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ABSTRACT Public-key encryption is extensively used to provide digital data confidentiality and deliver
the security features, such as nonrepudiation (digital signature) and secure key exchange. Conventional
public-key schemes are based on mathematical problems with inflexible constraints, and the security of
digital contents relies on computational complexity. In the era of emerging technologies, most public-key
image encryption schemes are susceptible to various threats. We propose a novel public-key encryption in
this article with near-ring criteria and provide confidentiality to private data with the microstates of the
Einstein crystal model. The virtual oscillator generated by microstates of initial oscillators for the common
secrets with the public-key scheme produces unique states to encrypt digital data. The privacy-preserved
structure, that mimics the data stream of digital content with the behavior of the improved Einstein crystal
model, describes a system in terms of microstates to generate diffusion in the plain data with unique states
of a virtual oscillator. The performance and digital forensic evaluations, such as randomness, histogram
uniformity, pixels’ correlation, pixels’ similarity, visual strength, pixels’ incongruity, key sensitivity, linear
and differential attacks, noise, and occlusion attacks analyses, certify the resistivity of the proposed algorithm
against potential threats and provide superior capacity in comparison to existing methodologies to hostile
certain attacks.

INDEX TERMS Discrete logarithmic factors problem, Einstein crystal model, information security, image
encryption, key exchange, Monte Carlo random walk, public-key cryptography.

I. INTRODUCTION

Rapid developments in communication technology have
resulted in tremendous growth in multimedia and digital com-
munication. The exchange of digital data across the internet
is becoming more prevalent, and the data might be subject
to security issues such as illegal access and modification.
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Secure information transmission over a public channel has
an incredible impact and is dynamically imperative due to the
risk of theft and manipulation. The ability to process digital
content securely is imperative for the public and officialdom
[1], and improvements within the systems bring us near to
such a variation that allows us to explore the intersection of
next-generation networks and cybersecurity.

Cybersecurity is an important aspect of communication
because it helps to protect digital content, software, and
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hardware from malicious attacks enabling access to signif-
icant information and causing interruptions in private data.
Eventually, the victims of cyber-attacks suffer from economic
and social loss [2].

Digital content exists in many forms, including text and
images. Normally, images contain rich visual data. Consis-
tency in color depth enables object recognition, and texture
provides high-frequency detail and information about shape
and size. This makes digital content more challenging to
process securely, compared to ordinary content. The signifi-
cant applications for image encryption schemes in public and
private sectors are in satellite imagery [3], military surveil-
lance [4], healthcare industries for telemedicine [5], internet
banking transactions [6], etc.

As the proliferation of digital content grows exponen-
tially, most of the algorithms specifically designed to encrypt
images are unable to cope with all aspects of security. In the
last few decades, several image encryption schemes were
proposed based on domain transformation [7], DNA com-
puting [8], vector quantization [9], chaotic and hyper-chaotic
systems [10], etc. These schemes have weak security param-
eters that are unable to attain real-time encryption. The image
encryption scheme in [7] using fractional Fourier transform
and Jigsaw transform has sufficient algorithm complexity but
weak security and performance results. The grayscale image
encryption scheme in [11] is based on bit-plane operations
and the chaotic maps has low encryption efficiency due to the
complex computations of bit-plane operations. To improve
its efficiency, the authors recommended a chaos-based mixed
image-element grayscale image encryption scheme in [12].
Although it increased encryption efficiency, security anal-
yses indicated it is weaker than the previous scheme. The
estimated reckonings of histograms of encrypted images are
not uniformly distributed, hence this scheme may also be
vulnerable to statistical attacks.

Nowadays, most image encryption schemes are developed
on the notion of confusion [13], [14] and diffusion com-
ponents [15], and the construction of traditional block and
stream ciphers were used in many ways to create confusion
in the image data. Most of the modern privacy-preserving
structures are established in light of substitution-permutation
networks (SPN) in which confusion criteria are fulfilled by
substitution, and permutation is utilized to perform diffusion
in the image data [16]. By aiming at all the above problems,
we developed a new encryption scheme that provides the
ultimate performance and security.

At present, digital content protection surveys all the points
of view influencing communication and computation security
with the advancement of artificial intelligence (AI). Asym-
metric encryption methods must be secure from chosen plain
text attacks (CPA) and chosen ciphertext attacks (CCA). RSA
is not secure against CPA even with padding, and encryp-
tion of the same plaintext always generates the same cipher-
text due to its deterministic aspect. If the message itself is
amenable to brute force, it can be recovered by trying poten-
tial message values until a match is found [17]. Also, RSA
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is insecure against CCA if the message is a small integer. For
instance, if the message is 200-bit integer and the public expo-
nent is 3, then the available public message will be a 600-bit
integer. This means the message can be recovered using a
non-modular cube root, which is simple and easy to compute
[18]. Furthermore, for chosen-ciphertext (CCA) security,
a variation of the Cramer-Shoup (CS) method [19] makes use
of the computational Diffie-Hellman (CDH) assumption. The
high-security cost of this cipher is that the size of ciphertexts
is much larger than with the CS scheme (which is based on
the decisional Diffie-Hellman assumption) [20].

The proposed discrete logarithmic factorial problem
(DLFP) based public-key establishment scheme in this article
provides a secure way to generate common keys. The adver-
sary can’t bypass the protocol even with one of the secrets
from pairs, and the developed scheme resists the CPA and
CCA attacks. To share the digital content securely on the
shared key, we developed a privacy-preserved structure that
mimics the data stream with the behavior of the improved
Einstein crystal model, which reflects wave—particle dual-
ity [21], [22]. This model describes a system in terms of
microstates, whereas each microstate acts as a harmonic
oscillator in a three-dimensional potential. We generated
diffusion in the plain data with unique states of a virtual
oscillator followed by a random walk on inimitable points
without including the full dynamics (Monte Carlo). In the
first approximation, we introduced a simplified interaction
between the oscillators by allowing data transfer randomly
from one oscillator to another with no overhead. The stochas-
tic model of uncorrelated states has similar behavior to gener-
ate sequence as in quantum chaos and provides the chaos tran-
sition from a Poisson to a Gaussian distribution. The security
and performance measures for the proposed model validate
the effectiveness in comparison with existing techniques.

This article is organized into six sections. The preliminar-
ies of the Einstein crystal model, Monte Carlo modification,
and DLFP key establishment are explained in Section II. The
anticipated algorithm and its execution on standard images
are deliberated in Section III, with performance and security
evaluations assessed in Section I'V. Digital forensic analysis
of the outcomes from the proposed strategy is presented in
Section V, and concluding notes with upcoming prospects are
given in Section VI.

Il. FUNDAMENTAL TERMINOLOGIES

The basic terminologies to design the encryption/ decryption
algorithm are explained in this section. We developed the
DLFP key exchange algorithm and set the Einstein crystal
model—Monte Carlo design using the established key with
the exchange algorithm.

A. PROPOSED DLFP KEY ESTABLISHMENT ALGORITHM

Public-key algorithms establish common secrets between
users for secure communication over public channels [23].
Most of the effective public-key schemes are based on
finite commutative rings. The addition and multiplication
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FIGURE 1. Demonstration of the DLFP key generation algorithm.

operations for the binary satisfy the axioms of the entire ring,
except sometimes for the distributive and commutative laws,
and these systems are noted as near-rings.

(N, +, o) triplet refer as near-ring if

« an ordered pair (N, +) is a group, and

o an ordered pair (N, e) is a semigroup, and for each

elementny, ny, n3 € N, (n; + ny) - n3 = ny-n3+ny-n3

Assumptions: For a factorial problem, the component w of
non-abelian group, near-ring N and sub near-rings Nj, N> €
N, determine the elements a; € N1 and a; € N, that satisfy
w=aj)ap.

Given the prime p for DLFP, when the generator of the
cyclic group Z, is « and element 8 € Z,, find an integer
0 < x < p — 1 that satisfies o* = .

For a DLFP, N is a near-ring non-abelian identity con-
stituent e and ay, ap, o are the arbitrary components of N,
and x, y are the random elements of Z,. For o = a)l‘ aé,
calculate aj, ap € N and x, y € Zp.

DLFP-based key establishment:Let N be a near-ring with
identity e, and let ay, ap € N be the two random numbers that
satisfy (a1) N (a2) = e. The given product is split into pair
(aj, aé) € N xN, where x and y are randomly picked arbitrary
integers.

o Alicechoosesay, a; € N, generates private key (a’l‘, a‘é),

and shares public key & = a}, a3 with Bob.

o Bob chooses by, by € N, generates private key (b)f,, bﬁl),

and shares public key g = b}, bg with Alice.

o Alice uses hfer secrets and computes Kx = aj ,Ba; =

a)erx’ + aﬁﬂ )

« Bob uses his secrets and computes Kp = b)f/oebg =

P
o The generated common secret between Alice and Bob is
K =Ky = Kp.

Let the communicating parties, Alice and Bob, agree on
some prime numbers, p , in order to generate the common
secret. Fig. 1 demonstrates the establishment of the common
key using the secret credentials.

Example: Validation of the proposed design using a simple
evaluation is demonstrated in this example. Let Alice and Bob
agree on a prime number, n = 37, to generate the common
secret with their private credentials. These credentials include
two secret primitives and two randomly selected values for
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each of them. After generating and sharing the public keys,
they are able to develop a common secret between them using
their private key pairs with each other’s shared public key. The
evaluation of the common secret between Alice and Bob from
their private keys is demonstrated in Table 1.

Security analysis of the proposed key establishment
algorithm: An adversary can bypass the protocol by obtain-
ing Alice’s or Bob’s private key in the following attacks.

The possible attack on Alice’s private key is to find the ele-
ments a) and a)27 that commute with each element of the sub—
near-rings of N1 and N, such that K4 = af 8 aﬁ. Similarly,
the attack on Bob’s private key is to find the elements b)l‘/ and
bg that commute with each element of the sub—near-rings of
Np and N, such that Kp = b’l‘/ o hg.

Suppose N1 = (ny,...,ng), and let us say an adver-
sary is trying to find x but has no knowledge of where to
choose y in the beginning. The adversary just knows that it
commutes with all the elements in Ny. Even if he computes
Ni =N (ni,...,m)and Ny = N (n}, ..., n)), it is hard to
determine af and a3.

B. EINSTEIN CRYSTAL MODEL AND MONTE CARLO
MODIFICATION

The Einstein crystal model describes a system in terms of
microstates wherein the atoms in the crystal do not interact
directly. Each atom acts as a three-dimensional harmonic
oscillator with a central potential, and the total system con-
sists of N atoms [24], [25]. The atoms in the system share the
total energy in the system. Each atom in a three-dimensional
structure consists of three independent oscillators in the
X, Y, and z directions. In other words, a system with N oscil-
lators consists of v /3 atoms. Each oscillator has potential
vix) = %k x2, where k is the spring constant and x is the
derivation of the equilibrium position. The energies of such
oscillators are quantized with several possible values (¢ =
hvn) where n = 0, 1, 2, ... can only be integers. The
measurement of energy is 2 v = €, and for the dimensionless
energy states, we choose the symbol ¢g. Let us consider a
simplified four-oscillator system with N = 4 and quantized
level ¢ = 2. In Fig. 2, we describe the states by using a simple
illustration with possible energy levels for N = 4 oscillators.
There are generally two possibilities.

1) In Case A, one oscillator may be at energy level 2 with
the others at energy level 0.

2) In Case B, two oscillators may be at energy level 1 with
the others at energy level 0.

The possible configurations by sequence are np, na, n3, ns,
where n; =0, 1, 2, ... describes the state of oscillator i.

Case A: The oscillator at energy level 2 can be placed
in N = 4 possible places: (2,0,0,0), (0,2,0,0), (0,0,2,0), and
(0,0,0,2). There are four possible states of the system with
one oscillator at energy level 2, and the rest at energy level 0.

Case B: The two oscillators at level 1 can be placed in
six possible configurations. If we place the first energy unit
in oscillator 1 and the second in oscillator 2, we get the
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TABLE 1. Common secret generation using DLFP.

Table 1: Common secret generation using DLFP.

Alice

Bob

Selection of credentials Secrets: a =11 and a, =17

Randomly selected values: x =5 and y=3

Secrets: p =23 and b, =13

Randomly selected values: x'=4 and ' =8

Private-key generation

a,,a,, = (af modn, a} modn) =(27,29)

b,b,, = (b modn, by modn) (10,9)

Public-key generation o=a a modn=6

B=b' b modn=16

Common-secret generation K

y :(akl Bakz) =22

K, =(b, abkz) =22

K,=K=K,

q q

3 — — — —— gl—rs — —— ——

2l— @& — — At —t = ==

| — — — == 11— @& — @&

o -@ @ @ 0@ — @ —
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(0,2,0,0) (0,1,0,1)

FIGURE 2. Demonstration of the Einstein crystal model.

state (1,1,0,0), but this is the same state we would get if
we place the first energy unit in oscillator 2 and the second
in oscillator 1. The possible states are therefore (1,1,0,0),
(1,0,0,1), (0,0,1,1), (1,0,1,0), (0,1,0,1), and (0,1,1,0).

Time development of the Einstein crystal (Monte
Carlo) model: The Einstein crystal model only describes the
system in terms of the microstate, (n1, ny, ..., Nn). If the
system is in one particular microstate, we have no physical
laws that tell us how the system can develop into another
microstate. To include dynamics, we need to add further
assumptions to the model. When we defined the Einstein
crystal, we assumed there were no interaction between the
individual oscillators, whereas for the molecular dynam-
ics simulations, the particles had both specific positions in
the crystal and they interacted with their neighbors [26].
We extend the Einstein crystal model to include both sim-
plified interactions and the relative positions of the particles,
so that we can model energy flow without including the full
dynamics [27]. The number of microstates for the Einstein
model with ¢ energy units and N oscillators is specified as

follows:
_(N-—-1+g¢ _(N—1+q)!
9<N,q)—( . )——q!(N_m (1)

We assumed a small modification to the Einstein crystal
model to include some of the facts below. The system consists
of two parts, A and B, so that each oscillator belongs to
either A or B. In the first approximation, we introduced a
simplified interaction between the oscillators by allowing
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energy to move randomly from one oscillator to another by
conserving the total energy. This means the system will move
from one microstate, S, to another microstate, S>, with the
same energy. Hence, both microstates are equally probable,
since all microstates are equally probable.

To simulate the random transmission of energy in the
system, the process is as follows.

o Select an oscillator (particle) at random, i1, and transport
the energy from this oscillator.

o Select another oscillator (particle) at random, i», and
receive the energy from n;.

We generate a virtual state oscillator from oscillators A and
B with the same energy. The resulting dynamics of the oscil-
lators are expressed in Fig. 3.

Monte Carlo simulation

In the stochastic model, we generate a sequence of uncor-
related microstates. For each sample, we randomly generate
a new microstate, ensuring no correlation with the previous
state [28]. We sample many such states in a long sequence
before making statistical predictions about the probability
of a microstate. This motion is observed to be in a zigzag
path and is referred to as a Monte Carlo model for a micro-
canonical system. There is also a strong connection between
the random walk and the Schrédinger equation by replacing
time with imaginary time. Quantum chaos is also linked to a
Monte Carlo diffusion process for the quantum energy-level
spacing sequences. These levels acts as a function to execute
arandom walk, which infers uncorrelated random increments
in the level spacing, and transforms the chaos transition from
a Poisson to a Gaussian distribution. The random walk of
Monte Carlo microstates is shown in Fig. 4.

Ill. PROPOSED ALGORITHM
Digital content that navigates through the flowchart described
in Fig. 5 produces encrypted streams with high randomness.
To demonstrate our idea clearly, we consider here a simplified
22-oscillator system with N = 22 atoms (DLFP, Section II-A)
and quantized level q = 256 (for eight-bit images).
Referring to Fig. 5, Alice and Bob assess the shared secret
and have enough knowledge to produce microstates at ran-
dom (Monte Carlo). They can use their common secrets
to share data through an insecure communication channel
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by analyzing the microcanonical system and the temporal Carlo random walk sequence with the common secret,

evolution of the crystal model. as explained in Section II-B.
o By performing a bitwise XOR operation between the
microstates of the two generated oscillators, we develop

A. PROCEDURE a virtual oscillator.

« First, we established the common secret between Alice o For Alice, we operate layer-wise plain image pixels
and Bob using the DLFP technique, explained in with the microstates of the virtual oscillator to generate
Section II-A. diffusion in their values.

o After establishing the common secret, we generate « To diffuse the pixel values completely, we pass each
the microstates of two oscillators and launch a Monte layer of the generated cipher image from the virtual
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Oscillator B
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Monte carlo
simulation(s)

B

v /

Encrypted
Content

FIGURE 5. Proposed encryption and decryption structure.

oscillator through the random walk sequence of the
Monte Carlo simulation.

o The layer-wise encrypted results of the plain images are
depicted in Fig. 6.

« Bob will obtain the plain image by following the same
procedure on the cipher image but in reverse order.

B. EXPERIMENTATION WITH THE PROPOSED ALGORITHM
We performed an experiment using the standard Airplane and
Baboon digital content with dimensions 512 x 512. We pro-
cess the pixels of each piece of content with the microstates
of oscillators A-B and via the Monte Carlo random walk to
provide confidentiality for the digital content. The outcomes
of the proposed methodology are in Fig. 6.

IV. PERFORMANCE AND SECURITY ANALYSES

We conducted various standard investigations (an uncertainty
test, factual assessment, and a sensitivity evaluation) on stan-
dard images to measure the strength of the anticipated design
of Fig. 5. These images are taken from the database of the
Signal and Image Processing Institute (SIPI) [29].

A. RANDOMNESS ANALYSIS

Identification of randomness from the probable esteem is
characterized by entropy. It is the source’s mean significance
value expressing certainty from a set of distinct occurrences
{x1, x2, x3, ..., x,} with similar probabilities [30], [31]. For
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Enciphered Key
',,,»'7 Content
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R simulation(s)
Oscillator A
microstates
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e
microstates 4
‘ |
\ 4 Oscillator B

‘ Plain image ‘ microstates

digital content, the Shannon entropy is calculated as follows:

2N

H=— " p(u)log, p),
n=0

@)

where p (x,) is the probability of source x, and is expressed
in bits. For dissimilarity in eight-bit digital content, the opti-
mum Shannon entropy is 8. Table 2 depicts entropy analysis
for plain and encrypted content, as well as assessment with
existing techniques.

The outcomes of the proposed method in Table 2 are
reasonably close to the perfect estimation of Shannon
entropy and outperform the previous methods. These
results demonstrate that there is a negligible data loss
and the structure in Fig. 5 is resistant to entropy
attacks.

B. HISTOGRAM UNIFORMITY ANALYSIS
We processed original and encrypted image content hav-
ing 256 dark-dimension intensities in order to estimate
the consistency of histograms for the proposed method-
ology [34], [35]. An evaluation of the original and
encrypted content for the Airplane and Baboon images
from the proposed methodology are demonstrated in Fig. 7
and Fig. 8.

We evaluated the plain and encrypted content in
Figs. 7 and 8 to ensure consistency in encrypted content to
make the factual assaults hard.
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FIGURE 6. Plain and encrypted content of the Airplane and Baboon images: (a-d) Plain Airplane images at gray and RGB scale, (e-h) Encrypted
contents of Airplane images at gray and RGB scale; (i-I) Plain Baboon images at gray and RGB scale, (m-p) Encrypted contents of Baboon images
at gray and RGB scale.

TABLE 2. Randomness analysis for plain and encrypted content, and comparisons with the most recent approach.

Image Plain Encrypted Ref. [32] Ref. [33]

Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue
Airplane 6.70560 6.74894 6.81058 6.26817 7.99936 7.99931 7.99925 7.99927 7.9974  7.9983 7.9982  7.9988
Baboon 7.34846 7.74439 7.44932 7.75129 7.99922 7.99931 7.99921 7.99935 7.9972  7.9985 7.9983  7.9982
Pepper 7.58888 7.35162 7.58118 7.13466 7.99936 7.99933 7.99936 7.99932 - 7.9981 7.9985  7.9986
Lena 7.44506 7.25310 7.59403 6.96842 7.99921 7.99931 7.99933 7.99935 7.9974  7.9986 7.9981 7.9979

C. PIXELS’ CORRELATION ANALYSIS
Correlation analysis is the statistical approach used to assess
the strength of the association between two quantitative vari-
ables. This approach is associated with linear regression
analysis, which signifies the statistical method for modeling
the relationship between dependent variables. To observe
the relationship between the original and encrypted digital
content, we performed an analysis between the pixel pairs in
horizontal, diagonal, and vertical directions [36], [37].

Let us choose 10,000 combinations of close pixels from
the plain and encrypted content, primarily to observe the
correspondence in adjacent pixels. The observation of pixel
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pairs in Airplane and Pepper images at grayscale in Fig. 9-10
is evaluated with the following expression:

Ox,y
Ix,y = —F/——, 3)
[o2o?

where x and y are the adjacent grayscale pixel values, axz and
cryz are the variances, and oy y is the covariance of random
variables x and y.

The encoded information in Figs. 9-10 serves as a barrier
(in the sense of quantifiable investigation) to information

release. Furthermore, we evaluated the various plain and
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FIGURE 7. Histograms of plain and encrypted Airplane images: (a-d)
Histograms of plain image at gray and RGB scales (e-h) Histograms of
encrypted image at gray and RGB scales.

encrypted image pairs by computing their two-dimensional
correlation coefficients using the following equations [38]:

M,N _ _
3 (P~ PXCj—O)
r= bt L@
M.N _ M.N N
> =P )| X (Ci—C)
i j=1 i, j=1

where P and C signify the plain and encrypted content,
respectively, with mean approximations of P and C,and M, N
denote the height and width of the content.

Table 3 depicts the evaluation of correlation coefficients
for plain and encrypted content for the methodology depicted
in Fig. 5, as well as their comparisons with the most recent
approach.
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encrypted image at gray and RGB scales.

TABLE 3. Correlation coefficients for plain and encrypted content in
grayscale and RGB color, and assessments with the most recent
technique.

Image Plain content Encrypted content Ref. [39]
Content Horizontal Diagonal Vertical ~ Horizontal Diagonal Vertical — Horizontal Diagonal Vertical
Gray 0.9672 0.9647 0.9647 -0.0019 0.0023  -0.0096 -0.0046 0.0012° -0.0019
Airplane Red 0.9662 0.9331 0.9617 -0.0070 0.0027  -0.0071 -0.0011 -0.0062  0.0003
Green 0.9695 0.9435 0.9690 -0.0052 0.0029  -0.0091 0.0006 -0.0014  0.0005
Blue 0.9526 0.9058 0.9410 -0.0030 -0.0002  -0.0105 0.0004 0.0015  -0.0026
Gray 0.8654 0.7719 0.7719 -0.0066 0.0032  -0.0065 0.0015 -0.0018  -0.0021
Red 0.9224 0.8477 0.8680 0.9225 0.0007  -0.0046 0.0010 -0.0014  -0.0013
Baboon Green 0.8825 0.7704 0.8068 -0.0066 0.0013  -0.0046 -0.0012 0.0016 0.0002
Blue 0.9239 0.8566 0.8827 -0.0060 0.0051  -0.0071 0.0008 -0.0035  -0.0013
Gray 0.9812 0.9832 0.9832 -0.0040 0.0019  -0.0077 -0.0055 0.0011 0.0025
Red 0.9772 0.9592 0.9787 -0.0036 0.0020  -0.0063 -0.0046 0.0012 -0.0019
Pepper Green 0.8825 0.7704 0.8068 -0.0066 0.0013  -0.0046 -0.0021 -0.0034  0.0017
Blue 0.9769 0.9586 0.9779 -0.0065 0.0000  -0.0047 0.0007 -0.0023  -0.0022
Gray 0.9737 0.9868 0.9868 -0.0077  -0.0002  -0.0095 -0.0045 0.0013 -0.0070
Red 0.9813 0.9709 0.9908 -0.0036  -0.0001  -0.0078 -0.0035 -0.0021  0.0002
Lena Green 09713 0.9714 0.9849 09713 0.0013  -0.0063 0.0004 -0.0016  0.0002
Blue 0.9425 0.9244 0.9675 -0.005 -0.0032 _ -0.0057 0.0001 -0.0008 _ -0.0041

The correlation coefficients in Table 3 are quite close to
zero, which implies the variables are either hardly related or
dissimilar, and show results superior to the existing approach.

D. PIXEL SIMILARITY ANALYSES
Similarity analyses measure the resemblance of pixels
from among different digital content. To observe the
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FIGURE 9. Pixel correlation investigations for the Airplane image in the
horizontal, diagonal, and vertical directions: (a-c) plain image analysis,
(d-f) encrypted image analysis.

pixels’ similarity between plain and corresponding encrypted
images, we compared the divergence and luminance using
structural similarity index measures (SSIM), applied nor-
malized cross-correlation (NCC) to measure the traces of
correspondence, and used structural content (SC) to observe
the quality of an image with regard to noise and sharpness.
NCC also measured the structural similarity between original
and encrypted images in Fig. 11. A higher estimation of
SSIM, i.e. 1, infers strong resemblance between the original
and encrypted images [40]. We also evaluated the maximum
difference (MD) to analyze the maximum variation, and eval-
uated the average difference (AD) to determine the average
value between plain and encrypted content having the same
dimensions [41], as follows:

Cup e + C1) Q2ope + C2)

SSIM = , 5
(W2 +uZ + C) (o2 + 02+ () ®
M—1N-1
Pr x Cy
NCC =D, ) mtnr ©
=01 TS A
k=0 =0
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)

FIGURE 10. Pixel correlation investigations for the Baboon image in the
horizontal, diagonal, and vertical directions: (a-c) plain image analysis,
(d-f) encrypted image analysis.

M—1N-1 p2
k1
SC = , @)
M=IN-1
k=0 1=0 Y N
k=0 =0
MD = Max |Pi; — Cyl, ®)
M—1N-1
(Pr,i — Crp)
AD = _— 9
22 Thw ©

Py, and Ci,; represent the plain and encrypted content,
tp and pu. represent the mean values, and o), is the stan-
dard deviation. The evaluation of similarity analyses for
the plain-encoded content with the proposed algorithm and
assessments with the most recent approach are conveyed in
Table 4.

Table 4 shows that there is no pixel resemblance between
plain and encrypted image content. Moreover, the approxima-
tions of SSIM, SC, and NCC have better consequences than
the existing approach.

E. VISUAL STRENGTH ANALYSIS

Visual strength analysis is a statistical approach for mea-
suring the chromatic quality and texture of an image by
reflecting the spatial association of pixels in the gray level
co-occurrence matrix (GLCM) [42], [43]. The classification
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TABLE 4. Pixel-based similitude analyses for plain-encoded content and assessments with the most recent existing approach.

Image Pixel similitude analyses Ref. [40] Ref. [25]
SSIM NCC SC MD AD SSIM NCC SC
Airplane 0.0019 0.0022 0.0018 231 51.0541 0.1075 0.0014 0.0008
Baboon 0.0013 0.0018 0.0011 210 5.9597 0.0957 0.0038 0.0009
Pepper 0.0017 0.0025 0.0017 226 7.9524 0.0815 0.0021 0.0006
Lena 0.0012 0.0027 0.0009 235 4.1099 0.1056 0.0017 0.0012

FIGURE 11. Surface plots of NCC for the plain, encrypted, and
plain-encrypted Airplane and Baboon images: (a-c) Airplane image and
(d-f) Baboon image.

of texture is concerned with region identification from a given
set of texture classes. Each of these constituencies has unique
characteristics, including contrast, dissimilarity, homogene-
ity, angular second moment, maximum probability, energy,
mean, variance, and correlation.

The amount of local variation present in an image is
measured by contrast analysis. It recognizes the objects in
the texture of the encrypted content. Dissimilarity analysis
measures the heterogeneous effect of an image, and homo-
geneity analysis investigates the nearness of the distribution
of elements in GLCM to GLCM diagonally [44]. The angular
second moment is a measure of an image’s homogeneity.
It uses second-order statistics to estimate the association
between groups of two pixels separated by a certain distance.
Maximum probability corresponds to the largest entry in the
matrix, and resembles the strongest response. The number
of variations within a fixed window is measured by energy
analysis, and coarse texture has a grain size magnitude of
the displacement vector estimated by mean analysis. The
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variance measures the dispersion of the gray level difference
at a certain distance, and the correlation measures the linearity
of an image. The correlation will be high if the image follows
a linear structure. These GLCM analyses are evaluated with
the following expressions:

Contrast = Y |k —1* p (k.1). (10)
ij
Dissimilarity = Z ok, 1) [k—1], )
k,l
. p (k1)
Homogeneity = le: m , 12)
Angular sec ond moment (ASM)
=Y pk, 17, (13)
k,l
Maximum probability = Max (p (k, 1)), (14)
Energy = VASM, (15)
Mean (ux,1) = Y k1 (p(k, 1), (16)
k,l
Variance =Y pr.1 (o (k1 — pr),  (17)
k,l
k — I —
Correlation = Z Pk, 1 |:( ) ( M)i| .
k.l Mk, 1

(18)

where k and [ are the row and column positions of the
pixels. The homogeneity and energy of the image are
between 0 and 1, and the contrast range is between 0 and
(size (image) — 1). Table 5 shows the visual strength eval-
uations for the proposed structure in Fig. 5.

F. PIXEL ERROR ANALYSES

Pixel error assessment analyses evaluate the divergence of
encrypted content from plain content. To measure the error
in digital content, we calculate the normalized absolute
error (NAE), mean absolute error (MAE), mean square error
(MSE), root mean square error (RMSE), signal-to-noise ratio
(SNR), and peak signal-to-noise ratio (PSNR) [45]. The
correctness of interminable variables and the divergence in
encrypted content concerning plain text are evaluated using
NAE and MAE. The eminence of the encrypted content is
computed here by using MSE and SNR, and RMSE and
PSNR. The lower the MSE and RMSE esteem in relation to
SNR and PSNR, the more the similarity between the data.
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TABLE 5. Visual strength analyses of grayscale images and assessments with the most recent methodology.

Image Plain Encrypted Ref. [39]
Contrast 0.2765077 11.1262 10.6103
Contrast Group Dissimilarity 7.686961 86.081001
Homogeneity 0.70237 0.9876 0.9856
Airplane Angular Second Moment 0.001609 0.000024 -
Orderliness Group Maximum Probability 0.010267 0.000483 -
Energy 0.040117 0.004867 0.0156
Mean 175.371255 129.137701 -
Statistics Group Variance 2145.953829 5571.918693 -
Correlation 0.935632 0.001580 -
Contrast 1.016526342 11.12501 10.5001
Contrast Group Dissimilarity 21.625649 86.139410 -
Homogeneity 0.076238 0.9875 0.9890
Baboon Angular Second Moment 0.000104 0.000024 -
Orderliness Group Maximum Probability 0.000586 0.000502
Energy 0.010191 0.004872 0.0155
Mean 123.107083 129.036805 -
Statistics Group Variance 1829.899177 5560.091059 -
Correlation 0.722246 0.000434 -
Contrast 0.181210090 11.1370 10.6103
Contrast Group Dissimilarity 6.441313 86.140372 -
Homogeneity 0.76079 0.9873 0.9856
Pepper Angular Second Moment 0.000344 0.000024 -
Orderliness Group Maximum Probability 0.001769 0.000609 -
Energy 0.018540 0.004903 0.0156
Mean 121.411177 129.233543 -
Statistics Group Variance 2877.471037 5578.651137 -
Correlation 0.968514 0.001813 -
The following parameters are used to analyze the evaluations SNR = 201log;, |:IMAX :| (23)
of these investigations. MSE
Tuax
PSNR = 201o , 24
10 [ R MSE] (24)

M—-1N-—1 ’P _ |
_ ij — Cij
NAE = - (19)
i=0 j=0 Z Z |Pl]|
i=0 j=0
| MoIN-
MAE = Py — 2
MXNZ |Pri — Crl (20)
k=0 1=0
M N )
> > (Pri—Crp)
MSE = *=L=! , 1)
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M N
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RMSE = | *=1=1 , (22)
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where Py ; and Ci ; are the pixel positions for the plain
and encrypted information in the ¥ row and /" column,
respectively, and 74y is an estimate of the digital content’s
maximum possible pixel. A higher MSE esteem and a more
consistent PSNR can increase the quality of digital content
encryption, or vice versa [46]. Table 6 depicts the analysis of
standard digital content for the attainability of the anticipated
structure.

V. DIGITAL FORENSIC ANALYSES

To determine what happened to the digital content, we per-
formed a systematic data evaluation while keeping an
archived sequence of evidence. To sustain the resistivity of
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TABLE 6. Pixel divergence investigations for the originally encrypted digital content and a comparison with the most recent methodology.

Image Pixel divergence analyses Ref. [47] Ref. [48]
NAE MAE MSE RMSE SNR (dB) PSNR (dB) MAE MSE PSNR
Airplane 0.463957  83.15 10352.4 101.74705 -16.085 7.9804 79.95 8553.77  8.9998
Baboon 0.58707 71.68 740630  86.05985 -14.638 9.4688 83.56  8219.66  8.5412
Pepper 0.63064 75.87 8507.19 92.23445 -15.287 8.8669 81.45 8392.82  8.7723
Lena 0.59260 73.51 7875.38 88.74332 -14.897 9.2021 79.84 7715.76  9.4314
TABLE 7. Error assessment analysis by introducing Gaussian noise in the transmitted content.
Image Error and noise Noise intensity
analysis 0.000001 0.000003 0.000005 0.000007
MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE  PSNR
Airplane 10352.4 7.9804 10124.7 7.9836 9956.1 7.9921 9795.8 8.0251 9612.6 8.0612
Baboon 7406.30 9.4688 7269.18 9.4814 7136.77 9.5011 6992.71 9.5372 6843.42 9.5701
Pepper 8507.19 8.8669 8341.54 8.8803 8191.35 8.8998 8016.84 8.9285 7898.13 8.9516
Lena 7875.38 9.2021 7713.75 9.2256 7609.48 9.2558 7468.32  9.2798 7304.53 9.3104

the foreseen structures, we performed linear, key sensitivity,
noise, and differential assault analyses as follows.

A. LINEAR ATTACK ANALYSIS

The key employed by the cryptanalyst conducts a linear
assault to identify the logic used in encryption and decryp-
tion to perceive immediate information for the association
between particular bits of plain and encrypted data [49].
The analyst will attempt to decode the information using
all available keys to find the similarities in the ciphers. The
anticipated methodology has no information about the arbi-
trary sequence created by the virtual oscillator or the random
walk to induce diffusion in the plain data. Moreover, the
analyst will concentrate on factual assessments by varying
the parameters, but the received outcomes have no association
with any previous consequences.

B. KEY SENSITIVITY ANALYSIS

The sensitivity of the key is determined by how much of key-
space is available to withstand a brute force attack [50]. The
total number of keys needed to encrypt or decrypt the algo-
rithm is specified. We analyzed brute force, computational,
and ciphertext attacks on the proposed algorithm.

Brute force analysis: We evaluated the simplest example
in Section II-A by choosing Alice’s first secret of four bits and
the second secret of five bits with three-bit random values.
Let us assume Alice has 32 bits for each secret, with 16-bit
random values. The effective key-space to resist a brute force
attack will be 3216 x 3216 = 2805280 — 2160 Similarly, if we
just improve the selection of the random value from 16 bits
to 32 bits, the key-space will be 2320,

Computational analysis: The fastest existing machine can
perform 280 computations in just one second [51]. The total
number of computations in a year will be 23 x 365(days) x
24(hours) x 60(minutes) x 60(seconds) ~ 2105 A compu-
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. . 160
tational attack requires 2% years (;W = 255) to compute

32-bit secrets with 16-bit random values.

Ciphertext analysis: To analyze ciphertext attacks, an ana-
lyst requires the key matrix to bitwise XOR the cipher image
[52]. For an eight-bit image having dimensions of 64 x 64,
the analyst requires (64 x 64)! combinations of eight-bit
values to decode the image. To crack the cipher images
in Section III-B of this article, analysts need to compute
(512 x 512)! combinations of eight-bit values, which is much
harder than cracking the key with a brute force attack.

C. NOISE AND OCCLUSION ATTACK ANALYSIS

During transmission or reception, it is possible that the infor-
mation may be affected by noises and can be tempered
over the insecure channel. A cryptosystem should be capable
to resist the attacks and recover the data up to a certain
level even after tempering in data [53], [54]. To validate
the robustness of the algorithm, we estimated the MSE
and PSNR by introducing Gaussian noise and occlusion
to transmitted content. The Gaussian noise analysis, hav-
ing normalized power 0.000001, 0.000003, 0.000005, and
0.000007, for the gray level transmitted image is depicted in
Table 7, and the occlusion analysis for the encrypted images
occluded by 1/8, 1/4, and 1/2, 3/5 are given in Fig. 12 and
Table 8.

By varying the noise strength from 0.000001 to 0.000007,
there seems to be a minute variation in the noise ratio and
the error estimation, which proves the robust efficiency of the
proposed structure against noise assaults.

The effects of MSE and PSNR after introducing occlusion
attack to encrypted images in Table 8 and the decrypted
images in Fig. 12 are indicating that the proposed algo-
rithm can withstand up to 50% occlusion attack. Hence, the
proposed method provides better security against noise and
resists the occlusion attack.
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(b)

(m) (0) ()
FIGURE 12. Occlusion analysis for the encrypted content of Airplane and Baboon images: (a-d) Encrypted Airplane image at grayscale with 1/8
occlusion in the top-left corner, 1/4 occlusion in the top-left and end-right corners, 1/2 occlusion in the diagonal, and 3/5 occlusion in the diagonal, mid
of top-right and end-left corners, (e-h) Corresponding recovered Airplane images; (i-I) Encrypted Baboon image at grayscale with 1/8 occlusion in the
third quarter of right position, 1/4 occlusion in the top-right corner and third quarter of right position, 1/2 occlusion in the top-right and end-left
corners, and 3/5 occlusion in the top-right, end-left, mid of top-left and end-right corners, (m-p) Corresponding recovered Baboon images.

TABLE 8. Occlusion attack analysis on the encrypted content.

Image Encrypted image Occlusion to encrypted image
1/8 1/4 12 3/5
MSE  PSNR MSE  PSNR MSE PSNR MSE PSNR MSE  PSNR

Airplane 10352.4 7.9804 6544.11 11.4483  4129.73 13.962 2856.50 15.1224  1808.58 17.9157
Baboon 7406.30 9.4688 5783.09 11.1241 3866.27 13.391 2588.43 15.543 1479.26 17.3846
Pepper 8507.19 8.8669 6208.81 11.6152  4017.90 13.5941  2645.01 15.4126 1410.98 17.2207
Lena 7875.38 9.2021 5799.14 11.2275  3906.77 13.2035  2422.16 15.725 1278.05 18.0109
D. DIFFERENTIAL ATTACK ANALYSIS likelihood of half-pixel modification [55], [56]. The variation
Differential attack analyses validated the developed algo- ~ within the k™ chunk of the transmuted content affects the

rithm’s quality based on the deviation of a single pixel within ~ corresponding encoded content’s k™ chunk. The number of
the relevant content by altering the encoded content with a  pixels change rate (NPCR) is bonded together to determine
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TABLE 9. NPCR analysis of encrypted content, and a comparison with the most recent strategy.

Image NPCR outcome Ref. [25]
Gray Red Green Blue Gray Red Green Blue

Airplane 99.784 99.612 99.871 99.881 99.88 99.79 99.81 99.87

Baboon 99.912 99.821 99.734 99.854 99.89 99.87 99.77 99.74

Pepper 99.861 99.833 99.855 99.689 99.86 99.78 99.84 99.76

Lena 99.863 99.862 99.806 99.827 99.85 99.84 99.81 99.79

TABLE 10. UACI analysis for encrypted content, and a comparison with the most recent strategy.
Image UACI outcome Ref. [60]
Gray Red Green Blue Gray Red Green Blue

Airplane 33.443 32.921 33.181 33.511 33.25 30.25 31.38 31.37
Baboon 33.460 33.531 33.229 33.119 - 29.93 28.63 31.38
Pepper 33.362 33.114 32.894 33.264 - 29.03 34.00 33.90
Lena 33.422 33.412 32.922 33.315 - 28.02 29.44 29.27

the unified average change intensity (UACI) to approximate
the negligible effect within the modified content compared
to encrypted information [57], [58]. To evaluate NPCR and
UACT estimations, let us consider two pieces of encrypted
content in which one is altered by a solo pixel.

E(k, 1)
NPCR = Zk,l .y X 100%, (25)

_ [0, Ttk =Ta(k,D)
where E(k, 1) = {1’ Tk D 2Tk D) -

X—1Y—-1 ‘Tl(k,l) - T2(k’l)/255‘

UACT =) )"

k=0 =0

x 100% ,
XxY

(26)

where T1(k, ) and T»(k, ) are the encrypted images, X and
Y are the height and width, and E is a two-dimensional
set similar to the encrypted image dimensions [59]. Eval-
uation of NPCR and UACI for the encoded content and a
comparison with the most recent strategy are illustrated in
Tables 9 and 10.

The outcome in Table 9 is legitimately near a seamless
estimation of 1, which indicates that the foreseen structure has
better results over the existing approach to opposing attacks,
whereas the UACI results in Table 10 show that the proposed
strategy’s outcome prevails over the existing approach and is,
to an incredible degree, sensitive to miniature modifications
within normal content, even if the two pieces of encrypted
content have a one-bit modification.

VI. CONCLUSION AND PROJECTIONS

In the next-generation frameworks, when adversaries will be
fully equipped with Al technologies, it is predicted that most
public-key image encryption schemes will be susceptible to
various threats. The proposed discrete logarithmic factorial
problem based public-key establishment scheme provides a
secure way to generate common keys on which an adversary
cannot bypass the protocol even with one of the secrets
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from key pairs is known. The virtual oscillator generated by
microstates of initial oscillators for the common secrets, on
the proposed public-key scheme, produces unique states to
generate diffusion in the plain data followed by a random
walk, comparable to quantum chaos, on inimitable points.
The performance and digital forensic assessments certified
the superior resistivity of the proposed method in compar-
ison to existing schemes to hostile attacks. The developed
structure in this article can be extended to applications of
already developed models, such as secure transfer of satellite
and drone imageries, low-profile mobile applications, audio-
video encryptions, etc., and we strongly believe that there is
room for further improvements to envisioned structures with
even better cryptographic properties.
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