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ABSTRACT The greatest challenge faced by the Simultaneous Wireless Information and Power Transfer
(SWIPT) system during implementation is hardware impairment. This article proposes a bio-inspired digital
pre-distortion scheme to overcome the high power amplifier nonlinearity and in-phase and quadrature
imbalances in the SWIPT system. Here, the memory polynomial model characterises the high power
amplifier. The digital pre-distortion algorithm uses the latest bio-inspired methods: Dingo Optimization,
Jumping Spider Optimization, Seagull Optimization, Mexican Axolotl Optimization, and Black Widow
Optimization. The power conversion efficiency, harvested energy, and rate energy region at the receiver
side analyse the efficiency of bio-inspired digital pre-distortion enabled SWIPT. Among the various bio-
inspired algorithms, the Seagull Optimisation Algorithm gave a maximum harvested energy of 35.95 uW,
keeping a Bit Error Rate of 1.33 x 107 for the 32-QAM scheme. The Seagull Optimisation Algorithm also
showed a maximum improvement of 6.45% in power conversion efficiency compared to the conventional
digital pre-distortion scheme.

INDEX TERMS Bio-inspired, digital pre-distortion (DPD), energy harvesting, high power amplifier
(HPA) nonlinearity, hardware impairments, in-phase and quadrature (IQ) imbalance, simultaneous wireless
information and power transfer (SWIPT).

I. INTRODUCTION
The Simultaneous Wireless Information and Power Trans-

Conversely, the separation is accomplished through the power
domain in PS architecture. In Kang et al. [3], the ideal infor-

fer (SWIPT) enabled Energy Harvesting (EH) is a trending
technology and a possible candidate for 6G enabled wireless
communication networks [1]. The SWIPT technology, which
performs information transfer and power extraction simulta-
neously, was initially proposed in “Transporting information
and energy simultaneously” by Varshney [2]. It is inspired by
green communications that create self-sustainable wireless
nodes. The SWIPT technology can provide power to far away
nodes that face severe fading conditions

The practical implementation of SWIPT is performed
mainly through two architectures: Time Switching (TS) and
Power Splitting (PS). The separation of information and
energy is performed in the time domain for TS architecture.
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mation transmission model based on SWIPT PS and TS archi-
tectures is discussed. However, as given in Perera et al. [4],
the practical implementation of SWIPT brings in many chal-
lenges in the form of hardware impairments such as IQ
(In-phase and Quadrature-phase) imbalance and High Power
Amplifier (HPA) nonlinearities.

The IQ imbalance that is caused due to the non-
orthogonality of I and Q branches at transmitter and receiver
sections is elaborated in Schenk [5]. This non-orthogonality
is expressed in terms of amplitude imbalance and phase
imbalance. The IQ imbalance distorts signal constellation
during decoding operation and affects symbol detection rate.
For 0.2 dB imbalance in amplitude and 2° of imbalance
in phase at transmitter produces 25dB of carrier suppres-
sion. This imbalance will reduce the signal-to-noise ratio
(SNR) by 1dB at the receiver side, as mentioned in Tsou [6].
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In Nair et al. [7], the estimation and compensation with
SNR and BER (Bit Error Rate) performance analysis for
the SWIPT PS system under IQ imbalance is investigated.
Also, a bio-inspired approach to analyze energy harvesting
in SWIPT system under IQ imbalance was performed in
Nair et al. [8]. For the last few years, despite the mentions in
the literature about IQ imbalance problems that affect SWIPT
performance, a few have tried to address them.

The SWIPT must use high-power transmitters to harvest
significant energy during implementation. So the impair-
ments due to HPA nonlinearities gain more importance in
SWIPT systems when compared to typical wireless commu-
nication systems. Also, the efficiency of the SWIPT system is
dependent on HPA performance. The initial efforts to study
the effect of HPA nonlinearities and HPA harmonics in the
SWIPT system were made in Jang et al. [9] and Nair and
Kirthiga [10] respectively. Here the power spectrum showed
a decrease of 23 dBc in the presence of HPA nonlinearity
and approximately 3dB reduction in output power. There are
multi-tone methods suggested in Park et al. [11] for compen-
sation of HPA nonlinearities in the SWIPT system. Also, the
SWIPT system adopting practical M-ary modulation with-
out considering any nonlinearities was first mentioned in
Liu et al. [12]. But, to the best of our knowledge, no work
in the literature has analyzed the combined effect of HPA
nonlinearity and IQ imbalances in SWIPT-enabled wireless
communication systems under M-ary modulation schemes.
However, performing critical impact analysis and suggesting
compensation for nonlinearities in SWIPT under existing
M-ary modulation schemes is essential.

Two conventional remedies are suggested to overcome
HPA nonlinearities in Radio Frequency (RF) systems, as indi-
cated by Schenk [5]. The first is to use linear components in
the RF front end, and the second is to put in measures for
input power backoff before feeding the signals to RF ampli-
fiers. The drawback of the first remedy is that it increases
the total cost incurred in the RF front end. The second
remedy is inefficient in terms of power consumption and
efficiency. The input backoff in the —5dB to 15dB range
for SWIPT delivers only an average PA efficiency of about
60% as mentioned in Chen ef al. [13]. However, integrat-
ing Digital Pre-Distortion (DPD) into the communication
setup allows the transmitter to operate near or above the
saturation point of the PA, thereby eliminating the need
for input power backoff. Even though the DPD solution’s
cost is more, it can be quickly recovered in two years due
to its reduced electricity consumption. Moreover, the DPD
can combine more than one nonlinearity problem in the
RF front end, as mentioned in Sun ef al. [14]. Therefore,
a Digital Pre-distortion Algorithm (DPA) is suggested to
circumvent the IQ imbalance and HPA nonlinearity problem
in SWIPT. The DPA measures the presence of nonlineari-
ties in HPA and computes an inverse operation to linearise
the HPA effectively. Joint mitigation of IQ imbalance and
HPA nonlinearity in MIMO systems using DPA 1is discussed
in Khan et al. [15]. In Mukherjee et al. [16], an adaptive
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algorithm for estimating HPA nonlinearity in the SWIPT
system 1is first proposed. Also, bio-inspired algorithms like
Particle Swarm Optimization (PSO), Grey Wolf Optimizer
(GWO), Hybrid PSO-GWO algorithm (HPSOGWO), and
Binary Coyote Optimization Algorithm (BCOA) are suitable
for solving complex engineering problems, as mentioned in
Negi et al. [17] and Leandro et al. [18], [19]. The DPA based
on bio-inspired algorithms applied to typical wireless com-
munication systems is also efficient. A PSO algorithm-based
digital pre-distorter is used in Abdelhafiz ef al. [20]. The
HPA linearization using Artificial Bee Colony (ABC) was
performed in Bipin and Rao [21]. The DPA based on Hill-
Climbing (HC) heuristics and Genetic Algorithm (GA) is
performed in Wang [22].

There are several models available for representing the
nonlinearities in HPA. These models capture Amplitude-
to-Amplitude (AM-AM) distortion or Amplitude depen-
dent Phase (AM-PM) distortion or both, as mentioned in
Tsou et al. [23]. The AM-AM distortion represents nonlin-
earity as the difference in input voltage and the envelope
of RF amplifier output. The AM-PM distortion is the unde-
sired phase modulation generated in the RF amplifier output
due to the nonlinear capacitors and power supply variations
in input voltage. The commonly used models for HPA are
ideal clipping amplifier, travelling wave tube amplifier, solid-
state amplifier, and memory polynomial models. The ideal
clipping amplifier, which captures only the AM-AM distor-
tion, shows the clipping of amplifier input beyond the PA
saturation level. The travelling wave tube amplifier, which
can work in broad ranges, can capture both AM-AM and
AM-PM distortion but has a disadvantage of very low power
efficiency as described in Paoloni er al. [24]. The solid-state
power amplifier (SSPA) that resembles the behaviour of
HPA can capture only AM-AM distortion, as mentioned in
Khalfet and Krikidis [25]. The HPA is best modelled by
the memory polynomial model that simultaneously captures
AM-AM and AM-PM distortion, as described in Kim and
Konstantinou [26].

In Huang et al. [27], the general energy harvesting mod-
els used in wireless communication are mentioned. These
energy harvesting models are used in [28], [29], and [30] for
solving energy maximization problems in wireless networks.
In Liu et al. [12], a practical visualization of energy harvest-
ing with an M-ary modulation scheme in the SWIPT sys-
tem was implemented. Nevertheless, these energy harvesting
models mentioned above do not incorporate the hardware
impairment aspects. The following observations from the
literature helped to frame the proposed problem. 1) There
are only a few works in literature that focus on the practical
implementation of SWIPT involving hardware impairments
such as IQ imbalance and HPA nonlinearities. [4]. 2) DPD can
combine more than one problem Sun ef al. [14]. 3) A conven-
tional DPD, when applied to the SWIPT system with HPA
nonlinearities, yielded good results. [16]. 4) A bio-inspired
DPD performs well in typical wireless communication
systems [20], [21], [22].
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Since the SWIPT system needs to derive a significant
amount of energy, Power Conversion Efficiency (PCE)
appearing because of RF to DC conversion should also be
considered a hardware impairment in the SWIPT system. The
overall efficiency of the SWIPT system has to be visualized
through the Rate Energy (RE) region.

In this article DPD assisted SWIPT is simulated and ana-
lyzed using the latest and efficient bio-inspired techniques
such as Dingo Optimization algorithm (DOA) [31], Jumping
Spider Optimization algorithm (JSOA) [32], Seagull Opti-
mization algorithm (SOA) [33], Mexican Axolotl Optimiza-
tion (MAO) [34] and Black Widow Optimization algorithm
(BWOA) [35]. The scientific contribution ingrained in this
article is the bio-inspired DPD applied to the SWIPT system
having both IQ imbalance, and HPA nonlinearity impair-
ment. The efficiency of bio-inspired DPD assisted SWIPT is
analyzed through PCE and RE for the basic M-ary modula-
tion schemes.

The article is organized as follows. Section II describes the
system used for the HPA model and DPA in SWIPT. The
nature inspired approach towards nonlinearities in SWIPT
is explained in Section III. Section IV shows the simulation
results and discussions regarding the specific model dis-
cussed in the previous section. The article’s conclusions are
given in Section V.

Il. SYSTEM DESCRIPTION

The SWIPT system and its intended implementation style are
shown in Figure 1. The diagram indicates that the SWIPT
wireless system enables simultaneous power and information
transfer. Since it is a concurrent transmission process, there
is always a compromise between the harvested energy and
information rate. There are four possible architectures men-
tioned in Perera et al. [4] for the SWIPT system: power split-
ting, antenna switching, time switching, and separate receiver
architecture. Here, the PS architecture poses the advantage in
time resource and information rate compared to TS [8].

A. TRANSMITTER SECTION

The essential blocks involved in DPD enabled SWIPT trans-
mitter is shown in Figure 2. The various components of
the SWIPT transmitter can be realized using 1Q modulators
and demodulators, data converters, filters, mixers, HPAs’,
attenuators etc. The Digital Signal Processing (DSP) domain
involves baseband signal processing to generate the I (Real)
and Q (Imaginary) parts of the input signal. The digital
modulation considered at the baseband is M-ary Quadrature
Amplitude Modulation (M-QAM), given by

M =2k 1)

where M represents the unique number of bits transmitted per
time interval and k is an integer. As given in Najatizadeh and
Tellambura [36], the complex envelope of message signal is
represented with real and imaginary parts as

x=x;+jxo 2
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where the in-phase component and the quadrature component
of x is represented by x; and x¢ respectively. The x; and xg
components are given by

x; € {+£a, £3a, ... — Da} 3)
xg € {£a,+3a,...(J — a} 4

where [ = 2m=D/2 g — 2m+D/2 354 24 is the distance
between adjacent points in the QAM constellation. As the ’'M’
value increases for the QAM scheme, the bit energy Ej, also
increases, which is given by
M -1
"7 Slog(0) "

where E, represents energy of the input signal pulse

The DSP domain also performs predistortion to the desired
signal. After the data conversion from digital to analog, the
signals are filtered via a low pass filter. Then mixer will mul-
tiply the I and Q signals with the help of the local oscillator
(LO). Here the I and Q signals are orthogonal to each other.
Any mismatch in orthogonality of I and Q is accounted as 1Q
imbalance. The transmitter section considers an imbalance
of 0.2 dB in amplitude and 2° in phase. After bandpass
filtering, the combined I and Q signals are amplified using
HPA and transmitted using an antenna module. The practical
HPA exhibits nonlinearities during amplification; therefore,
we need nonlinear models. The DPD-enabled SWIPT trans-
mitter is also integrated with a feedback observation path to
correct the input signal. The observation path will detect the
PA’s nonlinearity or distortion. The DPD system will compare
the power amplifier output with the input baseband signal and
apply distortion to the power amplifier input until the HPA
output replicates the input baseband signal. The distortion
function variables are continuously changed to reduce the
difference in the baseband signal and the HPA output. In
practice, HPA exhibits memory effects where the current
output depends on the previous input samples. Modelling
HPA accounting memory effects is a significant challenge in
transmitter systems. The modelling becomes more relevant
for SWIPT systems that harvest more power using HPAs’.
The nonlinearity of the HPA can be effectively captured with
the help of the memory polynomial model, which is discussed
in the next section.

&)

1) MEMORY POLYNOMIAL MODEL FOR HPA

The model of the HPA is obtained from AM-AM and
AM-PM characteristics by the curve fitting method. The most
commonly used model for curve fitting is the polynomial fit-
ting model. The polynomial fitting model is obtained through
the least-squares procedure, which minimizes the Euclidean
distance between the curve fitting function and the input
data. But the least-squares approach is based on instantaneous
values and will not capture any memory effect. To include the
memory effect, we must find a model that explicitly retains
the record of the time domain in its formulation. In this case,
using a Volterra series polynomial will be the best method
to include the memory effects. The precision of the Volterra
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FIGURE 1. Three types of users are generally considered under the SWIPT scenario. Here, the direction of information and power flow is indicated with
the help of arrowheads. The user involved in information transfer alone is regarded as an active user. The users who are not engaged in information
transfer will harvest energy from the base station. On the other hand, a SWIPT user adopting a power splitting scheme indulges in information and power
transfer simultaneously. In all the user cases, the transmitter uses DPD to compensate for 1Q imbalance and amplifier non-linearities. Note: The
co-existing multiuser cases are not considered in this representation, but discuss the possibility of different users under the SWIPT scenario.
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FIGURE 2. Transmitter model.

model rises with the number of terms in polynomial series,
polynomial degree and memory depth. Further, the inclusion
of cross-terms increases the number of terms and improves

the accuracy of the Volterra model.
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As mentioned before, HPA nonlinearity will degrade the
system performance. The output of practical HPA will depend
on the present and previous HPA input signals. This dynamic

behaviour of HPA is captured with the polynomial model.
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Figure 3 depicts the general approach toward nonlinearity
with memory based on the Volterra series. The baseband
x(n) is fed to the DPD unit to yield the predistorted output
y(n). This predistorted output is given to the HPA to gen-
erate linear output z(n). The Volterra series is nothing but a
multidimensional convolution sum. The T-tap finite memory
representation of Volterra series with d dimensions and kg
kernel as mentioned in Schetzen [37] is given by (6).

D
2n) =Y za(n) ©®)
d=1
where
T-1 T-1 d
aamy = ...y kaltr i) [ [y =),
t1=0 tq=0 i=1

i=1,2,....d—1 (1)

Here, changing the index variables makes it possible to bring
out the significant diagonal entries as indicated in Raz and
Van Veen [38].

ng = tit1 — I (8)
T-1

ni=—T+1ny=—T+1 ng—1=—T+1

d—1
* [y(n) [[yon- nl-)] ©)

i=1

2a(n) = AN ()

Here * represents one-dimensional convolution with
d
W ) =kantn, . ntng)  (10)

From (10), it is clear that " order Volterra output is nothing
but the sum of linear filter outputs. Also, the filter input would
be the multiplication of d different time shifts of the input
signal given by

d—1
) [ ] on = ni) (11)
i=1

The memory polynomial model is nothing but a particular
case of the Hammerstein model. [39]. The Hammerstein
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model is given by
D T—1
=YY pay'n—1) d=1,2,....,D (12)
d=1t=0
where pg; is a two-dimensional array representing the poly-
nomial non-linearity coefficients. Here, high sampling rate is
considered such that all the products up to D order are alias-
free. Choosing y(n)|y(n — )|~ combinations [26] from the
Hammerstein model, we arrive at the polynomial model.
D—1T-1
zp(n) =YY" par y(n = Dy — )| (13)
d=0 t=0
Here index d represents the order of envelope. If we observe
in (13), the input samples y4(n — t) are considered at the
same time instant. Now, through Wiener model [40]we can
easily include cross terms that represents memory effects.
The Wiener model is given by

D T-1 d
aw(n) = Zpd[ > k() — t)] (14)
d=1 t=0

Using (9) and (11), we can find out cross-terms that represents
memory effects. Also, by looking into (13) and (14), we can
gather these cross terms and represent them as

D—1 T-1 d

Y aa y(n)[Zmy(n—m] (15)

d=0 t=0
where g4 and r, represent the polynomial nonlinearity coeffi-
cients and envelope filter coefficients, respectively. Combin-
ing (13) and (15), the memory polynomial is obtained as

D—-1T-1
apm) =Y > pary(n — ly(n — )|
d=0 t=0
D—1 T-1

d
+> qdy(m[ > iy — r)q (16)

d=1 t=0
The pg: and g4 coefficients are estimated using least-squares
solution, keeping r; fixed. The memory polynomial model
with cross terms is a better representation that mimics ampli-
fier nonlinearity when compared with the polynomial model.

2) DPD COEFFICIENT ESTIMATION

As discussed before, DPD can combine more than one type of
nonlinearity. So, we consider the blended influence of HPA
nonlinearity and IQ imbalance in the transmitter system. The
HPA nonlinearities will include compression and memory
effects. As discussed previously, the Volterra model will cap-
ture HPA nonlinearity. The DPD compare the input signal
and HPA output to estimate error. The DPD algorithm will be
adapted to minimize the error in the subsequent calculation.
The least mean squares (LMS) method calculates the new set
of DPD coefficients. Finding the new set of DPD coefficients
is by deriving the p* order inverse from the memory amplifier
output [37]. Since the inverse model is obtained as the output
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FIGURE 4. Inverse model for Predistortion.

of the amplifier, we call it post-distortion. The model is shown
in Figure 4.

To perform estimation, first, all the C coefficients are
collected to form a vector v with dimension C x 1. Each
component of v is associated with the signal having time
samples over the periodt = 1,2, ..., T. The time samples
form a vector with 7' x 1 dimension. Gathering these vectors
together, we create the matrix ¥ with dimension 77 x C
expressed as

z="Yv (17)
Similarly, the inverse operation can be written as
y=2v (18)
The estimation error from the Figure 4 is expressed as
e(n) = y(n) — 3(n) (19)
The vector form of error is represented as
e=y—3 (20)
The least square solution that minimizes ||e||? is given by
v=ZMz)"1z"y (1)

The solution of (21) can be obtained using the Cholesky
decomposition method by representing the set of linear equa-
tions in the form.

zZHzy =71y (22)

3) 1Q MODULATION AND DEMODULATION

As mentioned, the feedback observation path critically
impacts the transmitter’s overall performance and capability.
In our analysis of the feedback observation path, we consider
the IQ demodulator impairment. The impairments contain
noise injection from the local oscillator (LO) due to phase
noise and the interference in the I and Q paths of the demodu-
lator. The impairments during IQ demodulation are visualized
through the model [41] given in Figure 5. The imbalance
in amplitude is modelled with the help of two linear gain
amplifiers, U and V. The imbalance in phase w observed
between I and Q paths are represented by cross-talk among
the two amplifiers.
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FIGURE 5. 1Q imbalance model.

The modulated QAM signal is applied with a square-root
raised cosine (RRC) filter to perform pulse shaping and elim-
inate intersymbol interference (ISI). The window function
used in the RRC filtering operation is given by [42]

cos(%t)
2at\2

=)
Here « is the roll-of factor, and T represents filter length. Sim-

ilarly, another RRC filter has to be included before demodu-
lation to remove ISI.

RRC = (23)

4) AMPLIFIERS AND FILTERS

The PA driver amplifiers are considered ideal and do not
contribute much to the nonlinearity. Any distortion generated
by the PA driver will arise in the HPA response, and the DPD
can accommodate them. Since the significant contributor to
nonlinearity is HPA, it is essential to describe the HPA model
correctly. In the feedback path, the level of noise or sensitivity
of the DPD is with the low-noise amplifier (LNA) as dis-
cussed in Campo et al. [43]. Thus the LNA plays a significant
role in the observation path. Also, the passive components
like filters and attenuators influence the frequency character-
istics and the system’s input signal levels to the PA drivers
and the LNA.

B. RECEIVER SECTION

1) POWER SPLITTING

It is considered that AWGN appears in the channel while
receiving the signal at the SWIPT receiver, as shown in
Figure 6. The SWIPT receiver employs a power splitting
scheme at the receiver side. The PS architecture unfolds the
practical model that involves a concurrent transmission of
information and power. In the PS method, the signal is split
in the power domain with p € (0, 1) as the PS factor. The PS
factor determines the amount of power given to the energy
harvesting module. The remaining 1 — p power is provided
to the Information Processing (IP) module.

2) ENERGY HARVESTING MODULE

Overall, RF-to-DC conversion and energy storage occur in
the energy harvesting module. The role of the antenna in
an energy harvesting circuit is to capture RF signals. The
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antenna’s gain, frequency, and efficiency hold a significant
role in the successful operation of the energy harvesting
circuit, as conveyed in Cansiz et al. [44]. As mentioned in
Perez [45], the impedance matching reduces signal reflec-
tions and guarantees maximum power transfer between the
input antenna output and the Rectifier/Voltage Multiplier
(RVM). Also, transmission loss from the antenna to the
RVM circuit is reduced through impedance matching. So,
if we use multiple antennas for energy harvesting modules,
the proper impedance matching yields maximum harvested
energy. Another issue in RVM is that the nonlinear com-
ponents reduce the PCE of the energy harvesting circuit.
The diode’s nonlinear characteristics and saturation effects
at high received power significantly contribute to RVM non-
linearity, as mentioned in Bonnin et al. [46]. Also, suppose
the distance from the transmitter to the energy harvesting
module increases. In that case, the transmitter’s drive power
must also increase to maintain the minimum turn-on power
required for the diode to operate. The harvested energy from
the RVM module is stored in an energy storage unit. The
storage unit can be a battery or a supercapacitor. Overall,
energy harvesting is performed when there is a need to extend
the user node’s lifetime. The harvested energy in the energy
harvesting module is given by [8]

Yen = npPr|hI*T (24)

n represents PCE, Pr indicates transmitted power, / is the
channel’s gain, and T is the duration of the transmission. PCE
is given by [16]
Yeh
= — 25
N= e (25)

Pr represents the received power.

3) INFORMATION PROCESSING MODULE
The LNA boosts the received signal well above the noise
floor in the information processing module. Along with LNA,
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Information Processing Module

the BPF isolates the receiver to decode only the signal fre-
quencies of interest. The signal output from BPF is split and
applied to the mixer. The mixer generates the in-phase signal
output with the help of a local oscillator (LO). Similarly, the
quadrature is obtained using the 90° phase-shifted quadrature
oscillator signal. To remove any spectral tributaries, we apply
LPF after demodulation. After analog to digital conversion,
the I and Q parts of the signal is successfully decoded at the
baseband receiver. The SNR of the information processing
module is measured in the presence of amplitude imbalance
o and phase imbalance w. This can be expressed as given
in [10].

1 —
SNR;, = ' V" #F ‘ (26)
¢
where ¢ represents IQ imbalance and is defined as ¢ = _7)(

Here x = cosw — jasinw and ¢ = acosw + jsinw
The signal obtained at the IP module is expressed as

Yi = /SNRjy hZ +n Q7

The channel’s Additive White Gaussian Noise (AWGN) is
denoted by n. The probability of error Pj, in the information
processing module is given by

1 Ep
Py = 5(1 - erfc( ]7)) (28)

where Ep/N,(dB) = SNR;,(dB) — 10 log(logz(M)) is the nor-
malized SNR. Since power splitting is adopted at the receiver
side, the harvested energy and information processing rate
is done concurrently. The trade-off occurring here can be
visualized by the RE analysis, which is given by [8]

RE(Ye, Rip) = | Yen < noPr 1T,

Ry < logz[l + SNR,',,}} (29)
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Algorithm 1 Dingo Optimization
1: procedure DOA
2: Define the objective function
3: Initialize the parameters of DOA:
Sea_Age, Max_Iter, Rand_val, P_hunt,
Q_attack, By, B2, na_Ini and na_End
4: Initialize Dingo positions
5: while Iter < Max_Iter, do
if Rand_val < P_hunt, then
7 if Rand_val < Q_attack, then
8: Perform the group attacking procedure
9 else Perform the persecution procedure
10: end if
11:  else Perform the scavenging procedure
12:  endif
13:  Update Sea_Age having low survival rates
14:  Calculate P,,,, fitness values of new agents
15. if P,,, < P*, then
16: P* = Py
17:  endif
18:  Iter = Iter + 1
19: end while
20: Show the optimal solution
21: end procedure

q &

4) PROBLEM FORMULATION

The formulated problem is to maximize the harvested energy
by fine-tuning the PS factor for a SWIPT system subject to
RE tradeoff, probability of error and minimizing the mean
squared error of DPD.

max Y.,
0=<p<1
s.t. C1:
C2: R,'p < log2|:1 + SNRip]
C3: BER<P) (30)

5 2 2
Iz =Tv|” < llell

Ill. NATURE INSPIRED APPROACH TOWARDS HPA
LINEARIZATION

A. DOA APPROACH TOWARDS HPA LINEARIZATION

The DOA that imitates the hunting and social behaviour of
Australian dingo dogs is given in Algorithm 1. The algorithm
rules are based on three search strategies: attack, group tac-
tics, and scavenging behaviour.

1) GROUP ATTACK PROCEDURE

The dingoes generally form a group and attack prey by find-
ing the location and surrounding it. This attacking procedure
is represented by (31).

na I:Ak(t) - Pi(t)i|
Pt+1)=p1)

k=1

— Ppest (1) (31)
na
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Here P;(¢) represents current Dingo gosition, Pi(t + 1) repre-
sents new Dingo position, na € [2, MTAge], where Sea_Age
represents number of search agents or Dingoes, Ax(¢) subset
of total Dingoes that performs attack, where A C P, Ppeg

represent position of the best search agent, 81 € [—-2, 2],

2) PERSECUTION PROCEDURE
Dingos chase the prey and catch them individually. This
behaviour can be expressed by (32)

Pi(t + 1) = P*(t) + p1 % € 5 (Py(1) — Pi(t)  (32)

Here 8 € [—1,1], n is a randomly generated number
between 1 and total number of Dingoes, P, () is the n Dingo
selected where i # n.

3) SCAVENGING PROCEDURE

Dingoes sometimes feed on the decayed flesh of dead animals
while roaming around in their habitat. This behaviour can be
represented by (33)

1
Pt+1)= 3 |:eﬂ2 * Pp(t) — (—1)7 % Pi(t)] (33)
where o is a randomly generated number, o € 0, 1

4) SURVIVAL RATE
The Dingoes face illegal hunting and are facing the risk of
extinction. The survival rate of Dingo is given by

fitnessyqy — fitness;

Survival(i) = = - (34)
fitnessyax — fitnessmin

Based on (34), Dingo with low survival rates are updated,
which is given by

1
Pi(t) = P*(1) + E[Pm(l) — (=D % Pn2(0j| (35)

where P;(¢) represents Dingo with low survival rate, nl and
n2 are randomly generated between 1 and total number of
Dingoes with ni # n2, P,1(t) and P,;(t) are the selected
search agents.

B. JSOA APPROACH TOWARDS HPA LINEARIZATION
The JSOA is based on the hunting habits of Arachnida Saltici-
dae as given in Algorithm 2. The mathematical model is based

on hunting habits like prey search, persecution and jumping
skills.

1) PERSECUTION PROCEDURE

The spider takes stealthy moves to come closer to the prey and
sometimes jumps to catch the prey, known as the persecution
strategy. The persecution strategy can be represented as

1
P = zatz + Vot (36)

P; shows the current position of the spider, ¢ represents time,
and v, is the initial velocity. The acceleration is indicated by
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Algorithm 2 Jumping Spider Optimization

1: procedure JSOA

2: Define the objective function

3: Initialize the parameters of JSOA:
Sea_Age, Max_lIter, a, Vo, ¢

4: Initialize Spider positions

5: while Iter < Max_Iter do

6: if Rand_val < attack_or_search, then

7

8

if Rand_val < p_attack, then
: Perform the attack by persecution
9: else Perform the attack by jumping on prey

10: end if

11: else if Rand_val < g_search

12: Perform local search for prey
13 else Perform global search for prey
14: end if

15:  endif

16:  Update Sea_Age having low pheromone rates
17: if fitness values with P,z < Ppess, then

18: Ppest = Ppew

19:  endif

20:  [ter = Iter + 1

21: end while

22: Show the optimal solution

23: end procedure

a = 7, where v = P — P,. The new position of the jumping
spider is represented by

1
Pitk + 1) = S(Pi(k) = Pu(k)) 37

where P;(k) is the current search position, P;(k + 1) is the new
search position, n is randomly generated between 1 and total
number of spiders, P, (k) is the randomly selected spider with

i # n.

2) JUMPING ON PREY

During hunting, the spider jumps on its prey. This movement
resembles a projectile motion. The motion along x-axis can
be represented as

P; = vycos(a)ti
dP .
— = Vp = V,cos(a)i (38)
dt
The motion along y-axis can be represented as,

0 = (vosin(oc)t — %ktz)j

d

d_? =Vo= (v(,sin(ot) — kt)j 39)
From (38) and (39), we arrive at the trajectory path represen-
tation, which is given by

2
0 = Ptan(a) — > kP (40)

Ve2cos?(a)
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Finally, the new position P;(k + 1) of the spider incorporating
trajectory can be represented as

Pi(k +1) = Pi(k —kaz(k)
i ) = Pi(k) tan() — W2cos (@)
_ o
T 180 “1

Here k represents gravity, and the angle « is calculated from
randomly generated angle ¢, where ¢ € (0, 1).

3) SEARCHING FOR PREY

The spider roams around in its habitat and searches for prey.

The prey search can be a local search or a global search.
The local search is given by

1
Pi(k + 1) = Ppesi (k) + R G =¥ (42)

Here P;(k + 1) is the new position of the spider, Ppg (k) is the
best spider position from the previous iteration, R € (=2, 2)
and ¥ € (0, 1) are randomly generated numbers.

The global search is represented by

Pi(k + 1) = Pbest(k) + (Pbest(k) - Pworst(k)) C (43)

P;(k+1) represents the updated spider position, Pp,g (k) is the
best spider position, Py, (k) is the worst spider position, C
is a random number following Cauchy distribution.

4) PHEROMONE RATE
The spiders release chemical substances called pheromones,
causing behavioural changes. The pheromone rate is given by

fitnessmay — fitness;

(44)

Pheromone(i) = Jitmessmay — fitnessyn
Here fitness,;;, indicates the best values of the objective
function, fitness;q, indicates the worst values of the objective
function, fitness; represents current value of objective func-
tion. From (44), spider positions with low pheromone rates
are updated as

1
Pi(k) = Ppesi (k) + 5 [Pnl(k) — (=D x PnZ(k)] (45)

Here P;(k) represents spider with low pheromone rate, n1 and
n2 are randomly generated between 1 and total number of
spider population with nl # n2, P,i(k) and P,y (k) are the
selected spider agents, and o € {0, 1} is a binary number
randomly generated.

C. SOA APPROACH TOWARDS HPA LINEARIZATION
Seagulls are sea birds that utilise their intelligence to search
and pound their prey. The SOA algorithm mimics seagull
migration, and attacking behaviour is given in Algorithm 3.

1) MIGRATION
Seagulls perform a seasonal movement from one place to
another in search of food. The SOA avoids collisions while
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Algorithm 3 Seagull Optimization

Algorithm 4 Mexican Axolotl Optimization

1: procedure SOA

2: Define the objective function

3: Initialize the parameters of SOA:
Sea_Age, Max_Iter, A, B, fe, u, v

4: Initialize Seagull positions

5: while Iter < Max_Iter do

6:  Compute fitness function

7 Start migration behaviour

8: Generate random number ry

9:  Generate random number k

10:  Start attacking behaviour

11:  Perform spiral behaviour

12:  Calculate distance

13: Compute X, y, z planes

14  Save the best solution

15 Update Seagull positions

16:  [Iter = Iter + 1

17: end while

18: Display the best solution

19: end procedure

selecting the initial positions. The collision-free assignment
of initial positions is ensured with (46).

Ci=U x Pi(x) (46)

Here C; represents the collision-free Seagull position or loca-
tion, P;(x) is the present location of the Seagull, and x denotes
the iteration number. The parameter U indicates the move-
ment of the Seagull, which is given by

U=f— & x(f/Max_Iter)) 47)

where x = 0, 1,2, ..., Max_Iter, Max_Iter represents the
maximum number of iterations, f is a linearly decreasing
variable used to specify the frequency of using the variable U.
Once collision-free positions are allocated, Seagull moves
towards the best neighbour’s direction. This movement is
represented as

Mi = E X (Ppegi (x) — Pi(x)) (48)

M; indicates the position of Seagull of P; towards the best
Seagull position, which is denoted by Py, E is a balancing
variable randomly calculated by (49).

E=2xU>xRy (49)

where Ry € [0, 1] is a randomly generated number. Finally,
in migration, the Seagull needs to update its position near to
the best Seagull position. The position update is characterised
as

D; = |C; + M;| (50)

Here D; represents the distance between the current Seagull
position and the best Seagull position.
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1: procedure MAO

2: Define the objective function

3: Initialize the parameters of MAO:

Sea_Age, Max_Iter, Pop, Fpop, Mpop, dp, 1p, k, A

4: Initialize Axolotl positions

5: while Iter < Max_Iter do

6:  Classify the population in to male Mp,,
and female Fpy)

7:  Start transition procedure

8: Select the best Mp,, and Fp,p, based on
objective function

9:  Inverse the probability of transition

10: Update Mp,, and Fpyp

11: Start Accidents procedure

12: Perform regeneration process

13 Start new life procedure

14:  Perform assortment process

15:  Compute the value of objective function

16:  Select the best solution

17: Iter = Iter + 1

18: end while

19: Show the best solution

20: end procedure

2) ATTACKING

The Seagull changes its altitude, speed and angle of attack
according to the learning experience during the search pro-
cess. While a seagull attacks prey, it performs a spiral move-
ment. This movement along the x, y, and z planes is repre-
sented in (51)-(53).

M, = r x cos(¢) (51
My = r x sin(¢) (52)
M, =rxo (53)

r represents spiral radius as given in (54). ¢ in the range
[0 < ¢ < 2m]is randomly generated.

r=ax e (54)

Here, a and b are spiral shape constants, and e represents the
natural logarithm. Finally, the updated location of the Seagull
with respect to the best seagull location is described as

pi(x) = (Di X My x My X M;) + Ppesi(x) (55)

Here p;(x) indicate the best solution.

D. MAO APPROACH TOWARDS HPA LINEARIZATION

The MAO algorithm that mimics the life of Axolotl is given
in Algorithm 4. Axolotl is a Salamander seen in the lakes of
Mexico city. The algorithm is motivated by the labour, repro-
duction, repair of tissues and behaviour of Axolotl in the
aquatic environment.
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1) TRANSITION FROM LARVAE TO ADULT

The total Axolotl population, p(M, F )j is divided into two
subpopulations, namely male population M; and female pop-
ulation Fj. Axolotl will adjust body part’s colour towards
male or female in the environment. Thus, Axolotl begins it’s
the transition from larvae to adult. The inverse probability
calculation with male and female populations is given by

obj(M;. F))
Y obj(M;, Fj)

If the inverse probability of male axolotl is larger than the
random value, then the male population needs to be updated.

pM, F), = (56)

Mji = Mji + (Mpest,i — Mji) x y (57
M;; represents male Axolotl, i represents the position, Mpeg; ;
is the best-adapted male chosen by the best value of the
objective function, and y € [0, 1] represents the transition
parameter. The male Axolotl can also do a random transition
according to the optimization function.

M;j; = Min; + (Max; — Max;) * R; (58)

R; € [0, 1] is a randomly generated number, Min; and Max;
represents the minimum and maximum dimension values of
the of the objective function. Similarly, If the inverse proba-
bility of female axolotl is larger than the random value, then
the female population needs to be updated.

Fji = Fji + Fbest,i - Fji *y (59)

Fj; represents female Axolotl, i represents the position, Fpe, i
is the best-adapted female chosen by the best value of the
objective function. The female Axolotl can also do a random
transition according to the optimization function.

Fj; = Min; + (Max; — Max;) * R; (60)

The above calculations update the best values of male and
female Axolotls.

2) INJURY AND RESTORATION OF AXOLOTL

The Axolotls are prone to accidents and may develop injuries
while moving into the water. Here, we need to perform the
injury and restoration procedure. The process is described as

Pj;i = Min; + (Max; — Min;) * R; (61)

3) NEW LIFE PROCEDURE

For every male, a female is selected to produce offspring.
The male axolotl produces spermatophores, and the female
collects them. Here we assume every reproduction process
involving a male and female axolotl contains two eggs. The
newly formed individuals will compete with the parents after
hatching. If the young returns the best value for the objective
function, the parents are replaced by the young.
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Algorithm 5 Black Widow Optimization

1: procedure BWOA

2: Define the objective function

3: Initialize the parameters of BWOA:
Sea_Age, Max_Iter, Rand_val, 8, m

4: Initialize Spider positions

5: while Iter < Max_Iter do

6: if Rand_val < 0.3, then

7

8

Perform the linear movement

else Perform the spiral movement
9: endif
10:  Calculate pheromone values of each agent
11:  Update Sea_Age having low pheromone rates
12: Calculate Py, fitness values of new agents
13: if fitness values with Pz, < Ppesr, then
14: Ppest = Prew
15:  endif
16:  iter = ier + 1
17: end while
18: Show the optimal solution
19: end procedure

E. BWOA APPROACH TOWARDS HPA LINEARIZATION
The BWOA, inspired by the movement and mating behaviour
of black widow spiders, is given by Algorithm 5. These
spiders are commonly seen in western parts of Canada and
Southern regions of Mexico.

1) SPIDER MOVEMENT
The black widow shows both linear and spiral movements.
This is represented by

Ppesi (1) — m Py (1),
Pbest(t) - COS(2YT)/) Pi(t)1

if rand() < 0.3,
otherwise.

Pit+1)= {
(62)

Here P;(t+ + 1) represents the spider’s updated position,
Ppest(t) is the spider with best value from the last itera-
tion, m € [0.4,0.9] is a random number, n; is a random
number generated between 1 and the maximum number of
spiders, P, is the nl™ search agent selected, with i #
ni, y € [—1, 1] is randomly generated, and P;(¢) represents
the current spider position.

2) PHEROMONES
The pheromones play a major role in black widow mating
behaviour. Sometimes, the female spider eats the male spider
after or during mating to increase the chance of fertilization.
So, the male spider chooses to avoid cannibalism and does
not prefer a female spider with a low pheromone rate. The
pheromone rate is given by

Pheromone(i) = finessmax — fitnessi (63)

fitnessyay — fitnesspin

100847



IEEE Access

A. R. Nair, S. Kirthiga: Nature Inspired Approach Toward Elimination of Nonlinearities

TABLE 1. Simulation parameters and their values.

Simulation Parameter Value
Modulation Order 4,8, 16,32
Sample rate 15.36 MHz
Amplifier Gain 55 dBm
Amplifier Saturation 52 dBm
Amplifier Input Power -15 dBm to 30dBm
Memory Depth (Length) 3
Nonlinearity order (Degree) 7
Amplitude Imbalance 0.2dB
Phase Imbalance 10

Here fitnessyi, indicates the best values of the objective
function, fitness;q, indicates the worst values of the objective
function, fitness; represents current value of objective func-
tion. From (63), spider positions with low pheromone rates
are updated as

1
Pilt) = Poest () + 5 [Pnl(t) — (=Dt Pnzm} (64)

Here P;(t) represents spider with low pheromone rate, n1 and
n2 are randomly generated between 1 and total number of
spider population with nl # n2, Py,(t) and P,»(t) are the
selected spider agents, and A € {0, 1} is a binary number
randomly generated.

IV. RESULTS AND DISCUSSION
In this section, through the computer simulations, we ana-
lyze the impact of HPA in SWIPT. The parameters corre-
sponding to baseband modulation, and HPA simulation is
given in Table 1. The simulation is performed for 4, 8, 16,
and 32-QAM schemes. The Amplifier Gain and Saturation
are considered from Jang et al. [9], Amplifier Input power,
Memory Depth (Length) and Non-linearity Order (Degree)
are set based on Mukherjee et al. [16], and Amplitude and
Phase Imbalance values are selected from Nair et al. [8].
Overall we consider PCE and RE analysis for evaluat-
ing the impact of DPD in SWIPT systems. Two types of
DPD systems are applied to the transmitter side. The first
is a conventional DPD system that finds the DPD coef-
ficients through a least-squares solution. The second one
is computing DPD coefficients through bio-inspired algo-
rithms. A memory polynomial model characterizes the HPA
with a standard LTE compliant signal and sampling rate
of 15.36 MHz. The complex baseband 1Q signals with IQ
imbalance are loaded first into the power amplifier. Then the
DPA coefficient matrix is determined using the least-squares
solution of actual PA input data. The PCE and RE analysis is
done at the receiver side. Then DPA is performed using adap-
tive bio-inspired algorithms, which showed improvement in
the linearity of the SWIPT HPA transmitter. For both DPD
methods, we analyze the PCE and RE with and without DPD
assistance on the receiver side.

A. AM-AM AND AM-PM DISTORTION
The analysis of AM-AM distortion and AM-PM distortion in
the transmitter section for the Ideal HPA and Practical HPA is
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FIGURE 8. Power added efficiency comparison of HPA.

depicted in Figure 7. The ideal characteristic of HPA is linear,
which is indicated by a straight line. But in a practical HPA
case, the output increases nonlinearly due to compression
when the amplifier’s input level goes above the saturation
point. The scattered points represent the memory effect. The
memory effect occurs when the amplifier outputs depend on
the current input and the signal at the previous instant. The
graph would have contained only two straight lines repre-
senting instantaneous responses without memory effects. The
memory effect further complicates the HPA problem. So, for
the SWIPT transmitter, a practical HPA represented by the
memory polynomial model is considered.

Further, Figure 8 depicts the behavioural difference
between ideal HPA and practical HPA in standard param-
eters like gain, output power, and Power Added Efficiency
(PAE). The most common parameter used to indicate high
power amplifier efficiency is drain efficiency. But, a practical
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FIGURE 9. Performance of conventional DPD assisted HPA.

HPA can deliver high drain efficiency with low gain. So, the
PAE parameter is used here to analyze the amount of DC
input power that contributes to power amplification. Unlike
drain efficiency, the PAE shows the power utilized by the
HPA. Thus the PAE characteristics also capture the nonlinear
behaviour of HPA. So here, we apply DPD to linearize the
HPA in the transmitter.

B. CONVENTIONAL DPD ASSISTED HPA

The DPD coefficients are extracted based on the memory
depth and degree of the HPA polynomial model. Here the PA
model is created based on half of the available PA dataset.
The DPA distorts the signal before transmission by creating
an inverse of the HPA characteristic. The linearity results
of conventional DPD-assisted HPA are shown in Figure 9.
The HPA characteristics with DPD approximate the ideal
amplifier behaviour. Now the effect of DPD is analysed on
the receiver side with the 16-QAM system as an example.
At first, the data symbols are randomly generated. Then the
signal is upsampled, and pulse shaping is performed using
RRC with filter length T = 10 and roll-off factor « = 0.25.
The filtered signal is passed through the AWGN channel. The
received signal is downsampled with the same oversampling
factor and raised cosine filtering. The delay induced due to
the filtering operation is also accounted for here. Now the
received signal is demodulated, and symbols are recovered.
The QAM constellation of the received signal with and with-
out DPD is shown in Figure 10. The BER analysis with and
without DPD assistance is given in Table 2. The Eb/No is
set accordingly to obtain a BER rate in the 107 range. Due
to nonlinearity, the BER rate increases as we move from the
4-QAM to the 16-QAM scheme. Consequently, EB/No has
to be increased to keep BER in the 10~ range. As observed
from Table 2, with the help of DPD, the distortion caused by
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the PA is effectively removed. To understand the impact of
DPD in energy harvesting, PCE is analysed with and without
DPD assistance.

C. PCE ANALYSIS WITH CONVENTIONAL DPD

Figure 11 captures the impact of HPA nonlinearity on PCE.
The PCE is also compared for different QAM schemes with
and without the assistance of DPD in Table 3. The transmit
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TABLE 2. BER values with and without DPD assistance.

Modulation BER without BER with Eb/No
Scheme DPD Conventional DPD  Required
4 QAM 4.67 x 10~6 4.67 x 10—6 10 dB
8 QAM 1.82 x 10~ ° 1.33 x 10— 6 12 dB
16 QAM 3.30 x 10~° 9.81 x 10— ° 16 dB
32QAM  7.56 x 1074 6.13 x 10— 6 21 dB
60 T T T

4 QAM without DPD
8 QAM without DPD
50 16 QAM without DPD
32 QAM without DPD
~——&— 4 QAM with DPD

8 QAM with DPD
40 I | —¢— 16 QAM with DPD
—&— 32 QAM with DPD

PCE(%)
8

20

-20 -15 -10 -5 0] 5 10
Transmit Power (dB)

FIGURE 11. Power conversion efficiency of SWIPT receiver.

TABLE 3. Power conversion efficiency.

Modulation ~ PCE without ~ PCE with ~ Improvement
Scheme DPD DPD in PCE
4 QAM 2.03% 2.27% 0.24%
8 QAM 6.34% 7.76 % 1.42%
16 QAM 18.16% 22.16% 4.00%
32 QAM 46.92% 57.24% 10.32%

power is set from —20 dB to 10 dB. The minimum transmit
power required for energy harvesting is —8dB. We observe
that PCE increases from 4-QAM to the 32-QAM scheme.
A maximum PCE of 57.24% is obtained for the 32 QAM
scheme with DPD. Also, PCE is improved by 10.32% com-
pared with 32 QAM without DPD assistance. The DPD
showed improvement of about 4% for 16QAM, 1.42% for
8QAM, and 0.24% for 4 QAM. The compromise between
harvested energy and information rate for a conventional
DPD-assisted SWIPT system is visualized through the RE
region.

D. RE ANALYSIS WITH CONVENTIONAL DPD

The RE region analysis sets bounds and limits the overall
performance of the SWIPT PS system as expressed in (29).
We consider the same transmission power and efficiency
as discussed in the previous section. The power splitting
ratio p is varied between 0 and 1. All the symbols are
assumed to have unit power. The complex AWGN produced
during power splitting is considered to have zero mean and
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TABLE 4. Rate energy for conventional DPD.

Energy Rate
Modulation gﬁ}xr g[;z when when
&gy p=05 | p=05
4 QAM 1.94 1.92 0.97 1.68
Without | 8 QAM 6.79 2.82 3.39 2.52
DPD 16 QAM 19.41 3.76 9.70 3.36
32 QAM 50.14 4.7 2506 | 42
4 QAM 2.92 1.99 1.46 1.78
With 8 QAM 10.23 2.98 5.11 2.67
DPD 16 QAM 29.23 3.97 14.61 3.56
32 QAM 75.5 4.96 37.75 4.45

variance 202, The complex AWGN encompasses noise due
to antenna and processing of data. The rate energy for con-
ventional DPD is given in Table 4.

E. BIO-INSPIRED DPD ASSISTED HPA

The bio-inspired algorithm-based DPD is adopted for HPA
linearization. The HPA assumes the same memory poly-
nomial model. The parameters and values used in the
bio-inspired algorithms are given in Table 5. The combination
of bio-inspired pre-distorter and HPA produces linear char-
acteristics, which are portrayed in Figure 13. This linearity is
exhibited till the point of saturation of HPA. To compare the
performance of bio-inspired DPD assisted HPA with the con-
ventional DPD assisted HPA, and the same 16-QAM scheme
is selected.

In Table 6, the linearity and performance of the
bio-inspired DPD are compared using metrics, namely Fisher
Discriminant Ratio (FDR), Mean of Slope (MS), and Mean
of Phase Difference (MPD).

The BER values for bio-inspired DPD-assisted SWIPT are
provided in Table 7. The BER analysis is performed with the
same Eb/No value as in the conventional DPD case. Among
all the bio-inspired algorithms, the SOA performs better
for the 16-QAM scheme. The metrics indicated in Table 6
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TABLE 5. Algorithm parameters.

DOA JSOA SOA MAO BWOA
Sea_Age=100 | Sea_Age=100 | Sea_Age=100 | Sea_Age=100 Sea_Age=100
Max_iter=100 | Max_iter=100 | Max_iter=100 | Max_iter=100 Max_iter=100
Prunt = 0.5 a = 9.80665 Ry €]0,1] v €10,1] Be(—1,1)
Qattack=0.7 vo = 100 ¢ €0, 27] R; €10,1] m € (0.4,0.9)
Bie 2,2 $€0,1] - - -

Bre 1,1 - - - -
TABLE 6. Comparison metrics for HPA linearization.
Metric | DOA JSOA SOA MAO BWOA | Conventional DPD
FDR 0.18 0.10 0.05 0.02 0.06 0.14
MS -0.00108 | -0.00112 | -9.943 | -8.824 | -8.934 -0.00105
MPD 6.14 6.05 5.56 6.18 6.17 4.72

Note: FDR is used to find out the inter-cluster and intra-cluster distance in data points. Slope gives the rate of change of output with respect to input. Phase
difference is calculated as the difference in phase between actual HPA and linearized HPA.

TABLE 7. BER values for bio-inspired DPD assisted SWIPT.
Modulation | 1)\ JSOA SOA MAO BWOA Eb/No
Scheme Required
4-QAM 4.67 x 10~ | 4.00 x 10—6 | 2.67 X 10—6 | 2.67 x 10~° | 3.33 x 10—6 | 10dB
8-QAM 3.56 x 107 | 1.78 x 10~% | 8.89 x 107 | 8.89x 10~7 | 4.44 x 10~7 | 12dB
16-QAM 2.57x107° | 867 x10°% | 2.33 x 10=% | 3.00 x 10=% | 4.00 x 10-% | 16dB
32-QAM 6.29 x 10—5 | 1.41 x 107 | 1.33 x 10~=% | 1.60 x 10~% | 5.60 x 10-% | 21dB
TABLE 8. BER comparison of conventional and bio-inspired DPD.
Modulation | 1)\ JSOA SOA MAO BWOA
Scheme
4-QAM 0 6.70 x 10—7 2.00 X 10—6 | 2.00 x 10 © 1.34 x 10—6
8-QAM —2.23 x 10~ —4.50 x 10~7 4.41 X 10~7 | 4.41 x 10~7 8.86 x 10~ 7
16-QAM —1.59 x 10~° 1.14 x 106 7.48 X 10~% | 6.81 x 10~© 5.81 x 10~6
32-QAM —5.68 x 10—5 —7.97 x 10~ 4.80 X 10~ | 453 x 106 5.30 x 10~7
Arll\tqll‘:f‘“ —1.87 X 10—5 | —1.65 x 10~6 | 3.68 x 10~¢ | 3.45 x 10—6 | 2.14 x 10~

Note:The Table provides the mean difference in BER value for Conventional DPD and Bio-inspired DPD for different QAM schemes. The negative value
of DOA and JSOA signifies the increase in the error rate, and the positive values of SOA, MAO and BWOA indicate the reduction in the error rate.

interpret this performance. The SOA has FDA < 0.06 with
the least slope and MPD value in 5.5 < MPD < 6.28. Sim-
ilarly, the underperformance of DOA compared to conven-
tional DPD can also be visualized. But, in the case of DOA,
the PCE and harvested energy are better than conventional
DPD, which is discussed in the next section.

F. PCE ANALYSIS WITH BIO-INSPIRED DPD

The PCE analysis for bio-inspired DPD is given in Figure 14,
and Table 9 provides the comparison with conventional
DPD. Here DOA performs the best when compared with
all other bio-inspired algorithms. Since the BER value of
DOA is slightly more than conventional DPD, we conclude
that the increase in PCE of DOA is due to the erroneous
bits. To emphasise this point, if we observe the PCE of
the 32-QAM scheme, DOA has a considerable increase in
maximum PCE of 77.11%. This increase is 6.23% more than
the JSOA, which comes next in the 32-QAM PCE category.
The PCE value for MAO appears to be the least compared
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to all the other bio-inspired algorithms but holds a better
BER rate, as discussed in the previous section. If we look
for a fair BER rate and aim to harvest a reasonable amount
of energy simultaneously, SOA would be the best option.
Here, RE analysis gives a better picture of the simultaneous
transmission of energy and information. Here, RE analysis
provides a better view of the simultaneous transmission.

G. RE ANALYSIS WITH BIO-INSPIRED DPD

The rate energy analysis for bio-inspired DPD-assisted HPA
is given in Figure 15, and Table 10 provides the maximum
energy and maximum rate achieved for different user scenar-
ios. The results show that DOA performs the best among all
three users. The maximum energy of 12 W is obtained for
DOA under the 32-QAM scheme. Here the harvested energy
is 18.94 W more when compared to JSOA under the same
32-QAM scheme. But, as discussed previously, this improve-
ment in harvested energy and information rate is due to the
erroneously received bits. For a SWIPT user employing a
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TABLE 9. Power conversion efficiency for bio-inspired algorithms.

4-QAM 8-QAM

Bio-inspired Algorithm | Maximum PCE PC]Et;rngrl(\)/\e/irtril;rll;lcg;Bared Maximum PCE PC%;TE;?Zi?gS;lCBI;Bared

DOA 3.73% 1.46% 13.05% 5.29%

JSOA 3.42% 1.15% 11.99% 4.23%

SOA 3.08% 0.81% 10.78% 3.02%

MAO 2.89% 0.62% 10.13% 2.37%

BWOA 3.17% 0.90% 11.10% 3.34%

16-QAM 32-QAM

DOA 29.84% 7.68 % 77.11% 19.87 %

JSOA 27.42% 5.26% 70.85% 13.61%

SOA 24.65% 2.49% 63.69% 6.45%

MAO 23.17% 1.01% 59.86% 2.62%

BWOA 25.38% 3.22% 65.58% 8.34%

TABLE 10. Rate energy for bio-inspired algorithm based DPD.
4-QAM 8-QAM
B;?g:;fﬁ;id Maximum Energy | Maximum Rate Ene;g:)é).\g/hen Ralt)ez(\; Islen Maximum Energy | Maximum Rate Enelr)gz)z).\;/hen Ra:)e:(\;f }51en
DOA 4.71 1.97 2.30 1.72 16.49 2.95 8.08 2.58
JSOA 3.97 1.91 1.94 1.66 13.92 2.87 6.82 2.50
SOA 3.21 1.85 1.57 1.60 11.25 2.77 5.51 2.40
MAO 2.84 1.81 1.39 1.56 9.94 2.72 4.87 2.34
BWOA 3.40 1.87 1.67 1.62 11.93 2.80 5.84 243
16-QAM 32-QAM

DOA 47.12 3.94 23.09 3.44 121.73 4.92 59.65 4.30
JSOA 39.79 3.83 19.49 3.33 102.79 4.79 50.36 4.17
SOA 32.15 3.70 15.75 3.20 83.05 4.63 40.69 4.00
MAO 28.40 3.62 13.91 3.13 73.38 4.53 35.95 391
BWOA 34.08 3.74 16.70 3.24 88.06 4.67 43.15 4.05

Note: The maximum energy and maximum rate represent Idle and Active users, respectively. The information rate for the Idle user is zero. Similarly,
the harvested energy for the Active user is zero. For the SWIPT user, energy and information rate are simultaneously achieved considering the PS ratio,

p=0.5.

TABLE 11. Comparison of rate-energy with existing benchmark literature works.

4-QAM 8-QAM 16-QAM 32-QAM
Y Auth Work Maximum | Maximum | Maximum | Maximum | Maximum | Maximum | Maximum | Maximum
car uthor or Energy Rate Energy Rate Energy Rate Energy Rate
Zhang et al. MIMO for
2013 48] SWIPT system 225 2 220 3 205 4 180 5
Liu et al. Dynamic PS
2013 [49] in SWIPT 5..95 2 59 3 5.8 4 5.65 5
Huang et al. SWIPT with
2014 [50] OFDMA 11.2 2 10.6 3 9.4 4 7.9 5
2018 | Clerckxetal | SWIPT with 10 2 75 3 56 4 25 5
[51] Nonlinearities
Lietal. Full-Duplex
2020 (52] SWIPT System 32 2 3.1 3 2.9 4 2.5 5
Nature inspired
This Work Nair et al. DPD assisted 4.71 1.97 16.49 2.95 47.12 3.94 121.73 4.92
SWIPT

32-QAM scheme, the MAO, SOA, and BWOA give a max-
imum information rate of 4.53, 4.63 and 4.67 bits/channel
use. The maximum harvested energy yielded for the SWIPT
user using the above algorithms is obtained as 35.95,
40.69 and 43.15 uW respectively. A comparison between the
bio-inspired approach and the existing benchmark literature
works is given in Table 11. The results are compared for an
SNR value of 20dB. The harvested energy in the proposed
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work increases from 4.71uW to 121.73uW when we move
from 4-QAM to the 32-QAM scheme but maintain a fair
information rate. On the other hand, the trend of benchmark
schemes is that the harvested energy decreases when we move
from 4-QAM to the 32-QAM scheme. The reason is that in
the proposed work, the bio-inspired algorithm focuses more
on energy harvesting by maintaining a fair information rate
close to the benchmark schemes.
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FIGURE 13. Performance of Bio-inspired DPD assisted HPA.

TABLE 12. Computational complexity of bio-inspired algorithms.

Bio-Inspired Algorithm | Computational Complexity
DOA O(nlog2n)

JSOA O(n?log2n)

SOA O(nlog4n)

MAO O(nlog4n)

BWOA O(nlog4n)

H. COMPUTATIONAL COMPLEXITY

The computation complexity of the bio-inspired algorithms
is calculated with the input size n. For example, if we
denote O(log n), then it conveys that computational complex-
ity increases log(n) times for any increase in ‘n’. Table 12
shows that DOA has the least computational complexity of
O(nlog2n). The complexity value substantiates the increase
in BER and PCE for the DOA algorithm. Similarly, JSOA was
unable to perform well because of high computational com-
plexity O(n? log 21n) compared to other algorithms. The SOA,
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FIGURE 14. Power conversion efficiency of SWIPT receiver after applying
Bio-inspired DPD.

MAO and BWOA have the same computational complexity
of O(nlog4n), and these algorithms attained closer results in
BER, PCE and RE analysis.

I. COMPARISON WITH PREVIOUS WORK

Table 13 compares our work with existing SWIPT energy
harvesting models. The maximum harvested energy obtained
in the existing articles is converted to dBmW for a fair
comparison. As discussed at the beginning of this section,
the conventional DPD uses the least-squares algorithm to
eliminate the nonlinearity present in HPA. The least-square
algorithm that works on model fitting minimizes the differ-
ence between the input and output of HPA are skewed with
initial and extreme values. Although the least-square algo-
rithm works well in typical wireless communication systems,
it lacks performance in a dynamic scenario like the SWIPT
system, which focuses simultaneously on energy harvesting
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TABLE 13. Comparison with previous work on SWIPT based Energy Harvesting.

Year Author Work Maximum Harvested Energy
. Harvested energy maximization for SWIPT 41 dBmW (50 dBmW¥*)
2022 Nair et.al [8] with IQ imbalance hardware impairment for 32-QAM
. Harvested energy and BER optimization 51 dBmW (70 dBmW*)
2020 Chien etal [53] for SWIPT using sadde BER =1 x 106
2020 Mukherjee et.al [16] MIMO enabled SWIPT system -5 dBmW (14 dBmW*)
with power amplifier nonlinearities
Nonlinear energy harvesting based SWIPT N
2019 Xu et.al [54] for MIMO system -16 dBmW (18 dBmW*)
2019 Li et.al [55] Informan(_)n rate apd harvested energy for SWIPT 42 dBmW (50 dBmW*)
with non-linear energy harvesting
2019 Peng and Lee [56] Energy hgrvestlng maximization for SWIPT -9 dBmW (30 dBmW*)
using popularity cache scheme
2018 Morsi et.al [57] Energy harvesting in SWIPT using -24 dBmW (54 dBmW#)
separate receiver circuit
Nonlinear energy harvesting based SWIPT y
2018 Lu et.al [58] for MISO system 14 dBmW (36 dBmW*)
L . -12 dBmW (40 dBmW*)
This Work | Nair et.al Nature lnifi‘tr}f‘igf;i]i;ﬁgid SWIPT for 32-QAM
) BER = 1.33 x 106

Note: * denotes transmit Power
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FIGURE 15. Rate energy region of SWIPT receiver after applying
Bio-inspired DPD.

and information rate. Also, depending on the demand for
harvested energy, the SWIPT system must switch between
the modulation scheme accordingly.
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V. CONCLUSION

The SWIPT enables the wireless networks to transfer energy
and information simultaneously. The significant problem
faced by the SWIPT system during practical implemen-
tation is hardware impairment. The hardware impairment
assumed in this work is the combined effect of In-phase and
Quadrature imbalance and High Power Amplifier nonlinear-
ity. A DPD-assisted M-ary modulated SWIPT transmitter is
considered to compensate for the nonlinearity caused due to
hardware impairments. Compared with SWIPT without DPD,
the conventional DPD-assisted SWIPT harvested maximum
energy of 25.06 uW and exhibited a maximum improve-
ment of 10.32% in PCE under the 32-QAM scheme keep-
ing the BER rate in the range of 10~°. Then conventional
DPD is replaced with bio-inspired algorithms such as Dingo
Optimization, Jumping Spider Optimization, Seagull Opti-
mization, Mexican Axolotl Optimization, and Black Widow
Optimization. Among the various bio-inspired algorithms
Seagull Optimisation algorithm harvested maximum energy
of 35.95 uW and showed a maximum improvement of 6.45%
in PCE compared to conventional DPD. The limitation of
using bio-inspired DPD is the increase in complexity and
hardware cost of the system. The recommended future direc-
tion of the work is to use other bio-inspired algorithms to
improve PCE and harvested energy by keeping a fair bit error
rate. Practical HPA with memory effects can be modelled
through bio-inspired algorithms based on the optimal design
to reflect the ideal power and gain characteristics of the ampli-
fier. Also, the SWIPT system can be modelled and visualised
in a co-existing multi-user environment.
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