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ABSTRACT Conformance checking detects deviations in business process executions. An online detection
method is needed to give immediate response to anticipate possible impacts. The state-of-the-art online
conformance checking is the Prefix-Alignment (PA) technique. However, this technique has a limitation of
maintaining all of the administration data of cases in memory. In an online environment, the last event of a
case is never known, whereas a PA requires last event information to release the case from memory to free
up space for other cases. Hence, the PA does not meet the requirements of online conformance checking in
processing infinite data of event stream without memory constraints. PA also has a complex state space search
computation especially for large and complex process model references. In this paper, a Graph-Based Online
Token Replay (GO-TR) method is proposed. This method takes benefit from Graph Database to adapts the
Token-Based Replay (TBR) technique which has simple replay computation. We propose a Replay Image
(RI) to store the case administration and develop a cypher based algorithm to simulate token replay on the RI
to handle the event stream. We also propose a cypher-based algorithm to identify and replay invisible paths.
The experiment results show that GO-TR has been successful in adapting TBR and solving the problem
of wrong-placed tokens in TBR. GO-TR outperforms PA in yielding replay throughputs of relatively small
amount of data in online conformance checking. In terms of memory usage, GO-TR shows its superiority
over PA because it does not have memory limitations problems.

INDEX TERMS Conformance checking, event stream, graph database, token-based replay, memory
limitation.

I. INTRODUCTION
Conformance checking detects deviations in business process

standard for offline conformance checking because of its
ability to provide optimal alignment information.

executions. There are two important replay techniques, which
are Token-Based Replay (TBR) and Alignment. Both tech-
niques work in offline environments. TBR was first intro-
duced by Rozinat and Aalst [1] as a replay technique based
on Petri net. While Alignment [2] is currently the de facto
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In real life, there are many conditions that require immedi-
ate inspections. Therefore, an online conformance checking
technique is required. Online detection capability enables
anticipative action of possible impacts as soon as possible.

Prefix-Alignment (PA) [3], [4], [5] is a state-of-the-art
replay-based online conformance checking technique. It is
a modification of the conventional Alignment technique.
However, PA has a limitation of maintaining all of the

102737


https://orcid.org/0000-0003-1817-2460
https://orcid.org/0000-0001-5373-660X
https://orcid.org/0000-0001-5717-9337
https://orcid.org/0000-0002-3195-2253

IEEE Access

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

administration data of cases in memory. In an online envi-
ronment, the last event of a case is never known, whereas a
PA requires last event information to release the case from
memory to free up space for other cases. Hence, the PA does
not meet the requirements of online conformance checking
which is the ability to process infinite data of event stream
without memory constraints.

Several studies have attempted to overcome the PA weak-
ness by suggesting approaches to predict the end of a case,
but these solutions cannot be used in general environments.
Aside from that, these solutions cause other impacts that need
to be resolved [3], [6].

In this study, a Graph-Based Online Token Replay
(GO-TR) method is proposed. GO-TR adapts TBR for online
environments through the support of a graph database. This
proposal is expected to solve problems in memory usage
of the PA. The TBR technique was chosen because of its
characteristics, namely: (1) simple replay computation (as
compared to the Alignment); and (2) maintaining only the
running marking (as compared to the Alignment technique
that must maintain all candidates marking).

The graph database was chosen because of its ability to
store graph data natively. Previous study by Sarno et al. [7]
had succeeded in integrating an ERP system with a graph
database to store event logs directly and apply a graph-based
process discovery model technique in it. Several develop-
ments and applications also show that the graph-based meth-
ods can provide high fitness and precision scores [8], [9].
Sungkono et al. [10] also used a graph database to check
wrong decisions and wrong patterns.

The method proposed in this study utilizes the persistence
nature of graph database to store the last state of an online
conformance checking progress as a Replay Image in the
graph database. In addition, the graph database has a constant
node traversal that is suitable to support the proposed invis-
ible path identification and invisible path replay especially
for complex models which produce large reachability graph.
The combination of the persistence and speed of node trac-
ing makes the graph database a reliable solution to support
GO-TR implementation without memory constraint.

This paper proposes contributions as follows:

1. Petri Net model representation in the graph database
as a replay image. Replay image is a reference model
that stores the running marking and administrative data
related to replay.

2. Token-based Replay adaptation on a graph database
that can receive event stream data for online confor-
mance checking.

3. Algorithm for identification and replay a Graph-based
invisible path. We take advantage of the graph database
to identify invisible paths accurately and efficiently.

The experimental results show that GO-TR has been suc-
cessful in adapting TBR to the graph database and at the same
time providing solution to the wrong-placed token problem
on the TBR. We also found that, for relatively small amount
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of data, GO-TR resulted in higher throughput compared to
prefix-alignment. However, GO-TR’s throughput decreases
as the amount of data increases. In terms of memory usage,
GO-TR shows its superiority over PA because it does not have
memory limitations problems

The next section of the paper will be presented as fol-
lows. Section 2 describes related works. Section 3 explains
the definitions and concepts that underlie our proposals.
Section 4 discusses the fundamentals of our proposed
method. Section 5 presents the experiment results and dis-
cusses the findings from the experiment. Section 6 provides
conclusions and overview of future research opportunities.

Il. RELATED WORK

In this section, researches related to this work are described,
from conventional conformance checking, online confor-
mance checking, to the development of graph-based process
mining researches.

A. CONVENTIONAL CONFORMANCE CHECKING

At the beginning of its growth, process mining was oriented to
extracting event log data in an offline environment. Likewise,
conformance checking techniques, such as the Token-Based
Replay (TBR) [1] and Alignment [2] techniques, can only
work in an offline environment.

TBR is a conformance checking technique with replay out-
put that describes a series of activities resulting from a replay.
Basically, the TBR algorithm is very simple, but when the
reference model contains an invisible task, the TBR requires
additional efforts to detect it. Rozinat and Aalst [1] proposed
the detection of invisible paths by building a local reachability
graph and then tracing the entire state space. This method
requires complex computations so that it slows down TBR
execution.

The alignment technique [2] improved TBR by building
a synchronous product between the reference model and the
execution log to choose the best replay route. The resulting
series of activities is referred to as alignment. Meanwhile, the
computational result to get the alignment with the smallest
cost is known as optimal alignment.

Berti and Aalst [11] proposed an Improved TBR (ITBR)
by adding preprocessing to detect all invisible path lists at
the beginning. The invisible path search is done by select-
ing the shortest route from a list of invisible-path candi-
dates and then running the algorithm for invisible replay.
This solution makes ITBR faster than the Alignment tech-
nique for Petri nets also for models with invisible tran-
sitions. However, ITBR requires an invisible tasks replay
check which when it fails will leave a wrong-placed token
problem.

Our work was inspired by TBR algorithm and we modi-
fied the algorithm in order to work on the graph database.
A cypher-based algorithm was also built to identify invisible
path accurately, to replay the invisible path efficiently, and to
avoid wrong-placed token problem.
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B. ONLINE CONFORMANCE CHECKING

The increased attentions to online process discovery
researches [12], [13], [14] were followed by the growth of
online conformance checking researches. Burattin et al. [15]
proposed online conformance checking using an extended
transition system by pre-computing the deviation and then
adding it to the transition system. Burattin ef al. [16] also
developed a behavioral patterns technique that can detect
deviations more flexibly and reliably to handle processes
that are already running without knowing their previous
information. However, the abstraction approach in the form of
behavioral patterns is less expressive in explaining the occur-
rence of deviations. It also has a weakness in recognizing new
deviation patterns. Zelst et al. [3] proposed prefix-alignments
which had modified and improved conventional alignments
so it can work with incomplete cases and can respond to every
event stream that comes in online environment. Schuster and
Zelst [4] improved the computation of prefix alignment using
state space expansion so the computation can be done in
increments without repeating the previous computations.

Most online conformance checking techniques that are
available generally assume that the memory is infinite. For
example, [3] limits the number of past activities that are
taken into account for alignment calculations based on the
number of windows, but the number of traces that are stored
in memory is still not limited. In reality, memory has limi-
tations that can affect the ability to accommodate incoming
data streams. Burattin et al. [16] gave an idea of limiting
the number of cases in memory by forgetting cases that
were thought to be inactive. However, this method creates
a missing-prefix problem that will occur if the case is still
active. As a result, the cases that come afterwards will be
detected as deviations. Zaman et al. [6] proposed a pre-
fix imputation approach using a two-step approach to limit
memory usage by selectively removing cases from memory
and overcoming the missing-prefix problem by trying to
recover it by connecting the missing-prefix parts. However,
this approach cannot be used in all cases. For example, some
business process domains may have very long active cases
up to several months period. In addition, the space to accom-
modate forgotten cases for recovery purposes also potentially
requires infinite memory.

In this paper, we propose Graph-based Online Token
Replay (GO-TR) as a graph-based online conformance
checking method. The method uses a graph database to store
case administrations as a replay image (RI) to avoid the
memory constraint problem for unlimited event streams.

C. GRAPH-BASED PROCESS MINING

An event stream is part of a business process that contains
activities that have unique behavior for each case. A graph
model can represent the relationship between these activi-
ties well. Sarno ef al. [17] pioneered the implementation of
process mining in a graph database environment. This study
proposes a Graph-based invisible task (GIT) to perform a
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process model discovery that contains invisible tasks. Next,
Sarno et al. [7] designed an event log storage directly from
ERP to the graph database so that there is no need to
convert the event log format to perform process discovery.
The graph-based process discovery algorithm is superior in
time complexity and computational time to other discovery
methods [7].

In this paper, our work is aligned with the Graph-Based
Process Discovery technique in [7] and [17]. We use graph
database to propose graph-based online conformance check-
ing which avoids memory contsraint problem and is robust
againts unknow future behaviour.

Ill. FUNDAMENTALS
In this section, some of the definitions and concepts that
underlie the proposed method are described.

A. EVENT LOG AND EVENT STREAM

Aneventlog is data that is generated as a record of activities in
an information system. As an example can be seen in Table 1.
Each row is an event that describes an instance of a process.
Event logs are generally stored in XES format (eXtensible
Event Stream). XES groups each event in a single trace
sequentially according to its case id. A simple illustration for
the XES format of the event log in Table 1 is described in
Table 2.

TABLE 1. Example of recorded event log.

Case Activity Resource Timestamp
151 Register request (a) Jack 30-12-2020:10.02
152 Register request (a) Andy 30-12-2020:11.32
153 Register request (a) Rob 30-12-2020:11.45
151 Examine thoroughly (b) Anne 30-12-2020:15.06
153 Check ticket (c) Rob 30-12-2020:16.10
152 Pay compensation (f) Andy 31-12-2020:16.01
151 Pay compensation (f) Jack 31-12-2020:12.00

TABLE 2. Simplified event log structure in XES format.

Case Activity Resource Timestamp
151 Register request (a) Jack 30-12-2020:10.02
151 Examine thoroughly (b) Anne 30-12-2020:15.06
151 Pay compensation (f) Jack 31-12-2020:12.00
152 Register request (a) Andy 30-12-2020:11.32
152 Pay compensation (f) Andy 31-12-2020:16.01
153 Register request (a) Rob 30-12-2020:11.45
153 Check ticket (c) Rob 30-12-2020:16.10

For online environment, the analyzed data is not in form
of an event log but in form of an event stream. In the-
ory, event streams are infinite sequences. According to [18],
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an event stream is a data stream of events which the following
assumptions are made: (1) each item is assumed to contain
just a small and fixed number of attributes; (2) algorithms
processing data streams should be able to process unlimited
amount of data without exceeding memory limits; (3) the
amount of memory available to an algorithm is considered
finite, and typically much smaller than the data observed in a
reasonable span of time; (4) there is a small upper bound on
the time allowed to process an item, e.g. algorithms have to
scale linearly with the number of processed items: often the
algorithms work with one pass of the data; (5) stream sources
are assumed to be stationary or evolving.

Definition 1 (Event Stream): Let C denote the universe
of case identifiers, and A denote the universe of activities.
An event stream S is an infinite sequence over C X A, i.e.,
S € (C x A). A pair (c,a) € C x A represents an event, i.e.,
activity a was executed in the context of case c. S(1) denotes
the first event that is received, whereas S(i) denotes the i-th
event

Fig. 1 illustrates the sequence of the event stream based on
Fig. 1. Each event is marked with a case id and the name of
the activity, for example: (151,a), (/52,a), (153,a), (151,b),
(153,¢), ..., (I52,9),..., (151,1),.... The sequence of these
event streams contains three distinct cases. In each case there
are activities that have dependency relationships.

current
observation

|

Stream (151,a) (152,a) (153, a) (151, b) (153, C) «mieee (152, 1) woreeens (151, 1) wervenen

time:
Case1 (151,a (151, b) (151, ) 727
Case 2 (152,a) (152, 1) 222
Case 3 (153, a) (153, ¢) 2?7

FIGURE 1. Example of event streams.

Event stream processing systems do not have knowledge
about future events. For example, at the point marked as
“current observation” in Fig. 1, it appears that Case 1 and
Case 2 have reached f, which is assumed to be the end of the
case. However, an event stream processing system will not
recognize it as the end of the case. There are always possibil-
ities of new activities coming, including those that should not
be possible after the last node. For example, unlikely activities
coming due to deviations or anomalies. In Fig. 1, Case 3 is not
completed yet. It is not known when the next event will come
nor the case will end.

B. ONLINE CONFORMANCE CHECKING

Traditional process mining works in an offline environment
using “post mortem” data, which means it focuses on data
cases that have been completed [19]. For operational support
purposes, a “‘pre mortem’ event stream data needs to be
handled online. The incoming event stream is a partial trace
that completes the puzzle of the event data series in a case.
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Each event arrival adds to the completeness of a case bound
by a behavioral relationship so that event streams containing
several events of alternate case ids must be handled separately
and concurrently.

One of the important activities in operational support is
deviation detection in form of online conformance checking.
In contrast to the offline environment, the online conformance
checking system has the following unique characteristics
[19]: (a) it cannot see the complete case, so it focuses more
on the event stream as a partial case of a particular case,
(b) when there is a deviation then a fast response is required.
Fig. 2 illustrates an online conformance checking system for

detecting deviations.
Information System System

event stream

Normative
Model

g

L

Deviation
detected

FIGURE 2. Online Conformance Checking for deviation detection.

Due to these uniqueness, the methods used in the offline
environment cannot be directly applied to the online environ-
ment. Further modification and improvement are needed so
that the techniques and algorithms used can respond to the
data flow in real-time.

The differences of requirement between offline and online
conformance checking are summarized in Table 3 with refer-
ence to [18] related to the assumptions of data streams and
[19] related to the unique characteristics of online confor-
mance checking.

TABLE 3. Comparison of requirements between offline and online
conformance checking.

Requirement Offline CC Online CC

Algorithm The event log data is Event streams come
static, so the algorithm infinitely, so the
can be executed on a case- | algorithm must be able to
by-case basis and requires | process infinite data
relatively little memory. without being constrained

by memory

Memory No memory capacity Must assume that
constraint because cc can memory availability is
be executed sequentially limited or less than the
per case amount of data processed

C. PETRI NET-BASED PROCESS MODEL
In this paper, process models are represented in Petri net. A
process model describes how a process should be executed.
Definition 2 (Petri Net): A Petri net is a tuple N =
(P,T,F,a,m;, my) where P is a finite set of places, T is a
finite set of transitions, F € (P x T) U(T x P) is a finite set
of arcs as flow relation, « : T — A is the transition mapping
function to labels.
A marking, i.e. the state of the Petri net is a multi-set places.
mj, my € B(P)is the initial marking dan final marking of Petri
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net N. A firing mechanism is required on the transition as a
replay rule

Definition 3 (Firing Transition): Firing transition in Petri
net can be done if there are tokens available in all input places
to be consumed by transition t € T, with et < m. Firing
a transition denoted by (N, m) [t) on transition t € T with
marking m wil result in a new marking m' = (m\ e 1) U te.

When the replay is firing, the token position as a marking
will change. The flow of changes in marking tokens can be
described in a reachability graph.

Defition 4 (Reachability Graph): If m; is the initial marking
of a Petri net N, then a set of reachable markings of N can be
expressed as RS(N). The reachibility graph of N is expressed
as RG(N), which is a graph where the nodes are each set of
marking RS(N), while edge is a firing transition, so that an
edge mi,t,my € RS(N) x T x RS(N) exist, if and only if
my[t)mo.

D. TOKEN-BASED REPLAY

The replay technique in conformance checking performs a
replay for each trace of execution on the process model by
executing tasks according to the sequence of events. Among
the well-known replay techniques are Token-Based Replay
(TBR) and Alignment, both of which work on Petri net.
This section focuses more on discussing TBR that will be
adopted in our proposed method. The theory of Alignment
is described in [2] and [18].

The TBR discussed in this paper is a method that works
in an offline environment. Basically TBR works on trace
logs and an Accepting Petri net. The Accepting Petri net is a
Petri net along with a final marking. The output of the replay
operation is a list of transitions activated during replay, along
with some values (c, p, m and r) defined as follows:

Definition 5 (Consumed, Produced, Missed, and Remain-
ing Tokens): Let L be the event log, and o is the trace of L.
Then c is the number of tokens consumed during replay o.
p is the number of tokens produced during replay o. m is
the number of tokens lacking during replay o., and r is the
number of tokens remaining during replay o.

As a first step before starting the replay, it is assumed that
the environment puts a token into a place where the initial
marking is. The replay operation considers the activity on the
trace sequentially. In every step of the process, this operation
fetches the set enabled transition in current marking. If there
is a transition corresponds to the current activity, the transi-
tion can be activated. A number of tokens equal to the number
of input places are then added to ¢, and a number of tokens
equal to the number of output places are then added to p.

If there are no transitions that match the current activity
enabled in the current marking, then the transitions in the
model that match the activity will be searched. Since the
transitions cannot be activated in current marking, a marking
is modified by inserting the required token to activate it, thus
increasing the value of m.

At the end of the replay, if the final marking is reached, then
it is assumed that the environment consumes the tokens from
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the final marking, so the value of c is increased. If the marking
achieved after completing the replay trace is different from
the final marking, then the missing tokens will be inserted
and the last one calculates the number of remaining r tokens.
The following formula applies during the replay: ¢ < p + ¢
and m < c so that the relation p + m = ¢ + r applies at the
end of the replay.

E. GRAPH DATABASE

A graph database is a database management system that is
based on graph theory. The graph theory uses nodes for stor-
ing entities and edges for relationships among them. Graph
databases emphasize the relationship between data points.
The implementation of the graph in this study uses Neo4j
GDBMS and the graph query language Cipher [9].

The main elements of a graph are nodes and relationships.
A node in Cipher is symbolized by brackets ““()”’. The node
that gets the additional label name ““(: Label)”, will limit
the selection of the node designation in question based on
that label. In addition, a variable can also be used on the
““(variableName: Label)”” node so that the next variableName
can be used to access nodes labeled Label.

While a relationship is symbolized by a string such as
an arrow “—>"", which implicitly indicates the direction of
the relationship since each relationship is associated with an
ordered set of nodes, i.e., a source (from) and a destination
(to) node. Cipher annotations always require two nodes, even
if no specific node is declared. So a minimal example of
defining a relationship in Cipher is: “()—>()" i.e., the rela-
tionship can never be without source and destination nodes.
Similar to nodes, relationship groups can be delimited by
specifying labels in square brackets ’()-[:Label]->()” and
variables such as ”’()-[variablename:Label]->()”’. Node and
relationship variable declarations can be freely combined.

A simple graph can be seen in Fig. 3. For example
the cipher syntax (x:Event {p_id: 102})-[r:DFG
{Flow:'NEXT’ } ]-> (y) will declare the variable x for
the node with the label:Event and variable r for relations
labeled:DFG. In addition, the p_id attribute is also declared
for node x and the Flow attribute for relationship r.

Event Event
p_id: 101 DFG sl pid: 101
name : read_db flow : 'NEXT 7\ name : write_db

FIGURE 3. Example of a simple graph.

IV. THE PROPOSED METHOD

In this study, Graph-based Online Token-Based Replay (GO-
TR) is proposed. GO-TR stores state replays in the graph
database. Therefore, GO-TR requires an effective replay
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algorithm to accommodate lightweight write and query oper-
ations that are easy to find and trace.

Petri Net model representation in the graph database is
the foundation of GO-TR. Petri net consists of places and
transitions. Fig. 4 presents the proposed schema model for
Petri net on the Neo4j graph database. This graphical dis-
play can be obtained using the apoc library via the call
apoc.meta.graph () command. It appears that there are
two types of nodes used in the model, namely Transition and
Place. An example of the realization of the schema model
can be seen in Fig. 5. There is an initial marking, a node of
Place type named ‘“‘source’, and the final marking named
“sink”. There are two nodes of Transition type with labels
A and B. Between A and B, there is a Place named “p_3”.
All relationships are identical, pointing in one direction and
of Arc type. Based on the Petri Net model, a cypher algorithm
can then be developed to run a replay.

Arc
Arc

FIGURE 4. Schema model for petri net in Neo4j.

- ° h e h ° h e

Node Properties Node Properties Node Properties

<id> 1412 <id> 1416 <id> 1413
label A c 0 label B

m 0

name p_3

4] (1]

token 0

FIGURE 5. Example of model instantiation of Petri net in Neo4j with
additional attributs (c, p, m) in place for GO-TR.

Based on the Petri Net model in the graph database, GO-TR
was built with the architecture presented in Fig. 6. GO-TR
consists of several components, they are: a reference model,
replay image, reachability graph, graph-based token replay,
and also graph-based invisible path identification and replay.

A. MODEL REFERENCE
The initial component that is required for conformance
checking is the reference process model. We propose the
process model representation in the form of Petri net in a
graph database. Fig. 7 illustrates several scenarios based on
the availability of data to obtain the representation of the Petri
net. The scenarios are:
1. If an event log is available in a structured or semi
structured format that can be imported into the graph
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a

Event stream Graph-based invisible path G-

identification and replay

FIGURE 6. Architecture of GO-TR.

database (or it could be that the event log is already
available natively in the graph database), then a graph-
based process model discovery is made [7], [20], [21].
The results obtained are still in the directly followed
graph (DFG) representation. The next step is to convert
the DFG to Petri net using algorithm 1.

Algorithm 1: Algorithm To Convert Directly Followed
Graph (DFG) Representation To Petri Net Representation

Input: DFG model with relationship type
1: function DFGtoPetrinet (dfgModelld)

2 detects the relationship type between two nodes:

3: (a.) if Sequence or AND:

4: add Place and relation between the two

nodes

5: (b.) if Xor_split:

6: add Place and relation at split point

7: merge relation on input side to Place

8: (c.) if Xor_join:

9: add Place and relation at join point
10: merge relation on the output side of Place
11: delete all DFG relationships

12: obtained the process model in the representation of Petri Net

2. Process model discovery is executed directly from the
event log in a structured or semi structured format such
as XES or CSV. In this study, the process discovery
uses the PM4Py library, namely the alpha algorithm
or inductive miner. The result of discovery is a pro-
cess model with Petri net object format. By using
algorithm 2, the process model in Petri net object

Algorithm 2: Algorithm to Generate Petri Net Represen-
tation of Model Process on Graph Db

Input: net /I a Petri net object of Process Model
1: function generatePetrinetForGraphDB (net)
2:  (2.a.) createTransition(tx, activity)
(2.b.) createPlace(tx, place)
(2.c.) createRelationship_placeToTrans (tx, pName, tLabel)
(2.d.) createRelationship_transToPlace (tx, tLabel, pName)

oA w
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i Petri Net representation
DFG representation
Load to Graph DB - Grg?gclgg:ed for Process Model DFG to Petri Net of !’rocess Model
event log Model in Graph DB Converter in Graph DB
in Graph DB Discovery \_/—\ (algorithm 1) —
Process Model gi{‘;:‘éﬁ’
event log discovery i.e alpha or Petri Net Object of reprecentation in
in (semi) inductive miner Model Process pGFaph DB
Slggfrlﬂu;tm (using PMAPY lbrary) {algorithm 2)

PNML importer using

®©

PM4PY

Process Model in
PNML format

FIGURE 7. Techniques for obtaining the Petri net representation of process model in a Graph database from several data source

formats.

format can be used to generate its representation in the
graph database.

3. The process model is available in PNML format.
PNML importer from the PM4PY library is used to load
the process model into the graph database to get a Petri
net object. Based on the petrinet object, a representation
of the process model is generated in the graph database
using algorithm 2.

B. REPLAY IMAGE

A Replay Image (RI) is proposed to store case administration.
Algorithm 3 explain algorithm to create an RI from its master
reference Petri net model.

Definition 6 (Replay Image): Replay image is Petri net and
its updated marking for each unique case. A Replay Image is
a tuple Ng; = (N, B, me, i) where B is a function that maps
each place P with the property set {c, p, m} where ¢ € Z
is the number of tokens consumed, p € Z is the number of
tokens produced, and m € 7 is the number of missing tokens
inserted. mc is the current marking which shows the marking
of the last update. Where i is the unique identity of the replay
image based on the case id of the checked event stream.

The replay behavior in RI follows firing transition mecha-
nism in Def. 3. As Def. 5, RI stores the replay data, including
token consumed (c), token produced (p), and token missing
(m). As an illustration, the comparison between the reference
model and the Replay Image is presented in Fig. 8.

C. REACHABILITY GRAPH

The reference model in the petrinet model can be brought
to its reachability graph by using PM4Py which provides
libraries for generating reachability graphs. Fig. 9 is an exam-
ple of a process model that will produce a reachability graph
presented in Fig. 10.

The resulting reachability graph object is then loaded into
the graph database using algorithm 4. First, all states which
are nodes in neodj are created (lines 1-3). Then the states
are connected using transitions in form of relationships in

VOLUME 10, 2022

Algorithm 3: Create Replay Image
Input: N = (P,T,F,a,mj,m),ceC

root node of
replay image

Continue to
clone the rest
sub  graph of
model reference
to replay image

Update the
replay image
with new
attributes

Pseudocode Cipher
1 Find rootA as the MATCH  (rootA:Place
initial marking  {type:’master’,
node of model im:True})
reference
Clone the rootA  WITH distinct rootA
to rootB as the CALL

apoc.refactor.cloneNodes([rootA])
YIELD input, output

WITH rootA, input, out-

put AS rootB

SET rootB.type="clone’,
rootB.p_id = $¢

WITH rootA, rootB

MATCH path = (rootA)-
[*]->(node)

WITH rootA, rootB,
collect(distinct path) as
paths
CALL

apoc.refactor.cloneSubgraph
FromPaths(paths, {
standinNodes: [[rootA,
rootB]] })
YIELD input,
error

WITH collect(DISTINCT
output) AS nodes
UNWIND nodes as node
SET node.type = ’clone’,
node.p_id = $p_id

output,

neod4j (lines 4-12). Next, all the relationships are labeled
invisible. This is important for designing the invisible task
identification algorithm.
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FIGURE 8. Master reference and its replay image.
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FIGURE 9. Example of a process model generated from BPIC13 data.

D. GRAPH-BASED TOKEN REPLAY FOR ONLINE
CONFORMANCE CHECKING

The main algorithm in the Graph-based online Token Replay
(GOTR) technique is to replay each event arrival (stream) to
a reference model in the form of a replay image.

Definition 7: Graph-based online token replay (GO-TR)
Given a Petrinet N = (P, T, F,a, m;, my), a replay action
(N, m) [t), and a replay image Ng; = (N, B, mc, i). Graph-
based Token replay is obtained by reading the transition
conditions t € T to be replayed along with the token require-
ments at the input place nya p € P through the replay
image Ngj in the graph database. Based on the information
obtained, the necessary handling is carried out to ensure that
the replay can be carried out, such as tracing the invisible
path and inserting the missing token. Followed by running a
replay on the appropriate transition while updating it (write)
on the replay image.

The GO-TR schema can be seen in Fig. 11. Basically, GO-
TR accepts input data in form of event streams. Each event
that comes is accompanied by its respective case id as a replay
reference. When a case comes with a new id, a replication of
process model from the reference master will be created as a
Replay Image (RI).
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FIGURE 10. Example of the reachability graph obtained from the process
model in Fig. 9.

Algorithm 4: Generate Reachability Graph in neo4j

Input: rg, net # reachability graph object, Petri net
Junction generateRGinNeo4j (rg, net)

1 for s in rg.states:

2 sname = s.name

3 createState(session, sname)
4 for t in net.transitions:

5 tmame = t.name

6 if t.name not in trans_name:
7 tlabel = ‘invisible’
8 else:

9 Tlabel = t.name
10 source = t.from_state

11 target = t.to_state

12 createRelationship(session,

source.name, t.name, tlabel,
target.name)

Algorithm 5 explains in detail the algorithm for replaying
the GO-TR. The GO-TR technique begins by detecting the
identity of the event that comes. If this event is an event with
a case id that has never been detected, it will be recognized
that a new process is in progress (line 6). Therefore, it is
necessary to prepare a new Replay Image (RI) in the graph
database that can be recognized through the case id identity
(line 7). Next, the program will make sure the activity name
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Algorithm 5: Graph-Based Online Token Replay

Input: N = (P, T,F,«, m,-,mf),RG(N),S € (C x A)
states, places < getReachabilityGraphProperties(RG)
while frue do

1
2
3 event < S(i) // get i-th event of event streams
4 c < event[0] // extract case-id from current event
5 a < event[l] // extract activity label from current event
6 if c not in id_list:
7 createReplayImage (c, model_ref) // algorithm 3
8 if a not in activity_name:
9 unknownActivities <— event
10 Send an alert that the activity on event (c, a) is not recognized
11 continue
12 eip < getAllEmptylnputPlaces(c, a) // detect if empty input places are exist
13 if eip is exist:
14 if isAllEipConnectedTolnvIask(c, eip): // all input places are connected to inv task
15 if invisiblePathReplay (c, currentMarkingName, eip, states, places): // algorithm 8
16 replay_info <— normalReplay (c, a) // algorithm 6
17 else:
18 replay_info <— replayWithInsertToken(c, ms, a) // algorithm 7
19 Send an alert that a deviation occured in event (c, a)
20 else:
21 replay_info <— replayWithInsertToken (c, my, a)
22 Send an alert that a deviation occured in event (c, a)
23 else: // empty Input Place is NOT exist
24 replay_info < normalReplay (c, a)

is recognized in the reference model; if it is not recognized,
it will be skipped and recorded in the unknownActivities list
as a deviation (lines 8-11). Next, the algorithm will detect
whether there are empty input places in the activity. If empty
input places are detected then the activity cannot be enabled
(line 12).

If there are empty input places (line 13) which are all
connected to an invisible task, it is necessary to identify an
invisible path using algorithm 8 (lines 15). If the invisible path
is found, then the replay can be executed normally (line 16).
However, if the invisible path fails to be identified, then
the replay must be executed by inserting the missing token
(line 18). The insertion of a missing token is a sign that there
is a deviation. In that case, a warning (in real-time) containing
case id information and activity name is then issued (line 19).

If there are empty input places (line 13) which are not
connected to an invisible task, the replay can only be executed
by inserting a missing token (line 21) so it will also be
declared as a deviation.

If there is no empty input place (line 13) which means all
of the input places are filled with tokens, then the replay can
be executed normally (line 24).

The explanation of the Cypher algorithm for the nor-
mal replay is presented in algorithm 6, while the replay
that requires the insertion of missing tokens is described in
algorithm 7.

VOLUME 10, 2022

Algorithm 6: Normal Replay
Input: N = (P,T,F,a,mi, my), (c,a) € CxA

Pseudocode Cypher

1 Find all input MATCH (ip: Place
places of matched {p_id: $c }-[r]-
activity >(t:Transition

[label:$a})

2 Consume token  SET ip.token = ip.token -
from each input 1,ip.c =ip.c+ 1, rc =
place and update rc+ 1, rnf=rf+1
the relationship
attributes.

3 Find all output WITH distinct t AS t, ip,
places of matched collect(ip) as ips
activity MATCH (t)-[r]->(op)
Produce token  SET op.token = op.token
to each output +1,0op.p=op.p+1,rp
place and wupdate =rp+1, rf=rf+1
the relationship
attributes.

E. GRAPH-BASED INVISIBLE PATH REPLAY
The basic algorithm of Token-Based Replay cannot replay an
invisible task. The algorithm needs missing token insertion,
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FIGURE 11. Proposed graph-based online token replay.

which will be detected as a deviation, to replay a visi-
ble task which preceded by an invisible task. We proposed
graph-based method to handle the invisible task replay. Our
proposed method takes advantage of the graph database’s
ability to store graph data natively and its fast node traversal
capabilities.

In every iteration of the replay event that comes (in
algorithm 4), it always begins with checking whether all input
places of the activity to be replayed have all tokens filled
(line 13). If there is an input place that is not filled with a
token, it is necessary to check whether there is an invisible
path that can be executed so that this input place can then be
filled with a token.

The algorithm for identifying and replaying invisible paths
is presented in Algorithm 8. This algorithm will start when
Algorithm 5 (lines 12-14) runs input places that do not
contain tokens which are all connected to an invisible task.
To detect an invisible path, it is necessary to first find the state
position in the reachability graph as the source_state (line 1).
If a source_state exists (line 4), then the algorithm needs
to check the existence of rarget_state_candidates (lines 5).
From all the rarget_state_candidates, the algorithm looks
for the one with the shortest distance from source_state
(line 6).
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An invisible path is found when a reachable and the short-
est distance target_state is found (line 7-8). The invisibleRe-
play function (algorithm 9) will update the attributes of all
nodes and edges along the invisible path that is found to
simulate replay on an invisible path (line 9). Returns is True
if the invisible path is found (line 11). On the other hand,
return is False if the spf_target_state is not obtained, hence
the invisible path will not be obtained (lines 11-12).

F. EXPERIMENT SET UP
The experiment was carried out on a computer with an Intel
Core i7-3632QM processor with 16GB of RAM, and Python
3.6. The pm4py 2.2.4! library was used to perform process
discovery and to generate the reachability graphs.

The following are the scenarios of the experiment that was
carried out:

1) THE CORRECTNESS OF THE TOKEN-BASED REPLAY
ADAPTATION

GO-TR adapts TBR. Conformance checking experiments
were carried out with scenarios using normal cases, cases

1 https://github.com/pm4py/pm4py-core/releases/tag/2.2.4
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Algorithm 7: Replay With Insert Token (Abnormal
Replay)

Input: N = (P,T,F,a,mi,my), (c,a) € CxA

Pseudocode Cipher
1 Check if exist input OPTIONAL MATCH
place with a missing  (ip: Place {p_id:

token, then insert an
artificial token and
update the missing
token status as true

(1)

$p_id})—>(e:Transition
{label:$activity})
WHERE ip.token = 0
SET ip.token = ip.token
+ 1, ipm=ip.m+ 1

2 Count number of WITH ip_mt,
missing token count(ip_mt) as
num_of_missing_token
3 Consume token MATCH (ip:  Place
from each input {p_id: $p_id})-
places and update  [r]->(t:Transition
the relationship ~ {label:$activity})
frequency SET ip.token = ip.token -
Lyip.c=ip.c+ 1, rc=rc
+ 1L rf=rf+1
4 Produce token WITH distinct t AS t,
to each output ip_mt
place and wupdate MATCH (t)-[r]->(op)
the relationship ~ SET op.token = op.token
frequency +1,0op.p=opp-+1,o0p.,
rp=rp+1, rf=rf+1
5 Return the number RETURN
of input places with  count(ip_mt) as

missing token num_of_missing_token

with deviations. and cases with multi-input invisible tasks,
to prove the GO-TR technique was working properly.

The experimental dataset used public real-life data from
BPIC 2013 Incident.> The inductive miner algorithm was
used with a noise threshold of 0.2 to obtain a process model
that contained many invisible tasks and one invisible task with
multi visibility input tasks. The case used for testing was a
modification from one of the 2013 BPIC Incident data cases.

We used the ITBR program provided by PM4PY to test
the TBR technique. This program only works for offline
conformance checking, so it requires input in form of an event
log.

2) THROUGHPUT

This experiment was conducted to compare GO-TBR against
PA in average speed for replaying each event arrival (stream).
The event data was sent to the conformance checking
machine on streams based on the order of arrival (not follow-
ing the arrival timestamp). The data set used was CCC19°

2https://data.él'tu.nl/articles/dataset/BPI_Challenge_ZO 13_incidents/
12693914/1

3 https://data.4tu.nl/articles/dataset/Conformance_Checking_Challenge_
2019_CCC19_/12714932
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which is a public data set. We duplicate the number of case
ids as much as five and ten folds of their original number of
20 available case variants to compare the throughput of both
techniques.

3) MEMORY CONSUMPTION

This experiment was aimed to compare memory usage
between PA and GO-TR. The dataset used was CCC19 pub-
lic data. The variable observed in this experiment was the
amount of memory consumed along the arrival of the event.

V. RESULT AND DISCUSSION
This section presents and discusses the results of the experi-
ments that had been carried out.

A. THE CORRECTNESS OF THE TOKEN-BASED REPLAY
ADAPTATION

In this section, observations were made on several test sce-
narios to ensure the correctness of the GO-TR replay results
by comparing them with TBR results. The dataset used was
BPIC13 incident management. Fig. 12 presents the process
model of the BPIC13 Incident. The model was generated
with the help of PM4PY using Inductive Miner with a noise
threshold of 0.2. The PM4PY was also used to generate the
reachability graph in Fig. 13 from its Petri net object model.

There are AND branches (e.g. AND-Split in tau_1) and
loops (e.g. Accepted). There is also an invisible task tau-
Join_4 which has two inputs. The first input, p_12, is linked
to the invisible tasks skip_13 and skip_9. While the second
input, p_9, is connected to the visible task Accepted. This
condition is hereinafter referred to as invisible task with multi
visibility input tasks.

The first experiment used a normal case Queued —
Accepted — Completed. This experiment was to prove that
the TBR algorithm used in GO-TR could recognize invisible
paths. The experimental results are presented in Table 4. The
next experiment used a case containing a loop, i.e. Queued
— Accepted — Queued — Completed — Completed. The
experimental results are presented in Table 5. The marking
movement presented in Table 6 can be explained as follows.
First of all the system provides initial marking on a place
labeled as “Source”. Then with the arrival of the first event,
labeled as ““Queued”’, the TBR algorithm starts to work. With
the reference model in Fig. 12, it can be seen that the initial
marking position on “Source” causes all input places in
“Queued” to not have tokens. Therefore, the TBR algorithm
will try to (p_8, p_11) — (p_8, p13), can be found so that
“Queued” can be replayed normally to produce state (p_8,
p_14).

The results in Table 4 and Table 5 show that GO-TR and
ITBR can work well in all normal cases. They also give the
same results for all statistics.

The third experiment with ‘“wrong-placed token” problem
contains the following activities: Queued — Completed —
Completed. A good TBR algorithm will recognize that it
is necessary to add a missing token to p_16. With marking
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Algorithm 8: Invisible Path Replay

1 source_state < findStatename(states, m.) // find a state of RG that matches the current marking m,

2 current_states <— current_marking(c), current_edge_freq(c), current_edge_produced(c) /] temporary storage for
current states

3 function InvisiblePathReplay(c, m., eip, states, places)

4 if source_state is exist:

5 target_state_candidates <— findTargetStatesCandidates (states, eip)

6 spf_target_state, spf_trans<—findInvisiblePath(source_state, target_state_candidates)

7 If spf _target_state is exist:

8 target_marking <—extractTokenPlace(spf_target_state, places)

9 invisibleReplay(c, spf_trans) // algorithm 9, invisible replay with no need to simulate token replay

10 Return True

11 else

12 Return False

13 else

14 If invisibleTokenReplay(c, m., eip) is succeed // invisible replay with token replay
15 Return True

16 else

17 rollback(current_states)

18 Return False

Algorithm 9: Invisible Replay
Input: N = (P, T,F,o, m, mf) ,(c,a) e C x A
Pseudocode Cipher
1 Prepare a pair of a  WITH $a AS as

list of activities a WITH [i in range(0,
size(ts)-1) | {a:as[i]}]
AS pairs
UNWIND pairs as pair SOUrce: 45y 1

2 Match each activity
in model reference
with each activity in
a, then set its input
place and relation-

MATCH (ip {p_id:$c})-
[r]->(tr:Transition)

WHERE tr.name = pair.t
SET r.f =rf+ 1, ip.token
= ip.token - 1, ip.c = ip.c

tauloin_4

ship attributes +1

3 Match all output WITH tr, pair
places of activated MATCH (tr)-[s]->(op)
activities

4  Set its output place WITH distinct s AS s, op
and  relationship SET s.f=s.f+ 1, op.token

FIGURE 12. Discovery result from the process model with BPIC13 dataset.

TABLE 4. Results of the experiment that use a normal case.

attributes = op.token + 1, op.p = Dataset BPIC13 ITBR I GO-TR
op.p + Vi Trace Queued, Accepted, Completed
Consumed token 10 10
Produced token 10 10
.. . .. Missing token 0 0
position on p_8 and p_14, the necessity to add a missing token &
is because a replay is required on Accepted activity to enable Remaining token 0 0

taujoin_4. The GO-TR and ITBR algorithms that work in Fitness 1.00 1.00
“wrong-placed token” problem is different. It is interesting.
The results from the marking in the third experiment for
GO-TR and ITBR are presented in Table 6.

The marking movement presented in Table 6 can be
explained as follows. First of all the system provides initial

Wrong-place token problem - -

marking on a place labeled as “Source”. Then with the arrival
of the first event, labeled as “Queued”, the TBR algorithm
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FIGURE 13. Reachability graph generated from the model in Fig 12.

TABLE 5. Results of the experiment that use a case containing loop.

Dataset BPIC13 ITBR GO-TR
Trace Queued, Accepted, Queued,
Completed, Completed

Consumed token 14 14
Produced token 14 14
Missing token 0 0
Remaining token 0 0
Fitness 1.00 1.00
Wrong-place token problem - -

starts to work. With the reference model in Fig. 12, it can be
seen that the initial marking position on “Source” causes all
input places in “Queued” to not have tokens. Therefore, the
TBR algorithm will try to find the shortest possible invisible
path from “source” to p_13. In this case, an invisible path,
source — (p_8, p_11) — (p_8, p13), can be found so that
“Queued” can be replayed normally to produce state (p_8,
p_14).

The next event is ““Completed”. A token at position p_16
is required to enable the “Completed” activity. A different
work between GO-TR and ITBR algorithms can be explained
as follows.

a. The ITBR algorithm finds an invisible path p_14 —
p_12 — p_16. It then tries to run a replay. But when
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TABLE 6. Marking result comparison between ITBR and GO-TR.

Seq Events Marking Marking
(ITBR) (GO-TR)
1 (system produce an Source Source
initial marking token)
2 '1-717918204', 'Queued' P 14,p 8 P 14,p 8
3 '1-717918204', P 12,p 8, P _14,p 8,
'Completed' p 17 p_ 17
4 '1-717918204', P 12,p 8, P_14,p 8,
'Completed' p_17 p_17
5 (system consume final P_12,p 8 P_14,p 8
marking token)

it comes to p_12 the replay stops as p_9 has no token
and it is not connected to the invisible task. There-
fore, tauJoin_4 cannot be activated. As a result, the
replay attempt via invisible path failed to reach p_16.
However, ITBR is already running tokens from p_14
to p_12 and so the marking becomes (p_12, p_8). The
current position of the token at p_12 is the “wrong-
placed token”. The token position at p_12 will cause
errors on analysis. Because, apart from being able to be
achieved through “Queued” activation, p_12 can also
be directly reached via skip_9.

b. Meanwhile, GO-TR, by using algorithm 1, will find
the invisible path from (p_14, p_8) to p_16 through
the reachability graph. In this case the invisible path
is not found so the marking does not change i.e. it stays
at (p_14, p_8). As a result, GO-TR is safe from the
“wrong-placed token” problem.

Next step, both ITBR and GO-TBR algorithm require to
insert a missing token on p_16 to enable “Completed”. The
replay results are the (p_12, p_8, p_17) marking for ITBR
and the (p_14, p_8, p_17) marking for GO-TR.

The last event to be replayed is the second activity
with “Completed” label. This time, ITBR finds the route
p_17—p_16 as an invisible path. On the other hand, in
GO-TR, because the previous activity was a deviation,
no state of “(p_14, p_8, p_17)” is found in the reachability
graph. In that case, we had to run the algorithm 2 through
a simulation by tracing the invisible paths. If the search
failed to reach the target (the missing token place point), the
algorithm rolls back all states of the invisible paths to the
initial condition. As a result, both ITBR and GO-TR can find
the invisible path that reaches p_16. After a successful replay
of “Completed”, the marking positions will return to (p_12,
p_8, p_17) for ITBR and (p_14, p_8, p_17) for GO-TR.

B. THROUGHPUT

This section describes the experimental results of the compar-
ison between the execution performance of PA and GO-TR
by completing a number of event data streams. Comparisons
are made in a single processing environment to observe the
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TABLE 7. Comparison of duration to complete event streams arrival using CCC19 dataset.

duration (seconds)

Online conformance checking 20 40 60 80 100 120 140 160 180 200

technique cases cases cases cases cases cases cases cases cases cases

(697 (1394 (2091 (2788 (3485 (4182 (4879 (5576 (6273 (6970
events) | events) | events) | events) | events) | events) | events) | events) | events) | events)
Prefix Alignment OCC w=full 78,73 155,24 226,8 | 306,27 | 377,61 | 438,88 | 523,34 | 601,95 | 733,34 | 776,03
Prefix Alignment OCC w=10 45,72 98,15 141,45 183,01 231,50 | 287,00 | 337,20 | 37041 426,50 | 474,51
Prefix Alignment OCC w=5 27,22 59,6 86,72 | 116,11 138,00 175,19 | 201,25 | 228,29 | 255,78 | 286,65
Prefix Alignment OCC w=2 16,34 32,72 48,85 66,24 79,38 95,61 115,69 131,54 | 170,76 | 162,93
Prefix Alignment OCC w=1 11,48 22,59 34,88 47,06 55,59 68,57 79,85 93,00 | 104,89 | 111,53
GO-TR 8,54 17,22 27,32 38,97 52,60 63,48 77,86 96,77 | 113,24 | 132,17

TABLE 8. Comparison of throughput between PA and GO-TR.
Throughput (event per seconds)
Online conformance checking 20 40 60 80 100 120 140 160 180 200

technique cases cases cases cases cases cases cases cases cases cases

(697 (1394 (2091 (2788 (3485 (4182 (4879 (5576 (6273 (6970

events) | events) | events) | events) | events) | events) | events) | events) | events) | events)
Prefix Alienment OCC w=full 8,85 8,98 9,22 9,10 9,23 9,53 9,32 9,26 8,55 8,98
Prefix Alignment OCC w=10 15,24 14,20 14,78 15,23 15,05 14,57 14,47 15,05 14,71 14,69
Prefix Alignment OCC w=5 25,61 23,39 24,11 24,01 25,25 23,87 24,24 24,43 24,52 2432
Prefix Alignment OCC w=2 42,66 42,60 42,80 42,09 43,90 43,74 42,17 42,39 36,74 42,78
Prefix Alignment OCC w=1 60,71 61,71 59,95 59,24 62,69 60,99 61,10 59,96 59,81 62,49
GO-TR 81,62 80,95 76,54 71,54 66,25 65,88 62,66 57,62 55,40 52,74

throughputs, which is the number of events that can be com-
pleted per second.

This experiment uses the CCC19 public dataset that pro-
vides log data and its reference model. The log data is in an
event-log format (XES), while the reference model is in pnml
format. In this paper, experiments that uses PA takes reference
to the source code of the IAS prefix-alignment program.*

In the GO-TR simulation, the CCC19 log data needs to be
converted from an event log to an event stream representation
by sorting each event based on arrival time.

We need to load the reference model into the graph
database using Algorithm 2 as the first step of the GO-TR
experiment. The algorithm will generate a petri net represen-
tation of the model process from its pnml format on the graph
database. In the next step, a reachability graph (RG) is also
needed by GO-TR to identify the invisible paths. We use the
PMA4PY library to generate the RG model from the Petri net
object. The resulting reachability graph model is loaded into
the graph database using Algorithm 4.

The variables to be observed were the duration required
to complete the inspection of the event stream data and the

4https://github.com/fit—daniel—schuster/online_process_monitoring_
using_incremental_state-space_expansion_an_exact_algorithm
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number of events. Based on the known duration and number
of events, the throughput value (T) can be obtained using the
formula T=n/d, where n = number of completed events, d =
duration of completion, and T= throughput. The experimen-
tal results are presented in Table 7 and the throughput results
are shown in Table 8 and depicted in Fig. 14.

The PA with “w=full” requires the highest computation
because it performs a complete optimal alignment computa-
tion from the beginning of each new event arrival. A PA with
a small window, for example “w=1", is very fast. However,
it reduces the guarantee of getting optimal alignment. More-
over, it still has memory limitation problems.

Based on the results of the experiment, it appears that
GO-TR with a small number of cases has the highest through-
put. This is due to the simple computing that it can execute
the replays in a short time. On the other hand, the PA com-
putation is very influential on replay speed. The faster the
computation, the greater the throughput. At “w=1", the PA
throughput is close to GO-TR throughput.

The data in Table 8 shows that GO-TR experiences a
decrease in throughput as the number of handled cases
increase. It is because that in GO-TR, each case has its own
representation of the RI. The more cases that are handled, the
longer the query time required in the replay process.
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FIGURE 14. Throughput comparison between GO-TR and PA.

C. MEMORY CONSUMPTION

This third experiment is the most important to prove the reli-
ability of the online conformance checking technique against
memory limitations. The test is carried out by observing the
program’s (python’s) memory consumption when executing
PA and GO-TR.

Fig. 15 presents the result of the experiment when using PA
with “w=2" for 60 minutes. The results in Fig. 15 indicate
that memory consumption increases linearly with the number
of coming events. This is due to the space needed by the PA
to accommodate the administration of each case. This space
continues to stay in memory as long as the observed case is
still active. The more cases received, the greater the space
required. So, if the arrival of the case is declared to be infinite,
it will require an infinite memory space to accommodate. This
makes PA vulnerable to memory limitations.

The results from the GO-TR experiment in Fig. 15 indicate
that the arrival of event streams has no effect on memory
consumption. This is possible because the administration
of all cases are stored in the graph database. The running
program simply replays the RI of a case based on the event
id that comes. The results of the replay immediately update

Comparison of memory consumptions
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FIGURE 15. Memory consumption using PA with w=2 and GO-TR.
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the RI. Based on the experiment, it is proven that GO-TR is
invulnerable from memory limitation problems.

VI. CONCLUSION

In this paper, we propose the Graph-based online token
replay (GO-TR) as a replay-based online conformance check-
ing which is invulnerable to memory limitations. Our pro-
posed solution adapts the token replay technique on a graph
database. By building the GO-TR, we made several con-
tributions, which are: proposing replay images as the rep-
resentations of the Petri Net models in a graph database,
adapting Token-based Replay on a graph database for online
conformance checking that receives event stream data, and
proposing a cypher-based invisible path identification and an
invisible path replay algorithm.

Based on observations and analysis from the experiments,
it is proven that GO-TR has been successful in adapt-
ing TBR and is invulnerable to the wrong-placed token
problem. For small amounts of data, GO-TR works with
the highest throughput when compared to PA. However,
GO-TR’s throughput performance decreases as the amount
of data increases. In terms of memory usage, GO-TR shows
its advantages over PA as it is invulnerable to memory
limitations.

In future work, a study will be conducted to maintain the
query performance along with the data growth. In addition,
it is also necessary to observe the performance of its response
to high-speed data.
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