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ABSTRACT This paper is concerned with the finite-time H, robust control problem for a class of discrete-
time Markov jump systems with time-varying delays and random packet losses. The phenomenon of packet
losses occurs between the plant and the controller, which is characterized by introducing a random variable.
Based on the single exponential smoothing method, the prediction of the missing measurement is used
as the packet loss compensation when a packet is lost. Then, by employing local sector conditions and
an appropriate Lyapunov function, a state feedback controller is designed to guarantee that the resulted
closed-loop constrained system is mean-square locally finite-time stabilizable. Furthermore, some sufficient
conditions for the solution to this problem are derived in terms of linear matrix inequalities. Finally, two
numerical examples are provided to demonstrate the effectiveness of the proposed method.

INDEX TERMS Partially known transition rates, input saturation, singular systems, time-varying delay,

packet loss compensation.

I. INTRODUCTION

In many practical systems, such as chemistry, economy,
aerospace, etc., due to the influence of various internal and
external factors, the system structure and parameters will
mutate, and this can be properly described by the Markov
jump system model. At the same time, in the actual system,
such phenomena as parameter perturbation, actuator satura-
tion, communication delay and communication failure often
occur, and these phenomena will bring great difficulties to
the design of system control scheme. Therefore, it is very
meaningful to study the relevant control problems of Markov
jump system with the above practical factors. According to
the literature, many outstanding results have been obtained
(see [11, [2], [3], [4], [5], [6], [7], [8], [9], [10] and the
references therein). Compared with nonsingular systems, the
study of singular Markov systems is more general. Due to
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the existence of singular system matrix, in order to ensure
the existence and uniqueness of the solution, it is necessary
to ensure the regularity and causality of the system, which
adds some difficulties to the solution of related problems.
In recent years, lots of attentions have been attracted on sin-
gular Markov systems and many results have been proposed,
such as stability analysis [11], filtering design [12], controller
design [13], [14], [15], [16], [17], [18], [19]. It can be seen
from the above literature that the control problem of singular
systems is challenging, and the results obtained are generally
conservative, especially considering various practical factors.
How to deal with these challenging problems while reducing
the conservatism of the results is one of the motivations of
this paper.

It is worth to note that, the above results are obtained in
the sense of infinite time stability. However, in practical engi-
neering systems, it is more valuable to consider the related
problems of finite-time control which has attracted the atten-
tion of many scholars and lots of results have been reported
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in [20], [21], [22], [23], and [24]. For instance, by the state
undecomposed method, the finite-time stable and finite-time
control problems of affine nonlinear singular systems subject
to actuator saturation was discussed in [25]. The finite-time
H output tracking control problem was addressed for the
networked switched systems and a hybrid event-triggered
scheme was introduced to reduce the network transmission
overload in [26]. On the other hand, packet loss is inevitable in
network communication. In the case of packet losses, the con-
trol input of the system may not be updated in time that results
in the system performance degradation or even instability.
Therefore, it is necessary to consider the data packet loss in
the research of the above problems. Up to now, there have
been numerous works related to this issue [27], [28], [29],
[30], [31], [32], [33]. For instance, the dissipativity-based
filtering problem for a class of discrete-time Markov jump
systems with mode-dependent time-varying delays and ran-
dom packet losses was studied in [34]. In [35], the optimal
output feedback control problem for discrete-time Markov
jump linear system with input delay and packet losses in
finite horizon was considered. According to the literature,
the finite-time control of singular systems is well studied.
However, the results mainly focus on the filter design, fuzzy
control, output-feedback controller design, and the state feed-
back controller design is relatively small. Considering the
practical factors such as data packet loss, the design of con-
troller has important theoretical significance and application
background.

Summarizing the above discussions, this paper is aimed
at the finite-time H,, controller design for singular
discrete-time Markov jump systems with time-varying delay
and input saturation, where random packet losses which
happens between plant and controller are taken into account.
The main contributions of this paper are twofold.

i)Compared with [14], various practical factors, such as
packet losses and input saturation are considered in this paper
and the proposed method is more general.

ii)Compared with [14], by design appropriate Lyapunov-
Krasovskii function, the delay-depended result is derived to
reduce conservatism in this paper.

Notations. R" denotes the n-dimensional Euclidean space,
and e{-} is the mathematical expectation. P > 0 indicates that
P is symmetric and positive-definite, while P < 0 implies
that P is a symmetric and negative-definite matrix. Diag{-}
and I represent, respectively, a block-diagonal matrix and
an identity matrix with appropriate dimensions. Besides, *
refers to symmetry elements of the matrix. Prob{-} means
the probability. A, (+) and Ap,qx(+) represent, respectively, the
minimum and maximum eigenvalue of matrix.

Il. MODEL DESCRIPTIONS AND PRELIMINARIES
Consider the following stochastic Markov jump systems (%)
in the probability space (2, F, P):

E(r(k)x (k + 1) = (A(r(k)) + AA(r(k))x(k)
+(Aa(r(k)) + AAg(r(k))x(k — d(k))
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+(B(r(k)) + AB(r(k)))sat(u(k))
+(D(r(k)) + AD(r(k)))w(k), (1)
2(k) = (C1(r(k)) + AC(r(k)))x(k)

+(Ca(r(k)) + AC2(r(k)))x(k — d(k))

+(C3(r(k)) + AC3(r(k))ulk), x(j)

=n(), j=—du, —du

+1,---, —1, 0. 2)
where x (k) € R”" is the state vector, z(k) € R? is the
controlled output, u (k) € R™ is the input. w(k) is the exter-

nal disturbances, 7(j) are the initial conditions. The positive
integer d (k) denotes the time-varying delay satisfying:

dn <d(k) <dy,k e NT, 3)

where d,, and d)y are the known positive integers. The param-
eter {r (k)} is a discrete-time Markovian process with right
continuous trajectories and taking values from a finite set
S =1{1,2,..., N} with transition probabilities given by:

Prir(k +1)=jlr (k) =i} =m

where 7;; > 0,and forany i € §

Sy =1. )
j=1

In this paper, the transition rates of the Markov jumping
process are partly known. For example, the transition rates
matrix is given as the follows:

1?7 w3 - T
w1 7 73 ?
Pr =
?
TTnl TTn3 ?

where ““?7” is the unknown part of the transition rates. For
notational clarity, ViS, the set S denotes:

5= st Usi
with

Si = {j: m is known for j € S},

;k = {j: mj is unknown for j € S}.

This paper supposes that the input of the considered sys-
tems is bounded as follows:

—uoi) < u@) =< uogy, uogy >0, i=1,---, m. (5

For the system matrix, we denote A; = A(r(¢)) for each
r (t) =i € S, and the other symbols are similarly denoted as
Aj, Adi, Bi, Dj, C1i, Cai, C3; which are known mode-dependent
constant matrices with appropriate dimensions. E; is a sin-
gular constant matrix. AA; = MFNi;, AAg; = MFN»;,
AB; = MFN3;, AD; = MFNy;, ACi; = MFNs;, ACy; =
MFNgi, AC3; = MFN7; are unknown matrices representing
norm-bounded parameter uncertainties, and M and N; are
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known real constant matrices with appropriate dimensions.
The uncertain matrices F satisfies

FTF <1I. (6)

Assumption I1: The varying disturbance w(k) of the con-
sidered systems is supposed as the follows:

wk)Twk) <d, d > 0. (7

In this paper, we attempt to design a state feedback controller.
However, unfortunately, affected by unreliable networks,
some state data packets may not be successfully transmitted to
the controller. Thus, the single exponential smoothing(SES)
method is used to predict x(k). The forecasting model is built
as

Xk + 1) = ax(k) + (1 — 0)X(k). 8)

where o € [0, 1] is the smoothing parameter. Introduce B(k)
as an indicator function, which is described as

Bk) = 1, successful transmition;

B(k) = 0, otherwise. ©))

Besides, (k) obeys Bernoulli distribution with
Prob{Bk) =1} =¢e{Bk) =1} =B € [0, 1].

Then we have the controller based on
hidden Markov mode as the follows:

u(k) = ki {Bk)(ax(k) + (1 — a)x(k))}
Hkoo () {(1 = Bk)x(k)}

where k; () € R™*" and with the emission probability defined
as follow:

M
Pr(o(k)=plrk) =i)=hip. D Ap=1. (10)
p=1
Define g
Y (u(k)) = sat(u(k)) — uk), £(k) = [x()" x(k) 17,
Ek) = [Tk ET(k — d(k) ¥ (u(k)) wh(k)]". Then,
we have the resulted closed-loop systems as the follows:
EE (k+1) = NEK) + A& (k),
a(k) = Ci& (k) + ACiE(k), (11

where

AT = M FTmT,

L 4i
A_Ci = MF [N5 +N7ikp N6] s
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Ci = [Cii+ G3iKp Cai ],

with
S PR A
B =[B! 0], D! =[D! 0],
[ w51
N3 = [N5; 0], Ny =[Ng; 0],
Ns =[Nsi 0], Ns=[Nsi 0],
Cii=[Cu 0], Ci=[Cy 0], E=|:€i ?:|

Ky = [ pakip B = akip + (1 = Plkap |

Meanwhile, it’s easy to find nonsingular matrices f; and o;
such that

~ - 10
E = fiEjo0; = [0 0:| ,

Make & (k) = oi_lé(k), we can rewrite the system (11) as
the follows:

EE (k +1) = & (k) + A& (k),
2(k) = CiE(k) + ACiE(K), (12)

where & (k) = [ET (k) ET (k — d(k)) T (u(k)) wT (k)]”, and
Ol AL + o KTBIST

r TxT¢T TwTanT T
0; Nifi' +o; IT{p Nyif;
NT — i TZsz ,

e
L Nyf;
AC; = MF [ Nso; + N7iK,0; Neoi | .
Ci = [ Ciioi + C3iKpoi Caio; ],
T = M7
Al = o] A[f + o] K] B f"

+(0iTN1T,-fiT + oiTI_(I,TNgiﬁT)FTMT.

Before presenting the main results, we give the following
lemmas and definitions:

Lemma 1 [25]: For the system (12), the matrix I_(p and the
given matrix L; € R”*" with appropriate dimension, if & (k)
is in the set D(u,), where D(u,) is defined as follows:

D(u,) = {E(k) € R"; —uowy < (Kpky + Li)é (k)
< uoy, uoky >0, k=1,...,m},

then for any diagonal positive matrix 7" € R™*", we derive:
Y k)" T (Y (k) — LiE(k)) < 0.
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Lemma 2 [I2]: For the given symmetric matrix S €

Rtm)x(n+m)
S Si2
S = ,
[Ssz 522}

where S1; € R™", S1p € R™™, Sy, € R™ ™ the following
conditions are equivalent:

1S <0.
2) 811 <0, S — SszSl’llSlz < 0.
3)82 <0, S11 — Slez_zlSsz <0.

Lemma 3 [22]: Let X and Y be any given real matrices of
appropriate dimensions. Then, for any scalar € > 0,

XTy +¥TX <e 'XTx +evTy

Definition 1 [20]: For the given constant integer N > 0,
positive scalar (c1, ¢, with ¢ < ¢, and mode-dependent
positive matrix R; > 0, the resulting closed-loop systems (12)
is said to be stochastically finite-time bounded stable with
respect to (c; ca N IAQI- d), if the following relation holds

E(€T(kDETREE (k) < 1
= E{ET()ET REE(K)} < 2
ki € [—dy 01, k» € [ON]. (13)

Definition 2 [17]: Regular and causal.

@) System (12) with w(k)=0 is said to be regular,
if det{sE — A;} # Oforall k € [0, N].

(i) System (12) with w(k)=0 is said to be causal,
if det{sE A; it = rank(E) forall k € [0, N].

Ill. MAIN RESULTS

In this section, we investigate the design of a state feedback
controller which guarantees the locally finite-time stabiliz-
able of the resulted closed-loop system with constant time-
varying delay. Some sufficient conditions and the method of
designing state feedback controller are given.

Theorem 1: For V r (k) =i € S and the constant integers
N >0 05>v>0.vp>0 A>0, A,y > 0 which
are given, the closed-loop Markov jump systems(12) with
initial conditions belonging to £(P;, 1) is said to be locally
stochastically finite-time bounded stabilizable with respect to
(c1 c2 N R; d), if there exists positive constant p > 0, &1 >
0, mode-dependent matrix S_Z,-p, symmetric positive-define
matrix J, Ji, S and diagonal positive definite matrix 7;, and
matrix L;, such that

r N T 1 2
o et & E
M (14
1
| * * * — 0O
(OTE RT
> | = Ozt (15)
kU
-5, Qr
o i;} <0, (16)
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J <Ml (17)
el ETMM"E < \QET, (18)
Qip > v(E le—i-QTE)—I-v (19)
T + pAsNd < opcr, (20)
with
Ji = —QLE + (dy — dw + 1)J)
K = 1_( 0; Q,’p +L,'Q,'p
3 5T 1T
Jioo QUL o
r, = * —J 0_ 0 ’
* x =2T; O
KR *  —pS
T T NTfT o RTNT£T
le lN T ;_f N3ii
NT = Oi_]\TIZiTi ,
e
L Nyifi
Q;l,; ITATfT-f-KTBTfT
oTA
o]
Sl
I bl

where T = op+((dy — D)+ (dy +dp—2) L=zt D)50 )ey,
maxlESGmuX(P) op = mlntesamm(P) Ay =
maxleSUmax(J) )"j = mlnzeSUmm(J) As = Opmax(S), J =

op =

RVPIRTVP By = RTVPPRTVP K, = Kpoiyp, Ti = T
w1th
@, = (F11, F12, -+ Fin),
‘1’5,, = (Fa1, Fa, -+ Fay),
Ejq = vE"Qjg + QLE) + D,

8 = diag(Ej1, Ep, -+ Ejm),

©; = diag(Ey, Ea, -
ST T

Fia = VA7 M)

Fag = /mijhjg(1 + M7

I=[01],1=

Qip _IQipiA, Qip = I:S_Zlip _0_ }1

, BN),

Qip

with the following controller gain Kp =K, Qpl _1.

Proof: For each r(k) = i € S, the following
Lyapuonv-Krasovkii function is designed for the closed-loop
system (12):

VEK), i.p) = E®)TET PpEE(K)
+ 0k _aE )T TE(m)
k dm
B 1 St E ) TE ()

Denote ;) = P,-pE + HW, where ETH 0,,

then we have ETQ;, = ETETQ,E. Define P; =
Z;-VZI quw: | iihjgET Q4 It is easily obtained that

LAV(E(k), i, p) = LIET (k + DET P,EE(k + 1)
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—ET(OET QipE (k)
+(dy — dm + DE" (K)JE (k)
—ET(k — d(k)JE(k — d(k))]
By using the lemma 1, it follows that
LAV (x(k), i, p)
< LI(TT& (k) + A& (k)" P(T1&1 (k) + A& (k)
—ET(OET QipE (k) + (dy — dy + DET (k)JE (k)
—ET(k — d(k)JE(k — d(K))]
=29 (k)T Tiyr (u(k)) + He(y (u(k))” TiLiE (k)
= &/ (T P;I1E (k) + & (k)AT P; A&, (k)
+He(&] ()T1" P;A& (k) — E" (k — d(k))J&(k — d(k))
—ET(OET Qip€ (k) + (dyr — dm + DET (k)JE (k)
=29 (k)" Tiwr (u(k)) + He(y (u(k))” TiLiE (k)

In this paper, we assume that the matrix M € R”. Since that
FTF < I, we have

& (AT PiAG (k) = & (ONTFTMT PIMFN& (k)
< & (ONTMT PMNE (k)
Based on lemma 3 and condition (18), one can obtained
He(§[ (k)" T1A& (k)
%s]T(k)NTFTFNa(k)
+eify (T Pim T BT,
< és}T(kwTFTFNs] (k)+ 281" (AT PiTIE

From conditions (16)-(17), it is easy to get Q;Jﬁip < Ji.
Consider that the condition (19) can be rewritten as the follow
fzjq > U(ETQM + QTE) + v,

WE Qg+ QE) +0) > ETQJ;I‘ =ETQ,
Define S_Zip = Qi;l, and pre- and post multiplying

T;, I, I) and
T;, I, I), by using Schur lemma, one can

matrix inequality (14) with diag(Qg,, 1,

diag(gzi]ﬁ 17

obtained
VEK + 1) < VE®K)) + pw(k) Swik) 1)

From k = 0 — N, and based on assumption 1, we derive

V(EK) < V() + prsNd

< £(0) ETP iEE0)+ 2210 EDTIEG)
+2 gt E;jg(i)TJg(z) + pAsNd
1/2 ,—1/2

~1/2p172,

Sine that P; = R R P; R R
and é(O)TETR {55(0) <ecy, 1t is easy to find a scalar 8 which
satisfy S(O)TRiE(O) < écy, then we derive

VEWK) < T + prsNd
On the other hand, it is easy to know
V(E®K) = () E" PEE (k)
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> 0,E (k)T ETREE (k) (22)
Then, we have
T ETREE() < YEW)
Op
< Y + pAsNd 23)
Op

Condition (20) implies that E{§T ET R,EE(k)} < c».
Define L; = [Lj; Ly;i], and pre- and post multiplying matrix
inequality (15) with dmg(QT I) and diag(Q2;p, 1), we derive
that e(ETQj, 1) € D(u(O))

Now, we prove that the system (12) is causal and regular in
the time interval [0, N] with w(k) = 0. Consider condition
(14) in theorem 1 and based on the lemma 2, we derive

(dy — dy + 1)J — ETQiE + A; (ZZ" DY4; <0,
j=1 g=1
Since that (dy; — d,;, + 1)J > 0, we have

—ETQiE + A; (Z Z "—‘)A <0. (24)
J=1g=1
ETQ,E > 0. 25)
To this end we choose two nonsingular matrices M and N
which satisfy the follows

E=M [ 0 8] N. (26)
Write the follows
o T a1 11 Wiz
Ejy=M (ZZ M= Wl [N @D
Jj=1q=1 '
i Ajl Ap
Ai=M [AB A{JN. (28)

Pre- and post-multiplying (24) by N~ and N~!, based on
the notations in (25)-(28), one can obtained that

[Zi; Zi’ } <0, (29)
where
N N
Hy; = AL " WiDAgi + AL WA,
J=1 J=1

N
A4,<Z WAL+ AL Win)Ag
j=1

It is easy to see that (29) implies
H3 < 0. (30)

From (30), we have that the matrix A4; is nonsingular for
each j € S. Thus, by Definition 2, it is easy to get that the
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discrete Markov jump singular systems in (12) is regular and
causal.

Theorem 2: For VY r (k) = i € S and the given constant
integer &2 < Ay, the closed-loop Markov jump systems(12)
with initial conditions belonging to e(P;, 1) is said to be
locally stochastically finite-time H,, bounded stabilizable
with respect to (c1 ¢2 N R; d), if there exists positive constant
y > 0, such that conditions (15)-(20) of theorem 1 holds and

(14 ¢’ ¢ N'mMT 1 K
x —e&l 0 0 0 0
* —1 0 0 0 0
* * 1+1)»21 0 0 =%
* * * * -0 0
* * * * * )
(€29)
Y + y>Nd < opc2, (32)
with
Ji o QI 0
* —=J 0 0
r = -
! * x 2T; 0 ’
* ok R

C =[C; C 01. N7 =[Ng N5 0]
K, = K,0,Q;,, C1 = C1;0;Qj, + C3;K,
Cy = (gj0i, Ns = N50iQp + N7;Kp,
Ne = Neoj, 01 = 07", 0 = 0y,
and the definitions of other variables and matrices are consis-
tent with Theorem 1 and with the following controller gain
o > o—1 —1
K, = K,Q; 07"
Proof: In this case, we consider the Hy, control problem. It is
easy to derive
~ ~ ~ T ~ ~ T 7~
' (kyzk) = ET()(CT + AC; )] + AC; ) EK)
~ ~p o~ o~ ~ ~ T ~_ ~
= ET()C] CEk) + ET () AC; ACE(K)
+He(E" (k)C] ACiE(k)}

Define N; = [Nso; + N7il_(p0i Neo; 0], and we assume
that the matrix M € R”. Since that FT F < I, one can derive
ET()AC] ACE®K) = ET(ONT FTMT MFNAE (k)

< ET(N] M" MN7E (k)
Based on Lemma 3 and denote & < A, then we derive
He(E" (k)C ACiE(k)} < 26T (k)NT M" MN7E (k)
TPy P
+—§"(k)C; Ci&k)
&2
From condition (31) we derive

VEGk + 1) — VE®K)) < y>wk)T wik)
—E()T Q1€ (k) — u(k)” Qau(k) — 2" (k)z(k).
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From k = 0 — N, itis easy to know

N N
D ) Qrx (k) + utk)” Qautk)) + Y Z(k) Z(k)
0 0

< y?Nd + V(x(0)) — V(x(N)).  (33)

Then we have

SN )T Q1x(k) + ulk)” Qau(k)) < y>Nd + V (x(0)).
Meanwhile, under the assumed zero initial condition, one can
drive from (33)

N
ZZ(k)TZ(k) < y2Nd. (34)
0

Then following the similar proof of Theorem 1.

Theorem 3: For ¥V r(k) = i € S, the closed-loop
Markov jump systems(12) with initial conditions belonging
to e(P;, 1) and partially known transition rates is said to
be locally stochastically finite-time H, bounded stabiliz-
able with respect to (c; ¢c2 N R; d), if there exists positive
constant ¥y > (0, mode-dependent matrix Q_,-p, symmetric
positive-define matrix J and diagonal positive definite matrix
T;, and matrix L;, such that conditions of theorem 2 holds and

[(14) ¢ CT NImT 1 K
x* —&l 0 0 0 0
* * =1 0 0 0 0
1 <0,
* * — 1+A21 0_ 0
* * * * -0 0
| * * * * * -0
J € Sk (35)
r_OTF 3 3
_QipE ijp ijp
* —-& 0 < Ojesy» (36)
L x * =&

with 7 = Emj;, j € Sk, K, = K,0:Qj, and
Ji = —AQE + (dy — dw + D]y
@3 = (Fi1, Fia, -~ Fim),
@t = (Fa1, Fa, - Fanp),
Fig = J/Ajg(NTMT),
I:—'zq = /A1 +)»)1:[T,
and the definitions of other variables and matrices are consis-
tent with Theorem 1 and 2, and with the following controller
gain K, = K,,Qi;loi_l.
Proof: Design the same Lyapuonv-Krasovkii function as the-
orem 1. Consider that Xjcs7;; = 1, and define d,, = dy —
dy, + 1, it is easily obtained that
LAV (x(k), i, p)
< &/ (o' PE (k) + E] (k) AT P; A& (k)
+He(E (k)T1" PiA& (k) — E" (k — d(k))JE(k — d(k))
—ET () SjesmyE" QipE (k) + dnE" (k)T E (k)
=24 (u(k))" Ty (u(k)) + He(Yr (u(k))" T;Li (k)
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Then we have

LAV (x(k), i, p)
< {El (oTT" P11 (k) + E] (k) AT P;AE (k)
+He(E] ()T P;AE (k) — ET (k — d(k))JE(k — d(k))
—ET (1) DjesmiET QupE (k) + (dy — di + DET (K)JE(K)
=29 (k) Ty (u(k)) + He(yr (u(k))" T;LiE (k))}jes,
HET () ZjesmiET Qipé (k) + E] ()T PTIE (k)
+EI () AT PiAE (k) + He(E] (k)T PiAE| (K))) jesu

Then following the similar proof of Theorem 2. The proof
is completed.

IV. NUMERICAL EXAMPLES
In this section, two numerical examples are provided to
demonstrate the effectiveness of the proposed method.
Example I: In this case, we chose the same parameters of
literature [14], and ignore saturation and packet loss. Assume
that the data can be transmitted successfully, then we have
B = o = 1. For this numerical example, the initial values are
given as the follows: ¢; = 04, ¢ = 0.5, N = 10, R; =
I3, d = 0.05, and describe the delay as d(k) = 1. Given
v = 0.2, v =0.25. By using the theorem 3, we derive

ki = [1.2371 —0.8321 1.3653 ],
kip = [6.0142 —1.9275 —2.0721] .

Remark 1: Figs. 1 is the system jump mode, and Figs. 4 is
state response of the closed-loop system (12) without
packet loss. Compared with literature [14], this paper pro-
vides delay-dependent results by constructing appropriate
Lyapunov-Krasovskii function to reduce conservatism. From
the simulation results, the Hy, performance y = 0.7 is less
than the results of literature [14].

Example 2: Consider the uncertain discrete-time singular
Markov delay system (1)-(2) with two operation modes
described as follows:

-1 2 ~0.1 02
Ar=1 3 —2]’ Ad1 = [—0.1 —0.2]
23 02 0.1
A=y —1]’ Aaz = [—0.1 0.4]’

(03 0.1
B = _—0.1}’ b= [0.1]

0.1 0.1 0.1
b2 = _0.2] D2 = [0.1]’ M= [—0.1]’

[~1-1]. Cu =[0.1 —0.1].
Cp=[11], Cn=[020.1],

[

02 -03], E; = [(1)8],

11
C32=[0.1 —0.1], Ez:l:l()jl'
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FIGURE 1. System mode of example 1.

with
w0301 ] e =[o107]
=[50t ] m=[o1o01]
wa = [o3on | M=o 0]
N = :8:; 0(.)1: - Nz = :8:? 0(.)1:’
v = [0t on | M= 0a01 ]
v =03 01 | M=% 0a ]
ve =03 00 | M=% 0a

For this numerical example, the initial values are given as
the follows: ¢y = 0.3, ¢ = 0.5, y = 0.8, N =10, R; =
I, d = 1, , and describe the delay as d(k) = 1 + 2 |
cos(k) |, then we have dy; = 3, d,, = 1,the bounds of the
input sat(u;) < 0.05. The initial values of state are given as
follows,

- [024057 .

The transition rate matrix are given by the follows:

7 ? N 0.6 04
Ti= 10406”0505
Given v = 0.2, v = 0.25, 8 = 0.7, « = 0.7. By using
the theorem 3, we derive
kip = [1.4326 —0.7934
kip = [0.2143 —0.0326
kx| = [—1.7931 0.8542
ko = [10.1934 —0.936

3

)

’

[ Ry Sy SRy S—'

Remark 2: Figs. 2 is the controller jump mode, and
Figs. 3 is the system jump rates, Figs. 5 is state response of
the closed-loop system (12) with partly unknown transition
rate and packet loss compensation. From the figures pro-
vided, the controller we designed guarantees that the resulted
closed-loop constrained systems(12) are mean-square locally
H, finite-time bounded stabilizable.
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controller mode
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L

L L L L
1 2 3 4 5 6 7 8 9 10
time/k

FIGURE 2. Controller mode of example 2.

3 T T T T T T T T

system mode
T
L
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1 2 3 4 5 6 7 8 9 10
time/k

FIGURE 3. System mode of example 2.

FIGURE 4. T (k)ET R;EE (k) of the closed-loop system (12) of example 1.

06 T T T T T T T T
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b % LLJ I

Uy U

L L h
0 1 2 3 4

state
—

1l ’
il

9 10

05

S
T

°

~
T

time/k

FIGURE 5. £7 (k)ET R;EE (k) of the closed-loop system (12) of example 2.

TABLE 1. The minimum of c, for different « and 8.

c2 a=1| a=07| a=0.5
B=1 0.41 0.45 0.68
£ =0.7 0.43 0.49 0.71
£ =0.5 0.55 0.62 0.81

Remark 3: From the Table 1, it is clear that the ¢, arrives
at the minimum value 0.41 when « = B = 1. This is mainly
caused by that when 8 = 1, none of packet is lost and there
is no need to predict the state for the controller.

V. CONCLUSION

The robust finite-time control issue has been investigated for
a class of discrete-time singular Markov jump systems with
time-varying delays and input saturation, in which random
packet losses are considered. Based on the SES method,
the prediction value has been taken as the compensation
when a packet is lost. By utilizing a novel mode-dependent
Lyapunov-Krasovskii functional, the state feed-back con-
troller has been designed to ensure that the considered system

101472

is stochastically finite-time stable with a Hy, performance.
Finally, the validity of the proposed approach has been illus-
trated by two numerical examples. In addition, since the LMI
method is used to solve the parameters, in order to obtain
strict LMIs, the adopted mathematical processing method will
increase the conservatism. In future work, we will strive to
reduce conservatism and try to obtain the value of B(k) in
real time according to the network environment of the actual
system, so as to further improve the controller design method.
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