IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 2 September 2022, accepted 13 September 2022, date of publication 20 September 2022,
date of current version 28 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208118

==l APPLIED RESEARCH

Automating the Deployment of Artificial
Intelligence Services in Multiaccess Edge
Computing Scenarios

DALTON CEZANE GOMES VALADARES“'-2, TARCISO BRAZ DE OLIVEIRA FILHO',
THIAGO FONSECA MENESES'!, DANILO F. S. SANTOS !, (Member, IEEE),
AND ANGELO PERKUSICH!, (Member, IEEE)

Virtus RDI Center, Federal University of Campina Grande, Campina Grande, Paraiba 58429-900, Brazil
2Federal Institute of Pernambuco, Caruaru, Pernambuco 50670-901, Brazil

Corresponding author: Dalton Cézane Gomes Valadares (dalton.valadares @embedded.ufcg.edu.br)

This work was supported by the Ministry of Science, Technology and Innovation of Brazil with Resources from Law No. 8,248, in October
1991 (Resources from the 3rd Softex/UFCG Partnership Agreement).

ABSTRACT With the increasing adoption of the edge computing paradigm, including multi-access edge
computing (MEC) in telecommunication scenarios, many works have explored the benefits of adopting
it. Since MEC, in general, presents a reduction in latency and energy consumption compared to cloud
computing, it has been applied to deploy artificial intelligence services. This kind of service can have distinct
requirements, which involve different computational resource capabilities as well different data formats or
communication protocols to collect data. In this sense, we propose the VEF Edge Framework, which aims at
helping the development and deployment of artificial intelligence services for MEC scenarios considering
requirements as low-latency and CPU/memory consumption. We explain the VEF architecture and present
experimental results obtained with a base case’s implementation: an object detection inference service
deployed with VEF. The experiments measured CPU and memory usage for the VEF’s main components
and the processing time for two procedures (inference and video stream handling).

INDEX TERMS Future connected systems, fog computing, edge computing, intelligent services, services
deployment.

I. INTRODUCTION applications using two other paradigms: edge computing and

Currently, in industrial scenarios, we have distributed and
heterogeneous applications involving, for instance, differ-
ent Industrial Internet of Things (IoT) devices with their
known constraints (e.g., processing and storage capabil-
ities). These scenarios include integrating those devices
with other services and equipment [1], such as integrat-
ing video cameras with computer vision services or using
model-predictive control models to remotely control an auto-
mated guided vehicle [2]. In general, to achieve these appli-
cations’ requirements, we employ external servers to provide
the necessary resources. Besides cloud computing, which
brings the required resources properly, we can deploy the

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh

100736

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

fog computing.

Although sometimes the edge and fog computing terms
can be used interchangeably by authors, due to the lack of
a standardized accepted definition, we can describe them as
follows [3], [4]:

« edge computing performs the processing near the source
of data;

« fog computing performs the processing in intermediate
nodes between the edge and the cloud.

Depending on the application requirements, sending large
amounts of data to be processed in the cloud can become invi-
able, as this process may consume all the network bandwidth
and increase the energy and financial costs. Cloud computing
generally demands high latency, connectivity dependency,

VOLUME 10, 2022

https://orcid.org/0000-0003-1709-0404
https://orcid.org/0000-0002-0950-1501
https://orcid.org/0000-0002-8162-715X
https://orcid.org/0000-0002-3360-9440

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

IEEE Access

and network bandwidth, which can be considered a waste of
resources (energy and bandwidth, for instance) [5]. In this
sense, we can list some edge and fog computing improve-
ments compared to cloud computing: decreased response
times (80 to 200 ms), overall service latency (50%), and
energy consumption (30 to 40%) [4]. A comparison among
edge and cloud, measuring the communication and process-
ing latency, can show that the edge can be better thanks to
the faster communication latency, even considering that the
cloud servers can have faster processing with more robust
servers [6].

Edge computing is one of the main enablers for 5G
networks, providing high bandwidth, high performance,
low latency, and enabling real-time decision-making and
location-based awareness [6]. When deploying the edge
servers to provide Internet services and mobile access net-
works, we have Mobile Edge Computing (MEC) [7], [8],
also called Multi-access Edge Computing [9], [10]. MEC
places processing and storage resources at the network edge,
working as a small data center to provide different application
services [6]. Applying MEC in industries, we can optimize
service scheduling and routing, decrease machine downtime
alerts, improve machine uptime, and decrease replenishment
costs and time [11]. The MEC advantages can enhance the
power of artificial intelligence (Al) techniques. For instance,
Al can help IIoT systems to predict fault classes, main-
tenances, and demand forecastings [12], [13], [14]. With
machine learning, a system can learn through data processing
without previous explicit programming. Such techniques can
be applied to one of the main applications for edge comput-
ing: video streaming applications [15], [16].

With the applications’ requirements diversity, each with its
specificities, deploying and managing services in the edge
can become complex [17]. For example, if we consider a
video streaming application in a MEC scenario, we have
to deal with the deployment and management of distinct
components. These components can run on virtual machines
or containers. Thus, for each different application, we have to
deal with the environment configuration to initiate, manage,
and stop services. We can describe this general problem as
follows:

« Business problem: ease the deployment of Al services in
a MEC server considering requirements as low-latency
and reduced computing costs (use of CPU/memory);

o Technical problems:

— Investigate open source solutions that can help the
deployment of services in a MEC server, and can
integrate with IoT devices;

— Design an architecture that integrate open source
solutions and help the deployment of Al ser-
vices in a MEC server considering requirements as
low-latency and reduced computing costs;

— Implement a platform that follows the designed
architecture;

VOLUME 10, 2022

— Test the implementation, measuring latency and
CPU/memory consumption.

In this paper, we present the VEF Edge Framework,
a platform to ease the deployment and management of Al
services in MEC servers. The VEF architecture considers
open-source platforms and technologies, such as Openstack,!
Open Source MANO,? and EdgeX Foundry.? The VEF pro-
poses a deployment flow in which the developers can upload
the containerized Al services to run inside virtual machines.
This way, a developer can deploy and manage the Al ser-
vices through a dashboard. To evaluate the VEF platform’s
performance, we carried out experiments to measure the
communication latency and CPU/memory consumption con-
sidering its main components. We implemented a machine
learning-based object detection service as a use case for the
experimentation.

The main contributions of this work are:

e An architecture with components to manage and
deploy containerized Al services running inside virtual
machines in MEC servers, and enhance the internal
communication flow for streams processing;

o The VEF Edge Framework, a platform implemented
according to the proposed architecture, which aims at
easing the development and deployment of Al services
in MEC scenarios;

« An implemented use case, which considers an object
detection system as intelligent service to be deployed
and managed by the platform;

« An experimental evaluation of the platform, consider-
ing performance measurements, such as communication
latency and CPU/memory consumption.

The remainder of this article is organized as follows.
Section II presents a brief description about the main plat-
forms and technologies considered for the VEF architec-
ture. Section III introduces the VEF architecture, explaining
its main components. Section IV presents the experimen-
tal design we followed to evaluate the VEF’s performance.
Section V details and discusses the results achieved with the
evaluation. Section VI describes related works which also
consider the deployment of Al services in MEC scenarios.
Finally, Section VII concludes this work, giving suggestions
for future work.

Il. BACKGROUND

A. EdgeX FOUNDRY

EdgeX is an open-source platform to facilitate the deploy-
ment of IoT applications through interoperability across
devices and systems [18], [19]. All EdgeX components
are provided as microservices running in Docker contain-
ers [20]. Each microservice communicates through a REST
API. EdgeX is multi-protocol, allowing devices to commu-
nicate through different protocols, and has components for

1 https://www.openstack.org/
2https :/losm.etsi.org/

3 https://www.edgexfoundry.org/

100737

IEEE Access

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

(@) () A = KEY
== oo 7
L B 8

REPLACEABLE REFERENGE SERVICES

[commemmonen | [oevaoemon |

[T [seomomssanuese m<@

H ALERTS G OTIFICATIONS ‘ | seueouo

NORTHEOUND INFRASTRUCTURE AND APPLICATIONS

LOOSELY-COUPLED MICROSERVIGES FRAMEWORK

wevense| APPLICATION SERVICES
PROXY ‘ ‘ |

GHOICE OF
PROTOCOL

3

SUPPORTING SERVICES

‘ [T— ‘ | e —— [I |

CORE SERVICES

SECURITY

@ ALLMICROSERVICES INTERCOMMUNICATE VIA APIS

(o8] [mmer]o
<

DEVICE SERVICES (SDK)
secner -
e s
A

Um=8 § 5w o@

SOUTHBOUND DEVICES, SENSORS AND ACTUATORS

8
-
&
o
g
2
8
2
2

p—— || B
ANINIOVYNYIN

FIGURE 1. EdgeX architecture?.

integration with cloud services. The EdgeX architecture can
be seen in Figure 1. It is divided in six main layers (rep-
resented by the blocks in the figure): device services, core
services, supporting services, application services, security,
and management.

B. OPENSTACK

Openstack is an open-source platform, created by NASA and
Rackspace Hosting in 2010, for deploying and managing
cloud computing services. It is widely used with the infras-
tructure as a service (IaaS) paradigm to provide processing,
network, and storage resources for various applications types.

C. OSM—OPEN-SOURCE MANO

Open Source MANO (Management and Orchestration) [21],
[22] emerged in April 2016, after ETSI (European Telecom-
munications Standards Institute)’ created the OpenSource
Group (OSG) to develop open-source (free software) projects
related to ETSI specifications. A MANO solution is responsi-
ble for orchestrating VNFs (Virtualized Network Functions)
and managing hardware and software resources that sup-
port infrastructure virtualization. OSM brings together some
existing open source projects: Telefonica’s OpenMANO
project, Riftware’s Rift.io software, and Canonical’s Juju
charms.

D. EMQ X KUIPER

EMQ X Kuiper® is a lightweight, cross-platform, and highly
extensible data analytics and streaming tool. Implemented
in Golang, it can run in many resource-constrained edge
devices. Among Kuiper’s advantages, we can list: reduced
system response latency, reduced network bandwidth and
storage costs, and improved system security. Kuiper works as
arules engine, allowing users to perform fast data processing

4https://Www.edgexfoundry.0rg/why,edgex/why—edgex/
5 https://www.etsi.org/
6https://docs.equ.iO/en/kuiperllatest/

100738

SQL / Rule Parser
O L} sommnees
L\

MQ

O MQTT

= O File
Sources Sinks

:x Streaming runtime. \/Z} SQL runtime
O HTTP

-
= Storage
= g

FIGURE 2. Kuiper architecture’.

VM: Virtual Machine
MS: Microsservice
AIS: Artificial Inteligence Service

NS: Network Service

External Applications

[Consul] [Docker]
(EdgeX)

MANO
(OSM)

VIM
(Openstack)

Virtus/Edge
Services Manager

FIGURE 3. Edge framework architecture.

in the edge, using rules written in SQL. Kuiper is based on
the following three components, as shown in Figure 2: data
sources, SQL rule, and result sinks.

Ill. EDGE FRAMEWORK—ARCHITECTURE

The VEF Edge Framework aims to facilitate the development
and deployment of intelligent edge computing applications.
For this, we planned an architecture based on microservices
to deal with the data that need to be collected, transmit-
ted, processed, and stored. The VEF will act as an MLaaS
(Machine Learning as a Service) edge platform, focusing on
IoT applications based on fog or edge computing and using
machine learning services. Figure 3 presents the defined VEF
architecture. The architecture contains three main compo-
nents: services manager, Virtualized Infrastructure Manager
(VIM), and contracts. The external applications are general
applications that consume results from intelligent services
(e.g., inference or training services). A contract contains all
the components needed to run an intelligent service. These
components are deployed in two computing instances: one
for the edge and intelligent services, and another for the
network services. The VIM is in charge of deploying the
virtual machine (VM) locally or remotely.

We describe the three main components below:

o Services Manager (Maestro) - The Services Man-
ager, named Maestro, is the control panel (dashboard)

VOLUME 10, 2022

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

IEEE Access

responsible for managing and monitoring the compo-
nents of a project/contract;

e VIM (Openstack) - A VIM is required to manage the
provision of virtualized services. For the Edge Frame-
work, we use Openstack as VIM;

o Contract - A project/contract involves the deployment
and management of intelligent and edge services.

Maestro is also responsible for creating and managing
users. It uses Openstack as a VIM to manage the virtual
machines that run the edge, Al, and network services. Each
contract initially has two virtual machines: one running
EdgeX, for edge and Al services, and one running OSM, for
VNFs (Virtualized Network Functions).

We use Openstack to manage the virtual machines, which
run the essential services for the Edge Framework, and the
virtualized network services to compose the communication
infrastructure when needed. For this, we register, in the
Openstack Glance (image manager), the operating system
images used in the virtual machines. This way, whenever
there is any update in the images used as a base, they must
be updated in Openstack. In addition, images containing vir-
tualized network services must also be registered and updated
in Glance whenever necessary.

A. CONTRACT
As mentioned, each contract creates two virtual machines,
which are described in this subsection.

1) EDGE + Al SERVICES VM

This VM runs the edge and artificial intelligence services.
Both run on the EdgeX platform. The “Edge + Al Services”
VM (virtual machine) runs services in Docker containers,
which are managed through the Consul,’ a service discovery
system. We represented the edge services as MS (Microser-
vice) and the Al services as AIS (Artificial Intelligence
Service).

For each project, Maestro starts a VM with EdgeX running.
The intelligent services provided by the Edge Framework
run in the “Application Services” layer. The communication
services for the applications’ devices run in the EdgeX’s
“Device Services” layer. Thus, applications need to imple-
ment communication services with devices (communication
with a camera, for example) and artificial intelligence ser-
vices (model training or inference, for example).

Maestro communicates with the EdgeX Consul to verify
the health status of Edge (MSs) and AI (AISs) Services.
In this way, it is possible to query whether an inference or
model training service is properly running.

Edge services are the services already offered by the
EdgeX platform, represented in the architecture as MS
(Fig. 3). They are responsible for collecting, storing, and
distributing data on the framework. Through these services,
it is possible to register devices and configure how commu-
nication occurs with them. Each device has a “profile” that

71'1ttps://WWW.consul.io/

VOLUME 10, 2022

presents information regarding which commands can interact
with it. EdgeX’s non-native edge services need to have their
images available in a repository with Maestro. This way,
when starting EdgeX, all necessary services run in containers.

Al services are integrated with EdgeX, represented in the
architecture as AIS (Fig. 3). The Edge Framework already
provides some services ready to be deployed and allows
development teams to implement their training and optimiza-
tion services of models/inference. All Al services need to be
available in Maestro’s image repository to be initialized in
containers when contracts are created.

2) VNF MANO VM

The VNF MANO VM runs OSM, which enables the creation
and management of virtualized network services (NSs). OSM
also uses Openstack as a VIM to manage the virtual machines
(Network Services VMs) that run the virtualized NSs. Each
virtualized NS can run on one or more virtual machines.
The OSM will trigger the registered VIM (Openstack) to
initialize the VMs with the settings properly informed (Net-
work Service Descriptors and Virtualized Network Function
Descriptors).

3) NETWORK SERVICES VMs

For the NSs managed by the VIM, we are considering that
they can run in one or more VMs. Thus, the VIM can create
and start one or more VMs depending on the NS architecture.

B. EXTERNAL APPLICATIONS

External applications can communicate with services avail-
able on the “Edge + Al Services” VM. Figure 4 shows how
the communication between AI/ML services and external
applications works.

External applications send a request to the inference pro-
cess through the Handler. The Handler handles this request
and prepares the specific AI/ML service to perform the pro-
cessing. The Handler is also responsible for communication
with the Broker to receive the results of the inference service
and send them to external applications. Such applications
can subscribe to topics to receive the results of the AI/ML
service via notifications. Inference services send the results
to the Broker through publications. Finally, whenever there
is new information in a topic, indicating that new inference
has been processed, the Broker sends notifications to external
applications subscribed to this topic.

As Handler, we are using the EMQ X Kuiper. The Al
services are available as plugins of the EMQ X Kuiper. Plu-
gins can be loaded directly into EMQ X Kuiper or accessed
externally via RPC or HTTP interfaces.

The Figure 4 southbound has two EdgeX service layers:
Core Services and Devices Services. These components are
responsible for communicating with the devices that generate
the data used by the intelligent services (e.g., inference or
training services). For instance, a video camera can send
video streams to an appropriate component of the device

100739

IEEE Access

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

External Services

(w1) (i) ()
EdgeX
Handler
AI/ML Services

[Inference 1] [Inference 2] [Inference N]

[Trainning 1] | Trainning 2] [Trainning N]
EdgeX Core Services

[Core Data] [.] [Metadata J

EdgeX Device Services

() (oo

FIGURE 4. Communication flow with external services.

services layer, and it sends the received streams to the core
services layer components.

IV. EXPERIMENTAL DESIGN
For testing purposes, we developed some use cases that per-
form inference based on machine learning models. Thus,
we can use the VEF to deploy each inference service. To mea-
sure the VEF performance, we used an object detection infer-
ence application as the base case. This application performs
the inference on video frames in real-time. This use case is
similar to a scenario where video cameras can be used to
detect fault objects at different places in a production line.
The experimental environment consists of three com-
ponents: the video sources, the VEF, and the application
clients. To deploy these components, we used three virtual
machines (VMs), as seen in Figure 5. The communication
flow considers:

1) the video streamings generated at the sources and sent
to the VEF;

2) the inferences performed at the VEF, with the results
sent to the clients;

3) the inference results received in the clients.

For the VEF VM, we changed the computational resources,
considering the following flavors: small (1 vCPU, 2GB
RAM), medium (2 vCPUs, 4GB RAM), and large (4 vCPUs,
8GB RAM). In each communication cycle, we measured the
CPU and memory consumption for the following services
in the VEF VM: EMQ X MQTT broker, Kuiper, machine
learning inference model, and video streaming hub. We have
also measured the frame processing time of video streaming
hub and machine learning inference model.

100740

Sources VM

[l [l [l
Video|File 1 Video|File 2 Video|File N

]]]
S N J SIS N N

Stream 1 Stream 2 Stream N

EFVM

! i i

Kuiper Rules Engine

EMQX MQTT Message Bus

I
\

il
® ® ®

FIGURE 5. Experimental environment with communication flow.

In the Sources VM and Clients VM, we also varied the
number of video sources and application clients, respectively.
As a pre-experiment, we measured the VEF VM services’
CPU and memory consumption in a scenario that kept only
one source and varied the number of clients among one, ten,
twenty, and forty. We then observed that the number of clients
does not affect the result, i.e., regardless of how many clients
must receive the inference results, the services’ CPU and
memory consumption do not change significantly. For this
reason, we fixed the number of clients in 10, varying only the
VEF VM flavor and the number of sources as listed below:

o Small (1 vCPU, 2GB RAM) - 1, 5, and 10 sources;

e Medium (2 vCPUs, 4GB RAM) - 1, 5, 10, 25, and

50 sources;
o Large (4 vCPUs, 8GB RAM) - 1, 5, 10, 25, 50, and
100 sources.

For each VEF VM flavor, we evaluated the following
metrics:

o CPU Usage - how much CPU each of the four services

used?

o Memory Usage - how much memory each of the four

services used?

o Processing Time - how long did each step of the infer-

ence pipeline take within VEF VM?

For each experiment factors combination, we performed
two executions to generate a confidence interval, bringing
more robustness to the experiment results. The experiments
considered the sources sending an MP4 Full HD video

VOLUME 10, 2022

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

IEEE Access

streams (approximately 9 min of video, at 30 fps) to the VEF
VM and the clients receiving the inference results.

Our main experiment goal is to evaluate the impact of
our architecture implementation in the video stream process-
ing flow, considering that low latency is one of the main
requirements for this type of application. Finally, we want
to evaluate the best setup in terms of processing power and
memory, as computing costs are an essential requirement
when considering industrial scenarios.

V. RESULTS AND DISCUSSION

We conducted the experiments using VMs deployed on a
MEC Server. We instrumented the code to collect and save
metrics and used Jupyter Notebooks® to perform individual
and comparative analyses of the results. Below, we describe
the evaluation of each metric across the different experi-
mented scenarios.

A. CPU EVALUATION

Figure 6 presents the CPU usage for each VEF component
(e.g., Kuiper, MQTT Broker, Inference Model, and Video
Stream service) in each VEF VM flavor (e.g., Small with 1,
5, and 10 sources, Medium with 1, 5, 10, 25, and 50 sources,
and Large with 1, 5, 10, 25, 50, and 100 sources). Analyzing
the Figure 6, we can observe the following:

o Kuiper and MQTT Broker services perform similarly,
with low CPU usage overall, but with a slight increase
with the number of sources followed by a decrease in the
higher number of sources per VM size.

o Inference (ML-Inference-Vino) service is usually sec-
ond in CPU usage, nonetheless decreasing its usage with
the number of sources - probably due to the threshold
used to avoid processing frames that are too old;

« Video Stream service usually dominates the CPU usage,
rising with the number of sources;

Considering the platform streaming components (MQTT
Broker and Kuiper), we see they present low CPU usage,
utilizing less than 30% of one CPU core even in the cases
with a high number of sources (50 and 100). It is impor-
tant to note they process the data stream twice (when going
from Video Stream to Inference and when going from Infer-
ence to the Client), thus demonstrating they present high
efficiency.

When we analyze the Video Streaming specific compo-
nents (Video Streaming and ML-Inference-Vino), we notice
they dominate the CPU usage, with the Video Streaming
service being responsible for the higher CPU usage (up to
3 cores in the 4-vCPU VM). This result indicates that Video
Streaming is the bottleneck of this architecture, which leads
us to employ efforts to make it more efficient, case necessary.

We used a Frame Age Threshold to specify the maximum
tolerated ‘““frame age” for a frame to be inferred upon. The
frame age is defined as the difference between VEF frame
arrival timestamp and Inference Service frame arrival times-

8https:// jupyter.org/

VOLUME 10, 2022

a) CPU Usage - Small EF VM

400

Experiment
350 B efbench-small-full-s001-c010
300 B ef-bench-small-full-s005-c010

mmm ef-bench-small-full-s010-c010

CPU Usage (%)
N
o
o

50 -
0,

er iper -vino m
mQ“'brok kP m\-'\nﬂaﬂ’—“Ce v V‘\deo-strea
Service
b) CPU Usage - Medium EF VM
400
Experiment

350 ef-bench-medium-s01-c10
300 ef-bench-medium-s05-c10

ef-bench-medium-s10-c10
ef-bench-medium-s25-c10
ef-bench-medium-s50-c10

N
(S
o

CPU Usage (%)
= N
[0, o
o o

100
50
0 ker iper ino m
mat-ore KUPE - inference VT igeo-stre?
Service
c) CPU Usage - Large EF VM
400
Experiment
350 B ef-bench-large-full-s001-c010
300{ ®@m ef-bench-large-full-s005-c010
9 mmm ef-bench-large-full-s010-c010
52°0) mmm ef-bench-large-full-s025-c010
@200 ™ efbench-large-full-s050-c010
2 m ef-bench-large-full-s100-c010
2150
@]

iper NINO
kP m\-'\r\fefence video

Service

ma-oroke’ _stream

FIGURE 6. VEF service CPU usage per VM flavor and number of sources.

tamp. The idea is that frames that are too old should not
be processed in order to prioritize more recent ones, aiding
the live aspect of the application. If the frame age exceeds
the threshold value (80ms in this setting), it is discarded
by the Inference Service. In this experiment, as the num-
ber of sources grows, the Video Streaming processing time
increases, causing inference to be performed to fewer frames
due to the use of the aforementioned threshold and, as a result,
making the Inference Service use fewer resources.

100741

IEEE Access

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

a) Memory Usage - Small EF VM

8
Experiment
B ef-bench-small-full-s001-c010
D6 mm ef-bench-small-full-s005-c010
e B ef-bench-small-full-s010-c010
%5
©
L4
-
o3
§
=2
' __J
0 ker iper ino m
mateor KPR Linference VI igeo-stre?
Service
b) Memory Usage - Medium EF VM
8
Experiment
7 mmm ef-bench-medium-s01-c10
o6 mm ef-bench-medium-s05-c10
) mm ef-bench-medium-s10-c10
“%’35 mmm ef-bench-medium-s25-c10
L4 mm ef-bench-medium-s50-c10
Py
o3
5
=2
1
0 ker iper ino m
att-oro kuip m\-mference—\" Jideo-stred
Service
c) Memory Usage - Large EF VM
8
Experiment
7 B ef-bench-large-full-s001-c010
o 6| B ef-bench-large-full-s005-c010
© | mm ef-bench-large-full-s010-c010
%5 B ef-bench-large-full-s025-c010
B4 W ef-bench-large-full-s050-c010
5\3 B ef-bench-large-full-s100-c010
[e]
g
=2
1
0

matt-oroker kuipe’ erence VM0 yoo-strea™™

m\-‘f\f
Service

FIGURE 7. VEF service memory usage per VM flavor and number of
sources.

B. MEMORY EVALUATION

Figure 7 presents the memory usage for each of the VEF
components, also considering each of the VEF VM flavors.
When analyzing the memory usage for each VEF component
and VM flavor combination, we can see that:

o Kuiper and MQTT Broker services perform with low
memory usage overall (less than SOMB for Kuiper and
less than 200MB for MQTT broker, for all VM flavors),
but with a slight increase with the number of sources.

100742

TABLE 1. Processing time per VEF VM flavor and number of sources.

VM Flavor # Sources Video Stream (ms) Inference (ms)
small	1	99.0	165.0
small	5	154.0	148.0
medium	1	62.0	103.0
medium	5	119.0	109.0
medium	10	122.0 \ 112.0 \	
medium	25	125.0	107.0
medium	50	120.5	106.0
large	1	19.0	54.0
large	5	40.0	65.0
large	10	55.0	64.0
large	25	100.0	65.0
large	50	134.0	60.0
large	100	132.0	63.0

o ML-Inference-Vino service is the second in memory
usage, not varying significantly with the number of
sources, but presenting a somewhat constant behavior -
probably due to the use of the Frame Age Threshold,
which prevents the processing of frames that are consid-
ered too old;

o Similarly to the CPU usage, Video Stream service dom-
inates the memory usage, increasing its utilization with
the number of sources;

In memory evaluation, analogously to the CPU evalua-
tion, we observe the platform streaming components have
a low resource usage. This result indicates they can pro-
cess high loads of data without consuming much mem-
ory. This characteristic enables and empowers a variety
of high-throughput-low-latency applications, bringing new
possibilities to businesses and users.

Again, the Video Stream service presents high memory
usage, indicating that we should optimize it if more efficient
resource utilization is required.

C. PROCESSING TIME EVALUATION

When analyzing processing time, we measured the duration
of 2 steps of the pipeline (in chronological order) within the
core VM:

o Video Streaming Processing Time - time to process

frame within the Video Stream service;

o Inference Processing Time - time to process frame

within the Inference service;

Table 1 presents the latency (processing time) values for
each combination with VM flavor and number of sources.
Analyzing the table, we can notice that:

o Video Streaming Processing Time usually increases

with the number of sources;

« Inference Processing Time usually increases when going

from 1 to 5 sources but then roughly stabilizes and

VOLUME 10, 2022

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

IEEE Access

then decreases for the highest number of sources of
each scenario (this last behavior is probably due to the
infrastructure resources overflow).

From the behavior observed in latency measurements for
the Video Stream and Inference services, we can conclude
that the Video Stream service benefits from a more robust
infrastructure (it went from 100ms of processing time in
the small-O1-source setting to 19ms in the large-O1-source
setting). However, the Video Streaming Processing Time sig-
nificantly increases as the number of sources grows. Hence,
we must carefully define the infrastructure specifications for
the VEF VM based on the final application requirements to
deliver a smooth user experience.

The Inference Processing Time roughly stabilizes when
adding more sources, given that there is processing power
available to be used. Nonetheless, this is likely caused by the
use of the Frame Age Threshold, which makes the Inference
service skips more and more frames from inference as the
number of sources rises, keeping processing time constant.
Therefore, we cannot say the current implementation of the
Inference service is efficient since it does not get to process an
increasing amount of frames as the number of sources rises.

VI. RELATED WORK

This Section gathers works demonstrating the application of
edge computing and artificial intelligence techniques. We can
see different efforts regarding the challenges, opportunities,
and focuses. However, all the works present benefits of the
use of edge computing when compared to cloud computing.

Aytag and Korcak [5] described some benefits of edge
computing and proposed an edge-based IoT architecture for
use in quick-service restaurants. The architecture comprises
sensors, actuators, and external data sources, such as social
network interactions, and proposes basic data protection
mechanisms (nonce and digest) and machine learning tech-
niques. With the generated data, the authors proposed to esti-
mate the service level in the restaurants, to improve efficiency
and decrease waste of resources. A proof of concept was
implemented, considering a Raspberry Pi 3 with Windows
IoT Core as the edge gateway and two machine learning
techniques to predict the service level (K-means clustering
and Naive Bayes classifier). Although the authors mentioned
they performed experiments, there are no results presented
regarding these tests.

Cao et al. [23] explored the quality of service challenges
when employing edge computing for cyber-physical systems
(CPS) applications. The authors present a systematic classi-
fication, summarizing experiences from the surveyed works
and suggesting directions for future research. Zou et al. [4]
presented the main characteristics of edge and fog computing,
summarizing the challenges regarding the enablement of Al
for edge/fog-based IoT scenarios. One of the main challenges
for edge devices running complex Al algorithms is decreas-
ing resources consumption, improving energy efficiency. The
authors presented a table containing Al processors solutions

VOLUME 10, 2022

for specific algorithms with their respective energy efficien-
cies.

Sittén-Candanedo et al. [11] presented a review of edge
computing reference architectures (RAs). They described the
main characteristics of the following four edge computing
RAs: FAR-EDGE RA, INTEL-SAP RA, Edge Computing
RA 2.0, and Industrial Internet Consortium RA. Based on
these RAs, the authors proposed the Global Edge Computing
Architecture, which was evaluated through an agroindustry
application. The authors carried out two tests during two
months, considering a Raspberry Pi 3 as the edge node and
the Google Cloud Platform as the cloud. The first test did
not consider the edge pre-processing activities, gathering the
data from the collecting nodes and sending them directly to
the application in the cloud. The second test considered the
edge node and its pre-processing, including data filtering and
encryption. The results achieved a reduction of 38.84% in the
data transferred to the cloud.

Sun et al. [12] proposed the deployment of Al techniques
in edge and cloud servers, considering delay and service
accuracy to deal with IIoT devices’ requests. To reduce the
processing complexity, the authors proposed the use of trans-
fer learning, deploying pre-trained models in the edge servers.
Then, each IIoT device’s request is answered based on its
required values for delay and service accuracy. The proposed
framework identifies the edge server that will process the
request matching the required delay and accuracy. Simu-
lations were performed with an NVIDIA TITAN V GPU,
considering ten edge servers and 100 IIoT devices, running
an image recognition application. Results showed that the
proposed solution achieves better average accuracy than an
experiment scenario that does not consider the proposal (i.e.,
without considering the accuracy of the servers). For future
work, the authors suggest the use of caching allocation in the
edge servers.

Dimithe et al. [24] developed a machine learning environ-
ment based on a TX?2 board acting as an edge server. The TX2
receives images from a drone and a robot and performs object
detection and classification. The authors mentioned problems
with reduced latency due to the high volume of transmitted
data and also with the accuracy of the used models. In future
work, they plan to improve the trained model and increase the
processing speed.

Bellavista et al. [6] proposed a Machine Learning infras-
tructure based on edge and cloud computing. The proposal
suggests running models locally at the edge. Several experi-
ments were performed, considering a faces recognition appli-
cation in a smart city scenario, an Android smartphone as
the mobile node, a Raspberry Pi 3 as the edge node, and a
virtual machine deployed at AWS as the cloud. The authors
used OpenCV and Python for the ML procedures. Results
demonstrated good operation performance, mainly due to the
lower network communication latencies achieved at the edge
compared to the values achieved for communications with
the cloud. The result is interesting because the lower latency
at the edge makes the total processing time better than in

100743

IEEE Access

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

the cloud, even considering that the cloud server has more
computational power than the edge node. As future work, the
authors suggest deploying the proposal in an industrial envi-
ronment and develop an optimizer module for the models.

Huang et al. [25] designed and implemented an edge com-
puting platform to deploy machine learning applications.
The platform consists of training models at the cloud and
deploying predictive models at the edge server. The authors
used Docker and Kubernetes to deploy the services in
containers and a Raspberry Pi as the edge server. Sim-
ple experiments measured the CPU and memory overhead.
As future work, they intend to optimize the processing
rates.

We can see there is a trend to adopt edge computing
scenarios for the deployment of artificial intelligence ser-
vices, mainly when these services serve applications requir-
ing lower communication latencies (e.g., an industrial
application employing IloT devices). From the literature,
we notice that many works have been published regard-
ing different applications, considering the benefits of edge
computing. Nonetheless, we should consider any tool to
help in the deployment and management of such appli-
cations, and this is why we proposed the VIRTUS Edge
Framework.

VIl. CONCLUSION

Edge computing empowers the Industrial IoT applications,
offering more computational resources (compared with the
IoT devices) and reduced communication time (compared
with cloud servers) for data processing and storage. When
edge computing meets the telecommunication infrastruc-
tures, Multi-access Edge Computing (MEC) arises. Given
that many of the applications deployed in MEC scenarios
apply Artificial Intelligence (AI) techniques, this work pro-
posed the VEF Edge Framework, which aims at easing the
deployment of Al applications, also considering the commu-
nication with IIoT devices.

To evaluate the VEF, we deployed the framework and an Al
application, which worked as a base case. For this application,
we considered a machine learning model to detect objects
in video streamings. We varied the number of video sources
and the sink clients. We performed experiments to measure
communication latency and CPU/memory consumption, con-
sidering different scenarios, alternating the number of sources
and sinks. Analyzing the results, we can see that the main
VEF components do not present a high overhead during data
processing and communication. This is due our integration
of an IoT processing platform (EdgeX) with a data analysis
streaming and communication tool (EMQ X Kuiper) for the
processing of streamings and data in machine learning infer-
ence models.

As future work, we are going to use our testbench to
run experiments considering other Al applications deployed
through the VEF. We also want to advance the functionali-
ties regarding the management and deployment of VNFs as
support for Al services and applications.

100744

REFERENCES

[1]1 T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge
computing in industrial Internet of Things: Architecture, advances and
challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2462-2488,
4th Quart., 2020.

[2] R. V. de Omena, D. Santos, and A. Perkusich, “An approach to reduce
network effects in an industrial control and edge computing scenario,” in
Proc. CLOSER, 2021, pp. 296-303.

[3] Q. Qi and F. Tao, “A smart manufacturing service system based on edge
computing, fog computing, and cloud computing,” IEEE Access, vol. 7,
pp. 86769-86777, 2019.

[4] Z. Zou, Y. Jin, P. Nevalainen, Y. Huan, J. Heikkonen, and T. Westerlund,
“Edge and fog computing enabled Al for [oT-An overview,” in Proc. IEEE
Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Mar. 2019, pp. 51-56.

[5] K. Aytac and O. Korcak, “IoT edge computing in quick service restau-
rants,” in Proc. 16th Int. Symp. Model. Optim. Mobile, Ad Hoc, Wireless
Netw. (WiOpt), May 2018, pp. 1-6.

[6] P.Bellavista, P. Chatzimisios, L. Foschini, M. Paradisioti, and D. Scotece,
“A support infrastructure for machine learning at the edge in smart city
surveillance,” in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2019,
pp. 1189-1194.

[7] N. Abbas, Y.Zhang, A. Taherkordi, and T. Skeie, ‘“Mobile edge computing:
A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450465, Feb. 2017.

[8] T.-D. Nguyen, E.-N. Huh, and M. Jo, “Decentralized and revised content-
centric networking-based service deployment and discovery platform in
mobile edge computing for IoT devices,” IEEE Internet Things J., vol. 6,
no. 3, pp. 4162-4175, Jun. 2019.

[9] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657-1681, 3rd Quart., 2017.

[10] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge intelli-
gence: Multiaccess edge computing for 5G and Internet of Things,” IEEE
Internet Things J., vol. 7, no. 8, pp. 6722-6747, Aug. 2020.

[11] 1. Sittén-Candanedo, R. S. Alonso, J. M. Corchado,
S. Rodriguez-Gonzdlez, and R. Casado-Vara, “A review of edge
computing reference architectures and a new global edge proposal,”
Future Gener. Comput. Syst., vol. 99, pp. 278-294, Oct. 2019.

[12] W. Sun, J. Liu, and Y. Yue, “Al-enhanced offloading in edge computing:
When machine learning meets industrial IoT,” IEEE Netw., vol. 33, no. 5,
pp. 68-74, Sep. 2019.

[13] M. A. Rahman, M. S. Hossain, A. J. Showail, N. A. Alrajeh,
and A. Ghoneim, “Al-enabled IIoT for live smart city event mon-
itoring,” IEEE Internet Things J., early access, Sep. 1, 2021, doi:
10.1109/JI0T.2021.3109435.

[14] S. Zhu, K. Ota, and M. Dong, “Green Al for IIoT: Energy efficient
intelligent edge computing for industrial Internet of Things,” IEEE Trans.
Green Commun. Netw., vol. 6, no. 1, pp. 79-88, Mar. 2022.

[15] M. Fatih Tuysuz and M. Emin Aydin, “QoE-based mobility-aware collab-
orative video streaming on the edge of 5G,” IEEE Trans. Ind. Informat.,
vol. 16, no. 11, pp. 7115-7125, Nov. 2020.

[16] W.Dou, X. Zhao, X. Yin, H. Wang, Y. Luo, and L. Qi, “Edge computing-
enabled deep learning for real-time video optimization in IloT,” IEEE
Trans. Ind. Informat., vol. 17, no. 4, pp. 2842-2851, Apr. 2021.

[17] J. Portilla, G. Mujica, J.-S. Lee, and T. Riesgo, “The extreme edge at the
bottom of the Internet of Things: A review,” IEEE Sensors J., vol. 19,n0.9,
pp. 3179-3190, May 2019.

[18] K. Han, Y. Duan, R. Jin, Z. Ma, H. Rong, and X. Cai, “Open framework
of gateway monitoring system for Internet of Things in edge computing,”
in Proc. IEEE 39th Int. Perform. Comput. Commun. Conf. (IPCCC),
Nov. 2020, pp. 1-5.

[19] R. Xu, W. Jin, and D. Kim, “Enhanced service framework based on
microservice management and client support provider for efficient user
experiment in edge computing environment,” [EEE Access, vol. 9,
pp. 110683-110694, 2021.

[20] J.Kim, C.Kim,B. Son, J. Ryu, and S. Kim, ““A study on time-series DBMS
application for EdgeX-based lightweight edge gateway,” in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 1795-1798.

[21] P. Trakadas, P. Karkazis, H. C. Leligou, T. Zahariadis, F. Vicens,
A. Zurita, P. Alemany, T. Soenen, C. Parada, J. Bonnet, E. Fotopoulou,
A. Zafeiropoulos, E. Kapassa, M. Touloupou, and D. Kyriazis, “Com-
parison of management and orchestration solutions for the 5G era,”
J. Sens. Actuator Netw., vol. 9, no. 1, p. 4, Jan. 2020. [Online]. Available:
https://www.mdpi.com/2224-2708/9/1/4

VOLUME 10, 2022

http://dx.doi.org/10.1109/JIOT.2021.3109435

D. C. G. Valadares et al.: Automating the Deployment of Artificial Intelligence Services in MEC Scenarios

IEEE Access

[22] G.M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez, “Bench-
marking open source NFV MANO systems: OSM and ONAP,” Comput.
Commun., vol. 161, pp. 86-98, Sep. 2020.

[23] K. Cao, S. Hu, Y. Shi, A. Colombo, S. Karnouskos, and X. Li, “A survey
on edge and edge-cloud computing assisted cyber-physical systems,” IEEE
Trans. Ind. Informat., vol. 17, no. 11, pp. 7806-7819, Nov. 2021.

[24] C. O. Bitye Dimithe, C. Reid, and B. Samata, “Offboard machine learning
through edge computing for robotic applications,” in Proc. SoutheastCon,
Apr. 2018, pp. 1-7.

[25] Y. Huang, K. Cai, R. Zong, and Y. Mao, “Design and implementation of
an edge computing platform architecture using Docker and kubernetes for
machine learning,” in Proc. 3rd Int. Conf. High Perform. Compilation,
Comput. Commun., New York, NY, USA, Mar. 2019, pp. 29-32.

DALTON CEZANE GOMES VALADARES
received the bachelor’s, master’s, and Doctor
degrees in computer science, and the M.B.A.
degree in project management, and a technical
course in informatics. He is currently a Professor
with the Federal Institute of Pernambuco (IFPE)
and a Researcher with the Embedded Laboratory,
Federal University of Campina Grande (UFCG).
He has over 15 years of experience in IT, having
worked on several Research and Development
Pl‘O_]eCtS assuming different roles: systems analyst, embedded systems/web
developer, quality/testing analyst, and project manager. He currently devel-
ops research collaboration with FCS Group, Embedded Laboratory (UFCG),
and GPRSC, UTFPR. His current research interests include the Internet
of Things, software engineering, fog/edge computing, data security, and
wireless networks.

TARCISO BRAZ DE OLIVEIRA FILHO received
the bachelor’s and master’s degrees in computer
science from UFCG. He works as a Data Scientist
at VIRTUS Innovation Center, Federal University
of Campina Grande (UFCG). He has over 12 years
of experience in IT, having worked on several
Research and Development Projects assuming dif-
ferent roles: distributed systems/full-stack devel-
oper, data scientist, and project manager. His
research interests include data science, artificial
intelligence, big data, and distributed systems.

VOLUME 10, 2022

THIAGO FONSECA MENESES received the
master’s degree in computer science from UFCG.
He works as a Software Engineer at VIRTUS
Innovation Center, Federal University of Campina
Grande (UFCG). He has experience in computer
science, with emphasis on information and com-
munication technologies, working mainly on the
following topics: 5G networks, laaS, systems anal-
ysis, and software requirements specification.

DANILO F. S. SANTOS (Member, IEEE) received
the Ph.D. degree in computer science from the
Department of Electrical Engineering, Federal
University of Campina Grande (UFCG), Brazil.
He works as a Professor at the Department of
Electrical Engineering, UFCG, where he coor-
dinates Research, Development, and Innovation
Projects in partnership with technology compa-
nies. He serves as an Innovation Coordinator at
VIRTUS-UFCG Innovation Center. His research
interests include intelligent software engineering, pervasive and edge com-
puting, and wireless communication, with over 60 published articles.

ANGELO PERKUSICH (Member, IEEE) received
the Ph.D. and master’s degrees in electrical engi-
neering from the Federal University of Paraiba,
in 1987 and 1994, respectively. He was a Vis-
iting Researcher at the Department of Com-
puter Science, University of Pittsburgh, PA, USA,
from 1992 to 1993. He is currently a Profes-
sor with the Electrical Engineering Department
(DEE), Federal University of Campina Grande

L2 (UFCG), since 2002. He is the Founder and the
Director of the VIRTUS Innovation Center and Embedded and the Pervasive
Computing Laboratory. He has over 400 papers published and advised
85 master’s thesis and 25 Ph.D. dissertations. His main research inter-
ests include embedded systems, software engineering, and cyber-physical
systems.

100745

