation of HPA nonlinearities in the SWIPT system. Also, the69

SWIPT system adopting practical M-ary modulation with-70

out considering any nonlinearities was first mentioned in71

Liu et al. [12]. But, to the best of our knowledge, no work72

in the literature has analyzed the combined effect of HPA73

nonlinearity and IQ imbalances in SWIPT-enabled wireless74

communication systems under M-ary modulation schemes.75

However, performing critical impact analysis and suggesting76

compensation for nonlinearities in SWIPT under existing77

M-ary modulation schemes is essential.78

Two conventional remedies are suggested to overcome79

HPA nonlinearities in Radio Frequency (RF) systems, as indi-80

cated by Schenk [5]. The first is to use linear components in81

the RF front end, and the second is to put in measures for82

input power backoff before feeding the signals to RF ampli-83

fiers. The drawback of the first remedy is that it increases84

the total cost incurred in the RF front end. The second85

remedy is inefficient in terms of power consumption and86

efficiency. The input backoff in the −5dB to 15dB range87

for SWIPT delivers only an average PA efficiency of about88

60% as mentioned in Chen et al. [13]. However, integrat-89

ing Digital Pre-Distortion (DPD) into the communication90

setup allows the transmitter to operate near or above the91

saturation point of the PA, thereby eliminating the need92

for input power backoff. Even though the DPD solution’s93

cost is more, it can be quickly recovered in two years due94

to its reduced electricity consumption. Moreover, the DPD95

can combine more than one nonlinearity problem in the96

RF front end, as mentioned in Sun et al. [14]. Therefore,97

a Digital Pre-distortion Algorithm (DPA) is suggested to98

circumvent the IQ imbalance and HPA nonlinearity problem99

in SWIPT. The DPA measures the presence of nonlineari-100

ties in HPA and computes an inverse operation to linearise101

the HPA effectively. Joint mitigation of IQ imbalance and102

HPA nonlinearity in MIMO systems using DPA is discussed103

in Khan et al. [15]. In Mukherjee et al. [16], an adaptive104

algorithm for estimating HPA nonlinearity in the SWIPT 105

system is first proposed. Also, bio-inspired algorithms like 106

Particle Swarm Optimization (PSO), Grey Wolf Optimizer 107

(GWO), Hybrid PSO-GWO algorithm (HPSOGWO), and 108

Binary Coyote Optimization Algorithm (BCOA) are suitable 109

for solving complex engineering problems, as mentioned in 110

Negi et al. [17] and Leandro et al. [18], [19]. The DPA based 111

on bio-inspired algorithms applied to typical wireless com- 112

munication systems is also efficient. A PSO algorithm-based 113

digital pre-distorter is used in Abdelhafiz et al. [20]. The 114

HPA linearization using Artificial Bee Colony (ABC) was 115

performed in Bipin and Rao [21]. The DPA based on Hill- 116

Climbing (HC) heuristics and Genetic Algorithm (GA) is 117

performed in Wang [22]. 118

There are several models available for representing the 119

nonlinearities in HPA. These models capture Amplitude- 120

to-Amplitude (AM-AM) distortion or Amplitude depen- 121

dent Phase (AM-PM) distortion or both, as mentioned in 122

Tsou et al. [23]. The AM-AM distortion represents nonlin- 123

earity as the difference in input voltage and the envelope 124

of RF amplifier output. The AM-PM distortion is the unde- 125

sired phase modulation generated in the RF amplifier output 126

due to the nonlinear capacitors and power supply variations 127

in input voltage. The commonly used models for HPA are 128

ideal clipping amplifier, travelling wave tube amplifier, solid- 129

state amplifier, and memory polynomial models. The ideal 130

clipping amplifier, which captures only the AM-AM distor- 131

tion, shows the clipping of amplifier input beyond the PA 132

saturation level. The travelling wave tube amplifier, which 133

can work in broad ranges, can capture both AM-AM and 134

AM-PM distortion but has a disadvantage of very low power 135

efficiency as described in Paoloni et al. [24]. The solid-state 136

power amplifier (SSPA) that resembles the behaviour of 137

HPA can capture only AM-AM distortion, as mentioned in 138

Khalfet and Krikidis [25]. The HPA is best modelled by 139

the memory polynomial model that simultaneously captures 140

AM-AM and AM-PM distortion, as described in Kim and 141

Konstantinou [26]. 142

In Huang et al. [27], the general energy harvesting mod- 143

els used in wireless communication are mentioned. These 144

energy harvesting models are used in [28], [29], and [30] for 145

solving energy maximization problems in wireless networks. 146

In Liu et al. [12], a practical visualization of energy harvest- 147

ing with an M-ary modulation scheme in the SWIPT sys- 148

tem was implemented. Nevertheless, these energy harvesting 149

models mentioned above do not incorporate the hardware 150

impairment aspects. The following observations from the 151

literature helped to frame the proposed problem. 1) There 152

are only a few works in literature that focus on the practical 153

implementation of SWIPT involving hardware impairments 154

such as IQ imbalance andHPAnonlinearities. [4]. 2) DPD can 155

combine more than one problem Sun et al. [14]. 3) A conven- 156

tional DPD, when applied to the SWIPT system with HPA 157

nonlinearities, yielded good results. [16]. 4) A bio-inspired 158

DPD performs well in typical wireless communication 159

systems [20], [21], [22]. 160
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Since the SWIPT system needs to derive a significant161

amount of energy, Power Conversion Efficiency (PCE)162

appearing because of RF to DC conversion should also be163

considered a hardware impairment in the SWIPT system. The164

overall efficiency of the SWIPT system has to be visualized165

through the Rate Energy (RE) region.166

In this article DPD assisted SWIPT is simulated and ana-167

lyzed using the latest and efficient bio-inspired techniques168

such as Dingo Optimization algorithm (DOA) [31], Jumping169

Spider Optimization algorithm (JSOA) [32], Seagull Opti-170

mization algorithm (SOA) [33], Mexican Axolotl Optimiza-171

tion (MAO) [34] and Black Widow Optimization algorithm172

(BWOA) [35]. The scientific contribution ingrained in this173

article is the bio-inspired DPD applied to the SWIPT system174

having both IQ imbalance, and HPA nonlinearity impair-175

ment. The efficiency of bio-inspired DPD assisted SWIPT is176

analyzed through PCE and RE for the basic M-ary modula-177

tion schemes.178

The article is organized as follows. Section II describes the179

system used for the HPA model and DPA in SWIPT. The180

nature inspired approach towards nonlinearities in SWIPT181

is explained in Section III. Section IV shows the simulation182

results and discussions regarding the specific model dis-183

cussed in the previous section. The article’s conclusions are184

given in Section V.185

II. SYSTEM DESCRIPTION186

The SWIPT system and its intended implementation style are187

shown in Figure 1. The diagram indicates that the SWIPT188

wireless system enables simultaneous power and information189

transfer. Since it is a concurrent transmission process, there190

is always a compromise between the harvested energy and191

information rate. There are four possible architectures men-192

tioned in Perera et al. [4] for the SWIPT system: power split-193

ting, antenna switching, time switching, and separate receiver194

architecture. Here, the PS architecture poses the advantage in195

time resource and information rate compared to TS [8].196

A. TRANSMITTER SECTION197

The essential blocks involved in DPD enabled SWIPT trans-198

mitter is shown in Figure 2. The various components of199

the SWIPT transmitter can be realized using IQ modulators200

and demodulators, data converters, filters, mixers, HPAs’,201

attenuators etc. The Digital Signal Processing (DSP) domain202

involves baseband signal processing to generate the I (Real)203

and Q (Imaginary) parts of the input signal. The digital204

modulation considered at the baseband is M-ary Quadrature205

Amplitude Modulation (M-QAM), given by206

M = 2k (1)207

whereM represents the unique number of bits transmitted per208

time interval and k is an integer. As given in Najatizadeh and209

Tellambura [36], the complex envelope of message signal is210

represented with real and imaginary parts as211

x = xI + j xQ (2)212

where the in-phase component and the quadrature component 213

of x is represented by xI and xQ respectively. The xI and xQ 214

components are given by 215

xI ∈ {±a,±3a, . . . (I − 1)a} (3) 216

xQ ∈ {±a,±3a, . . . (J − 1)a} (4) 217

where I = 2(m−1)/2, J = 2(m+1)/2 and 2a is the distance 218

between adjacent points in theQAMconstellation. As the ’M’ 219

value increases for the QAM scheme, the bit energy Eb also 220

increases, which is given by 221

Eb =
M − 1

3log2(M )
Eg (5) 222

where Eg represents energy of the input signal pulse 223

The DSP domain also performs predistortion to the desired 224

signal. After the data conversion from digital to analog, the 225

signals are filtered via a low pass filter. Then mixer will mul- 226

tiply the I and Q signals with the help of the local oscillator 227

(LO). Here the I and Q signals are orthogonal to each other. 228

Any mismatch in orthogonality of I and Q is accounted as IQ 229

imbalance. The transmitter section considers an imbalance 230

of 0.2 dB in amplitude and 2◦ in phase. After bandpass 231

filtering, the combined I and Q signals are amplified using 232

HPA and transmitted using an antenna module. The practical 233

HPA exhibits nonlinearities during amplification; therefore, 234

we need nonlinear models. The DPD-enabled SWIPT trans- 235

mitter is also integrated with a feedback observation path to 236

correct the input signal. The observation path will detect the 237

PA’s nonlinearity or distortion. TheDPD systemwill compare 238

the power amplifier output with the input baseband signal and 239

apply distortion to the power amplifier input until the HPA 240

output replicates the input baseband signal. The distortion 241

function variables are continuously changed to reduce the 242

difference in the baseband signal and the HPA output. In 243

practice, HPA exhibits memory effects where the current 244

output depends on the previous input samples. Modelling 245

HPA accounting memory effects is a significant challenge in 246

transmitter systems. The modelling becomes more relevant 247

for SWIPT systems that harvest more power using HPAs’. 248

The nonlinearity of the HPA can be effectively captured with 249

the help of thememory polynomial model, which is discussed 250

in the next section. 251

1) MEMORY POLYNOMIAL MODEL FOR HPA 252

The model of the HPA is obtained from AM-AM and 253

AM-PM characteristics by the curve fittingmethod. Themost 254

commonly used model for curve fitting is the polynomial fit- 255

ting model. The polynomial fitting model is obtained through 256

the least-squares procedure, which minimizes the Euclidean 257

distance between the curve fitting function and the input 258

data. But the least-squares approach is based on instantaneous 259

values and will not capture any memory effect. To include the 260

memory effect, we must find a model that explicitly retains 261

the record of the time domain in its formulation. In this case, 262

using a Volterra series polynomial will be the best method 263

to include the memory effects. The precision of the Volterra 264
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FIGURE 1. Three types of users are generally considered under the SWIPT scenario. Here, the direction of information and power flow is indicated with
the help of arrowheads. The user involved in information transfer alone is regarded as an active user. The users who are not engaged in information
transfer will harvest energy from the base station. On the other hand, a SWIPT user adopting a power splitting scheme indulges in information and power
transfer simultaneously. In all the user cases, the transmitter uses DPD to compensate for IQ imbalance and amplifier non-linearities. Note: The
co-existing multiuser cases are not considered in this representation, but discuss the possibility of different users under the SWIPT scenario.

FIGURE 2. Transmitter model.

model rises with the number of terms in polynomial series,265

polynomial degree and memory depth. Further, the inclusion266

of cross-terms increases the number of terms and improves267

the accuracy of the Volterra model.268

As mentioned before, HPA nonlinearity will degrade the 269

system performance. The output of practical HPAwill depend 270

on the present and previous HPA input signals. This dynamic 271

behaviour of HPA is captured with the polynomial model. 272
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FIGURE 3. General Predistortion scheme.

Figure 3 depicts the general approach toward nonlinearity273

with memory based on the Volterra series. The baseband274

x(n) is fed to the DPD unit to yield the predistorted output275

y(n). This predistorted output is given to the HPA to gen-276

erate linear output z(n). The Volterra series is nothing but a277

multidimensional convolution sum. The T-tap finite memory278

representation of Volterra series with d dimensions and kd279

kernel as mentioned in Schetzen [37] is given by (6).280

z(n) =
D∑
d=1

zd (n) (6)281

where282

zd (n) =
T−1∑
t1=0

. . .

T−1∑
td=0

kd (t1, . . . , td )
d∏
i=1

y(n− ti),283

i = 1, 2, . . . , d − 1 (7)284

Here, changing the index variables makes it possible to bring285

out the significant diagonal entries as indicated in Raz and286

Van Veen [38].287

ni = ti+1 − ti (8)288

zd (n) =
T−1∑

n1=−T+1

T−1∑
n2=−T+1

. . .

T−1∑
nd−1=−T+1

hdn1,...,nd−1(n)289

∗

[
y(n)

d−1∏
i=1

y(n− ni)
]

(9)290

Here ∗ represents one-dimensional convolution with291

hdn1,...,nd−1(n) = kd (n, n+ n1, . . . , n+ nd−1) (10)292

From (10), it is clear that d th order Volterra output is nothing293

but the sum of linear filter outputs. Also, the filter input would294

be the multiplication of d different time shifts of the input295

signal given by296

y(n)
d−1∏
i=1

y(n− ni) (11)297

The memory polynomial model is nothing but a particular298

case of the Hammerstein model. [39]. The Hammerstein299

model is given by 300

zH (n) =
D∑
d=1

T−1∑
t=0

pdt yd (n− t) d = 1, 2, . . . ,D (12) 301

where pdt is a two-dimensional array representing the poly- 302

nomial non-linearity coefficients. Here, high sampling rate is 303

considered such that all the products up to D order are alias- 304

free. Choosing y(n)|y(n− t)|d−1 combinations [26] from the 305

Hammerstein model, we arrive at the polynomial model. 306

zP(n) =
D−1∑
d=0

T−1∑
t=0

pdt y(n− t)|y(n− t)|d (13) 307

Here index d represents the order of envelope. If we observe 308

in (13), the input samples yd (n − t) are considered at the 309

same time instant. Now, through Wiener model [40]we can 310

easily include cross terms that represents memory effects. 311

The Wiener model is given by 312

zW (n) =
D∑
d=1

pd

[ T−1∑
t=0

k(t)y(n− t)
]d

(14) 313

Using (9) and (11), we can find out cross-terms that represents 314

memory effects. Also, by looking into (13) and (14), we can 315

gather these cross terms and represent them as 316

D−1∑
d=0

qd y(n)
[ T−1∑
t=0

rt |y(n− t)|
]d

(15) 317

where qd and rt represent the polynomial nonlinearity coeffi- 318

cients and envelope filter coefficients, respectively. Combin- 319

ing (13) and (15), the memory polynomial is obtained as 320

zMP(n) =
D−1∑
d=0

T−1∑
t=0

pdty(n− t)|y(n− t)|d 321

+

D−1∑
d=1

qdy(n)
[ T−1∑
t=0

rt |y(n− t)|
]d

(16) 322

The pdt and qd coefficients are estimated using least-squares 323

solution, keeping rt fixed. The memory polynomial model 324

with cross terms is a better representation that mimics ampli- 325

fier nonlinearity when compared with the polynomial model. 326

2) DPD COEFFICIENT ESTIMATION 327

As discussed before, DPD can combine more than one type of 328

nonlinearity. So, we consider the blended influence of HPA 329

nonlinearity and IQ imbalance in the transmitter system. The 330

HPA nonlinearities will include compression and memory 331

effects. As discussed previously, the Volterra model will cap- 332

ture HPA nonlinearity. The DPD compare the input signal 333

and HPA output to estimate error. The DPD algorithm will be 334

adapted to minimize the error in the subsequent calculation. 335

The least mean squares (LMS) method calculates the new set 336

of DPD coefficients. Finding the new set of DPD coefficients 337

is by deriving the pth order inverse from thememory amplifier 338

output [37]. Since the inverse model is obtained as the output 339
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FIGURE 4. Inverse model for Predistortion.

of the amplifier, we call it post-distortion. Themodel is shown340

in Figure 4.341

To perform estimation, first, all the C coefficients are342

collected to form a vector v with dimension C × 1. Each343

component of v is associated with the signal having time344

samples over the period t = 1, 2, . . . ,T. The time samples345

form a vector with T × 1 dimension. Gathering these vectors346

together, we create the matrix Y with dimension T × C347

expressed as348

ẑ = Yv (17)349

Similarly, the inverse operation can be written as350

ŷ = Zv (18)351

The estimation error from the Figure 4 is expressed as352

e(n) = y(n)− ŷ(n) (19)353

The vector form of error is represented as354

e = y− ŷ (20)355

The least square solution that minimizes ‖e‖2 is given by356

v = (ZHZ )−1ZHy (21)357

The solution of (21) can be obtained using the Cholesky358

decomposition method by representing the set of linear equa-359

tions in the form.360

ZHZv = ZHy (22)361

3) IQ MODULATION AND DEMODULATION362

As mentioned, the feedback observation path critically363

impacts the transmitter’s overall performance and capability.364

In our analysis of the feedback observation path, we consider365

the IQ demodulator impairment. The impairments contain366

noise injection from the local oscillator (LO) due to phase367

noise and the interference in the I and Q paths of the demodu-368

lator. The impairments during IQ demodulation are visualized369

through the model [41] given in Figure 5. The imbalance370

in amplitude is modelled with the help of two linear gain371

amplifiers, U and V . The imbalance in phase ω observed372

between I and Q paths are represented by cross-talk among373

the two amplifiers.374

FIGURE 5. IQ imbalance model.

The modulated QAM signal is applied with a square-root 375

raised cosine (RRC) filter to perform pulse shaping and elim- 376

inate intersymbol interference (ISI). The window function 377

used in the RRC filtering operation is given by [42] 378

RRC =
cos(παtT )

1− ( 2αtT )
2 (23) 379

Hereα is the roll-of factor, and T represents filter length. Sim- 380

ilarly, another RRC filter has to be included before demodu- 381

lation to remove ISI. 382

4) AMPLIFIERS AND FILTERS 383

The PA driver amplifiers are considered ideal and do not 384

contribute much to the nonlinearity. Any distortion generated 385

by the PA driver will arise in the HPA response, and the DPD 386

can accommodate them. Since the significant contributor to 387

nonlinearity is HPA, it is essential to describe the HPA model 388

correctly. In the feedback path, the level of noise or sensitivity 389

of the DPD is with the low-noise amplifier (LNA) as dis- 390

cussed in Campo et al. [43]. Thus the LNA plays a significant 391

role in the observation path. Also, the passive components 392

like filters and attenuators influence the frequency character- 393

istics and the system’s input signal levels to the PA drivers 394

and the LNA. 395

B. RECEIVER SECTION 396

1) POWER SPLITTING 397

It is considered that AWGN appears in the channel while 398

receiving the signal at the SWIPT receiver, as shown in 399

Figure 6. The SWIPT receiver employs a power splitting 400

scheme at the receiver side. The PS architecture unfolds the 401

practical model that involves a concurrent transmission of 402

information and power. In the PS method, the signal is split 403

in the power domain with ρ ∈ (0, 1) as the PS factor. The PS 404

factor determines the amount of power given to the energy 405

harvesting module. The remaining 1 − ρ power is provided 406

to the Information Processing (IP) module. 407

2) ENERGY HARVESTING MODULE 408

Overall, RF-to-DC conversion and energy storage occur in 409

the energy harvesting module. The role of the antenna in 410

an energy harvesting circuit is to capture RF signals. The 411

100842 VOLUME 10, 2022



A. R. Nair, S. Kirthiga: Nature Inspired Approach Toward Elimination of Nonlinearities

FIGURE 6. Receiver model.

antenna’s gain, frequency, and efficiency hold a significant412

role in the successful operation of the energy harvesting413

circuit, as conveyed in Cansiz et al. [44]. As mentioned in414

Perez [45], the impedance matching reduces signal reflec-415

tions and guarantees maximum power transfer between the416

input antenna output and the Rectifier/Voltage Multiplier417

(RVM). Also, transmission loss from the antenna to the418

RVM circuit is reduced through impedance matching. So,419

if we use multiple antennas for energy harvesting modules,420

the proper impedance matching yields maximum harvested421

energy. Another issue in RVM is that the nonlinear com-422

ponents reduce the PCE of the energy harvesting circuit.423

The diode’s nonlinear characteristics and saturation effects424

at high received power significantly contribute to RVM non-425

linearity, as mentioned in Bonnin et al. [46]. Also, suppose426

the distance from the transmitter to the energy harvesting427

module increases. In that case, the transmitter’s drive power428

must also increase to maintain the minimum turn-on power429

required for the diode to operate. The harvested energy from430

the RVM module is stored in an energy storage unit. The431

storage unit can be a battery or a supercapacitor. Overall,432

energy harvesting is performed when there is a need to extend433

the user node’s lifetime. The harvested energy in the energy434

harvesting module is given by [8]435

Yeh = ηρPT |h|2T (24)436

η represents PCE, PT indicates transmitted power, h is the437

channel’s gain, and T is the duration of the transmission. PCE438

is given by [16]439

η =
Yeh
PR

(25)440

PR represents the received power.441

3) INFORMATION PROCESSING MODULE442

The LNA boosts the received signal well above the noise443

floor in the information processingmodule. Along with LNA,444

the BPF isolates the receiver to decode only the signal fre- 445

quencies of interest. The signal output from BPF is split and 446

applied to the mixer. The mixer generates the in-phase signal 447

output with the help of a local oscillator (LO). Similarly, the 448

quadrature is obtained using the 90◦ phase-shifted quadrature 449

oscillator signal. To remove any spectral tributaries, we apply 450

LPF after demodulation. After analog to digital conversion, 451

the I and Q parts of the signal is successfully decoded at the 452

baseband receiver. The SNR of the information processing 453

module is measured in the presence of amplitude imbalance 454

α and phase imbalance ω. This can be expressed as given 455

in [10]. 456

SNRip =

∣∣∣∣√1− ρζ

∣∣∣∣ (26) 457

where ζ represents IQ imbalance and is defined as ζ = −χ
ψ

458

Here χ = cosω − jαsinω and ψ = αcosω + jsinω 459

The signal obtained at the IP module is expressed as 460

Yip =
√
SNRip h Z + n (27) 461

The channel’s Additive White Gaussian Noise (AWGN) is 462

denoted by n. The probability of error Pip in the information 463

processing module is given by 464

Pip =
1
2

(
1− erfc

(√
Eb
No

))
(28) 465

where Eb/No(dB) = SNRip(dB)−10 log(log2(M )) is the nor- 466

malized SNR. Since power splitting is adopted at the receiver 467

side, the harvested energy and information processing rate 468

is done concurrently. The trade-off occurring here can be 469

visualized by the RE analysis, which is given by [8] 470

RE(Yeh,Rip) =
{
Yeh ≤ ηρPT |h|2T , 471

Rip ≤ log2

[
1+ SNRip

]}
(29) 472
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Algorithm 1 Dingo Optimization
1: procedure DOA
2: Define the objective function
3: Initialize the parameters of DOA:

Sea_Age,Max_Iter , Rand_val, P_hunt ,
Q_attack , β1, β2, na_Ini and na_End

4: Initialize Dingo positions
5: while Iter < Max_Iter , do
6: if Rand_val < P_hunt , then
7: if Rand_val < Q_attack , then
8: Perform the group attacking procedure
9: else Perform the persecution procedure
10: end if
11: else Perform the scavenging procedure
12: end if
13: Update Sea_Age having low survival rates
14: Calculate Pnew, fitness values of new agents
15: if Pnew < P∗, then
16: P∗ = Pnew
17: end if
18: Iter = Iter + 1
19: end while
20: Show the optimal solution
21: end procedure

4) PROBLEM FORMULATION473

The formulated problem is to maximize the harvested energy474

by fine-tuning the PS factor for a SWIPT system subject to475

RE tradeoff, probability of error and minimizing the mean476

squared error of DPD.477

max
0≤ρ≤1

Yeh478

s.t. C1 : ‖ẑ− Yv‖2 ≤ ‖e‖2479

C2 : Rip ≤ log2

[
1+ SNRip

]
480

C3 : BER ≤ Pip (30)481

III. NATURE INSPIRED APPROACH TOWARDS HPA482

LINEARIZATION483

A. DOA APPROACH TOWARDS HPA LINEARIZATION484

The DOA that imitates the hunting and social behaviour of485

Australian dingo dogs is given in Algorithm 1. The algorithm486

rules are based on three search strategies: attack, group tac-487

tics, and scavenging behaviour.488

1) GROUP ATTACK PROCEDURE489

The dingoes generally form a group and attack prey by find-490

ing the location and surrounding it. This attacking procedure491

is represented by (31).492

Pi(t + 1) = β1
na∑
k=1

[
Ak (t)− Pi(t)

]
na

− Pbest (t) (31)493

Here Pi(t) represents current Dingo position, Pi(t + 1) repre- 494

sents new Dingo position, na ∈ [2, Sea_Age2 ], where Sea_Age 495

represents number of search agents or Dingoes, Ak (t) subset 496

of total Dingoes that performs attack, where A ⊂ P, Pbest 497

represent position of the best search agent, β1 ∈ [−2, 2], 498

2) PERSECUTION PROCEDURE 499

Dingos chase the prey and catch them individually. This 500

behaviour can be expressed by (32) 501

Pi(t + 1) = P∗(t)+ β1 ∗ eβ2 ∗ (Pn(t)− Pi(t)) (32) 502

Here β2 ∈ [−1, 1], n is a randomly generated number 503

between 1 and total number of Dingoes, Pn(t) is the nth Dingo 504

selected where i 6= n. 505

3) SCAVENGING PROCEDURE 506

Dingoes sometimes feed on the decayed flesh of dead animals 507

while roaming around in their habitat. This behaviour can be 508

represented by (33) 509

Pi(t + 1) =
1
2

[
eβ2 ∗ Pn(t)− (−1)σ ∗ Pi(t)

]
(33) 510

where σ is a randomly generated number, σ ∈ 0, 1 511

4) SURVIVAL RATE 512

The Dingoes face illegal hunting and are facing the risk of 513

extinction. The survival rate of Dingo is given by 514

Survival(i) =
fitnessmax − fitnessi
fitnessmax − fitnessmin

(34) 515

Based on (34), Dingo with low survival rates are updated, 516

which is given by 517

Pi(t) = P∗(t)+
1
2

[
Pn1(t)− (−1)σ ∗ Pn2(t)

]
(35) 518

where Pi(t) represents Dingo with low survival rate, n1 and 519

n2 are randomly generated between 1 and total number of 520

Dingoes with ni 6= n2, Pn1(t) and Pn2(t) are the selected 521

search agents. 522

B. JSOA APPROACH TOWARDS HPA LINEARIZATION 523

The JSOA is based on the hunting habits of Arachnida Saltici- 524

dae as given inAlgorithm 2. Themathematical model is based 525

on hunting habits like prey search, persecution and jumping 526

skills. 527

1) PERSECUTION PROCEDURE 528

The spider takes stealthymoves to come closer to the prey and 529

sometimes jumps to catch the prey, known as the persecution 530

strategy. The persecution strategy can be represented as 531

Pi =
1
2
at2 + vot (36) 532

Pi shows the current position of the spider, t represents time, 533

and vo is the initial velocity. The acceleration is indicated by 534
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Algorithm 2 Jumping Spider Optimization
1: procedure JSOA
2: Define the objective function
3: Initialize the parameters of JSOA:

Sea_Age,Max_Iter , a, Vo, φ
4: Initialize Spider positions
5: while Iter < Max_Iter do
6: if Rand_val < attack_or_search, then
7: if Rand_val < p_attack , then
8: Perform the attack by persecution
9: else Perform the attack by jumping on prey
10: end if
11: else if Rand_val < q_search
12: Perform local search for prey
13 else Perform global search for prey
14: end if
15: end if
16: Update Sea_Age having low pheromone rates
17: if fitness values with Pnew < Pbest , then
18: Pbest = Pnew
19: end if
20: Iter = Iter + 1
21: end while
22: Show the optimal solution
23: end procedure

a = v
t , where v = P − Po. The new position of the jumping535

spider is represented by536

Pi(k + 1) =
1
2
(Pi(k)− Pn(k)) (37)537

where Pi(k) is the current search position, Pi(k+1) is the new538

search position, n is randomly generated between 1 and total539

number of spiders, Pn(k) is the randomly selected spider with540

i 6= n.541

2) JUMPING ON PREY542

During hunting, the spider jumps on its prey. This movement543

resembles a projectile motion. The motion along x-axis can544

be represented as545

Pi = vocos(α)ti546

dP
dt
= VP = Vocos(α)i (38)547

The motion along y-axis can be represented as,548

Qi =
(
vosin(α)t −

1
2
kt2
)
j549

dQ
dt
= VQ =

(
vosin(α)− kt

)
j (39)550

From (38) and (39), we arrive at the trajectory path represen-551

tation, which is given by552

Q = Ptan(α)−
kP2

2vo2cos2(α)
(40)553

Finally, the new position Pi(k+1) of the spider incorporating 554

trajectory can be represented as 555

Pi(k + 1) = Pi(k) tan(α)−
kP2i (k)

2V 2
o cos2(α)

556

α =
φπ

180
(41) 557

Here k represents gravity, and the angle α is calculated from 558

randomly generated angle φ, where φ ∈ (0, 1). 559

3) SEARCHING FOR PREY 560

The spider roams around in its habitat and searches for prey. 561

The prey search can be a local search or a global search. 562

The local search is given by 563

Pi(k + 1) = Pbest (k)+ R (
1
2
− ψ) (42) 564

Here Pi(k+1) is the new position of the spider, Pbest (k) is the 565

best spider position from the previous iteration, R ∈ (−2, 2) 566

and ψ ∈ (0, 1) are randomly generated numbers. 567

The global search is represented by 568

Pi(k + 1) = Pbest (k)+ (Pbest (k)− Pworst (k)) C (43) 569

Pi(k+1) represents the updated spider position,Pbest (k) is the 570

best spider position, Pworst (k) is the worst spider position, C 571

is a random number following Cauchy distribution. 572

4) PHEROMONE RATE 573

The spiders release chemical substances called pheromones, 574

causing behavioural changes. The pheromone rate is given by 575

Pheromone(i) =
fitnessmax − fitnessi
fitnessmax − fitnessmin

(44) 576

Here fitnessmin indicates the best values of the objective 577

function, fitnessmax indicates the worst values of the objective 578

function, fitnessi represents current value of objective func- 579

tion. From (44), spider positions with low pheromone rates 580

are updated as 581

Pi(k) = Pbest (k)+
1
2

[
Pn1(k)− (−1)σ ∗ Pn2(k)

]
(45) 582

Here Pi(k) represents spider with low pheromone rate, n1 and 583

n2 are randomly generated between 1 and total number of 584

spider population with n1 6= n2, Pn1(k) and Pn2(k) are the 585

selected spider agents, and σ ∈ {0, 1} is a binary number 586

randomly generated. 587

C. SOA APPROACH TOWARDS HPA LINEARIZATION 588

Seagulls are sea birds that utilise their intelligence to search 589

and pound their prey. The SOA algorithm mimics seagull 590

migration, and attacking behaviour is given in Algorithm 3. 591

1) MIGRATION 592

Seagulls perform a seasonal movement from one place to 593

another in search of food. The SOA avoids collisions while 594
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Algorithm 3 Seagull Optimization
1: procedure SOA
2: Define the objective function
3: Initialize the parameters of SOA:

Sea_Age,Max_Iter , A, B, fc, u, v
4: Initialize Seagull positions
5: while Iter < Max_Iter do
6: Compute fitness function
7: Start migration behaviour
8: Generate random number rd
9: Generate random number k
10: Start attacking behaviour
11: Perform spiral behaviour
12: Calculate distance
13: Compute x, y, z planes
14 Save the best solution
15 Update Seagull positions
16: Iter = Iter + 1
17: end while
18: Display the best solution
19: end procedure

selecting the initial positions. The collision-free assignment595

of initial positions is ensured with (46).596

Ci = U × Pi(x) (46)597

Here Ci represents the collision-free Seagull position or loca-598

tion, Pi(x) is the present location of the Seagull, and x denotes599

the iteration number. The parameter U indicates the move-600

ment of the Seagull, which is given by601

U = f − (x × (f /Max_Iter)) (47)602

where x = 0, 1, 2, . . . ,Max_Iter , Max_Iter represents the603

maximum number of iterations, f is a linearly decreasing604

variable used to specify the frequency of using the variableU .605

Once collision-free positions are allocated, Seagull moves606

towards the best neighbour’s direction. This movement is607

represented as608

Mi = E × (Pbest (x)− Pi(x)) (48)609

Mi indicates the position of Seagull of Pi towards the best610

Seagull position, which is denoted by Pbest , E is a balancing611

variable randomly calculated by (49).612

E = 2× U2
× RN (49)613

where RN ∈ [0, 1] is a randomly generated number. Finally,614

in migration, the Seagull needs to update its position near to615

the best Seagull position. The position update is characterised616

as617

Di = |Ci +Mi| (50)618

Here Di represents the distance between the current Seagull619

position and the best Seagull position.620

Algorithm 4Mexican Axolotl Optimization
1: procedureMAO
2: Define the objective function
3: Initialize the parameters of MAO:

Sea_Age,Max_Iter , Pop, FPop, MPop, dp, rp, k , λ
4: Initialize Axolotl positions
5: while Iter < Max_Iter do
6: Classify the population in to maleMPop

and female FPop
7: Start transition procedure
8: Select the bestMPop and FPop based on

objective function
9: Inverse the probability of transition
10: UpdateMPop and FPop
11: Start Accidents procedure
12: Perform regeneration process
13 Start new life procedure
14: Perform assortment process
15: Compute the value of objective function
16: Select the best solution
17: Iter = Iter + 1
18: end while
19: Show the best solution
20: end procedure

2) ATTACKING 621

The Seagull changes its altitude, speed and angle of attack 622

according to the learning experience during the search pro- 623

cess. While a seagull attacks prey, it performs a spiral move- 624

ment. This movement along the x, y, and z planes is repre- 625

sented in (51)-(53). 626

Mx = r × cos(φ) (51) 627

My = r × sin(φ) (52) 628

Mz = r × φ (53) 629

r represents spiral radius as given in (54). φ in the range 630

[0 ≤ φ ≤ 2π ] is randomly generated. 631

r = a× eφb (54) 632

Here, a and b are spiral shape constants, and e represents the 633

natural logarithm. Finally, the updated location of the Seagull 634

with respect to the best seagull location is described as 635

pi(x) = (Di ×Mx ×My ×Mz)+ Pbest (x) (55) 636

Here pi(x) indicate the best solution. 637

D. MAO APPROACH TOWARDS HPA LINEARIZATION 638

The MAO algorithm that mimics the life of Axolotl is given 639

in Algorithm 4. Axolotl is a Salamander seen in the lakes of 640

Mexico city. The algorithm is motivated by the labour, repro- 641

duction, repair of tissues and behaviour of Axolotl in the 642

aquatic environment. 643
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1) TRANSITION FROM LARVAE TO ADULT644

The total Axolotl population, p(M ,F)j is divided into two645

subpopulations, namely male populationMj and female pop-646

ulation Fj. Axolotl will adjust body part’s colour towards647

male or female in the environment. Thus, Axolotl begins it’s648

the transition from larvae to adult. The inverse probability649

calculation with male and female populations is given by650

p(M ,F)j =
obj(Mj,Fj)∑
obj(Mj,Fj)

(56)651

If the inverse probability of male axolotl is larger than the652

random value, then the male population needs to be updated.653

Mji = Mji + (Mbest,i −Mji) ∗ γ (57)654

Mji represents male Axolotl, i represents the position,Mbest,i655

is the best-adapted male chosen by the best value of the656

objective function, and γ ∈ [0, 1] represents the transition657

parameter. The male Axolotl can also do a random transition658

according to the optimization function.659

Mji = Mini + (Maxi −Maxj) ∗ Ri (58)660

Ri ∈ [0, 1] is a randomly generated number, Mini and Maxi661

represents the minimum and maximum dimension values of662

the of the objective function. Similarly, If the inverse proba-663

bility of female axolotl is larger than the random value, then664

the female population needs to be updated.665

Fji = Fji + Fbest,i − Fji ∗ γ (59)666

Fji represents female Axolotl, i represents the position, Fbest,i667

is the best-adapted female chosen by the best value of the668

objective function. The female Axolotl can also do a random669

transition according to the optimization function.670

Fji = Mini + (Maxi −Maxj) ∗ Ri (60)671

The above calculations update the best values of male and672

female Axolotls.673

2) INJURY AND RESTORATION OF AXOLOTL674

The Axolotls are prone to accidents and may develop injuries675

while moving into the water. Here, we need to perform the676

injury and restoration procedure. The process is described as677

Pji = Mini + (Maxi −Mini) ∗ Ri (61)678

3) NEW LIFE PROCEDURE679

For every male, a female is selected to produce offspring.680

The male axolotl produces spermatophores, and the female681

collects them. Here we assume every reproduction process682

involving a male and female axolotl contains two eggs. The683

newly formed individuals will compete with the parents after684

hatching. If the young returns the best value for the objective685

function, the parents are replaced by the young.686

Algorithm 5 Black Widow Optimization
1: procedure BWOA
2: Define the objective function
3: Initialize the parameters of BWOA:

Sea_Age,Max_Iter , Rand_val, β, m
4: Initialize Spider positions
5: while Iter < Max_Iter do
6: if Rand_val < 0.3, then
7: Perform the linear movement
8: else Perform the spiral movement
9: end if
10: Calculate pheromone values of each agent
11: Update Sea_Age having low pheromone rates
12: Calculate Pnew, fitness values of new agents
13: if fitness values with Pnew < Pbest , then
14: Pbest = Pnew
15: end if
16: iter = ier + 1
17: end while
18: Show the optimal solution
19: end procedure

E. BWOA APPROACH TOWARDS HPA LINEARIZATION 687

The BWOA, inspired by the movement and mating behaviour 688

of black widow spiders, is given by Algorithm 5. These 689

spiders are commonly seen in western parts of Canada and 690

Southern regions of Mexico. 691

1) SPIDER MOVEMENT 692

The black widow shows both linear and spiral movements. 693

This is represented by 694

Pi(t + 1) =

{
Pbest (t)− m Pn1(t), if rand() < 0.3,
Pbest (t)− cos(2πγ ) Pi(t), otherwise.

695

(62) 696

Here Pi(t + 1) represents the spider’s updated position, 697

Pbest (t) is the spider with best value from the last itera- 698

tion, m ∈ [0.4, 0.9] is a random number, n1 is a random 699

number generated between 1 and the maximum number of 700

spiders, Pn1 is the n1th search agent selected, with i 6= 701

n1, γ ∈ [−1, 1] is randomly generated, and Pi(t) represents 702

the current spider position. 703

2) PHEROMONES 704

The pheromones play a major role in black widow mating 705

behaviour. Sometimes, the female spider eats the male spider 706

after or during mating to increase the chance of fertilization. 707

So, the male spider chooses to avoid cannibalism and does 708

not prefer a female spider with a low pheromone rate. The 709

pheromone rate is given by 710

Pheromone(i) =
fitnessmax − fitnessi
fitnessmax − fitnessmin

(63) 711
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TABLE 1. Simulation parameters and their values.

Here fitnessmin indicates the best values of the objective712

function, fitnessmax indicates the worst values of the objective713

function, fitnessi represents current value of objective func-714

tion. From (63), spider positions with low pheromone rates715

are updated as716

Pi(t) = Pbest (t)+
1
2

[
Pn1(t)− (−1)λ ∗ Pn2(t)

]
(64)717

Here Pi(t) represents spider with low pheromone rate, n1 and718

n2 are randomly generated between 1 and total number of719

spider population with n1 6= n2, Pn1(t) and Pn2(t) are the720

selected spider agents, and λ ∈ {0, 1} is a binary number721

randomly generated.722

IV. RESULTS AND DISCUSSION723

In this section, through the computer simulations, we ana-724

lyze the impact of HPA in SWIPT. The parameters corre-725

sponding to baseband modulation, and HPA simulation is726

given in Table 1. The simulation is performed for 4, 8, 16,727

and 32-QAM schemes. The Amplifier Gain and Saturation728

are considered from Jang et al. [9], Amplifier Input power,729

Memory Depth (Length) and Non-linearity Order (Degree)730

are set based on Mukherjee et al. [16], and Amplitude and731

Phase Imbalance values are selected from Nair et al. [8].732

Overall we consider PCE and RE analysis for evaluat-733

ing the impact of DPD in SWIPT systems. Two types of734

DPD systems are applied to the transmitter side. The first735

is a conventional DPD system that finds the DPD coef-736

ficients through a least-squares solution. The second one737

is computing DPD coefficients through bio-inspired algo-738

rithms. A memory polynomial model characterizes the HPA739

with a standard LTE compliant signal and sampling rate740

of 15.36 MHz. The complex baseband IQ signals with IQ741

imbalance are loaded first into the power amplifier. Then the742

DPA coefficient matrix is determined using the least-squares743

solution of actual PA input data. The PCE and RE analysis is744

done at the receiver side. Then DPA is performed using adap-745

tive bio-inspired algorithms, which showed improvement in746

the linearity of the SWIPT HPA transmitter. For both DPD747

methods, we analyze the PCE and RE with and without DPD748

assistance on the receiver side.749

A. AM-AM AND AM-PM DISTORTION750

The analysis of AM-AM distortion and AM-PM distortion in751

the transmitter section for the Ideal HPA and Practical HPA is752

FIGURE 7. AM-AM and AM-PM distortion in transmitter.

FIGURE 8. Power added efficiency comparison of HPA.

depicted in Figure 7. The ideal characteristic of HPA is linear, 753

which is indicated by a straight line. But in a practical HPA 754

case, the output increases nonlinearly due to compression 755

when the amplifier’s input level goes above the saturation 756

point. The scattered points represent the memory effect. The 757

memory effect occurs when the amplifier outputs depend on 758

the current input and the signal at the previous instant. The 759

graph would have contained only two straight lines repre- 760

senting instantaneous responses without memory effects. The 761

memory effect further complicates the HPA problem. So, for 762

the SWIPT transmitter, a practical HPA represented by the 763

memory polynomial model is considered. 764

Further, Figure 8 depicts the behavioural difference 765

between ideal HPA and practical HPA in standard param- 766

eters like gain, output power, and Power Added Efficiency 767

(PAE). The most common parameter used to indicate high 768

power amplifier efficiency is drain efficiency. But, a practical 769
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FIGURE 9. Performance of conventional DPD assisted HPA.

HPA can deliver high drain efficiency with low gain. So, the770

PAE parameter is used here to analyze the amount of DC771

input power that contributes to power amplification. Unlike772

drain efficiency, the PAE shows the power utilized by the773

HPA. Thus the PAE characteristics also capture the nonlinear774

behaviour of HPA. So here, we apply DPD to linearize the775

HPA in the transmitter.776

B. CONVENTIONAL DPD ASSISTED HPA777

The DPD coefficients are extracted based on the memory778

depth and degree of the HPA polynomial model. Here the PA779

model is created based on half of the available PA dataset.780

The DPA distorts the signal before transmission by creating781

an inverse of the HPA characteristic. The linearity results782

of conventional DPD-assisted HPA are shown in Figure 9.783

The HPA characteristics with DPD approximate the ideal784

amplifier behaviour. Now the effect of DPD is analysed on785

the receiver side with the 16-QAM system as an example.786

At first, the data symbols are randomly generated. Then the787

signal is upsampled, and pulse shaping is performed using788

RRC with filter length T = 10 and roll-off factor α = 0.25.789

The filtered signal is passed through the AWGN channel. The790

received signal is downsampled with the same oversampling791

factor and raised cosine filtering. The delay induced due to792

the filtering operation is also accounted for here. Now the793

received signal is demodulated, and symbols are recovered.794

The QAM constellation of the received signal with and with-795

out DPD is shown in Figure 10. The BER analysis with and796

without DPD assistance is given in Table 2. The Eb/No is797

set accordingly to obtain a BER rate in the 10−6 range. Due798

to nonlinearity, the BER rate increases as we move from the799

4-QAM to the 16-QAM scheme. Consequently, EB/No has800

to be increased to keep BER in the 10−6 range. As observed801

from Table 2, with the help of DPD, the distortion caused by802

FIGURE 10. QAM constellation of the received signal.

the PA is effectively removed. To understand the impact of 803

DPD in energy harvesting, PCE is analysed with and without 804

DPD assistance. 805

C. PCE ANALYSIS WITH CONVENTIONAL DPD 806

Figure 11 captures the impact of HPA nonlinearity on PCE. 807

The PCE is also compared for different QAM schemes with 808

and without the assistance of DPD in Table 3. The transmit 809
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TABLE 2. BER values with and without DPD assistance.

FIGURE 11. Power conversion efficiency of SWIPT receiver.

TABLE 3. Power conversion efficiency.

power is set from −20 dB to 10 dB. The minimum transmit810

power required for energy harvesting is −8dB. We observe811

that PCE increases from 4-QAM to the 32-QAM scheme.812

A maximum PCE of 57.24% is obtained for the 32 QAM813

scheme with DPD. Also, PCE is improved by 10.32% com-814

pared with 32 QAM without DPD assistance. The DPD815

showed improvement of about 4% for 16QAM, 1.42% for816

8QAM, and 0.24% for 4 QAM. The compromise between817

harvested energy and information rate for a conventional818

DPD-assisted SWIPT system is visualized through the RE819

region.820

D. RE ANALYSIS WITH CONVENTIONAL DPD821

The RE region analysis sets bounds and limits the overall822

performance of the SWIPT PS system as expressed in (29).823

We consider the same transmission power and efficiency824

as discussed in the previous section. The power splitting825

ratio ρ is varied between 0 and 1. All the symbols are826

assumed to have unit power. The complex AWGN produced827

during power splitting is considered to have zero mean and828

FIGURE 12. Rate energy region of SWIPT receiver.

TABLE 4. Rate energy for conventional DPD.

variance 2σ 2. The complex AWGN encompasses noise due 829

to antenna and processing of data. The rate energy for con- 830

ventional DPD is given in Table 4. 831

E. BIO-INSPIRED DPD ASSISTED HPA 832

The bio-inspired algorithm-based DPD is adopted for HPA 833

linearization. The HPA assumes the same memory poly- 834

nomial model. The parameters and values used in the 835

bio-inspired algorithms are given in Table 5. The combination 836

of bio-inspired pre-distorter and HPA produces linear char- 837

acteristics, which are portrayed in Figure 13. This linearity is 838

exhibited till the point of saturation of HPA. To compare the 839

performance of bio-inspired DPD assisted HPA with the con- 840

ventional DPD assisted HPA, and the same 16-QAM scheme 841

is selected. 842

In Table 6, the linearity and performance of the 843

bio-inspired DPD are compared using metrics, namely Fisher 844

Discriminant Ratio (FDR), Mean of Slope (MS), and Mean 845

of Phase Difference (MPD). 846

The BER values for bio-inspired DPD-assisted SWIPT are 847

provided in Table 7. The BER analysis is performed with the 848

same Eb/No value as in the conventional DPD case. Among 849

all the bio-inspired algorithms, the SOA performs better 850

for the 16-QAM scheme. The metrics indicated in Table 6 851
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TABLE 5. Algorithm parameters.

TABLE 6. Comparison metrics for HPA linearization.

TABLE 7. BER values for bio-inspired DPD assisted SWIPT.

TABLE 8. BER comparison of conventional and bio-inspired DPD.

interpret this performance. The SOA has FDA ≤ 0.06 with852

the least slope and MPD value in 5.5 < MPD < 6.28. Sim-853

ilarly, the underperformance of DOA compared to conven-854

tional DPD can also be visualized. But, in the case of DOA,855

the PCE and harvested energy are better than conventional856

DPD, which is discussed in the next section.857

F. PCE ANALYSIS WITH BIO-INSPIRED DPD858

The PCE analysis for bio-inspired DPD is given in Figure 14,859

and Table 9 provides the comparison with conventional860

DPD. Here DOA performs the best when compared with861

all other bio-inspired algorithms. Since the BER value of862

DOA is slightly more than conventional DPD, we conclude863

that the increase in PCE of DOA is due to the erroneous864

bits. To emphasise this point, if we observe the PCE of865

the 32-QAM scheme, DOA has a considerable increase in866

maximum PCE of 77.11%. This increase is 6.23% more than867

the JSOA, which comes next in the 32-QAM PCE category.868

The PCE value for MAO appears to be the least compared869

to all the other bio-inspired algorithms but holds a better 870

BER rate, as discussed in the previous section. If we look 871

for a fair BER rate and aim to harvest a reasonable amount 872

of energy simultaneously, SOA would be the best option. 873

Here, RE analysis gives a better picture of the simultaneous 874

transmission of energy and information. Here, RE analysis 875

provides a better view of the simultaneous transmission. 876

G. RE ANALYSIS WITH BIO-INSPIRED DPD 877

The rate energy analysis for bio-inspired DPD-assisted HPA 878

is given in Figure 15, and Table 10 provides the maximum 879

energy and maximum rate achieved for different user scenar- 880

ios. The results show that DOA performs the best among all 881

three users. The maximum energy of 12 µW is obtained for 882

DOA under the 32-QAM scheme. Here the harvested energy 883

is 18.94 µW more when compared to JSOA under the same 884

32-QAM scheme. But, as discussed previously, this improve- 885

ment in harvested energy and information rate is due to the 886

erroneously received bits. For a SWIPT user employing a 887
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TABLE 9. Power conversion efficiency for bio-inspired algorithms.

TABLE 10. Rate energy for bio-inspired algorithm based DPD.

TABLE 11. Comparison of rate-energy with existing benchmark literature works.

32-QAM scheme, the MAO, SOA, and BWOA give a max-888

imum information rate of 4.53, 4.63 and 4.67 bits/channel889

use. The maximum harvested energy yielded for the SWIPT890

user using the above algorithms is obtained as 35.95,891

40.69 and 43.15 µW respectively. A comparison between the892

bio-inspired approach and the existing benchmark literature893

works is given in Table 11. The results are compared for an894

SNR value of 20dB. The harvested energy in the proposed895

work increases from 4.71µW to 121.73µW when we move 896

from 4-QAM to the 32-QAM scheme but maintain a fair 897

information rate. On the other hand, the trend of benchmark 898

schemes is that the harvested energy decreases whenwemove 899

from 4-QAM to the 32-QAM scheme. The reason is that in 900

the proposed work, the bio-inspired algorithm focuses more 901

on energy harvesting by maintaining a fair information rate 902

close to the benchmark schemes. 903
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FIGURE 13. Performance of Bio-inspired DPD assisted HPA.

TABLE 12. Computational complexity of bio-inspired algorithms.

H. COMPUTATIONAL COMPLEXITY904

The computation complexity of the bio-inspired algorithms905

is calculated with the input size n. For example, if we906

denoteO(log n), then it conveys that computational complex-907

ity increases log(n) times for any increase in ‘n′. Table 12908

shows that DOA has the least computational complexity of909

O(n log 2n). The complexity value substantiates the increase910

in BER and PCE for the DOA algorithm. Similarly, JSOAwas911

unable to perform well because of high computational com-912

plexityO(n2 log 2n) compared to other algorithms. The SOA,913

FIGURE 14. Power conversion efficiency of SWIPT receiver after applying
Bio-inspired DPD.

MAO and BWOA have the same computational complexity 914

ofO(n log 4n), and these algorithms attained closer results in 915

BER, PCE and RE analysis. 916

I. COMPARISON WITH PREVIOUS WORK 917

Table 13 compares our work with existing SWIPT energy 918

harvesting models. The maximum harvested energy obtained 919

in the existing articles is converted to dBmW for a fair 920

comparison. As discussed at the beginning of this section, 921

the conventional DPD uses the least-squares algorithm to 922

eliminate the nonlinearity present in HPA. The least-square 923

algorithm that works on model fitting minimizes the differ- 924

ence between the input and output of HPA are skewed with 925

initial and extreme values. Although the least-square algo- 926

rithm works well in typical wireless communication systems, 927

it lacks performance in a dynamic scenario like the SWIPT 928

system, which focuses simultaneously on energy harvesting 929
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TABLE 13. Comparison with previous work on SWIPT based Energy Harvesting.

FIGURE 15. Rate energy region of SWIPT receiver after applying
Bio-inspired DPD.

and information rate. Also, depending on the demand for930

harvested energy, the SWIPT system must switch between931

the modulation scheme accordingly.932

V. CONCLUSION 933

The SWIPT enables the wireless networks to transfer energy 934

and information simultaneously. The significant problem 935

faced by the SWIPT system during practical implemen- 936

tation is hardware impairment. The hardware impairment 937

assumed in this work is the combined effect of In-phase and 938

Quadrature imbalance and High Power Amplifier nonlinear- 939

ity. A DPD-assisted M-ary modulated SWIPT transmitter is 940

considered to compensate for the nonlinearity caused due to 941

hardware impairments. Comparedwith SWIPTwithout DPD, 942

the conventional DPD-assisted SWIPT harvested maximum 943

energy of 25.06 µW and exhibited a maximum improve- 944

ment of 10.32% in PCE under the 32-QAM scheme keep- 945

ing the BER rate in the range of 10−6. Then conventional 946

DPD is replaced with bio-inspired algorithms such as Dingo 947

Optimization, Jumping Spider Optimization, Seagull Opti- 948

mization, Mexican Axolotl Optimization, and Black Widow 949

Optimization. Among the various bio-inspired algorithms 950

Seagull Optimisation algorithm harvested maximum energy 951

of 35.95µW and showed a maximum improvement of 6.45% 952

in PCE compared to conventional DPD. The limitation of 953

using bio-inspired DPD is the increase in complexity and 954

hardware cost of the system. The recommended future direc- 955

tion of the work is to use other bio-inspired algorithms to 956

improve PCE and harvested energy by keeping a fair bit error 957

rate. Practical HPA with memory effects can be modelled 958

through bio-inspired algorithms based on the optimal design 959

to reflect the ideal power and gain characteristics of the ampli- 960

fier. Also, the SWIPT system can be modelled and visualised 961

in a co-existing multi-user environment. 962
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