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ABSTRACT With the increasing adoption of the edge computing paradigm, including multi-access edge
computing (MEC) in telecommunication scenarios, many works have explored the benefits of adopting
it. Since MEC, in general, presents a reduction in latency and energy consumption compared to cloud
computing, it has been applied to deploy artificial intelligence services. This kind of service can have distinct
requirements, which involve different computational resource capabilities as well different data formats or
communication protocols to collect data. In this sense, we propose the VEF Edge Framework, which aims at
helping the development and deployment of artificial intelligence services for MEC scenarios considering
requirements as low-latency and CPU/memory consumption. We explain the VEF architecture and present
experimental results obtained with a base case’s implementation: an object detection inference service
deployed with VEF. The experiments measured CPU and memory usage for the VEF’s main components
and the processing time for two procedures (inference and video stream handling).
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INDEX TERMS Future connected systems, fog computing, edge computing, intelligent services, services
deployment.

I. INTRODUCTION14

Currently, in industrial scenarios, we have distributed and15

heterogeneous applications involving, for instance, differ-16

ent Industrial Internet of Things (IIoT) devices with their17

known constraints (e.g., processing and storage capabil-18

ities). These scenarios include integrating those devices19

with other services and equipment [1], such as integrat-20

ing video cameras with computer vision services or using21

model-predictive control models to remotely control an auto-22

mated guided vehicle [2]. In general, to achieve these appli-23

cations’ requirements, we employ external servers to provide24

the necessary resources. Besides cloud computing, which25

brings the required resources properly, we can deploy the26

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

applications using two other paradigms: edge computing and 27

fog computing. 28

Although sometimes the edge and fog computing terms 29

can be used interchangeably by authors, due to the lack of 30

a standardized accepted definition, we can describe them as 31

follows [3], [4]: 32

• edge computing performs the processing near the source 33

of data; 34

• fog computing performs the processing in intermediate 35

nodes between the edge and the cloud. 36

Depending on the application requirements, sending large 37

amounts of data to be processed in the cloud can become invi- 38

able, as this process may consume all the network bandwidth 39

and increase the energy and financial costs. Cloud computing 40

generally demands high latency, connectivity dependency, 41
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and network bandwidth, which can be considered a waste of42

resources (energy and bandwidth, for instance) [5]. In this43

sense, we can list some edge and fog computing improve-44

ments compared to cloud computing: decreased response45

times (80 to 200 ms), overall service latency (50%), and46

energy consumption (30 to 40%) [4]. A comparison among47

edge and cloud, measuring the communication and process-48

ing latency, can show that the edge can be better thanks to49

the faster communication latency, even considering that the50

cloud servers can have faster processing with more robust51

servers [6].52

Edge computing is one of the main enablers for 5G53

networks, providing high bandwidth, high performance,54

low latency, and enabling real-time decision-making and55

location-based awareness [6]. When deploying the edge56

servers to provide Internet services and mobile access net-57

works, we have Mobile Edge Computing (MEC) [7], [8],58

also called Multi-access Edge Computing [9], [10]. MEC59

places processing and storage resources at the network edge,60

working as a small data center to provide different application61

services [6]. Applying MEC in industries, we can optimize62

service scheduling and routing, decrease machine downtime63

alerts, improve machine uptime, and decrease replenishment64

costs and time [11]. The MEC advantages can enhance the65

power of artificial intelligence (AI) techniques. For instance,66

AI can help IIoT systems to predict fault classes, main-67

tenances, and demand forecastings [12], [13], [14]. With68

machine learning, a system can learn through data processing69

without previous explicit programming. Such techniques can70

be applied to one of the main applications for edge comput-71

ing: video streaming applications [15], [16].72

With the applications’ requirements diversity, each with its73

specificities, deploying and managing services in the edge74

can become complex [17]. For example, if we consider a75

video streaming application in a MEC scenario, we have76

to deal with the deployment and management of distinct77

components. These components can run on virtual machines78

or containers. Thus, for each different application, we have to79

deal with the environment configuration to initiate, manage,80

and stop services. We can describe this general problem as81

follows:82

• Business problem: ease the deployment of AI services in83

a MEC server considering requirements as low-latency84

and reduced computing costs (use of CPU/memory);85

• Technical problems:86

– Investigate open source solutions that can help the87

deployment of services in a MEC server, and can88

integrate with IoT devices;89

– Design an architecture that integrate open source90

solutions and help the deployment of AI ser-91

vices in a MEC server considering requirements as92

low-latency and reduced computing costs;93

– Implement a platform that follows the designed94

architecture;95

– Test the implementation, measuring latency and 96

CPU/memory consumption. 97

In this paper, we present the VEF Edge Framework, 98

a platform to ease the deployment and management of AI 99

services in MEC servers. The VEF architecture considers 100

open-source platforms and technologies, such as Openstack,1 101

Open Source MANO,2 and EdgeX Foundry.3 The VEF pro- 102

poses a deployment flow in which the developers can upload 103

the containerized AI services to run inside virtual machines. 104

This way, a developer can deploy and manage the AI ser- 105

vices through a dashboard. To evaluate the VEF platform’s 106

performance, we carried out experiments to measure the 107

communication latency and CPU/memory consumption con- 108

sidering its main components. We implemented a machine 109

learning-based object detection service as a use case for the 110

experimentation. 111

The main contributions of this work are: 112

• An architecture with components to manage and 113

deploy containerized AI services running inside virtual 114

machines in MEC servers, and enhance the internal 115

communication flow for streams processing; 116

• The VEF Edge Framework, a platform implemented 117

according to the proposed architecture, which aims at 118

easing the development and deployment of AI services 119

in MEC scenarios; 120

• An implemented use case, which considers an object 121

detection system as intelligent service to be deployed 122

and managed by the platform; 123

• An experimental evaluation of the platform, consider- 124

ing performance measurements, such as communication 125

latency and CPU/memory consumption. 126

The remainder of this article is organized as follows. 127

Section II presents a brief description about the main plat- 128

forms and technologies considered for the VEF architec- 129

ture. Section III introduces the VEF architecture, explaining 130

its main components. Section IV presents the experimen- 131

tal design we followed to evaluate the VEF’s performance. 132

Section V details and discusses the results achieved with the 133

evaluation. Section VI describes related works which also 134

consider the deployment of AI services in MEC scenarios. 135

Finally, Section VII concludes this work, giving suggestions 136

for future work. 137

II. BACKGROUND 138

A. EdgeX FOUNDRY 139

EdgeX is an open-source platform to facilitate the deploy- 140

ment of IoT applications through interoperability across 141

devices and systems [18], [19]. All EdgeX components 142

are provided as microservices running in Docker contain- 143

ers [20]. Each microservice communicates through a REST 144

API. EdgeX is multi-protocol, allowing devices to commu- 145

nicate through different protocols, and has components for 146

1https://www.openstack.org/
2https://osm.etsi.org/
3https://www.edgexfoundry.org/
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FIGURE 1. EdgeX architecture4.

integration with cloud services. The EdgeX architecture can147

be seen in Figure 1. It is divided in six main layers (rep-148

resented by the blocks in the figure): device services, core149

services, supporting services, application services, security,150

and management.151

152

B. OPENSTACK153

Openstack is an open-source platform, created by NASA and154

Rackspace Hosting in 2010, for deploying and managing155

cloud computing services. It is widely used with the infras-156

tructure as a service (IaaS) paradigm to provide processing,157

network, and storage resources for various applications types.158

C. OSM—OPEN-SOURCE MANO159

Open Source MANO (Management and Orchestration) [21],160

[22] emerged in April 2016, after ETSI (European Telecom-161

munications Standards Institute)5 created the OpenSource162

Group (OSG) to develop open-source (free software) projects163

related to ETSI specifications. AMANO solution is responsi-164

ble for orchestrating VNFs (Virtualized Network Functions)165

and managing hardware and software resources that sup-166

port infrastructure virtualization. OSM brings together some167

existing open source projects: Telefonica’s OpenMANO168

project, Riftware’s Rift.io software, and Canonical’s Juju169

charms.170

D. EMQ X KUIPER171

EMQ X Kuiper6 is a lightweight, cross-platform, and highly172

extensible data analytics and streaming tool. Implemented173

in Golang, it can run in many resource-constrained edge174

devices. Among Kuiper’s advantages, we can list: reduced175

system response latency, reduced network bandwidth and176

storage costs, and improved system security. Kuiper works as177

a rules engine, allowing users to perform fast data processing178

4https://www.edgexfoundry.org/why_edgex/why-edgex/
5https://www.etsi.org/
6https://docs.emqx.io/en/kuiper/latest/

FIGURE 2. Kuiper architecture7.

FIGURE 3. Edge framework architecture.

in the edge, using rules written in SQL. Kuiper is based on 179

the following three components, as shown in Figure 2: data 180

sources, SQL rule, and result sinks. 181

III. EDGE FRAMEWORK—ARCHITECTURE 182

The VEF Edge Framework aims to facilitate the development 183

and deployment of intelligent edge computing applications. 184

For this, we planned an architecture based on microservices 185

to deal with the data that need to be collected, transmit- 186

ted, processed, and stored. The VEF will act as an MLaaS 187

(Machine Learning as a Service) edge platform, focusing on 188

IoT applications based on fog or edge computing and using 189

machine learning services. Figure 3 presents the defined VEF 190

architecture. The architecture contains three main compo- 191

nents: services manager, Virtualized Infrastructure Manager 192

(VIM), and contracts. The external applications are general 193

applications that consume results from intelligent services 194

(e.g., inference or training services). A contract contains all 195

the components needed to run an intelligent service. These 196

components are deployed in two computing instances: one 197

for the edge and intelligent services, and another for the 198

network services. The VIM is in charge of deploying the 199

virtual machine (VM) locally or remotely. 200

We describe the three main components below: 201

• Services Manager (Maestro) - The Services Man- 202

ager, named Maestro, is the control panel (dashboard) 203
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responsible for managing and monitoring the compo-204

nents of a project/contract;205

• VIM (Openstack) - A VIM is required to manage the206

provision of virtualized services. For the Edge Frame-207

work, we use Openstack as VIM;208

• Contract - A project/contract involves the deployment209

and management of intelligent and edge services.210

Maestro is also responsible for creating and managing211

users. It uses Openstack as a VIM to manage the virtual212

machines that run the edge, AI, and network services. Each213

contract initially has two virtual machines: one running214

EdgeX, for edge and AI services, and one running OSM, for215

VNFs (Virtualized Network Functions).216

We use Openstack to manage the virtual machines, which217

run the essential services for the Edge Framework, and the218

virtualized network services to compose the communication219

infrastructure when needed. For this, we register, in the220

Openstack Glance (image manager), the operating system221

images used in the virtual machines. This way, whenever222

there is any update in the images used as a base, they must223

be updated in Openstack. In addition, images containing vir-224

tualized network services must also be registered and updated225

in Glance whenever necessary.226

A. CONTRACT227

As mentioned, each contract creates two virtual machines,228

which are described in this subsection.229

1) EDGE + AI SERVICES VM230

This VM runs the edge and artificial intelligence services.231

Both run on the EdgeX platform. The ‘‘Edge+ AI Services’’232

VM (virtual machine) runs services in Docker containers,233

which are managed through the Consul,7 a service discovery234

system. We represented the edge services as MS (Microser-235

vice) and the AI services as AIS (Artificial Intelligence236

Service).237

For each project, Maestro starts a VMwith EdgeX running.238

The intelligent services provided by the Edge Framework239

run in the ‘‘Application Services’’ layer. The communication240

services for the applications’ devices run in the EdgeX’s241

‘‘Device Services’’ layer. Thus, applications need to imple-242

ment communication services with devices (communication243

with a camera, for example) and artificial intelligence ser-244

vices (model training or inference, for example).245

Maestro communicates with the EdgeX Consul to verify246

the health status of Edge (MSs) and AI (AISs) Services.247

In this way, it is possible to query whether an inference or248

model training service is properly running.249

Edge services are the services already offered by the250

EdgeX platform, represented in the architecture as MS251

(Fig. 3). They are responsible for collecting, storing, and252

distributing data on the framework. Through these services,253

it is possible to register devices and configure how commu-254

nication occurs with them. Each device has a ‘‘profile’’ that255

7https://www.consul.io/

presents information regarding which commands can interact 256

with it. EdgeX’s non-native edge services need to have their 257

images available in a repository with Maestro. This way, 258

when starting EdgeX, all necessary services run in containers. 259

AI services are integrated with EdgeX, represented in the 260

architecture as AIS (Fig. 3). The Edge Framework already 261

provides some services ready to be deployed and allows 262

development teams to implement their training and optimiza- 263

tion services of models/inference. All AI services need to be 264

available in Maestro’s image repository to be initialized in 265

containers when contracts are created. 266

2) VNF MANO VM 267

The VNFMANO VM runs OSM, which enables the creation 268

andmanagement of virtualized network services (NSs). OSM 269

also uses Openstack as a VIM to manage the virtual machines 270

(Network Services VMs) that run the virtualized NSs. Each 271

virtualized NS can run on one or more virtual machines. 272

The OSM will trigger the registered VIM (Openstack) to 273

initialize the VMs with the settings properly informed (Net- 274

work Service Descriptors and Virtualized Network Function 275

Descriptors). 276

3) NETWORK SERVICES VMs 277

For the NSs managed by the VIM, we are considering that 278

they can run in one or more VMs. Thus, the VIM can create 279

and start one or more VMs depending on the NS architecture. 280

B. EXTERNAL APPLICATIONS 281

External applications can communicate with services avail- 282

able on the ‘‘Edge + AI Services’’ VM. Figure 4 shows how 283

the communication between AI/ML services and external 284

applications works. 285

External applications send a request to the inference pro- 286

cess through the Handler. The Handler handles this request 287

and prepares the specific AI/ML service to perform the pro- 288

cessing. The Handler is also responsible for communication 289

with the Broker to receive the results of the inference service 290

and send them to external applications. Such applications 291

can subscribe to topics to receive the results of the AI/ML 292

service via notifications. Inference services send the results 293

to the Broker through publications. Finally, whenever there 294

is new information in a topic, indicating that new inference 295

has been processed, the Broker sends notifications to external 296

applications subscribed to this topic. 297

As Handler, we are using the EMQ X Kuiper. The AI 298

services are available as plugins of the EMQ X Kuiper. Plu- 299

gins can be loaded directly into EMQ X Kuiper or accessed 300

externally via RPC or HTTP interfaces. 301

The Figure 4 southbound has two EdgeX service layers: 302

Core Services and Devices Services. These components are 303

responsible for communicating with the devices that generate 304

the data used by the intelligent services (e.g., inference or 305

training services). For instance, a video camera can send 306

video streams to an appropriate component of the device 307
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FIGURE 4. Communication flow with external services.

services layer, and it sends the received streams to the core308

services layer components.309

IV. EXPERIMENTAL DESIGN310

For testing purposes, we developed some use cases that per-311

form inference based on machine learning models. Thus,312

we can use the VEF to deploy each inference service. Tomea-313

sure the VEF performance, we used an object detection infer-314

ence application as the base case. This application performs315

the inference on video frames in real-time. This use case is316

similar to a scenario where video cameras can be used to317

detect fault objects at different places in a production line.318

The experimental environment consists of three com-319

ponents: the video sources, the VEF, and the application320

clients. To deploy these components, we used three virtual321

machines (VMs), as seen in Figure 5. The communication322

flow considers:323

1) the video streamings generated at the sources and sent324

to the VEF;325

2) the inferences performed at the VEF, with the results326

sent to the clients;327

3) the inference results received in the clients.328

For the VEFVM,we changed the computational resources,329

considering the following flavors: small (1 vCPU, 2GB330

RAM), medium (2 vCPUs, 4GB RAM), and large (4 vCPUs,331

8GB RAM). In each communication cycle, we measured the332

CPU and memory consumption for the following services333

in the VEF VM: EMQ X MQTT broker, Kuiper, machine334

learning inference model, and video streaming hub. We have335

also measured the frame processing time of video streaming336

hub and machine learning inference model.337

FIGURE 5. Experimental environment with communication flow.

In the Sources VM and Clients VM, we also varied the 338

number of video sources and application clients, respectively. 339

As a pre-experiment, we measured the VEF VM services’ 340

CPU and memory consumption in a scenario that kept only 341

one source and varied the number of clients among one, ten, 342

twenty, and forty.We then observed that the number of clients 343

does not affect the result, i.e., regardless of how many clients 344

must receive the inference results, the services’ CPU and 345

memory consumption do not change significantly. For this 346

reason, we fixed the number of clients in 10, varying only the 347

VEF VM flavor and the number of sources as listed below: 348

• Small (1 vCPU, 2GB RAM) - 1, 5, and 10 sources; 349

• Medium (2 vCPUs, 4GB RAM) - 1, 5, 10, 25, and 350

50 sources; 351

• Large (4 vCPUs, 8GB RAM) - 1, 5, 10, 25, 50, and 352

100 sources. 353

For each VEF VM flavor, we evaluated the following 354

metrics: 355

• CPU Usage - how much CPU each of the four services 356

used? 357

• Memory Usage - how much memory each of the four 358

services used? 359

• Processing Time - how long did each step of the infer- 360

ence pipeline take within VEF VM? 361

For each experiment factors combination, we performed 362

two executions to generate a confidence interval, bringing 363

more robustness to the experiment results. The experiments 364

considered the sources sending an MP4 Full HD video 365
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streams (approximately 9 min of video, at 30 fps) to the VEF366

VM and the clients receiving the inference results.367

Our main experiment goal is to evaluate the impact of368

our architecture implementation in the video stream process-369

ing flow, considering that low latency is one of the main370

requirements for this type of application. Finally, we want371

to evaluate the best setup in terms of processing power and372

memory, as computing costs are an essential requirement373

when considering industrial scenarios.374

V. RESULTS AND DISCUSSION375

We conducted the experiments using VMs deployed on a376

MEC Server. We instrumented the code to collect and save377

metrics and used Jupyter Notebooks8 to perform individual378

and comparative analyses of the results. Below, we describe379

the evaluation of each metric across the different experi-380

mented scenarios.381

A. CPU EVALUATION382

Figure 6 presents the CPU usage for each VEF component383

(e.g., Kuiper, MQTT Broker, Inference Model, and Video384

Stream service) in each VEF VM flavor (e.g., Small with 1,385

5, and 10 sources, Medium with 1, 5, 10, 25, and 50 sources,386

and Large with 1, 5, 10, 25, 50, and 100 sources). Analyzing387

the Figure 6, we can observe the following:388

• Kuiper and MQTT Broker services perform similarly,389

with low CPU usage overall, but with a slight increase390

with the number of sources followed by a decrease in the391

higher number of sources per VM size.392

• Inference (ML-Inference-Vino) service is usually sec-393

ond in CPU usage, nonetheless decreasing its usage with394

the number of sources - probably due to the threshold395

used to avoid processing frames that are too old;396

• Video Stream service usually dominates the CPU usage,397

rising with the number of sources;398

Considering the platform streaming components (MQTT399

Broker and Kuiper), we see they present low CPU usage,400

utilizing less than 30% of one CPU core even in the cases401

with a high number of sources (50 and 100). It is impor-402

tant to note they process the data stream twice (when going403

from Video Stream to Inference and when going from Infer-404

ence to the Client), thus demonstrating they present high405

efficiency.406

When we analyze the Video Streaming specific compo-407

nents (Video Streaming and ML-Inference-Vino), we notice408

they dominate the CPU usage, with the Video Streaming409

service being responsible for the higher CPU usage (up to410

3 cores in the 4-vCPU VM). This result indicates that Video411

Streaming is the bottleneck of this architecture, which leads412

us to employ efforts to make it more efficient, case necessary.413

We used a Frame Age Threshold to specify the maximum414

tolerated ‘‘frame age’’ for a frame to be inferred upon. The415

frame age is defined as the difference between VEF frame416

arrival timestamp and Inference Service frame arrival times-417

8https://jupyter.org/

FIGURE 6. VEF service CPU usage per VM flavor and number of sources.

tamp. The idea is that frames that are too old should not 418

be processed in order to prioritize more recent ones, aiding 419

the live aspect of the application. If the frame age exceeds 420

the threshold value (80ms in this setting), it is discarded 421

by the Inference Service. In this experiment, as the num- 422

ber of sources grows, the Video Streaming processing time 423

increases, causing inference to be performed to fewer frames 424

due to the use of the aforementioned threshold and, as a result, 425

making the Inference Service use fewer resources. 426
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FIGURE 7. VEF service memory usage per VM flavor and number of
sources.

B. MEMORY EVALUATION427

Figure 7 presents the memory usage for each of the VEF428

components, also considering each of the VEF VM flavors.429

When analyzing the memory usage for each VEF component430

and VM flavor combination, we can see that:431

• Kuiper and MQTT Broker services perform with low432

memory usage overall (less than 50MB for Kuiper and433

less than 200MB for MQTT broker, for all VM flavors),434

but with a slight increase with the number of sources.435

TABLE 1. Processing time per VEF VM flavor and number of sources.

• ML-Inference-Vino service is the second in memory 436

usage, not varying significantly with the number of 437

sources, but presenting a somewhat constant behavior - 438

probably due to the use of the Frame Age Threshold, 439

which prevents the processing of frames that are consid- 440

ered too old; 441

• Similarly to the CPU usage, Video Stream service dom- 442

inates the memory usage, increasing its utilization with 443

the number of sources; 444

In memory evaluation, analogously to the CPU evalua- 445

tion, we observe the platform streaming components have 446

a low resource usage. This result indicates they can pro- 447

cess high loads of data without consuming much mem- 448

ory. This characteristic enables and empowers a variety 449

of high-throughput-low-latency applications, bringing new 450

possibilities to businesses and users. 451

Again, the Video Stream service presents high memory 452

usage, indicating that we should optimize it if more efficient 453

resource utilization is required. 454

C. PROCESSING TIME EVALUATION 455

When analyzing processing time, we measured the duration 456

of 2 steps of the pipeline (in chronological order) within the 457

core VM: 458

• Video Streaming Processing Time - time to process 459

frame within the Video Stream service; 460

• Inference Processing Time - time to process frame 461

within the Inference service; 462

Table 1 presents the latency (processing time) values for 463

each combination with VM flavor and number of sources. 464

Analyzing the table, we can notice that: 465

• Video Streaming Processing Time usually increases 466

with the number of sources; 467

• Inference Processing Time usually increases when going 468

from 1 to 5 sources but then roughly stabilizes and 469
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then decreases for the highest number of sources of470

each scenario (this last behavior is probably due to the471

infrastructure resources overflow).472

From the behavior observed in latency measurements for473

the Video Stream and Inference services, we can conclude474

that the Video Stream service benefits from a more robust475

infrastructure (it went from 100ms of processing time in476

the small-01-source setting to 19ms in the large-01-source477

setting). However, the Video Streaming Processing Time sig-478

nificantly increases as the number of sources grows. Hence,479

we must carefully define the infrastructure specifications for480

the VEF VM based on the final application requirements to481

deliver a smooth user experience.482

The Inference Processing Time roughly stabilizes when483

adding more sources, given that there is processing power484

available to be used. Nonetheless, this is likely caused by the485

use of the Frame Age Threshold, which makes the Inference486

service skips more and more frames from inference as the487

number of sources rises, keeping processing time constant.488

Therefore, we cannot say the current implementation of the489

Inference service is efficient since it does not get to process an490

increasing amount of frames as the number of sources rises.491

VI. RELATED WORK492

This Section gathers works demonstrating the application of493

edge computing and artificial intelligence techniques.We can494

see different efforts regarding the challenges, opportunities,495

and focuses. However, all the works present benefits of the496

use of edge computing when compared to cloud computing.497

Aytaç and Korçak [5] described some benefits of edge498

computing and proposed an edge-based IoT architecture for499

use in quick-service restaurants. The architecture comprises500

sensors, actuators, and external data sources, such as social501

network interactions, and proposes basic data protection502

mechanisms (nonce and digest) and machine learning tech-503

niques. With the generated data, the authors proposed to esti-504

mate the service level in the restaurants, to improve efficiency505

and decrease waste of resources. A proof of concept was506

implemented, considering a Raspberry Pi 3 with Windows507

IoT Core as the edge gateway and two machine learning508

techniques to predict the service level (K-means clustering509

and Naïve Bayes classifier). Although the authors mentioned510

they performed experiments, there are no results presented511

regarding these tests.512

Cao et al. [23] explored the quality of service challenges513

when employing edge computing for cyber-physical systems514

(CPS) applications. The authors present a systematic classi-515

fication, summarizing experiences from the surveyed works516

and suggesting directions for future research. Zou et al. [4]517

presented themain characteristics of edge and fog computing,518

summarizing the challenges regarding the enablement of AI519

for edge/fog-based IoT scenarios. One of the main challenges520

for edge devices running complex AI algorithms is decreas-521

ing resources consumption, improving energy efficiency. The522

authors presented a table containing AI processors solutions523

for specific algorithms with their respective energy efficien- 524

cies. 525

Sittón-Candanedo et al. [11] presented a review of edge 526

computing reference architectures (RAs). They described the 527

main characteristics of the following four edge computing 528

RAs: FAR-EDGE RA, INTEL-SAP RA, Edge Computing 529

RA 2.0, and Industrial Internet Consortium RA. Based on 530

these RAs, the authors proposed the Global Edge Computing 531

Architecture, which was evaluated through an agroindustry 532

application. The authors carried out two tests during two 533

months, considering a Raspberry Pi 3 as the edge node and 534

the Google Cloud Platform as the cloud. The first test did 535

not consider the edge pre-processing activities, gathering the 536

data from the collecting nodes and sending them directly to 537

the application in the cloud. The second test considered the 538

edge node and its pre-processing, including data filtering and 539

encryption. The results achieved a reduction of 38.84% in the 540

data transferred to the cloud. 541

Sun et al. [12] proposed the deployment of AI techniques 542

in edge and cloud servers, considering delay and service 543

accuracy to deal with IIoT devices’ requests. To reduce the 544

processing complexity, the authors proposed the use of trans- 545

fer learning, deploying pre-trainedmodels in the edge servers. 546

Then, each IIoT device’s request is answered based on its 547

required values for delay and service accuracy. The proposed 548

framework identifies the edge server that will process the 549

request matching the required delay and accuracy. Simu- 550

lations were performed with an NVIDIA TITAN V GPU, 551

considering ten edge servers and 100 IIoT devices, running 552

an image recognition application. Results showed that the 553

proposed solution achieves better average accuracy than an 554

experiment scenario that does not consider the proposal (i.e., 555

without considering the accuracy of the servers). For future 556

work, the authors suggest the use of caching allocation in the 557

edge servers. 558

Dimithe et al. [24] developed a machine learning environ- 559

ment based on a TX2 board acting as an edge server. The TX2 560

receives images from a drone and a robot and performs object 561

detection and classification. The authors mentioned problems 562

with reduced latency due to the high volume of transmitted 563

data and also with the accuracy of the used models. In future 564

work, they plan to improve the trained model and increase the 565

processing speed. 566

Bellavista et al. [6] proposed a Machine Learning infras- 567

tructure based on edge and cloud computing. The proposal 568

suggests running models locally at the edge. Several experi- 569

ments were performed, considering a faces recognition appli- 570

cation in a smart city scenario, an Android smartphone as 571

the mobile node, a Raspberry Pi 3 as the edge node, and a 572

virtual machine deployed at AWS as the cloud. The authors 573

used OpenCV and Python for the ML procedures. Results 574

demonstrated good operation performance, mainly due to the 575

lower network communication latencies achieved at the edge 576

compared to the values achieved for communications with 577

the cloud. The result is interesting because the lower latency 578

at the edge makes the total processing time better than in 579
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the cloud, even considering that the cloud server has more580

computational power than the edge node. As future work, the581

authors suggest deploying the proposal in an industrial envi-582

ronment and develop an optimizer module for the models.583

Huang et al. [25] designed and implemented an edge com-584

puting platform to deploy machine learning applications.585

The platform consists of training models at the cloud and586

deploying predictive models at the edge server. The authors587

used Docker and Kubernetes to deploy the services in588

containers and a Raspberry Pi as the edge server. Sim-589

ple experiments measured the CPU and memory overhead.590

As future work, they intend to optimize the processing591

rates.592

We can see there is a trend to adopt edge computing593

scenarios for the deployment of artificial intelligence ser-594

vices, mainly when these services serve applications requir-595

ing lower communication latencies (e.g., an industrial596

application employing IIoT devices). From the literature,597

we notice that many works have been published regard-598

ing different applications, considering the benefits of edge599

computing. Nonetheless, we should consider any tool to600

help in the deployment and management of such appli-601

cations, and this is why we proposed the VIRTUS Edge602

Framework.603

VII. CONCLUSION604

Edge computing empowers the Industrial IoT applications,605

offering more computational resources (compared with the606

IoT devices) and reduced communication time (compared607

with cloud servers) for data processing and storage. When608

edge computing meets the telecommunication infrastruc-609

tures, Multi-access Edge Computing (MEC) arises. Given610

that many of the applications deployed in MEC scenarios611

apply Artificial Intelligence (AI) techniques, this work pro-612

posed the VEF Edge Framework, which aims at easing the613

deployment of AI applications, also considering the commu-614

nication with IIoT devices.615

To evaluate the VEF, we deployed the framework and anAI616

application, whichworked as a base case. For this application,617

we considered a machine learning model to detect objects618

in video streamings. We varied the number of video sources619

and the sink clients. We performed experiments to measure620

communication latency and CPU/memory consumption, con-621

sidering different scenarios, alternating the number of sources622

and sinks. Analyzing the results, we can see that the main623

VEF components do not present a high overhead during data624

processing and communication. This is due our integration625

of an IoT processing platform (EdgeX) with a data analysis626

streaming and communication tool (EMQ X Kuiper) for the627

processing of streamings and data in machine learning infer-628

ence models.629

As future work, we are going to use our testbench to630

run experiments considering other AI applications deployed631

through the VEF. We also want to advance the functionali-632

ties regarding the management and deployment of VNFs as633

support for AI services and applications.634
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