
Received 19 July 2022, accepted 7 September 2022, date of publication 20 September 2022, date of current version 3 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208098

Graph-Based Token Replay for Online
Conformance Checking
INDRA WASPADA 1,3, RIYANARTO SARNO 1, (Senior Member, IEEE), ENDANG SITI ASTUTI2,
HANUNG NINDITO PRASETYO 1,4, AND RADEN BUDIRAHARJO1,5
1Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
2Department of Business Administration, Brawijaya University, Malang 65145, Indonesia
3Department of Informatics, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia
4Department of Information System Diploma, School of Applied Science, Telkom University, Bandung 40257, Indonesia
5Department of Information System, Faculty of Industrial Technology, Institut Teknologi Nasional, Bandung 40124, Indonesia

Corresponding author: Riyanarto Sarno (riyanarto@if.its.ac.id)

This research was funded by Lembaga Pengelola Dana Pendidikan (LPDP) under Riset Inovatif-Produktif (RISPRO) Program; the
Indonesian Ministry of Education and Culture under Penelitian Terapan Unggulan Perguruan Tinggi (PTUPT) Program; and Institut
Teknologi Sepuluh Nopember (ITS) under project scheme of the Publication Writing and Intellectual Property Rights Incentive Program
(Pusat Publikasi dan Hak Kekayaan Intelektual); and also supported by Diponegoro University Scholarship Program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ABSTRACT Conformance checking detects deviations in business process executions. An online detection
method is needed to give immediate response to anticipate possible impacts. The state-of-the-art online
conformance checking is the Prefix-Alignment (PA) technique. However, this technique has a limitation of
maintaining all of the administration data of cases in memory. In an online environment, the last event of a
case is never known, whereas a PA requires last event information to release the case from memory to free
up space for other cases. Hence, the PA does not meet the requirements of online conformance checking in
processing infinite data of event streamwithoutmemory constraints. PA also has a complex state space search
computation especially for large and complex process model references. In this paper, a Graph-Based Online
Token Replay (GO-TR) method is proposed. This method takes benefit from Graph Database to adapts the
Token-Based Replay (TBR) technique which has simple replay computation. We propose a Replay Image
(RI) to store the case administration and develop a cypher based algorithm to simulate token replay on the RI
to handle the event stream. We also propose a cypher-based algorithm to identify and replay invisible paths.
The experiment results show that GO-TR has been successful in adapting TBR and solving the problem
of wrong-placed tokens in TBR. GO-TR outperforms PA in yielding replay throughputs of relatively small
amount of data in online conformance checking. In terms of memory usage, GO-TR shows its superiority
over PA because it does not have memory limitations problems.

17

18

INDEX TERMS Conformance checking, event stream, graph database, token-based replay, memory
limitation.

I. INTRODUCTION19

Conformance checking detects deviations in business process20

executions. There are two important replay techniques, which21

are Token-Based Replay (TBR) and Alignment. Both tech-22

niques work in offline environments. TBR was first intro-23

duced by Rozinat and Aalst [1] as a replay technique based24

on Petri net. While Alignment [2] is currently the de facto25

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhangbing Zhou .

standard for offline conformance checking because of its 26

ability to provide optimal alignment information. 27

In real life, there are many conditions that require immedi- 28

ate inspections. Therefore, an online conformance checking 29

technique is required. Online detection capability enables 30

anticipative action of possible impacts as soon as possible. 31

Prefix-Alignment (PA) [3], [4], [5] is a state-of-the-art 32

replay-based online conformance checking technique. It is 33

a modification of the conventional Alignment technique. 34

However, PA has a limitation of maintaining all of the 35

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 102737

https://orcid.org/0000-0003-1817-2460
https://orcid.org/0000-0001-5373-660X
https://orcid.org/0000-0001-5717-9337
https://orcid.org/0000-0002-3195-2253

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

administration data of cases in memory. In an online envi-36

ronment, the last event of a case is never known, whereas a37

PA requires last event information to release the case from38

memory to free up space for other cases. Hence, the PA does39

not meet the requirements of online conformance checking40

which is the ability to process infinite data of event stream41

without memory constraints.42

Several studies have attempted to overcome the PA weak-43

ness by suggesting approaches to predict the end of a case,44

but these solutions cannot be used in general environments.45

Aside from that, these solutions cause other impacts that need46

to be resolved [3], [6].47

In this study, a Graph-Based Online Token Replay48

(GO-TR) method is proposed. GO-TR adapts TBR for online49

environments through the support of a graph database. This50

proposal is expected to solve problems in memory usage51

of the PA. The TBR technique was chosen because of its52

characteristics, namely: (1) simple replay computation (as53

compared to the Alignment); and (2) maintaining only the54

running marking (as compared to the Alignment technique55

that must maintain all candidates marking).56

The graph database was chosen because of its ability to57

store graph data natively. Previous study by Sarno et al. [7]58

had succeeded in integrating an ERP system with a graph59

database to store event logs directly and apply a graph-based60

process discovery model technique in it. Several develop-61

ments and applications also show that the graph-based meth-62

ods can provide high fitness and precision scores [8], [9].63

Sungkono et al. [10] also used a graph database to check64

wrong decisions and wrong patterns.65

The method proposed in this study utilizes the persistence66

nature of graph database to store the last state of an online67

conformance checking progress as a Replay Image in the68

graph database. In addition, the graph database has a constant69

node traversal that is suitable to support the proposed invis-70

ible path identification and invisible path replay especially71

for complex models which produce large reachability graph.72

The combination of the persistence and speed of node trac-73

ing makes the graph database a reliable solution to support74

GO-TR implementation without memory constraint.75

This paper proposes contributions as follows:76

1. Petri Net model representation in the graph database77

as a replay image. Replay image is a reference model78

that stores the running marking and administrative data79

related to replay.80

2. Token-based Replay adaptation on a graph database81

that can receive event stream data for online confor-82

mance checking.83

3. Algorithm for identification and replay a Graph-based84

invisible path. We take advantage of the graph database85

to identify invisible paths accurately and efficiently.86

The experimental results show that GO-TR has been suc-87

cessful in adapting TBR to the graph database and at the same88

time providing solution to the wrong-placed token problem89

on the TBR. We also found that, for relatively small amount90

of data, GO-TR resulted in higher throughput compared to 91

prefix-alignment. However, GO-TR’s throughput decreases 92

as the amount of data increases. In terms of memory usage, 93

GO-TR shows its superiority over PA because it does not have 94

memory limitations problems 95

The next section of the paper will be presented as fol- 96

lows. Section 2 describes related works. Section 3 explains 97

the definitions and concepts that underlie our proposals. 98

Section 4 discusses the fundamentals of our proposed 99

method. Section 5 presents the experiment results and dis- 100

cusses the findings from the experiment. Section 6 provides 101

conclusions and overview of future research opportunities. 102

II. RELATED WORK 103

In this section, researches related to this work are described, 104

from conventional conformance checking, online confor- 105

mance checking, to the development of graph-based process 106

mining researches. 107

A. CONVENTIONAL CONFORMANCE CHECKING 108

At the beginning of its growth, processminingwas oriented to 109

extracting event log data in an offline environment. Likewise, 110

conformance checking techniques, such as the Token-Based 111

Replay (TBR) [1] and Alignment [2] techniques, can only 112

work in an offline environment. 113

TBR is a conformance checking technique with replay out- 114

put that describes a series of activities resulting from a replay. 115

Basically, the TBR algorithm is very simple, but when the 116

reference model contains an invisible task, the TBR requires 117

additional efforts to detect it. Rozinat and Aalst [1] proposed 118

the detection of invisible paths by building a local reachability 119

graph and then tracing the entire state space. This method 120

requires complex computations so that it slows down TBR 121

execution. 122

The alignment technique [2] improved TBR by building 123

a synchronous product between the reference model and the 124

execution log to choose the best replay route. The resulting 125

series of activities is referred to as alignment. Meanwhile, the 126

computational result to get the alignment with the smallest 127

cost is known as optimal alignment. 128

Berti and Aalst [11] proposed an Improved TBR (ITBR) 129

by adding preprocessing to detect all invisible path lists at 130

the beginning. The invisible path search is done by select- 131

ing the shortest route from a list of invisible-path candi- 132

dates and then running the algorithm for invisible replay. 133

This solution makes ITBR faster than the Alignment tech- 134

nique for Petri nets also for models with invisible tran- 135

sitions. However, ITBR requires an invisible tasks replay 136

check which when it fails will leave a wrong-placed token 137

problem. 138

Our work was inspired by TBR algorithm and we modi- 139

fied the algorithm in order to work on the graph database. 140

A cypher-based algorithm was also built to identify invisible 141

path accurately, to replay the invisible path efficiently, and to 142

avoid wrong-placed token problem. 143

102738 VOLUME 10, 2022

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

B. ONLINE CONFORMANCE CHECKING144

The increased attentions to online process discovery145

researches [12], [13], [14] were followed by the growth of146

online conformance checking researches. Burattin et al. [15]147

proposed online conformance checking using an extended148

transition system by pre-computing the deviation and then149

adding it to the transition system. Burattin et al. [16] also150

developed a behavioral patterns technique that can detect151

deviations more flexibly and reliably to handle processes152

that are already running without knowing their previous153

information. However, the abstraction approach in the form of154

behavioral patterns is less expressive in explaining the occur-155

rence of deviations. It also has a weakness in recognizing new156

deviation patterns. Zelst et al. [3] proposed prefix-alignments157

which had modified and improved conventional alignments158

so it can work with incomplete cases and can respond to every159

event stream that comes in online environment. Schuster and160

Zelst [4] improved the computation of prefix alignment using161

state space expansion so the computation can be done in162

increments without repeating the previous computations.163

Most online conformance checking techniques that are164

available generally assume that the memory is infinite. For165

example, [3] limits the number of past activities that are166

taken into account for alignment calculations based on the167

number of windows, but the number of traces that are stored168

in memory is still not limited. In reality, memory has limi-169

tations that can affect the ability to accommodate incoming170

data streams. Burattin et al. [16] gave an idea of limiting171

the number of cases in memory by forgetting cases that172

were thought to be inactive. However, this method creates173

a missing-prefix problem that will occur if the case is still174

active. As a result, the cases that come afterwards will be175

detected as deviations. Zaman et al. [6] proposed a pre-176

fix imputation approach using a two-step approach to limit177

memory usage by selectively removing cases from memory178

and overcoming the missing-prefix problem by trying to179

recover it by connecting the missing-prefix parts. However,180

this approach cannot be used in all cases. For example, some181

business process domains may have very long active cases182

up to several months period. In addition, the space to accom-183

modate forgotten cases for recovery purposes also potentially184

requires infinite memory.185

In this paper, we propose Graph-based Online Token186

Replay (GO-TR) as a graph-based online conformance187

checking method. The method uses a graph database to store188

case administrations as a replay image (RI) to avoid the189

memory constraint problem for unlimited event streams.190

C. GRAPH-BASED PROCESS MINING191

An event stream is part of a business process that contains192

activities that have unique behavior for each case. A graph193

model can represent the relationship between these activi-194

ties well. Sarno et al. [17] pioneered the implementation of195

process mining in a graph database environment. This study196

proposes a Graph-based invisible task (GIT) to perform a197

process model discovery that contains invisible tasks. Next, 198

Sarno et al. [7] designed an event log storage directly from 199

ERP to the graph database so that there is no need to 200

convert the event log format to perform process discovery. 201

The graph-based process discovery algorithm is superior in 202

time complexity and computational time to other discovery 203

methods [7]. 204

In this paper, our work is aligned with the Graph-Based 205

Process Discovery technique in [7] and [17]. We use graph 206

database to propose graph-based online conformance check- 207

ing which avoids memory contsraint problem and is robust 208

againts unknow future behaviour. 209

III. FUNDAMENTALS 210

In this section, some of the definitions and concepts that 211

underlie the proposed method are described. 212

A. EVENT LOG AND EVENT STREAM 213

An event log is data that is generated as a record of activities in 214

an information system. As an example can be seen in Table 1. 215

Each row is an event that describes an instance of a process. 216

Event logs are generally stored in XES format (eXtensible 217

Event Stream). XES groups each event in a single trace 218

sequentially according to its case id. A simple illustration for 219

the XES format of the event log in Table 1 is described in 220

Table 2. 221

TABLE 1. Example of recorded event log.

TABLE 2. Simplified event log structure in XES format.

For online environment, the analyzed data is not in form 222

of an event log but in form of an event stream. In the- 223

ory, event streams are infinite sequences. According to [18], 224

VOLUME 10, 2022 102739

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

an event stream is a data stream of events which the following225

assumptions are made: (1) each item is assumed to contain226

just a small and fixed number of attributes; (2) algorithms227

processing data streams should be able to process unlimited228

amount of data without exceeding memory limits; (3) the229

amount of memory available to an algorithm is considered230

finite, and typically much smaller than the data observed in a231

reasonable span of time; (4) there is a small upper bound on232

the time allowed to process an item, e.g. algorithms have to233

scale linearly with the number of processed items: often the234

algorithms work with one pass of the data; (5) stream sources235

are assumed to be stationary or evolving.236

Definition 1 (Event Stream): Let C denote the universe237

of case identifiers, and A denote the universe of activities.238

An event stream S is an infinite sequence over C × A, i.e.,239

S ∈ (C × A). A pair (c, a) ∈ C ×A represents an event, i.e.,240

activity a was executed in the context of case c. S(1) denotes241

the first event that is received, whereas S(i) denotes the i-th242

event243

Fig. 1 illustrates the sequence of the event stream based on244

Fig. 1. Each event is marked with a case id and the name of245

the activity, for example: (151,a), (152,a), (153,a), (151,b),246

(153,c), . . . , (152,f),. . . , (151,f),. . . . The sequence of these247

event streams contains three distinct cases. In each case there248

are activities that have dependency relationships.249

FIGURE 1. Example of event streams.

Event stream processing systems do not have knowledge250

about future events. For example, at the point marked as251

‘‘current observation’’ in Fig. 1, it appears that Case 1 and252

Case 2 have reached f, which is assumed to be the end of the253

case. However, an event stream processing system will not254

recognize it as the end of the case. There are always possibil-255

ities of new activities coming, including those that should not256

be possible after the last node. For example, unlikely activities257

coming due to deviations or anomalies. In Fig. 1, Case 3 is not258

completed yet. It is not known when the next event will come259

nor the case will end.260

B. ONLINE CONFORMANCE CHECKING261

Traditional process mining works in an offline environment262

using ‘‘post mortem’’ data, which means it focuses on data263

cases that have been completed [19]. For operational support264

purposes, a ‘‘pre mortem’’ event stream data needs to be265

handled online. The incoming event stream is a partial trace266

that completes the puzzle of the event data series in a case.267

Each event arrival adds to the completeness of a case bound 268

by a behavioral relationship so that event streams containing 269

several events of alternate case ids must be handled separately 270

and concurrently. 271

One of the important activities in operational support is 272

deviation detection in form of online conformance checking. 273

In contrast to the offline environment, the online conformance 274

checking system has the following unique characteristics 275

[19]: (a) it cannot see the complete case, so it focuses more 276

on the event stream as a partial case of a particular case, 277

(b) when there is a deviation then a fast response is required. 278

Fig. 2 illustrates an online conformance checking system for 279

detecting deviations. 280

FIGURE 2. Online Conformance Checking for deviation detection.

Due to these uniqueness, the methods used in the offline 281

environment cannot be directly applied to the online environ- 282

ment. Further modification and improvement are needed so 283

that the techniques and algorithms used can respond to the 284

data flow in real-time. 285

The differences of requirement between offline and online 286

conformance checking are summarized in Table 3 with refer- 287

ence to [18] related to the assumptions of data streams and 288

[19] related to the unique characteristics of online confor- 289

mance checking. 290

TABLE 3. Comparison of requirements between offline and online
conformance checking.

C. PETRI NET-BASED PROCESS MODEL 291

In this paper, process models are represented in Petri net. A 292

process model describes how a process should be executed. 293

Definition 2 (Petri Net): A Petri net is a tuple N = 294

(P,T ,F, α,mi,mf) where P is a finite set of places, T is a 295

finite set of transitions, F ⊆ (P× T)∪ (T × P) is a finite set 296

of arcs as flow relation, α : T → A is the transition mapping 297

function to labels. 298

Amarking, i.e. the state of the Petri net is amulti-set places. 299

mi,mf ∈ B(P) is the initial marking dan final marking of Petri 300

102740 VOLUME 10, 2022

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

net N. A firing mechanism is required on the transition as a301

replay rule302

Definition 3 (Firing Transition): Firing transition in Petri303

net can be done if there are tokens available in all input places304

to be consumed by transition t ∈ T , with •t ≤ m. Firing305

a transition denoted by (N ,m) [t〉 on transition t ∈ T with306

marking m wil result in a new marking m′ = (m\ • t) ∪ t•.307

When the replay is firing, the token position as a marking308

will change. The flow of changes in marking tokens can be309

described in a reachability graph.310

Defition 4 (Reachability Graph): If mi is the initial marking311

of a Petri net N, then a set of reachable markings of N can be312

expressed as RS(N). The reachibility graph of N is expressed313

as RG(N), which is a graph where the nodes are each set of314

marking RS(N), while edge is a firing transition, so that an315

edge m1, t,m2 ∈ RS(N) × T × RS(N) exist, if and only if316

m1[t〉m2.317

D. TOKEN-BASED REPLAY318

The replay technique in conformance checking performs a319

replay for each trace of execution on the process model by320

executing tasks according to the sequence of events. Among321

the well-known replay techniques are Token-Based Replay322

(TBR) and Alignment, both of which work on Petri net.323

This section focuses more on discussing TBR that will be324

adopted in our proposed method. The theory of Alignment325

is described in [2] and [18].326

The TBR discussed in this paper is a method that works327

in an offline environment. Basically TBR works on trace328

logs and an Accepting Petri net. The Accepting Petri net is a329

Petri net along with a final marking. The output of the replay330

operation is a list of transitions activated during replay, along331

with some values (c, p, m and r) defined as follows:332

Definition 5 (Consumed, Produced, Missed, and Remain-333

ing Tokens): Let L be the event log, and σ is the trace of L.334

Then c is the number of tokens consumed during replay σ .335

p is the number of tokens produced during replay σ . m is336

the number of tokens lacking during replay σ ., and r is the337

number of tokens remaining during replay σ .338

As a first step before starting the replay, it is assumed that339

the environment puts a token into a place where the initial340

marking is. The replay operation considers the activity on the341

trace sequentially. In every step of the process, this operation342

fetches the set enabled transition in current marking. If there343

is a transition corresponds to the current activity, the transi-344

tion can be activated. A number of tokens equal to the number345

of input places are then added to c, and a number of tokens346

equal to the number of output places are then added to p.347

If there are no transitions that match the current activity348

enabled in the current marking, then the transitions in the349

model that match the activity will be searched. Since the350

transitions cannot be activated in current marking, a marking351

is modified by inserting the required token to activate it, thus352

increasing the value of m.353

At the end of the replay, if the finalmarking is reached, then354

it is assumed that the environment consumes the tokens from355

the final marking, so the value of c is increased. If themarking 356

achieved after completing the replay trace is different from 357

the final marking, then the missing tokens will be inserted 358

and the last one calculates the number of remaining r tokens. 359

The following formula applies during the replay: c ≤ p + t 360

and m ≤ c so that the relation p + m = c + r applies at the 361

end of the replay. 362

E. GRAPH DATABASE 363

A graph database is a database management system that is 364

based on graph theory. The graph theory uses nodes for stor- 365

ing entities and edges for relationships among them. Graph 366

databases emphasize the relationship between data points. 367

The implementation of the graph in this study uses Neo4j 368

GDBMS and the graph query language Cipher [9]. 369

The main elements of a graph are nodes and relationships. 370

A node in Cipher is symbolized by brackets ‘‘()’’. The node 371

that gets the additional label name ‘‘(: Label)’’, will limit 372

the selection of the node designation in question based on 373

that label. In addition, a variable can also be used on the 374

‘‘(variableName: Label)’’ node so that the next variableName 375

can be used to access nodes labeled Label. 376

While a relationship is symbolized by a string such as 377

an arrow ‘‘–>’’, which implicitly indicates the direction of 378

the relationship since each relationship is associated with an 379

ordered set of nodes, i.e., a source (from) and a destination 380

(to) node. Cipher annotations always require two nodes, even 381

if no specific node is declared. So a minimal example of 382

defining a relationship in Cipher is: ‘‘()–>()’’ i.e., the rela- 383

tionship can never be without source and destination nodes. 384

Similar to nodes, relationship groups can be delimited by 385

specifying labels in square brackets ’’()-[:Label]->()’’ and 386

variables such as ’’()-[variablename:Label]->()’’. Node and 387

relationship variable declarations can be freely combined. 388

A simple graph can be seen in Fig. 3. For example 389

the cipher syntax (x:Event {p_id: 102})-[r:DFG 390

{Flow:’NEXT’}]->(y) will declare the variable x for 391

the node with the label:Event and variable r for relations 392

labeled:DFG. In addition, the p_id attribute is also declared 393

for node x and the Flow attribute for relationship r. 394

FIGURE 3. Example of a simple graph.

IV. THE PROPOSED METHOD 395

In this study, Graph-based Online Token-Based Replay (GO- 396

TR) is proposed. GO-TR stores state replays in the graph 397

database. Therefore, GO-TR requires an effective replay 398

VOLUME 10, 2022 102741

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

algorithm to accommodate lightweight write and query oper-399

ations that are easy to find and trace.400

Petri Net model representation in the graph database is401

the foundation of GO-TR. Petri net consists of places and402

transitions. Fig. 4 presents the proposed schema model for403

Petri net on the Neo4j graph database. This graphical dis-404

play can be obtained using the apoc library via the call405

apoc.meta.graph() command. It appears that there are406

two types of nodes used in the model, namely Transition and407

Place. An example of the realization of the schema model408

can be seen in Fig. 5. There is an initial marking, a node of409

Place type named ‘‘source’’, and the final marking named410

‘‘sink’’. There are two nodes of Transition type with labels411

A and B. Between A and B, there is a Place named ‘‘p_3’’.412

All relationships are identical, pointing in one direction and413

of Arc type. Based on the Petri Net model, a cypher algorithm414

can then be developed to run a replay.415

FIGURE 4. Schema model for petri net in Neo4j.

FIGURE 5. Example of model instantiation of Petri net in Neo4j with
additional attributs (c, p, m) in place for GO-TR.

Based on the Petri Netmodel in the graph database, GO-TR416

was built with the architecture presented in Fig. 6. GO-TR417

consists of several components, they are: a reference model,418

replay image, reachability graph, graph-based token replay,419

and also graph-based invisible path identification and replay.420

A. MODEL REFERENCE421

The initial component that is required for conformance422

checking is the reference process model. We propose the423

process model representation in the form of Petri net in a424

graph database. Fig. 7 illustrates several scenarios based on425

the availability of data to obtain the representation of the Petri426

net. The scenarios are:427

1. If an event log is available in a structured or semi428

structured format that can be imported into the graph429

FIGURE 6. Architecture of GO-TR.

database (or it could be that the event log is already 430

available natively in the graph database), then a graph- 431

based process model discovery is made [7], [20], [21]. 432

The results obtained are still in the directly followed 433

graph (DFG) representation. The next step is to convert 434

the DFG to Petri net using algorithm 1. 435

Algorithm 1: Algorithm To Convert Directly Followed
Graph (DFG) Representation To Petri Net Representation
Input: DFG model with relationship type
1: function DFGtoPetrinet (dfgModelId)
2: detects the relationship type between two nodes:
3: (a.) if Sequence or AND:
4: add Place and relation between the two

nodes
5: (b.) if Xor_split:
6: add Place and relation at split point
7: merge relation on input side to Place
8: (c.) if Xor_join:
9: add Place and relation at join point
10: merge relation on the output side of Place
11: delete all DFG relationships
12: obtained the process model in the representation of Petri Net

2. Process model discovery is executed directly from the 436

event log in a structured or semi structured format such 437

as XES or CSV. In this study, the process discovery 438

uses the PM4Py library, namely the alpha algorithm 439

or inductive miner. The result of discovery is a pro- 440

cess model with Petri net object format. By using 441

algorithm 2, the process model in Petri net object 442

Algorithm 2:Algorithm to Generate Petri Net Represen-
tation of Model Process on Graph Db
Input: net // a Petri net object of Process Model
1: function generatePetrinetForGraphDB (net)
2: (2.a.) createTransition(tx, activity)
3: (2.b.) createPlace(tx, place)
4: (2.c.) createRelationship_placeToTrans (tx, pName, tLabel)
5: (2.d.) createRelationship_transToPlace (tx, tLabel, pName)

102742 VOLUME 10, 2022

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

FIGURE 7. Techniques for obtaining the Petri net representation of process model in a Graph database from several data source
formats.

format can be used to generate its representation in the443

graph database.444

3. The process model is available in PNML format.445

PNML importer from the PM4PY library is used to load446

the process model into the graph database to get a Petri447

net object. Based on the petrinet object, a representation448

of the process model is generated in the graph database449

using algorithm 2.450

B. REPLAY IMAGE451

AReplay Image (RI) is proposed to store case administration.452

Algorithm 3 explain algorithm to create an RI from its master453

reference Petri net model.454

Definition 6 (Replay Image): Replay image is Petri net and455

its updated marking for each unique case. A Replay Image is456

a tuple NRI = (N , β,mc, i) where β is a function that maps457

each place P with the property set {c, p, m} where c ∈ Z458

is the number of tokens consumed, p ∈ Z is the number of459

tokens produced, and m ∈ Z is the number of missing tokens460

inserted. mc is the current marking which shows the marking461

of the last update. Where i is the unique identity of the replay462

image based on the case id of the checked event stream.463

The replay behavior in RI follows firing transition mecha-464

nism in Def. 3. As Def. 5, RI stores the replay data, including465

token consumed (c), token produced (p), and token missing466

(m). As an illustration, the comparison between the reference467

model and the Replay Image is presented in Fig. 8.468

C. REACHABILITY GRAPH469

The reference model in the petrinet model can be brought470

to its reachability graph by using PM4Py which provides471

libraries for generating reachability graphs. Fig. 9 is an exam-472

ple of a process model that will produce a reachability graph473

presented in Fig. 10.474

The resulting reachability graph object is then loaded into475

the graph database using algorithm 4. First, all states which476

are nodes in neo4j are created (lines 1-3). Then the states477

are connected using transitions in form of relationships in478

Algorithm 3: Create Replay Image

Input: N =
(
P,T ,F, α,mi,mf

)
, c ∈ C

Pseudocode Cipher
1 Find rootA as the

initial marking
node of model
reference

MATCH (rootA:Place
{type:’master’,
im:True})

2 Clone the rootA
to rootB as the
root node of
replay image

WITH distinct rootA
CALL
apoc.refactor.cloneNodes([rootA])
YIELD input, output
WITH rootA, input, out-
put AS rootB
SET rootB.type=’clone’,
rootB.p_id = $c

3 Continue to
clone the rest
sub graph of
model reference
to replay image

WITH rootA, rootB
MATCH path = (rootA)-
[∗]->(node)
WITH rootA, rootB,
collect(distinct path) as
paths
CALL
apoc.refactor.cloneSubgraph
FromPaths(paths, {
standinNodes:[[rootA,
rootB]] })
YIELD input, output,
error

4 Update the
replay image
with new
attributes

WITH collect(DISTINCT
output) AS nodes
UNWIND nodes as node
SET node.type = ’clone’,
node.p_id = $p_id

neo4j (lines 4-12). Next, all the relationships are labeled 479

invisible. This is important for designing the invisible task 480

identification algorithm. 481

VOLUME 10, 2022 102743

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

FIGURE 8. Master reference and its replay image.

FIGURE 9. Example of a process model generated from BPIC13 data.

D. GRAPH-BASED TOKEN REPLAY FOR ONLINE482

CONFORMANCE CHECKING483

The main algorithm in the Graph-based online Token Replay484

(GOTR) technique is to replay each event arrival (stream) to485

a reference model in the form of a replay image.486

Definition 7: Graph-based online token replay (GO-TR)487

Given a Petri net N = (P,T ,F, α,mi,mf), a replay action488

(N ,m) [t〉, and a replay image NRI = (N , β,mc, i). Graph-489

based Token replay is obtained by reading the transition490

conditions t ∈ T to be replayed along with the token require-491

ments at the input place nya p ∈ P through the replay492

image NRI in the graph database. Based on the information493

obtained, the necessary handling is carried out to ensure that494

the replay can be carried out, such as tracing the invisible495

path and inserting the missing token. Followed by running a496

replay on the appropriate transition while updating it (write)497

on the replay image.498

The GO-TR schema can be seen in Fig. 11. Basically, GO-499

TR accepts input data in form of event streams. Each event500

that comes is accompanied by its respective case id as a replay501

reference. When a case comes with a new id, a replication of502

process model from the reference master will be created as a503

Replay Image (RI).504

FIGURE 10. Example of the reachability graph obtained from the process
model in Fig. 9.

Algorithm 4: Generate Reachability Graph in neo4j
Input: rg, net # reachability graph object, Petri net
function generateRGinNeo4j (rg, net)

1 for s in rg.states:
2 sname = s.name
3 createState(session, sname)
4 for t in net.transitions:
5 tname = t.name
6 if t.name not in trans_name:
7 tlabel = ‘invisible’
8 else:
9 Tlabel = t.name
10 source = t.from_state
11 target = t.to_state
12 createRelationship(session,

source.name, t.name, tlabel,
target.name)

Algorithm 5 explains in detail the algorithm for replaying 505

the GO-TR. The GO-TR technique begins by detecting the 506

identity of the event that comes. If this event is an event with 507

a case id that has never been detected, it will be recognized 508

that a new process is in progress (line 6). Therefore, it is 509

necessary to prepare a new Replay Image (RI) in the graph 510

database that can be recognized through the case id identity 511

(line 7). Next, the program will make sure the activity name 512

102744 VOLUME 10, 2022

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

Algorithm 5: Graph-Based Online Token Replay

Input: N =
(
P,T ,F, α,mi,mf

)
,RG(N), S ∈ (C × A)

1 states, places← getReachabilityGraphProperties(RG)
2 while true do
3 event← S(i) // get i-th event of event streams
4 c← event[0] // extract case-id from current event
5 a← event[1] // extract activity label from current event
6 if c not in id_list:
7 createReplayImage (c, model_ref) // algorithm 3
8 if a not in activity_name:
9 unknownActivities← event
10 Send an alert that the activity on event (c, a) is not recognized
11 continue
12 eip← getAllEmptyInputPlaces(c, a) // detect if empty input places are exist
13 if eip is exist:
14 if isAllEipConnectedToInvTask(c, eip): // all input places are connected to inv task
15 if invisiblePathReplay (c, currentMarkingName, eip, states, places): // algorithm 8
16 replay_info← normalReplay (c, a) // algorithm 6
17 else:
18 replay_info← replayWithInsertToken(c, mf , a) // algorithm 7
19 Send an alert that a deviation occured in event (c, a)

20 else:
21 replay_info← replayWithInsertToken (c, mf , a)
22 Send an alert that a deviation occured in event (c, a)

23 else: // empty Input Place is NOT exist
24 replay_info← normalReplay (c, a)

is recognized in the reference model; if it is not recognized,513

it will be skipped and recorded in the unknownActivities list514

as a deviation (lines 8-11). Next, the algorithm will detect515

whether there are empty input places in the activity. If empty516

input places are detected then the activity cannot be enabled517

(line 12).518

If there are empty input places (line 13) which are all519

connected to an invisible task, it is necessary to identify an520

invisible path using algorithm 8 (lines 15). If the invisible path521

is found, then the replay can be executed normally (line 16).522

However, if the invisible path fails to be identified, then523

the replay must be executed by inserting the missing token524

(line 18). The insertion of a missing token is a sign that there525

is a deviation. In that case, a warning (in real-time) containing526

case id information and activity name is then issued (line 19).527

If there are empty input places (line 13) which are not528

connected to an invisible task, the replay can only be executed529

by inserting a missing token (line 21) so it will also be530

declared as a deviation.531

If there is no empty input place (line 13) which means all532

of the input places are filled with tokens, then the replay can533

be executed normally (line 24).534

The explanation of the Cypher algorithm for the nor-535

mal replay is presented in algorithm 6, while the replay536

that requires the insertion of missing tokens is described in537

algorithm 7.538

Algorithm 6: Normal Replay

Input: N =
(
P,T ,F, α,mi,mf

)
, (c, a) ∈ CxA

Pseudocode Cypher
1 Find all input

places of matched
activity

MATCH (ip: Place
{p_id: $c })-[r]-
>(t:Transition
{label:$a})

2 Consume token
from each input
place and update
the relationship
attributes.

SET ip.token= ip.token -
1, ip.c = ip.c + 1, r.c =
r.c + 1, r.f = r.f + 1

3 Find all output
places of matched
activity

WITH distinct t AS t, ip,
collect(ip) as ips
MATCH (t)-[r]->(op)

4 Produce token
to each output
place and update
the relationship
attributes.

SET op.token = op.token
+ 1, op.p= op.p+ 1, r.p
= r.p +1, r.f = r.f + 1

E. GRAPH-BASED INVISIBLE PATH REPLAY 539

The basic algorithm of Token-Based Replay cannot replay an 540

invisible task. The algorithm needs missing token insertion, 541

VOLUME 10, 2022 102745

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

FIGURE 11. Proposed graph-based online token replay.

which will be detected as a deviation, to replay a visi-542

ble task which preceded by an invisible task. We proposed543

graph-based method to handle the invisible task replay. Our544

proposed method takes advantage of the graph database’s545

ability to store graph data natively and its fast node traversal546

capabilities.547

In every iteration of the replay event that comes (in548

algorithm 4), it always begins with checking whether all input549

places of the activity to be replayed have all tokens filled550

(line 13). If there is an input place that is not filled with a551

token, it is necessary to check whether there is an invisible552

path that can be executed so that this input place can then be553

filled with a token.554

The algorithm for identifying and replaying invisible paths555

is presented in Algorithm 8. This algorithm will start when556

Algorithm 5 (lines 12-14) runs input places that do not557

contain tokens which are all connected to an invisible task.558

To detect an invisible path, it is necessary to first find the state559

position in the reachability graph as the source_state (line 1).560

If a source_state exists (line 4), then the algorithm needs561

to check the existence of target_state_candidates (lines 5).562

From all the target_state_candidates, the algorithm looks563

for the one with the shortest distance from source_state564

(line 6).565

An invisible path is found when a reachable and the short- 566

est distance target_state is found (line 7-8). The invisibleRe- 567

play function (algorithm 9) will update the attributes of all 568

nodes and edges along the invisible path that is found to 569

simulate replay on an invisible path (line 9). Returns is True 570

if the invisible path is found (line 11). On the other hand, 571

return is False if the spf_target_state is not obtained, hence 572

the invisible path will not be obtained (lines 11-12). 573

F. EXPERIMENT SET UP 574

The experiment was carried out on a computer with an Intel 575

Core i7-3632QM processor with 16GB of RAM, and Python 576

3.6. The pm4py 2.2.41 library was used to perform process 577

discovery and to generate the reachability graphs. 578

The following are the scenarios of the experiment that was 579

carried out: 580

1) THE CORRECTNESS OF THE TOKEN-BASED REPLAY 581

ADAPTATION 582

GO-TR adapts TBR. Conformance checking experiments 583

were carried out with scenarios using normal cases, cases 584

1https://github.com/pm4py/pm4py-core/releases/tag/2.2.4

102746 VOLUME 10, 2022

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

Algorithm 7: Replay With Insert Token (Abnormal
Replay)

Input: N =
(
P,T ,F, α,mi,mf

)
, (c, a) ∈ CxA

Pseudocode Cipher
1 Check if exist input

place with a missing
token, then insert an
artificial token and
update the missing
token status as true
(1)

OPTIONAL MATCH
(ip: Place {p_id:
$p_id})–>(e:Transition
{label:$activity})
WHERE ip.token = 0
SET ip.token = ip.token
+ 1, ip.m = ip.m + 1

2 Count number of
missing token

WITH ip_mt,
count(ip_mt) as
num_of_missing_token

3 Consume token
from each input
places and update
the relationship
frequency

MATCH (ip: Place
{p_id: $p_id})-
[r]->(t:Transition
{label:$activity})
SET ip.token = ip.token -
1, ip.c = ip.c+ 1, r.c = r.c
+ 1, r.f = r.f + 1

4 Produce token
to each output
place and update
the relationship
frequency

WITH distinct t AS t,
ip_mt
MATCH (t)-[r]->(op)
SET op.token = op.token
+ 1, op.p = op.p+ 1, op.,
r.p = r.p +1, r.f = r.f + 1

5 Return the number
of input places with
missing token

RETURN
count(ip_mt) as
num_of_missing_token

with deviations. and cases with multi-input invisible tasks,585

to prove the GO-TR technique was working properly.586

The experimental dataset used public real-life data from587

BPIC 2013 Incident.2 The inductive miner algorithm was588

used with a noise threshold of 0.2 to obtain a process model589

that containedmany invisible tasks and one invisible taskwith590

multi visibility input tasks. The case used for testing was a591

modification from one of the 2013 BPIC Incident data cases.592

We used the ITBR program provided by PM4PY to test593

the TBR technique. This program only works for offline594

conformance checking, so it requires input in form of an event595

log.596

2) THROUGHPUT597

This experiment was conducted to compare GO-TBR against598

PA in average speed for replaying each event arrival (stream).599

The event data was sent to the conformance checking600

machine on streams based on the order of arrival (not follow-601

ing the arrival timestamp). The data set used was CCC193602

2https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/
12693914/1

3https://data.4tu.nl/articles/dataset/Conformance_Checking_Challenge_
2019_CCC19_/12714932

which is a public data set. We duplicate the number of case 603

ids as much as five and ten folds of their original number of 604

20 available case variants to compare the throughput of both 605

techniques. 606

3) MEMORY CONSUMPTION 607

This experiment was aimed to compare memory usage 608

between PA and GO-TR. The dataset used was CCC19 pub- 609

lic data. The variable observed in this experiment was the 610

amount of memory consumed along the arrival of the event. 611

V. RESULT AND DISCUSSION 612

This section presents and discusses the results of the experi- 613

ments that had been carried out. 614

A. THE CORRECTNESS OF THE TOKEN-BASED REPLAY 615

ADAPTATION 616

In this section, observations were made on several test sce- 617

narios to ensure the correctness of the GO-TR replay results 618

by comparing them with TBR results. The dataset used was 619

BPIC13 incident management. Fig. 12 presents the process 620

model of the BPIC13 Incident. The model was generated 621

with the help of PM4PY using Inductive Miner with a noise 622

threshold of 0.2. The PM4PY was also used to generate the 623

reachability graph in Fig. 13 from its Petri net object model. 624

There are AND branches (e.g. AND-Split in tau_1) and 625

loops (e.g. Accepted). There is also an invisible task tau- 626

Join_4 which has two inputs. The first input, p_12, is linked 627

to the invisible tasks skip_13 and skip_9. While the second 628

input, p_9, is connected to the visible task Accepted. This 629

condition is hereinafter referred to as invisible task with multi 630

visibility input tasks. 631

The first experiment used a normal case Queued → 632

Accepted→ Completed. This experiment was to prove that 633

the TBR algorithm used in GO-TR could recognize invisible 634

paths. The experimental results are presented in Table 4. The 635

next experiment used a case containing a loop, i.e. Queued 636

→ Accepted→ Queued→ Completed→ Completed. The 637

experimental results are presented in Table 5. The marking 638

movement presented in Table 6 can be explained as follows. 639

First of all the system provides initial marking on a place 640

labeled as ‘‘Source’’. Then with the arrival of the first event, 641

labeled as ‘‘Queued’’, the TBR algorithm starts to work.With 642

the reference model in Fig. 12, it can be seen that the initial 643

marking position on ‘‘Source’’ causes all input places in 644

‘‘Queued’’ to not have tokens. Therefore, the TBR algorithm 645

will try to (p_8, p_11) → (p_8, p13), can be found so that 646

‘‘Queued’’ can be replayed normally to produce state (p_8, 647

p_14). 648

The results in Table 4 and Table 5 show that GO-TR and 649

ITBR can work well in all normal cases. They also give the 650

same results for all statistics. 651

The third experiment with ‘‘wrong-placed token’’ problem 652

contains the following activities: Queued→ Completed→ 653

Completed. A good TBR algorithm will recognize that it 654

is necessary to add a missing token to p_16. With marking 655

VOLUME 10, 2022 102747

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

Algorithm 8: Invisible Path Replay

1 source_state← findStatename(states, mc) // find a state of RG that matches the current marking mc
2 current_states← current_marking(c), current_edge_freq(c), current_edge_produced(c) // temporary storage for
current states

3 function InvisiblePathReplay(c, mc, eip, states, places)
4 if source_state is exist:
5 target_state_candidates← findTargetStatesCandidates (states, eip)
6 spf_target_state, spf_trans←findInvisiblePath(source_state, target_state_candidates)
7 If spf_target_state is exist:
8 target_marking←extractTokenPlace(spf_target_state, places)
9 invisibleReplay(c, spf_trans) // algorithm 9, invisible replay with no need to simulate token replay

10 Return True
11 else
12 Return False

13 else
14 If invisibleTokenReplay(c, mc, eip) is succeed // invisible replay with token replay
15 Return True
16 else
17 rollback(current_states)
18 Return False

Algorithm 9: Invisible Replay

Input: N =
(
P,T ,F, α,mi,mf

)
, (c, a) ∈ C × A

Pseudocode Cipher
1 Prepare a pair of a

list of activities a
WITH $a AS as
WITH [i in range(0,
size(ts)-1) | {a:as[i]}]
AS pairs
UNWIND pairs as pair

2 Match each activity
in model reference
with each activity in
a, then set its input
place and relation-
ship attributes

MATCH (ip {p_id:$c})-
[r]->(tr:Transition)
WHERE tr.name = pair.t
SET r.f = r.f + 1, ip.token
= ip.token - 1, ip.c = ip.c
+ 1

3 Match all output
places of activated
activities

WITH tr, pair
MATCH (tr)-[s]->(op)

4 Set its output place
and relationship
attributes

WITH distinct s AS s, op
SET s.f = s.f + 1, op.token
= op.token + 1, op.p =
op.p + 1

position on p_8 and p_14, the necessity to add amissing token656

is because a replay is required on Accepted activity to enable657

taujoin_4. The GO-TR and ITBR algorithms that work in658

‘‘wrong-placed token’’ problem is different. It is interesting.659

The results from the marking in the third experiment for660

GO-TR and ITBR are presented in Table 6.661

The marking movement presented in Table 6 can be662

explained as follows. First of all the system provides initial663

FIGURE 12. Discovery result from the process model with BPIC13 dataset.

TABLE 4. Results of the experiment that use a normal case.

marking on a place labeled as ‘‘Source’’. Thenwith the arrival 664

of the first event, labeled as ‘‘Queued’’, the TBR algorithm 665

102748 VOLUME 10, 2022

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

FIGURE 13. Reachability graph generated from the model in Fig 12.

TABLE 5. Results of the experiment that use a case containing loop.

starts to work. With the reference model in Fig. 12, it can be666

seen that the initial marking position on ‘‘Source’’ causes all667

input places in ‘‘Queued’’ to not have tokens. Therefore, the668

TBR algorithm will try to find the shortest possible invisible669

path from ‘‘source’’ to p_13. In this case, an invisible path,670

source → (p_8, p_11) → (p_8, p13), can be found so that671

‘‘Queued’’ can be replayed normally to produce state (p_8,672

p_14).673

The next event is ‘‘Completed’’. A token at position p_16674

is required to enable the ‘‘Completed’’ activity. A different675

work between GO-TR and ITBR algorithms can be explained676

as follows.677

a. The ITBR algorithm finds an invisible path p_14 →678

p_12→ p_16. It then tries to run a replay. But when679

TABLE 6. Marking result comparison between ITBR and GO-TR.

it comes to p_12 the replay stops as p_9 has no token 680

and it is not connected to the invisible task. There- 681

fore, tauJoin_4 cannot be activated. As a result, the 682

replay attempt via invisible path failed to reach p_16. 683

However, ITBR is already running tokens from p_14 684

to p_12 and so the marking becomes (p_12, p_8). The 685

current position of the token at p_12 is the ‘‘wrong- 686

placed token’’. The token position at p_12 will cause 687

errors on analysis. Because, apart from being able to be 688

achieved through ‘‘Queued’’ activation, p_12 can also 689

be directly reached via skip_9. 690

b. Meanwhile, GO-TR, by using algorithm 1, will find 691

the invisible path from (p_14, p_8) to p_16 through 692

the reachability graph. In this case the invisible path 693

is not found so the marking does not change i.e. it stays 694

at (p_14, p_8). As a result, GO-TR is safe from the 695

‘‘wrong-placed token’’ problem. 696

Next step, both ITBR and GO-TBR algorithm require to 697

insert a missing token on p_16 to enable ‘‘Completed’’. The 698

replay results are the (p_12, p_8, p_17) marking for ITBR 699

and the (p_14, p_8, p_17) marking for GO-TR. 700

The last event to be replayed is the second activity 701

with ‘‘Completed’’ label. This time, ITBR finds the route 702

p_17→p_16 as an invisible path. On the other hand, in 703

GO-TR, because the previous activity was a deviation, 704

no state of ‘‘(p_14, p_8, p_17)’’ is found in the reachability 705

graph. In that case, we had to run the algorithm 2 through 706

a simulation by tracing the invisible paths. If the search 707

failed to reach the target (the missing token place point), the 708

algorithm rolls back all states of the invisible paths to the 709

initial condition. As a result, both ITBR and GO-TR can find 710

the invisible path that reaches p_16. After a successful replay 711

of ‘‘Completed’’, the marking positions will return to (p_12, 712

p_8, p_17) for ITBR and (p_14, p_8, p_17) for GO-TR. 713

B. THROUGHPUT 714

This section describes the experimental results of the compar- 715

ison between the execution performance of PA and GO-TR 716

by completing a number of event data streams. Comparisons 717

are made in a single processing environment to observe the 718

VOLUME 10, 2022 102749

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

TABLE 7. Comparison of duration to complete event streams arrival using CCC19 dataset.

TABLE 8. Comparison of throughput between PA and GO-TR.

throughputs, which is the number of events that can be com-719

pleted per second.720

This experiment uses the CCC19 public dataset that pro-721

vides log data and its reference model. The log data is in an722

event-log format (XES), while the reference model is in pnml723

format. In this paper, experiments that uses PA takes reference724

to the source code of the IAS prefix-alignment program.4725

In the GO-TR simulation, the CCC19 log data needs to be726

converted from an event log to an event stream representation727

by sorting each event based on arrival time.728

We need to load the reference model into the graph729

database using Algorithm 2 as the first step of the GO-TR730

experiment. The algorithm will generate a petri net represen-731

tation of the model process from its pnml format on the graph732

database. In the next step, a reachability graph (RG) is also733

needed by GO-TR to identify the invisible paths. We use the734

PM4PY library to generate the RG model from the Petri net735

object. The resulting reachability graph model is loaded into736

the graph database using Algorithm 4.737

The variables to be observed were the duration required738

to complete the inspection of the event stream data and the739

4https://github.com/fit-daniel-schuster/online_process_monitoring_
using_incremental_state-space_expansion_an_exact_algorithm

number of events. Based on the known duration and number 740

of events, the throughput value (T) can be obtained using the 741

formula T=n/d, where n= number of completed events, d= 742

duration of completion, and T= throughput. The experimen- 743

tal results are presented in Table 7 and the throughput results 744

are shown in Table 8 and depicted in Fig. 14. 745

The PA with ‘‘w=full’’ requires the highest computation 746

because it performs a complete optimal alignment computa- 747

tion from the beginning of each new event arrival. A PA with 748

a small window, for example ‘‘w=1’’, is very fast. However, 749

it reduces the guarantee of getting optimal alignment. More- 750

over, it still has memory limitation problems. 751

Based on the results of the experiment, it appears that 752

GO-TRwith a small number of cases has the highest through- 753

put. This is due to the simple computing that it can execute 754

the replays in a short time. On the other hand, the PA com- 755

putation is very influential on replay speed. The faster the 756

computation, the greater the throughput. At ‘‘w=1’’, the PA 757

throughput is close to GO-TR throughput. 758

The data in Table 8 shows that GO-TR experiences a 759

decrease in throughput as the number of handled cases 760

increase. It is because that in GO-TR, each case has its own 761

representation of the RI. The more cases that are handled, the 762

longer the query time required in the replay process. 763

102750 VOLUME 10, 2022

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

FIGURE 14. Throughput comparison between GO-TR and PA.

C. MEMORY CONSUMPTION764

This third experiment is the most important to prove the reli-765

ability of the online conformance checking technique against766

memory limitations. The test is carried out by observing the767

program’s (python’s) memory consumption when executing768

PA and GO-TR.769

Fig. 15 presents the result of the experiment when using PA770

with ‘‘w=2’’ for 60 minutes. The results in Fig. 15 indicate771

that memory consumption increases linearly with the number772

of coming events. This is due to the space needed by the PA773

to accommodate the administration of each case. This space774

continues to stay in memory as long as the observed case is775

still active. The more cases received, the greater the space776

required. So, if the arrival of the case is declared to be infinite,777

it will require an infinitememory space to accommodate. This778

makes PA vulnerable to memory limitations.779

The results from the GO-TR experiment in Fig. 15 indicate780

that the arrival of event streams has no effect on memory781

consumption. This is possible because the administration782

of all cases are stored in the graph database. The running783

program simply replays the RI of a case based on the event784

id that comes. The results of the replay immediately update785

FIGURE 15. Memory consumption using PA with w=2 and GO-TR.

the RI. Based on the experiment, it is proven that GO-TR is 786

invulnerable from memory limitation problems. 787

VI. CONCLUSION 788

In this paper, we propose the Graph-based online token 789

replay (GO-TR) as a replay-based online conformance check- 790

ing which is invulnerable to memory limitations. Our pro- 791

posed solution adapts the token replay technique on a graph 792

database. By building the GO-TR, we made several con- 793

tributions, which are: proposing replay images as the rep- 794

resentations of the Petri Net models in a graph database, 795

adapting Token-based Replay on a graph database for online 796

conformance checking that receives event stream data, and 797

proposing a cypher-based invisible path identification and an 798

invisible path replay algorithm. 799

Based on observations and analysis from the experiments, 800

it is proven that GO-TR has been successful in adapt- 801

ing TBR and is invulnerable to the wrong-placed token 802

problem. For small amounts of data, GO-TR works with 803

the highest throughput when compared to PA. However, 804

GO-TR’s throughput performance decreases as the amount 805

of data increases. In terms of memory usage, GO-TR shows 806

its advantages over PA as it is invulnerable to memory 807

limitations. 808

In future work, a study will be conducted to maintain the 809

query performance along with the data growth. In addition, 810

it is also necessary to observe the performance of its response 811

to high-speed data. 812

REFERENCES 813

[1] A. Rozinat and W. M. P. Van Der Aalst, ‘‘Conformance checking of 814

processes based on monitoring real behavior,’’ Inf. Syst., vol. 33, no. 1, 815

pp. 64–95, Mar. 2008. 816

[2] A. Adriansyah, ‘‘Aligning observed and modeled behavior,’’ Technis- 817

che Universiteit Eindhoven, Eindhoven, The Netherlands, SIKS Diss. 818

Ser. 2014-07, 2014. 819

[3] S. J. Van Zelst, A. Bolt, M. Hassani, B. F. Van Dongen, and 820

W. M. P. Van Der Aalst, ‘‘Online conformance checking: Relating event 821

streams to process models using prefix-alignments,’’ Int. J. Data Sci. Anal., 822

vol. 8, no. 3, pp. 269–284, Oct. 2019. 823

VOLUME 10, 2022 102751

I. Waspada et al.: Graph-Based Token Replay for Online Conformance Checking

[4] D. Schuster andD. S. J. Van Zelst, ‘‘Online process monitoring using incre-824

mental state-space expansion: An exact algorithm,’’ in Including Subseries825

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics826

(Lecture Notes in Computer Science), vol. 12168. Cham, Switzerland:827

Springer, 2020, pp. 147–164.828

[5] D. Schuster and G. J. Kolhof, ‘‘Scalable online conformance checking829

using incremental prefix-alignment computation,’’ in Including Subseries830

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics831

(Lecture Notes in Computer Science), vol. 12632. Cham, Switzerland:832

Springer, 2021, pp. 379–394.833

[6] R. Zaman, M. Hassani, and B. F. Van Dongen, ‘‘Prefix imputation of834

orphan events in event stream processing,’’ Frontiers Big Data, vol. 4,835

Oct. 2021, Art. no. 705243.836

[7] R. Sarno, K. R. Sungkono, M. Taufiqulsa’di, H. Darmawan, A. Fahmi, and837

K. D. Triyana, ‘‘Improving efficiency for discovering business processes838

containing invisible tasks in non-free choice,’’ J. Big Data, vol. 8, no. 1,839

pp. 1–17, 2021.840

[8] K. R. Sungkono, A. S. Ahmadiyah, R. Sarno, M. F. Haykal, M. R. Hakim,841

B. J. Priambodo, M. A. Fauzan, and M. K. Farhan, ‘‘Graph-based process842

discovery containing invisible non-prime task in procurement of animal-843

based ingredient of halal restaurants,’’ in Proc. IEEE Asia Pacific Conf.844

Wireless Mobile (APWiMob), Apr. 2021, pp. 134–140.845

[9] A. S. Ahmadiyah, I. N. Hazimi, D. M. Rozi, R. A. Wibisono, D. Fitrado,846

M. A. Rifqi, R. Sarno, andK. R. Sungkono, ‘‘Business processes discovery847

in halal restaurant kitchen using graph-based algorithm,’’ in Proc. IEEE848

Asia Pacific Conf. Wireless Mobile (APWiMob), Apr. 2021, pp. 128–133.849

[10] K. R. Sungkono, E. O. Putri, H. Azkiyah, and R. Sarno, ‘‘Checking wrong850

decision and wrong pattern by using a graph-based method,’’ in Proc. 13th851

Int. Conf. Inf. Commun. Technol. Syst. (ICTS), Oct. 2021, pp. 184–189.852

[11] A. Berti and W. M. Van Der Aalst, ‘‘Reviving token-based replay:853

Increasing speed while improving diagnostics,’’ in Proc. CEURWorkshop,854

vol. 2371, 2019, pp. 87–103.855

[12] A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti, ‘‘Online discovery856

of declarative process models from event streams,’’ IEEE Trans. Services857

Comput., vol. 8, no. 6, pp. 833–846, Nov. 2015.858

[13] S. J. Van Zelst, B. F. Van Dongen, and W. M. P. Van Der Aalst, ‘‘Event859

stream-based process discovery using abstract representations,’’ Knowl.860

Inf. Syst., vol. 54, no. 2, pp. 407–435, Feb. 2018.861

[14] V. Leno, A. Armas-Cervantes, M. Dumas, M. La Rosa, and F. M. Maggi,862

‘‘Discovering process maps from event streams,’’ in Proc. Int. Conf. Softw.863

Syst. Process, May 2018, pp. 86–95.864

[15] A. J. Burattin dan Carmona, ‘‘A framework for online conformance check-865

ing,’’ in Proc. Int. Conf. Bus. Process Manag. (Lecture Notes in Business866

Information Processing), vol. 308. Cham, Switzerland: Springer, 2018,867

pp. 165–177.868

[16] A. Burattin, S. J. Van Zelst, A. Armas-Cervantes, B. F. Van Dongen,869

and J. D. Carmona, ‘‘Online conformance checking using behavioural pat-870

terns,’’ inProc. Int. Conf. Bus. ProcessManag. (LectureNotes in Computer871

Science), vol. 11080. Cham, Switzerland: Springer, 2018, pp. 250–267.872

[17] R. Sarno, I. Teknologi Sepuluh Nopember, K. Sungkono, R. Johanes,873

D. Sunaryono, I. Teknologi Sepuluh Nopember, I. Teknologi Sepuluh874

Nopember, and I. Teknologi Sepuluh Nopember, ‘‘Graph-based algorithms875

for discovering a process model containing invisible tasks,’’ Int. J. Intell.876

Eng. Syst., vol. 12, no. 2, pp. 85–94, Apr. 2019.877

[18] J. Carmona, B. Van Dongen, A. Solti, and D. M. Weidlich, Conformance878

Checking. Cham, Switzerland: Springer, 2018.879

[19] W. Van Der Aalst, Process Mining: Data Science in Action. Berlin,880

Germany: Springer, 2016.881

[20] R. Sarno and K. R. Sungkono, ‘‘A survey of graph-based algorithms for882

discovering business processes,’’ Int. J. Adv. Intell. Informat., vol. 5, no. 2,883

p. 137, Jul. 2019.884

[21] I. Waspada, R. Sarno, and D. K. R. Sungkono, ‘‘An improved method of885

parallel model detection for graph-based process model discovery,’’ Int.886

J. Intell. Eng. Syst., vol. 13, no. 2, pp. 127–139, Apr. 2020.887

INDRA WASPADA is currently pursuing the 888

Ph.D. degree in computer science with the Institut 889

Teknologi Sepuluh Nopember, Surabaya, Indone- 890

sia. He is also a Lecturer and a Researcher with 891

the Department of Computer Science, Universitas 892

Diponegoro, Semarang. His current research inter- 893

est includes process mining. He is also interested 894

in data mining and business process management. 895

RIYANARTO SARNO (Senior Member, IEEE) 896

received the Ph.D. degree, in 1992. He is cur- 897

rently a Professor with the Informatics Depart- 898

ment, Institut Teknologi Sepuluh Nopember (ITS). 899

He was the author of more than five books and 900

over 300 scientific articles led him incorporated in 901

the top 2% world ranking scientist by Standford 902

University, in 2020. He has researched process 903

mining for a period of five years. His research 904

interests include machine learning, the Internet 905

of Things, knowledge engineering, enterprise computing, and information 906

management. 907

ENDANG SITI ASTUTI is currently a Full Pro- 908

fessor with Brawijaya University. She is also a 909

member of the PPIKID Team and a UB Lec- 910

turer Certification Assessor. Her research interests 911

include business administration, information sys- 912

tem management, perceptions of digital technol- 913

ogy, leadership, entrepreneurship, e-commerce, 914

and knowledge management. 915

HANUNG NINDITO PRASETYO received the 916

B.Sc. degree in mathematics study program from 917

Universitas Pendidikan Indonesia (UPI), in 2003, 918

and the M.E. degree in informatics from the Insti- 919

tut Teknologi Bandung, in 2013. He is currently 920

pursuing the Ph.D. degree in computer science 921

with the Institut Teknologi Sepuluh Nopember, 922

Surabaya. He is also a Faculty Member with 923

Telkom University. His research interests include 924

databases, business processes, process mining, and 925

development of applications and information systems. 926

RADEN BUDIRAHARJO is currently pursuing 927

the Ph.D. degree with the Department of Infor- 928

matics, Institut Teknologi Sepuluh Nopember, 929

Surabaya, Indonesia. He is also a Faculty Mem- 930

ber with the Department of Information Systems, 931

Institut Teknologi Nasional (Itenas), Bandung, 932

Indonesia. His current research interests include 933

process mining, data mining, machine learning, 934

IT governance, and other topics related to informa- 935

tion systems and computer science fields of study. 936

937

102752 VOLUME 10, 2022

