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ABSTRACT In this study, the temperature-dependent electrical characteristics of p-channel mode feedback
field-effect transistors (FBFETs) were examined at temperatures ranging from 250 to 425 K. Their steep
subthreshold swings of less than 1 mV/dec were maintained even at temperatures up to 400 K. As the
temperature increased to 400 K, the latch-up voltage shifted from —0.951 to —0.613 V, which was caused
by a reduction in the potential barriers in the channels of the FBFETs. High I/l ratios above 108 were
maintained in the temperature range of 250 to 400 K. However, at temperatures over 400 K, the FBFETs were
turned on regardless of the gate voltages owing to the generation of a thermally induced positive feedback
loop.

INDEX TERMS Field-effect transistor, positive feedback loop, temperature-dependent, simulation.

I. INTRODUCTION

Recently, feedback field-effect transistors (FBFETs) have
generated considerable interest because their abrupt switch-
ing behaviors and bistable characteristics are suitable for
logic-in-memory devices, which have led to revolutionary
progress in the semiconductor industry [1], [2], [3], [4],
[5], [6]. Recent studies have demonstrated that FBFETSs
can be utilized for dynamic random-access memory [7],
[8], [9]. However, at the circuit level, in which millions
of memory cells are integrated, the temperature-dependent
analysis of single FBFETs is of primary importance for main-
taining the stable operation of memory circuits. Moreover,
for temperature-sensitive applications such as embedded
memory in logic devices, stable operation at temperatures
over 360 K, which have been extensively tested for tem-
perature reliability, is required. However, there have been
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no reports on temperature-dependent electrical character-
istics of single FBFETSs. In this study, we experimentally
investigated temperature-dependent feedback operation of
p-channel mode FBFETs in the temperature range
of 250 to 425 K. Furthermore, the temperature-dependent
electrical characteristics were analyzed by simulations.

Il. EXPERIMENT

A. DEVICE FABRICATION AND ELECTRICAL
CHARACTERIZATION

p-channel mode FBFETSs were fabricated using a silicon-on-
insulator with a 340-nm-thick Si layer. A silicon active layer
was prepared using stepper photolithography and anisotropic
dry etching. The active layer was subjected to the n-well
process by implantation of Pt ions at a dose of 3 x 10'3 cm—2
at an ion energy of 60 keV followed by thermal annealing at
1100 °C for 30 min. A silicon dioxide layer for forming a gate
dielectric layer was grown by thermal oxidation at 850 °C.
A p™T poly-silicon gate was formed by low-pressure chemical
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vapor deposition (LPCVD) and photolithography followed
by dry etching. For a lightly doped drain extension, BF;r ions
were implanted at a dose of 1 x 10'2 cm™2 at an ion energy
of 10 keV. Gate sidewall spacers were formed using LPCVD-
based tetraethyl orthosilicate. Repeated implantation of BF;r
ions at a dose of 6 x 10'*cm™ at an ion energy of 40 keV
formed a p-region, except for the region beneath the gate
region. To form p™ drain and n* source regions, BF} and P*
ions at a dose of 3 x 1013 each were implanted at ion energies
of 30 keV and 100 keV, respectively. Subsequently, the wafer
was first annealed at 1000 °C for 30 min and subsequently
at 1050 °C for 30 s using a rapid thermal annealing sys-
tem. In the last step, Ti/TiN/AI/TiN metal alloy-based drain,
source, and gate electrodes were formed using sputtering and
photolithography.

A temperature-controllable vacuum probe station was con-
structed to investigate the temperature-dependent electri-
cal characteristics of the FBFETs. All electrical data were
obtained in the temperature range of 250-425 K in vacuum
using a semiconductor parameter analyzer (Keithley 4200).
Cross-sectional images of the FBFETs were captured by
transmission electron microscopy (TEM; FEI Tecnai F20).

B. DEVICE STRUCTURE AND SIMULATION

Figure 1 shows a schematic of the fabricated p-channel mode
FBFET with a pT—n—p-n silicon layer and the initial energy
band diagram. The silicon channel consists of an n-doped
channel region below the p™ poly-silicon gate and a p-doped
non-gated channel region. The n-(p-)-doped channel region
acts as a potential barrier that blocks the injection of holes
(electrons) from the p* drain (n* source). The drain and
source regions are heavily doped with p- and n-type dopants,
respectively.
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FIGURE 1. Schematics of p-channel mode FBFET and initial energy band
diagram.

The dimensional parameters and doping concentrations
in the silicon channel used in the simulations are summa-
rized in Table 1. The simulations were performed using a
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two-dimensional FBFET structure on the Sentaurus TCAD
simulator (Synopsys Sentaurus, Version O_2018.06) [10].
In the simulations, we used the following physics models:
thermodynamic, Fermi—Dirac statistics, bandgap narrowing,
Auger recombination, Shockley—Read—Hall recombination,
inversion and accumulation layer mobility, and high field
saturation. The default parameters were used for all models.
In this study, all simulations were conducted for the FBFETSs
in the temperature range of 250425 K.

TABLE 1. Dimensional parameters and doping concentrations for
simulations.

Parameter Value [unit]
Channel length (L) 5 [um]
Gate channel length (Lgaea) 2.5 [um]
Silicon channel thickness (7s;) 340 [nm]
Gate oxide thickness (7,x) 25 [nm]

Source/drain doping concentration 3.0x10" [em?]

2.3x10"7 [em?]
1.0x10" [em™]

Gated channel doping concentration

Non-gated channel doping concentration

Ill. RESULTS AND DISCUSSION

Figure 2 shows an optical image of the fabricated FBFET and
a cross-sectional TEM image of the gate region, where the
dimensions and structure of the fabricated device are the same
as those shown in Figure 1.
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FIGURE 2. Optical image of fabricated p-channel mode FBFET and
cross-sectional TEM image of gate region.

The transfer characteristics of the FBFET at 300 K and
the band diagrams under the operating state at a Vpg of 1 V
are shown in Figures 3(a) and (b), respectively. The on and
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FIGURE 3. (a) Experimental and simulated Ips-V(s transfer curves of
p-channel mode FBFET at 300 K. (b) Band diagrams of positive feedback
loop with positive Vpg.

off states of the p-channel mode FBFET before and after the
generation of the latch-up are depicted in the band diagrams.
In the off state, a potential barrier formed in the valence band
of the n-gated channel region blocks the flow of holes from
the drain region. Simultaneously, a potential barrier created
in the conduction band of the p-non-gated channel region
blocks the flow of electrons from the source region. As the
negative Vs increases, the height of the potential barrier in
the valence band of the n-gated channel region decreases,
allowing the injection of holes into the potential well in the
valence band of the p-non-gated channel region. The injected
holes accumulate in the potential well, electrically lowering
the height of the potential barrier in the conduction band of
the p-non-gated channel region.

Subsequently, electrons are injected into the potential well
in the conduction band of the n-gated channel region owing
to the lowering of the height of the potential barrier in the
conduction band. The electrons and holes accumulated in the
potential wells further accelerate the lowering of the height
of the potential barrier in each region, resulting in a positive
feedback loop phenomenon in which the potential barriers.
collapse in a very short time. The positive feedback loop
results in a latch-up phenomenon, in which the drain-to-
source current (Ipg) abruptly increases; the latch-up voltage
is denoted as Viuch—up. Moreover, the electrons and holes
accumulated in the potential wells maintain the abovemen-
tioned positive feedback loop even when Vg returns to 0 V,
thereby maintaining the on state. Thus, the fabricated FBFET
is suitable not only for switching devices but also for memory
applications.

Figure 4(a) shows the experimentally measured Ips—Vgs
transfer curves of the p-channel mode FBFET in the tem-
perature range of 250-425 K. The variation in the temper-
ature up to 400 K influences both the Vich—up and on/off
ratio; however, a subthreshold swing (SS) below 1 mV/dec
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FIGURE 4. (a) Experimental and (b) simulated temperature-dependent
Ips—Vgs transfer curves of p-channel mode FBFET.

is independent of temperature. As the temperature increases
from 250 to 400 K, VL atch—up shifts from —0.951 to —0.647 V.
In contrast, at 425 K, the device is turned on regardless
of Vs, indicating that the entire area of the channel becomes
conductive. I, and Iogr at Vgs = 0 V increase with increasing
temperature, and the increase in Iy is larger than that in I,y.
Accordingly, Ion/loff increases from 5.01 x 10° to 1.35 x
10'0 as the temperature increases from 250 to 325 K, and
subsequently, it decreases to 3.92 x 10% at 400 K. Never-
theless, our device exhibits outstanding Ion/loft (>108) over
a wide temperature range compared to other steep switching
devices [11], [12], [13], [14]. Figure 4(b) shows the simulated
Ips—Vs transfer curves, which present similar trends to the
experimental data. The Vi ich—up, on/off ratio, and SS values
obtained from the Ips—Vgs transfer curves at 200400 K are
listed in Table 2.

As for the on/off ratios, there is a difference between
the simulation and the experimental results in terms of the
inflection temperature; the temperatures are 300 and 325 K
for the simulation and the experimental results, respectively.
This discrepancy is attributed to the off current that involves
unavoidable noise from measurement environments since the
on currents on the simulation and the experimental results
increase linearly within the same order of 1074, Wiatch—up
becomes a smaller negative value as the temperature increases
from 250 to 400 K, and simultaneously /o, and I, increase.
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TABLE 2. Vjatch—up: on/off ratio, and SS values obtained from Ips-Vgs transfer curves at 200-400 K.

Temp. [K] 250 275 300 325 350 375 400
Experiment ~0.951 ~0.918 ~0.881 ~0.835 ~0.786 -0.721 ~0.647
VLatch-up [V] . .
Simulation ~0.957 ~0.956 ~0.880 ~0.796 -0.729 ~0.669 ~0.613
o Experiment  5.01x10° 8.63x10° 1.24x10" 1.35x10" 8.44x10° 2.20x10° 3.92x10°
ff
o Simulation  2.30x10° 5.51x10° 9.13x10° 6.62x10° 2.32x10° 6.45x108 1.70x10°
Experiment 0.124 0.123 0.147 0.135 0.148 0.171 0.173
SS [mV/dec] . .
Simulation 0.0037 0.0033 0.0036 0.0035 0.0031 0.0033 0.0023
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FIGURE 5. (a) Energy band modulation mechanism in p-channel mode FBFET with increasing temperature. (b) Hole and

(c) electron concentrations with increasing temperature.

Moreover, our simulation results reveal that the device is
turned on regardless of Vgg at 425 K. However, the sim-
ulated SS values are approximately two orders of magni-
tude smaller than the experimental results over the entire
temperature range. In this study, the SS value is calculated
as SS = [d(loglOlIDsD/dVGs]_l, and in the experiments,
the minimum step of the Vs sweep cannot be reduced to
less than 1 mV owing to the limitation of our measuring
equipment. Therefore, the experimental SS values are rel-
atively larger than the simulated ones. The changes in the
electrical characteristics—/op, Joff, and Viaeh—up—as shown
in Figure 4 indicate that temperature increase affects the
kinetic energy of the charge carriers and the potential barrier,
which blocks the injection of charge carriers into the channel
region.
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Figure 5(a) shows the energy band modulation mechanism
in the p-channel mode FBFET in the off state (Vps =1V,
Vgs = 0 V) with increasing temperature. At temperatures
below room temperature, the potential barriers formed in the
valence band (the conduction band) are sufficiently high to
block the injection of holes (electrons) from the drain (source)
region to the channel region. However, as the temperature
gradually increases, the quasi-Fermi levels (Egn for elec-
trons and Epp for holes) become closer to the conduction
band or the valence band. Therefore, the electron and hole
concentrations increase, as shown in Figures 5(b) and (c),
and the kinetic energy of the charge carrier increases. The
increase in the kinetic energy allows some electrons and holes
to have sufficient energy to overcome the potential barrier
at the junction between the source (or drain) and channel
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FIGURE 6. Representative energy band diagrams for depletion region at (a) lowest temperature (250 K), (b) room temperature (300 K),
and (c) highest temperature (425 K). (d) Simulation results of electron-hole pair generation in depletion region.

regions. Some electrons and holes flow toward the drain and
source regions, increasing /¢, whereas the others accumulate
in the potential well. The accumulation of electrons and holes
reduces the height of the potential barrier, which plays a
critical role in determining Viach—up. As the potential barrier
height decreases, a relatively smaller |Vgg| value is required
to generate the positive feedback loop. Moreover, at a high
temperature of 425 K, a thermally induced positive feedback
loop is generated by the interaction of the electrons and
holes injected into the channel owing to the high thermal
energy. Consequently, the p-channel mode FBFET is turned
on regardless of the Vgg sweep, as shown in Figure 4.

In the following, the contribution of electron—hole pair gen-
eration to the energy band modulation of the p-channel mode
FBFET is discussed. The FBFET has a p*—n—p-nT diode
structure, and accordingly, the p—n junction of the channel
region becomes a reverse bias condition when a forward bias
is applied to the drain. Figure 6 shows the thermal generation
of electron—hole pairs in the depletion region of the p—n junc-
tion of the channel region at which reverse bias occurs. Repre-
sentative energy band diagrams for the depletion region at the
lowest temperature (250 K), room temperature (300 K), and
highest temperature (425 K) are shown in Figures 6 (a)—(c),
respectively. Slight energy changes in the conduction and
valence bands occur at 250 and 300 K, the potential barrier
collapses at 425 K, and the channel becomes conductive.
The electron—hole pair generation in the depletion region is
driven by thermal energy via the defects in the forbidden
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band [15], [16]. Based on our simulations, impurity atoms
located interstitially or substitutionally in the silicon crystal
lattice and interface traps existing between silicon and silicon
oxide mainly contribute to the thermal electron-hole pair
generation in the depletion region. The simulation results
of electron—hole pair generation are shown in Figure 6(d).
The generation rate considerably increases from 7.04 x
101%cm 3571 to 1.48 x 10" cm™3.s~! as the temperature
increases from 250 K to 400 K. The thermally generated
electrons and holes drift to the potential wells formed in the
conduction and valence bands, respectively, under the electric
field in the depletion region These electrons and holes are
blocked from moving to the drain and source regions by
the potential barrier and accumulate in the potential wells.
Consequently, they contribute to the reduction in the potential
barrier height and the generation of a thermally induced
positive feedback loop.

Figure 7 shows the energy band diagram of the p-channel
mode FBFET with increasing temperature. The potential bar-
rier formed in the valence band in the gated channel gradually
decreases as the temperature increases from 250 to 400 K at
intervals of 25 K (0.85 — 0.85 — 0.83 — 0.82 — 0.81 —
0.78 — 0.72 eV).

Subsequently, it abruptly decreases to 0.06 eV at the high-
est temperature of 425 K. Similar to the potential barrier in
the valance band, that formed in the conduction band in the
non-gated channel first gradually decreases and subsequently
abruptly decreases at the highest temperature of 425 K.
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FIGURE 7. Variations in energy bands of p-channel mode FBFET with
increasing temperature.

The corresponding values are 0.84 — 0.81 — 0.80 — 0.79
— 0.78 = 0.76 — 0.74 — 0.07 eV. The influence of temper-
ature enables the injection of charge carriers with sufficient
energy to overcome the potential barriers and the accumula-
tion of generated electron—hole pairs in the depletion region
to reduce the potential barrier height. The reduction in the
potential barrier height explains the Viych—up decrease with
increasing temperature. Nevertheless, the potential barrier
required for a positive feedback loop is sufficiently main-
tained and exhibits steep switching characteristics over a wide
temperature range of 250-400 K.

IV. CONCLUSION

In this study, the temperature-dependent electrical charac-
teristics of a p-channel mode FBFET were investigated by
experiments and simulations. At a temperature up to 425 K,
the device became turned on, regardless of Vgg, owing to
the generation of a thermally induced positive feedback loop.
However, as the temperature increased from 250 to 400 K,
Viatch—up slightly shifted from —0.951 to —0.613 V with a
high I,,/Ioff ratio of over 108. Moreover, the FBFET exhibited
SS values of less than 1 mV/dec. These values were indepen-
dent of the temperature. Owing to its relatively low SS and
high Ion/Iofr ratio with a wide range of temperature stability,
the developed FBFET has considerable potential as a low-
power high-performance device.
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