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ABSTRACT Like other Artificial Intelligence (Al) systems, Machine Learning (ML) applications cannot
explain decisions, are marred with training-caused biases, and suffer from algorithmic limitations. Their
eXplainable Artificial Intelligence (XAI) capabilities are typically measured in a two-dimensional space
of explainability and accuracy ignoring the accountability aspects. During system evaluations, measures of
comprehensibility, predictive accuracy and accountability remain inseparable. We propose an Accountable
eXplainable Artificial Intelligence (AXAI) capability framework for facilitating separation and measurement
of predictive accuracy, comprehensibility and accountability. The proposed framework, in its current form,
allows assessing embedded levels of AXAI for delineating ML systems in a three-dimensional space. The
AXALI framework quantifies comprehensibility in terms of the readiness of users to apply the acquired
knowledge and assesses predictive accuracy in terms of the ratio of test and training data, training data
size and the number of false-positive inferences. For establishing a chain of responsibility, accountability
is measured in terms of the inspectability of input cues, data being processed and the output information.
We demonstrate applying the framework for assessing the AXAI capabilities of three ML systems. The
reported work provides bases for building AXAI capability frameworks for other genres of Al systems.

INDEX TERMS Explainable artificial intelliegence, accountable XAI, machine learning system design,

interactive graphical user interface.

I. INTRODUCTION

Experts from the domains of logic programming, automated
reasoning and software engineering are believed to lead Arti-
ficial Intelligence (AI) and Machine Learning (ML) system
design efforts [1], [2], [3]. Practitioners, usually less involved
in these efforts, find the prevailing eXplainable Artificial
Intelligence (XAI) frameworks algorithm-centric, neglect-
ing domain-specific needs and, missing practical explana-
tions [4]. Contemporary literature highlights several gaps in
computing experts’ view of eXplainable Artificial Intelli-
gence and practitioners’ explainability requirements [5], [6],
[7]. From practitioners’ perspectives, these gaps result in
(a) no or little utility of the system explainability features and
(b) users’ inability to interpret the given reasoning. Such gaps
inhibit automation of tedious practices and impede adoption
of Al systems [8], [9], [11], [12]. Statistical and probabilistic

The associate editor coordinating the review of this manuscript and

approving it for publication was Varuna De Silva

99686

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

explanations are considered limited and less effective [13],
[14]. The relevant literature suggests that the prevailing XAl
frameworks do not fully comply with the norms of reg-
ulatory bodies and industry [5], [6]. A proven method of
measuring the non-explainability of an Al or ML system is
not available yet [15]. As availability of better XAl frame-
works would boost user confidence in ML and Al systems,
attempts are underway to develop holistic XAl frameworks
[8], [9], [11], [12]. Since AI systems are still regarded as
difficult to understand, adopt and trust [16], several groups
and are engaged in holistic XAI framework development
efforts [17], [18], [19], [20].

This work posits that perceiving XAl in a two-dimensional
space of predictive accuracy and comprehensibility results in
mixing factors of accuracy, explainability and accountabil-
ity [1]. Such a convoluted representation does not help prac-
titioners, cannot fulfil regulators’ expectations and, offers
limited transparency for establishing a chain of responsibility
[81, [9], [10], [11], [12]. In order to formulate a better XAI
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FIGURE 1. The three-level Galois-lattices structure leading to
development of a holistic representation of explainability in ML and Al
system.

framework, we formulated a three-level (narrow and shallow)
Galois-lattices structure [21], shown in Fig. 1.

The Galois-lattices structure contains nine important
elements that allow separating the convoluted factors of
XAI This separation is achieved by constructing a three-
dimensional (3D) space using the nine terminal elements of
the Galois-lattices structure. The perceived 3D space com-
prises of three mutually perpendicular vectors: accuracy,
comprehensibility and accountability, each having the same
units of length [22]. Each of the three axes of this Accountable
eXplainable Artificial Intelligence (AXAI) space is an inde-
pendent vector in a Cartesian coordinate system. Hence, each
vector would be of the form: A = /a;i + azj + azk where
i, j and k are unit vectors. In this 3D AXAI space, quanti-
tatively separable vectors would allow for the deconvolution
of predictive accuracy, comprehensibility and accountability.
In Section III, Table 1 we report the data type and numerical
values assigned to each element of the three vectors. These
assigned values would determine the length of each vector in
the 3D space. Displaying these system attributes would make
it easy to quantitatively delineate various ML systems. This
novel approach was built upon prevailing XAl paradigms [1],
[31, [4], [6], [71, [81, [91, [11], [12], [13], [14] to propose an
AXALI capability framework to:

1) Provide an easy to incorporate AXAI capability frame-
work, mainly for ML systems;

2) Enable incorporating and measuring predictive
accuracy;

3) Enable incorporating and quantifying the level of com-
prehensibility of the system;

4) Enable incorporating and quantifying the level of
accountability of the system and;

5) Allow practitioners to visually and quantitatively
examine various pieces of information and easily assess
the system AXAI capability.

The AXAI capability framework, in its current form, is appli-
cable to the ML systems. Henceforth, any reference to the
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framework’s application would mean design and/or assess-
ment of ML aspects of Al systems. In the following sec-
tions, we demonstrate the framework application by assessing
and comparing three affective state classification systems.
As shown in Fig. 2, the AXAI capability framework would
allow for incorporating theoretical guarantees, empirical evi-
dences and statistical assurances in Al systems.

In order to present the theoretical foundations of the
AXALI and demonstrate its utility, this paper is organized
in seven sections. After introducing this work in Section I,
Section II provides a brief overview of the XAl related issues
citing relevant works. We establish theoretical foundations
of the proposed AXAI framework in Section III. The fol-
lowing Section IV demonstrates application of the proposed
framework in designing and assessing AXAI capabilities of
three ML systems. The three systems’ assessment results
are presented in Section V. The proposed framework and
its applications are analysed and discussed in Section VI.
Finally, Section VII identifies the possible directions of future
work and concludes this work.

II. ISSUES IN EXPLAINABLE ARTIFICIAL INTELLIGENCE
Issues pertaining to algorithmic biases embedded in ML
systems were first realized in the late 1970s [23]. Initial
ML systems had nothing but predictive accuracy to offer as
explanations. Later, it was realized that predictive accuracy
alone would not suffice dealing with biases. It was understood
that several embedded factors like the historical background,
political constraints, and institutional context of ML systems
also induce biases in ML system [17]. Such realizations are
still valid for all genres of Al systems including supervised
learning-supported classifiers, regression systems, unsuper-
vised learning-supported clustering and labelling systems,
reinforcement learning systems and deep neural networks.
With time, the importance of explaining inferences, proving
system accuracies, addressing accountability in the context
of Al systems has increased [25], [26]. Recently, govern-
ments and business entities have also started to emphasize
the need to account for the ethical implications of using
Al systems [5], [6]. A recent report jointly published by
the Ada Lovelace Institute, Al Now Institute and the Open
Government partnership lists some forty algorithmic account-
ability mechanisms and their respective jurisdictions [28].
Hence, XAI has emerged as a topic of interest for com-
puter scientists, Al theorists and practitioners across various
domains [8], [18].

Though rule-based expert systems and ML systems were
traditionally assessed on the basis of their predictive accu-
racy alone [29], recent developments made it possible to
delineate them in a two-dimensional space of orthogonal
axes viz., predictive accuracy and comprehensibility [30].
Consequently, ML systems are becoming relevant in solving
both routine and complex problems [31] and in some domains
they outperform humans and are becoming inevitable assets
[24]. Thus, ML systems are now being used in critical
tasks like disease diagnosis, psychological and psychiatric
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FIGURE 2. A three-dimensional representation of the AXAI capability framework, showing all quantifiable elements of system accountability,
comprehensibility and predictive accuracy in the three vectors. Each vector comprises of three unique elements. The proposed framework allows for the
quantitative assessment and delineation of ML and Al systems in the three-dimensional AXAI space.

assessments, loan approvals, autonomous driving and threat
analysis. Their critical roles and decisions might also cause
negative consequences [32]. Al theorists and practitioners
acknowledge that a measure of ‘accountability’ needs to be
added to Al-supported reasoning [1]. Hence, accountabil-
ity is becoming a new dimension that would transform the
two-dimensional space of predictive accuracy and compre-
hensibility [30] into a three-dimensional space.

Until now, incorporation of accountability features in Al
systems’ XAl capabilities is not common. For example, [29]
reported that accuracy of predictions and comprehensibil-
ity of knowledge provided bases for proposing a set of
criteria for delineating ML systems [2]. A weak criterion
was used to identify ML systems whose predictive perfor-
mance could improve using larger amounts of training data.
A strong criterion would identify systems that symbolically
provided reasons. An ultrastrong criterion was able to delin-
eate ML systems that would teach reasoning [2]. Building
upon these works, the description and scope of Al system
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comprehensibility was further refined in [3]. As evident in
IEEE standard P2840, researchers are trying to go beyond
the current XAl capabilities for building responsible Al
systems [33].

Accountability, in the context of Al systems, connotes
compliance with ethical, procedural and legal norms while
processing information, invoking rules and making deci-
sions [34]. A widely adopted definition of accountability
defines it as a relationship between an actor and a forum,
in which the actor has an obligation to explain and justify the
conduct. Also, the actor may face consequences [35] for the
impact of actions. Therefore, accountability is perceived as a
multi-factor issue that deals with transparency, interpretabil-
ity, post hoc inspection of outputs, pre- and post-market
empirical performances and system design processes [1].
The 2019 Algorithmic Accountability Act discussed in the
US senate required businesses to assess Al and decision
support system for risks associated with privacy and security
of personal information. The act also emphasized on assesing
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risks of ‘“‘inaccurate, unfair, biased, or discriminatory deci-
sions.” The act further asked businesses to address the out-
comes of Al systems’ assessments [36]. Several applicable
elements of Al system accountability could be extracted from
the bill. Furthermore, as Al systems now perform highly
critical tasks, they are also considered liable to adjudica-
tion, legislation and litigation [1]. For example, the use of
COMPAS, a system that assesses offenders’ criminogenic
needs and risks of recidivism instigated legal debate and
deliberations on accountability and lack of transparency in
Al systems [23].

Philosophically, explanation is the act of making some-
thing intelligible or understandable [36]. Explainability
in the context of Al-supported systems has been treated
as a core software engineering issue but accountabil-
ity is typically assessed in the context of application.
Thus, an intelligent tutor would be deemed responsible
for coaching and an autonomous vehicle would be held
accountable for safety-centred issues. Typical ML algo-
rithms rely on robust and accurate models based on the
given data. Nonetheless, during their application, these ML
systems fail to provide user-centred descriptions of how
models were developed and how inferences or predic-
tions were made. Incorporating acceptable, trustworthy and
explainable artificial intelligence poses many challenges,
mainly for application-related sensitivities and domain-
specific requirements of various professions. It has been
realized that practitioners’ inputs had been minimal in
an almost four-decade long journey - from relying on the
one-dimensional predictive accuracy to the integration of
explainability and accountability in Al-supported systems
[11, [2], [3], [33]. An added issue that complicates incor-
poration of explainability in ML systems is that any two
people would see the relevance and quality of explanations
differently. In recent literature, evaluation of explanations
is connected with data visualization techniques [37] as
stated in [13]. The Palo Alto Research Centre (PARC) pro-
posed incorporation of an interactive system for explaining
the capabilities of an XAI system that controls a sim-
ulated unmanned aerial system. The PARC posited that
system explanations should reveal all information used in
decision-making by showing that the system understood how
things worked and was aware of its goals. In order to achieve
these capabilities, the PARC’s Common Ground Learning
and Explanation (COGLE) initiative established the terms to
use in explanations and their meaning. The PARC used an
introspective discourse model, which interleaves learning and
explaining processes [13].

Based on the cited works, it could be argued that assessing
Al-supported systems in a two-dimensional space of explain-
ability and accuracy provides limited information on systems’
capabilities. Given the emerging roles and applications of ML
systems, a three-dimensional framework of AXAI capabil-
ity assessment that includes accountability is required. The
following section is dedicated to establishing the theoretical
foundations of a three-dimensional AXAI capability space.
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IIl. THEORETICAL FOUNDATIONS OF THE ACCOUNTABLE
EXPLAINABILITY (AXAI) CAPABILITY FRAMEWORK
Although several recent works discuss incorporating mea-
surable parameters of accountability and explainability [17],
[27], little work has been done for developing a holistic
framework and providing a set of quantifiable features to
assess the AXAI capabilities of a system. A framework for
assessing the AXAI capabilities must be built upon con-
siderations pertaining to personal, social, moral and legal
factors used to hold an individual accountable and liable for
explaining personal actions and decisions [41]. Significant
moral and legal factors that make a decision system liable to
explain decisions are [39]:

1) Significance of the impact (effect) of a decision on
others excluding the decision maker;

2) Possibility of contesting or overturning a decision;

3) Possibility of seeking compensation for damages
caused by the decision, and

4) Existence of doubts about any one or a combination
of: the provided information, the produced information
and the process of making inferences and decisions.

While suggesting enhancements to the prevailing XAI
capabilities, need for algorithmic accountability has been
highlighted in the recent works [19], [39], [40]. Account-
ability of an Al system would depend on the context of the
confronted issue [19]. For example, how a medical Al system
chooses which one of two patients should be treated first or
how a search and rescue robot would pick one of several
injured victims [41]. Hence, an ML system should be aware
of the context of ethical values and should have the capacity
to understand the moral consequences of its actions and deci-
sions [42]. Accountability should therefore be derived from
both information/data and the algorithmic approach [36]. The
employed algorithmic approach and data must be sensitive
to the context while making inferences and decisions [22],
[39], [41]. It is also argued that a system should be operated
in such a manner that the chain of responsibility is clear and
identifiable [25], [38].

In order to address such needs, our proposed AXAI frame-
work includes a system accountability vector comprising of
three components viz., inspectability of input data models or
cues, inspectability of data being processed, and inspectabil-
ity of output models or cues. In order to hold either a system
developer or a user accountable for the impact of system
decisions, relevant information must be presented to them in
a meaningful manner [42]. We posit that inspectability, in the
context of XAI, must allow users to examine the relevant
system details and let them determine if the system is able to
fulfil the decision-making requirements. Inspectability is also
referred to as verifiability and traceability in the literature and
is considered as one of the core features that ensure system
transparency [43], [44].

The proposed AXAI framework posits that system devel-
opers and system users should be able to inspect the input
data, important details on data being processed and the output
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information. Both developer and user would be expected to
understand, analyse and interpret the inspected data.

In the AXAI framework, an explanation is viewed as a
deductive argument containing universal laws. Following this
premise, the explainability vector comprises of the inspection
time, the predicate recognition time and the time required
to recognize or connect with a situation. The three factors
of explainability improve user understanding of the situation
(contextual inference) - from superficial knowing to a deeper
knowing. In explainability, the inspection time serves as a
substitution for incomprehension [28]. The predicate recog-
nition time is grounded in the idea that humans understand
an encountered situation by mapping the situation to those
situations they would have encountered in the past. The last
factor, the predicate naming time represents the time required
to recognize or connect with a situation reflecting on system’s
ability to provide readily understandable explanations.

The predictive accuracy of a system in our AXAI frame-
work includes three factors viz., ratio of the test data size
and the training data size), the training data size and the
number of occurrences of false-positive results. The ratio of
test and training data informs how well a model performs on
new data that were not used during the model development
and system training [45]. The size of training data is impor-
tant, as sufficient data are required for both developing an
ML model and evaluating the model with a high degree of
confidence. Without an adequately sized dataset, it will be
dangerous and difficult to generalize results. Several good
practices have been recommended for determining the ade-
quecy of the validation dataset. For example, power calcu-
lations can be helpful for determining the sample data size
that would be required to confidently evaluate the ML model
performance and compare the model with a pre-determined
baseline [46]. In addition, in the context of ML systems,
the cross-validation approaches need a particular minimum
size of the training data. In the absence of sufficient data for
training and evaluating a model, making meaningful forecasts
would not be possible. However, the required minimum size
of the training data varies with the complexity of the model
[45]. The last factor, occurrences of false positive results,
helps in estimating the risks associated with a model [47].
The three components of accuracy vector work together to
inform system developers and users on the perceived accu-
racy of the model and various inferences made using the
model.

A. THE THREE-DIMENSIONAL SPACE OF ACCOUNTABLE
EXPLAINABILITY (AXAI)

Building upon previous works [1], [3], [13], [14], [28], [38],
we propose an AXAI capability framework for effectively
incorporating accuracy, comprehensibility and accountability
in ML systems. Following subsections discuss assumptions,
definitions and hypotheses leading to the design of our pro-
posed AXAI capability framework. These assumptions and
definitions were inspired by and adopted from the relevant
literature [3], [10], [28], [29], [49], [50].
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We assume that an ML system is a definite program P.
Our definition of a definite program considers P as having a
set of stages or series of steps that help in transforming a set
of inputs into some desired outputs [28]. This definition of
‘P also considers a system as a holistic system comprising of
one or multiple systems, sub-systems or algorithms, capable
of producing the desired outputs that enable making infer-
ences and decisions [28]. Such systems include: supervised
learning-supported classifiers and regression systems, unsu-
pervised learning-supported clustering and labelling systems
and, reinforcement learning systems including deep neural
networks. Therefore, such a system would include definite
symbols, definite functions, definite propositions, definite
predicates, logical symbols, object variables and proposi-
tional variables [48], [50].

In the following sections, C denotes a constant, p repre-
sents a predicate symbol and $ shows a human population
having an individual human represented as ‘s’. In this paper,
V shows a first-order variable and B is the background
knowledge. A human possessing the background knowledge
B is considered tantamount to a definite program P. D,
denotes a definition D having a number n and D in this
paper denotes a domain. Having these notations borrowed
fromm the previous works [7], [38], [41], [48], the following
subsections describe all measurable parameters belonging to
each of the three vectors forming the 3D AXAI measurement
space shown in Fig. 2.

B. DEFINITIONS

DI: A predicate symbol, usually called in queries, is such that
p € P. Declared in a ML system (P) is p, which is public
with respect to a human population $ if p forms part of the
background knowledge B of each human s (s€ $). Otherwise,
p is a private predicate symbol contained in P.

D2: Let H be a system. If the background knowledge B of
‘P is extended such that B U H is formed, then the predicate
symbol p € P becomes a predicate invention since p was
originally defined in H but not in B.

D3: The AXALI capability denoted by Caxas is a repre-
sentation in a three-dimensional space. We posit that Caxas
comprises of three independent vectors: C (comprehensibil-
ity), P4 (predictive accuracy) and S4 (system accountability).
Also, each one of the three vectors C, P4 and S4 comprises
of three independent components whose details are given in
the following definitions D4 — D6C.

D4: The comprehensibility C of P in the context of a
human population S is represented as C(S, P) where C is
a vector comprising of three components: the inspection
time (7} ), the predicate recognition time (7),) and the time
required to name a predicate (T,,) such that:

CES,P)=/(T;+ T2 +T2) )
Here naming, an important goal of learning, means express-
ing the “‘object-property” relation, and naming object and/or
groups of objects. Hence, the comprehensibility of P in the
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context of AXAI refers to the mean readiness (IR) of a human
s (s € §) for applying the knowledge given in program P to
assign a public name to a new definition g with respect to the
domain D after inspecting P for times Tj;, Ty, and T, It is
worth mentioning that clustering, primarily an unsupervised
method can also be combined with supervised learning in
a system such that each cluster can be given an intended
definition [49].

D4A: The inspection time (7}) is the mean time that a
human s (s € S) requires for inspecting the information pre-
sented by P before using the knowledge provided by P for
solving a new problem within the domain D.

D4B: The predicate recognition time (7}, ) is the mean time
that a human s (s € $) requires for assigning a correct public
name to a predicate symbol p within the domain D.

DAC: The predicate naming time (7,,,) is the mean time that
a human s (s € S) requires for naming a predicate symbol p
presented as a privately named definition g within the domain
D for correctly assigning a public name to the predicate
symbol p after inspecting P.

D5: The predictive accuracy P4 of a system P with respect
to a human population $ and a domain D is represented as
PA(S, P) where P4 is a vector comprising of three compo-
nents; 1y (the ratio of test data size and training data size),
dyy (the training data size) and Oy, (number of occurrences
of false-positive results) such that:

PAS. P) = \[r i+ d3y + O}, @

The predictive accuracy in the context of AXAI refers to the
mean ability (A) of a human s from a population S to correctly
name a predicate symbol p presented as a privately named
description g with respect to the domain ID.

D5A: The ratio of the size of data used for testing and
training the system P, expressed as ry—;, With respect to
a domain ID is an indicator of the level of rigour ILg;, applied
in training and testing the program P for enabling correct
naming of a predicate symbol p represented as a privately
named definition g within a domain D.

D5B: The absolute size of data (dy;) used in training an Al
system P, with respect to a domain D is an indicator of the
exposure of the program P for correctly naming a predicate
symbol p represented as a privately named definition g within
the domain ID. The value associated with dy, indicates the
ability of P to identify variations in new samples of data
belonging to the domain D.

D5C: Occurrences of false-positive naming of predicate
symbols p,(n = 1,2,3,...,n) presented as named defini-
tions g,(n = 1,2,3,...,n) observed while testing a sys-
tem P is expressed as Oy,. In the context of AXAI O, is
an indicator of the ability of the system P to compare the
models used in its training with models of new and unknown
symbols belonging to the same domain. The magnitude of Oy,
therefore indicates the level of errors built into the system P
for accurately naming a predicate symbol p represented as a
named inference g with respect to a domain D. Please note
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TABLE 1. The AXAI capability assessment parameters and their data
types proposed for estimating the explainability attributes and
determining the overall AXAI capability of definite programs.

S No. Parameter Measure

1. The norm of the vector of comprehensibil- | Integer
ity [IC]

2. The norm of the vector of predictive accu- | Integer
racy [|PAll

3. The norm of the vector of system account- | Integer
ability IS ll

4. The inspection time (77;) Score (integer)

5. The predicate recognition time (7',,) Score (integer)

6. The predicate naming time (7,) Score (integer)

7. The ratio of the test data and the training | Score (integer)
data(rrs—rm)

8. The absolute size of the training data (d;,) | Score (integer)

9. The number occurrences of the false- | Score (integer)
positive naming (Oyp)

10. The mean score of inspect-ability of input | Score (integer)
signals (1;,)

11. The mean score of inspect-ability of the | Score (integer)
processed data (1p0)

12. The mean score of inspect-ability output | Score (integer)
cues (lout)

that, to the best of authors’ understanding, the cited literature
highly recommends integration of a human component in
assessing the system accuracy [27], [29], [30], [48].

D6: The system accountability Sq of a system P with
respect to a human population $ is represented as Sa(S, P)
where S4 is a vector comprising of three components: [;,
(inspectability of input models or cues), I, (inspectability
of data being processed) and /,,, (inspectability of output
models or cues) such that:

Sa($.P)= I + 12, + 13, 3)

m

The system accountability in the context of AXAl refers to the
mean accuracy with which a human s (s € S) can realize any
occurrences of constants C, predicate symbols IP and variable
V to correctly recognize a new definition with respect to the
domain D.

D6A: The mean score of inspectability I;; of input mod-
els/cues, supplied as named definitions g,(n = 1,2,3, ..., n)
to a program P is an indicator of the mean clarity observed by
a human s (s € $) with which s would inspect the definition ¢
before g is named as a predicate symbol p with respect to the
domain D. Therefore [, reflects on the form and format of
the input models/cues with definitions ¢;(i = 1,2,3,...,1)
and predicate symbols p;(j =1, 2,3, ..., ).

D6B: The mean score of inspectability of data after being
processed, I, in a program/system P is an indicator of the
mean clarity of the processed (or conditioned) definition ¢
as observed by a human from a population S(s € $). Hence
mean I, is the mean clarity with which a human s inspects
the processed form of definition of g before ¢ is named as a
predicate symbol p with respect to a domain ID. Therefore I,
reflects on the form and format of the intermediary models
of definitions ¢g,(n = 1,2,3,...,n) while any g, is being
transformed into a predicate symbol p.
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FIGURE 3. The high-level system architecture of the ASAM highlighting how signals {X;, X,, X3} traverse through the system in the processing and output
stages. The mechanism of displaying various information and the nature of data displayed to users via the graphical user interface (GUI) are shown

in Fig. 4.

D6C: The mean inspectability score of output signals I,
provided by P is an indicator of the mean clarity of the
definition g as observed by a human s (s € $) with which s
would inspect the output definition of ¢ for naming it as a
predicate symbol p with respect to a domain ID. Therefore,
this parameter reflects on the form and format of the output
models/cues of definitions ¢,(n = 1,2, 3, ..., n) after g is
processed by the program P.

C. HYPOTHESES
We now present the set of hypotheses that enable the assess-
ment of an ML program P in terms of its AXAI capability.

Hypothesis 1: The comprehensibility (C) in the context
of AXAI capability refers to the mean readiness (R) of a
human s to use the knowledge gained after understanding the
program P to accurately solve new problems in a domain
D. We hypothesize that comprehensibility is directly propor-
tional to the mean readiness of s (s € S) : CooR.

Hypothesis 2: The larger the norm of the comprehensi-
bility vector ||C||, the more comprehensible an ML program
P is.

Hypothesis 3: The predictive accuracy (P4) of a human s
from a population S to correctly name a predicate symbol p
given as a privately named definition g is directly proportional
to the mean ability (A) of an individual s (s € S) : P400A.

Hypothesis 4: The larger the norm of the predictive accu-
racy vector || P4 || of a definite program P the better predictive
accuracy P offers.

Hypothesis 5: The system accountability (S4) refers to the
mean accuracy (A..) with which a human s from a popu-
lation S (s € S) recognizes any occurrences of constant C,
predicate symbol [P and variable V to correctly recognize a
new model belonging to the domain D : S400A .

Hypothesis 6: The larger the norm of the system account-
ability vector ||S4 || of a definite program P the better the level
of incorporated accountability in the program P.
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Hypothesis 7: The inverse of the mean time — that a
human s (s € $) requires for inspecting the 1nf0rmat10n
presented by the program P before using the knowledge
provided by that P for solving a new problem in domain D,
is directly proportional to the presentation quality (Q,) of P
given as TL”oon.

Hypothesis 8: The inverse of the mean predicate recog-
nition time 7— that a human s (s € $) requires to assign a
correct pubhc name to a predicate symbol p in a system is
proportional to the ability (A,) of recognizing and accurately
assigning a public name to a predicate symbol p. Hence,
ﬁooAp. Note that an incorrect assignment of a public name
to a predicate symbol should not be counted and considered
in assessing a system.

Hypothesis 9: The ratio of the size of test data and the size
of the training data (745s—#+) of a program P is directly pro-
portional to the level of rigour (ILg;¢) applied in training and
testing P with respect to a domain ID, hence, 715 —1mO0LLR;g.

Hypothesis 10: The mean score of inspectability of data
after being processed (I,,,) shows how understandable the
intermediary data representation/models (IF,,,4) in a definite
program P are. Thus, 1,,,00F04.

Hypothesis 11: The instances of the false-positive naming
of predicate symbols with privately named definitions Op,
indicate the level of errors Ep, built into the program P with
respect to a domain D, hence, Op,00E},.

Table 1 presents a complete list of measurable parameters
used to determine the overall AXAI capability of a definite
program P.

IV. ASSESSING AXAI CAPABILITIES OF THREE ML

SYSTEMS
In order to test the relevance of the AXAI capability frame-

work, the AXAI scores of three ML systems were calculated.
The following subsections present details of the three ML sys-
tems whose Caxa; scores were estimated using the proposed
AXAI framework.
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TABLE 2. Guidelines for assessing, scoring and determining the AXAI capabilities of the three definite programs. The ASAM and ASAM-2 use multimodal
input (facial expressions and speech cues) and the DAS uses facial thermal variations to analyse and recognize affective states.

Scoring Criteria
S No. | Parameter 0.0-1.0 2.0-3.0 4.0-5.0
4 Inspection Time Information appears to be very diffi- | Information takes some efforts and | Information is easy to understand
cult and takes a long time to under- | time to understand with minimal efforts
stand
5 Predicate Recogni- | A human would take very long time | A human would take some time to | A human would quickly interpret the
tion Time to interpret the output interpret the output output
6 Predicate Naming | A human would take very long time | A human would take some time to | A human would quickly name an-
Time to use the inferences for naming an- | use the inferences for naming another | other predicate within the domain us-
other predicate within the domain predicate within the domain ing the inferences
- 0:0.1 < reg—srn <09 2:2.1 < 1 £ 3.0 4:4.6 <rig—m <49
7 Roat/Training  Data 11 1.0 < fyggm < 2.0 330 < g <45 5 Figram = 5.0
P 0 diyn < Snpames 2 10nuames < dirn < S0npames 4 1 100n3ames < dirn < 1000names
8 Ilrfl.elléllr;ge Data Abso 1: Snnames < dtm < lonnames 3: Sonnames < drrn < loonnamm‘ 5: dtrn > looonnames
9 E .. 0: Oyp 2 50% of the time 2:30% < Ofp < 40% of the time 4:10% < Ofp < 25% of the time
alse-positive nam- |y 450, 0 < 509% of the ti 3:25% < Oy < 30% of the ti 5: 0y, < 10% of the ti
. : o p < 0 of the time 3: o < Ofp < 0 of the time 1 0fp < 0 of the time
ing occurrences
10 Inspect-ability of in- | Explanations are not clear to users Explanations are somewhat clear to | Explanations are clear to users
put signals users
11 Inspect-ability ~ of | Intermediate data cannot be seen or | Some of the intermediate data cannot | The intermediate data can be seen or
intermediate  data | cannot be interpreted be seen or cannot be interpreted interpreted
stages
12 Inspect-ability ~ of | Output information is nondescript | Output information is some-what de- | Output information is descriptive and
output signals and hard to understand/interpret scriptive and takes some time to un- | easy to understand/interpret
derstand/interpret

A. AN AFFECTIVE STATE ASSESSMENT MODULE (ASAM)
The first assessed ML system was designed to have the
proposed AXAI framework built into it. The Affective State
Assessment Module (ASAM) is a multimodal definite sys-
tem [53] implemented as a portable affective state assessment
sub-system for integration into robotic systems. The tested
version of the ASAM is an improved system of our previously
developed and published system [53]. The ASAM was devel-
oped for real time multimodal analysis of facial expressions
and speech for assessing affective states. The design and
implementation of the ASAM is detailed in an accompanying
paper entitled “Toward Accountable Explainable Artificial
Intelligence Part two: The Framework Implementation” pub-
lished in this journal [55]. The provisions of explainability
and accountability in the ASAM were ensured by adding the
AXAlI features listed in Table 1. Figure 3 shows the high-level
architecture of the ASAM.

As the ASAM was designed to showcase AXAI
capabilities in an affective state assessment system, it pro-
vides transparency by showing the input and feedback
data and graphical and tabular information. As such, it is
capable of providing users with scrutiny and debugging
opportunities. The explanations are made available through
display of Bayesian probability measures and high-level
feature attributions. The three components of accountabil-
ity viz., inspectability of input cues, inspectability of data
being processed and inspectability of output cues were built
into an intuitive and user-centered Graphical User Interface
(GUI). Figure 4 shows input, data under processing and
output information that ASAM presents to users through
its GUL
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B. ASSESSMENT OF THE AXAI CAPABILITIES OF ASAM
Ten qualified industry professionals and postgraduate stu-
dents who were well-versed with ML and other Al-supported
systems had volunteered to assess the AXAI capabilities of
the ASAM. The parameters outlined in Table 1 were used for
assessment of the AXAI capabilities. During an introduction
session, these assessors who were educated in the fields of
engineering, social science and psychology were briefed and
informed on the objectives and outcomes of the assessment.
After the briefing, participants were given ASAM’s system
user manual. Assessors had the opportunity to use the ASAM
before starting to assess its functionality. The ASAM asses-
sors tested the ASAM for an average time of twenty minutes.
While testing, assessors awarded scores for parameters 4-6
and 10-12 on a 0-to-5 scale detailed in Table 2. Assessing
the ASAM on parameters 7-9 was not required as these
scores were supposed to be provided by the team of system
designers. The scores were normalised and converted to unit
vector forms (in the range of 0 to 1) allowing to delineate the
AXAlI-capabilities of the ASAM in a 3D space as discussed
in previous sections and visualised in Fig. 2.

C. AN ENHANCED AFFECTIVE STATE ASSESSMENT
MODULE ASAM-2

The second system tested for its AXAI capabilities was
a modified and enhanced version of the ASAM called
ASAM-2. We designed ASAM-2 as a continuous assessment
tool capable of classifying 114 unique states across affec-
tive speech and facial expression signals using a hierarchi-
cal classification approach. In ASAM-2, a combination of
42 ternary/binary models was used. Similar to its predecessor,
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FIGURE 4. (A) The ASAM GUIL. The home screen shows the mechanism of displaying the input information. The GUI shows data pertaining to all three
input signals. This figure also shows how the lower-level functions of the system can be accessed from the home window (shown in Figure 4B). This GUI
window is shown to users upon execution of the software. The image shown in the frame was taken from the RAVDESS dataset [56]. (B) The shown
windows help in monitoring the ASAM’s and allow inspecting the processing and output information. Note: CYAN = Facial Expression Analysis,
ORANGE = Linguistic Analysis, PURPLE = Paralinguistic Analysis and LIME = Multimodal Analysis. All windows are executed on separate threads
allowing for parallel processing and viewing of information.

ASAM-2 is a real-time embedded system capable of being phases, affective state intensities and discrete affective state
added to an existing robotic system for affective state assess- models. As shown in the flowchart in Fig. 5, all classification
ment of humans. results and intermediate information are displayed to the

At each level of classification, ASAM-2 uses different user via the GUI. The GUI in ASAM-2 was improved and
decision-making protocols to discern between the affective redeveloped from the ground-up and was different to those
states. ASAM-2 uses data on: affective state groups, temporal shown in Figs. 4A and 4B.
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FIGURE 5. Flow of execution and a high-level description of ASAM-2. The hierarchical architecture shows various steps leading to classification of
affective states in ASAM-2. During the process the originally invisible, intermediate and processed data stages are gradually revealed to users through the

GUI. Each stage of the classification process is shown to users.
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FIGURE 6. The flow of execution is DAS and a visual description of its functional architecture. The white boxes show visible and inspectable information.

The blue boxes show the back-end, invisible processes and information.

The decision to expand the classification capabilities and
reveal ASAM-2’s decision-making processes was at the core
of its design process. Thus, ASAM-2 has enhanced levels of
accountability and comprehensibility vis-a-vis maintaining a
high degree of classification accuracy. Through an iterative
design process and feedback received during the ASAM
assessment, ASAM-2 was equipped with improved AXAI
capabilities. Results are discussed in section V to inform
readers about ASAM-2’s AXAI capabilities.

D. ASSESSMENT OF ASAM-2’s AXAI CAPABILITIES
ASAM-2 was assessed by eight trained assessors. The
assessors who volunteered for ASAM-2’s assessment were
well-trained and had professional background in applied
science, engineering, and behavioural studies. All assessors
were given a brief to introduce ASAM-2 before providing
them access to ASAM-2. On average, assessors spent approx-
imately 17 minutes in assessing ASAM-2 AXAI capabilities.
Table 5 highlights the 5-point scores given to ASAM-2 by the
users while assessing its AXAI capabilities.

E. A SYSTEM FOR DYNAMIC ASSESSMENT OF AFFECTIVE
STATES AND AROUSAL LEVELS

A third ML system tested for its AXAI capabilities was
also a definite program that was designed to work as a
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two-step system of dynamic assessment of affective states
and arousal levels called DAS [54]. It uses thermal infrared
images (TIRI’s) of facial expressions and was not designed to
have AXAI capabilities built into it. Hence, post-production
assessment of AXAI capabilities was performed in this case.

The DAS would first analyse TIRI’s for examining the
ha@modynamic variations caused by changes in affective
states. The algorithmic execution of DAS starts by analysing
the h&emodynamic variations along the facial muscles. The
observed variations are used to estimate the affect induced
facial thermal variations. In the first step, ‘between-affect’
and ‘between-arousal-level’ variations are subject to Princi-
pal Components Analysis (PCA). The most influential princi-
pal components are then used to cluster the features belonging
to different affective states. Subsequently each set of ther-
mal features is assigned to an affective state cluster. In the
second step, the affective state clusters are partitioned into
high, medium and mild arousal levels. The distance between
a test TIRI and centroids of sub-clusters at three arousal
levels belonging to a single affective state, identified from
the first step, is used to determine the arousal level of the
identified affective state. Figure 5 shows the flow of execution
in DAS - white boxes show the visible and inspectable infor-
mation and blue boxes show the information hidden in the
program.
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F. ASSESSING AXAI CAPABILITIES OF THE DAS

A postdoctoral fellow and seven postgraduate students who
were trained in Al and ML volunteered to assess the AXAI
capabilities of the DAS. As in the previous cases, the AXAI
capabilities were assessed using parameters listed in Table 1.
All volunteers were informed on the objectives and outcomes
of the assessment and were also given the program code,
the executable program, relevant data and publications. The
average time each assessor spent on running and testing DAS
was recorded to be 27 minutes. As in the previous cases,
assessors awarded scores for parameters 4-6 and 10-12 on a
0-5 scale as highlighted in Table 4.

V. RESULTS
A. AXAI CAPABILITY ASSESSMENT OF THE ASAM

The predictive accuracy components given in Table 2 were
known to the system developers as they were designing the
ASAM for having the AXAI capabilities. The test/training
data ratio (ryr—sm) of the ASAM was kept as 80 : 20. A sim-
ilar ratio had been used in some previous works [53], [54].
The ASAM’S ryr—sm Score therefore resulted in a normalized
value of 1.0.

The ASAM used 700 facial images from the extended
Cohn-Kanade (CK+) dataset [59] and 1400 speech sam-
ples from the Toronto Emotional Speech Set (TESS) [60]
to train the facial expression and paralinguistic speech clas-
sifiers. The facial expression classifier contained approxi-
mately 100 samples per label (7 labels/classes) giving a score
of 4/5 = 0.8. In comparison, the paralinguistic speech
classifier contained approximately 200 samples per class
(7 labels/class) hence it would score a 4.11/5 = 0.822,
calculated by mapping the range of 100 — 1000745 per
class to a score range of 4-5 as per Table 2. The average
score for the dy, parameter for the ASAM was therefore
4.055/5 resulting in a normalised value of dy,, = 0.8111.

The false-positive naming occurrences ‘Op’° could
be determined during validation tasks. The ASAM’s
paralinguistic speech and facial expression classifiers
were validated on the Ryerson Audio-visual Database of
Emotional Speech and Song (RAVDESS), a multimodal
dataset containing affective speech and facial expression
data [56]. The data were unknown at the time of training,
thus the validation experiments provided test results on the
ASAM’s ability to assess foreign and real-life data. Through
validation tasks, the ASAM achieved predicate naming errors
of 22.71% and 18.90% respectively for the facial expression
and paralinguistic classifiers. Hence, an average naming error
of 20.805% resulted in a score close to 4 being observed.
Specifically, the Oy, was calculated to be 4.2797 = 0.8559.
Given ry5—yn = 1.0, dypy = 0.811 and Oy, = 0.8559, as per
(2) the norm of the predictive accuracy vector was:

PA(S’ P) = \/rtzst—trn + dt%’n + O%p
V12 4+ 0.8112 + 0.85592

V1 +0.657721 + 0.732565
= 1.54606
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The score parameters 4-6 and 10-12 in Table 1 were
respectively used to determine the system accountability and
comprehensibility vector norms. The mean values were deter-
mined through user experiences and surveys of the system.
The system comprehensibility was found to be greater than
system accountability as reported in Table 3. The ||C]|| and
[|Sa]| values were calculated using equations (1) and (3).

The data in Table 3 highlights very good comprehensibility
results for the ASAM, with inspection time ‘Tj;” being the
highest, (average score T;; = 3.95). The lowest component
in terms of comprehensibility was the predicate naming time
(average score T, = 3.05). Given user responses, the general
feedback suggested that predicate naming was more difficult
and time consuming for assessors when compared to other
comprehensibility factors and should be addressed for future
works.

We found the system accountability scores to be compar-
atively lower than the scores for comprehensibility, specif-
ically in regard to the inspectability of the data processing
stages ‘Ip’. User feedback suggested that while the ASAM’s
rule-based expert system output showed how a combination
of signals could be used to report a multimodal output, the
ASAM could be improved by providing a better display of
the processed data for the facial expression, paralinguistic
and linguistic channels. In comparison, the inspectability
of inputs and outputs were received positively, highlighting
the ASAM’s ability to report the system’s initial and final
states.

The ASAM’s GUI, shown in Fig. 4, was designed to dis-
play some processed data stage information in the form of
associated weights of the rule-based expert system output.
Applying weight numbers to facial expression, paralinguis-
tic and linguistic speech classification results allows for the
display of tabular and graphical rule-based system outputs
i.e., the transformation of data from input, to processed, to
output.

Using the reported scores and the consequential location of
the ASAM within the 3D space of C, P4 and S4, we concluded
thatimproving 1, -related features would greatly enhance the
user experience and AXAI capabilities of the system. In sum-
mary, the ASAM’s scores for comprehensibility, predictive
accuracy and system accountability were respectively: C =
1.203, P4 = 1.546, and S4 = 1.139. Thus, the three vector
norms provide an estimate of the ASAM’s AXAI capabilities,
allowing us to visualise the ASAM’s position within the 3D
axes as shown in Fig. 7.

Using these results, we could compare the AXAI capa-
bilities of the three systems in terms of their levels
of explainability, predictive accuracy and comprehensibil-
ity. However, the accountability score suggests that more
attention should be paid to the ASAM’s accountability
components. The estimated S4 score suggested that the infor-
mation being processed I, will not suffice user require-
ments. Overall, the proposed framework provided a practical
and easy to follow method of assessing the AXAI capabilities
of the ASAM.
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TABLE 3. The ASAM users’ AXAI capability scores on a 0-5- scale and the normalised scores. These user scores were used to determine the ASAM’s

accountability ‘S," and comprehensibility ‘||C||" capabilities.

User ID
S Symbol 1 2 3 4 5 6 7 8 9 10 Average using 5 | Normalised
No. Point Score Average Score
1 [ICIl 1.203
3 IS all 1.139
4 T; 4 4 4 4 5 35 4 5 4 2 3.95
5 Tpr 5 3 3 4 3 3 4 4 1 2 32
6 Tpn 3 3 3 2 4 35 3 5 2 2 3.05
10 Lip 4 5 3 3 2.5 3 3 5 2 5 3.55
11 Ipro 2 1 2 3 0 2 2 4 2 1 1.9
12 Tout 3 4 4 3 5 4 4 5 3 3 3.8

TABLE 4. Users’ experience scores and their normalised scores for ASAM-2 on a 0-5 scale. These scores were used to determine ASAM-2's system

accountability ‘S,” and comprehensibility ‘||C||" capabilities.

User ID
S Symbol 1 2 3 4 5 6 7 8 Average using 5 | Normalised
No. Point Score Average Score
1 [ICIl 1.275
3 IS all 1.453
4 T; 3 5 3 5 5 4 3 4 4.0
5 Tpr 5 3 3 3 4 3 1 4 3.25
6 Tpn 5 5 2 4 4 4 2 4 3.75
10 Iin 5 5 4 4 4 4 4 5 4.38
11 Ipro 5 3 2 4 5 3 3 3 35
12 Tout 5 5 4 4 5 5 4 5 4.63

TABLE 5. Users’ experience scores for DAS on a 0-5 scale. Normalised scores are also reported in the table. The reported scores were used to assess

accountability ‘S,” and comprehensibility ‘||C||" capabilities of the DAS.

User ID
S Symbol 1 2 3 4 5 6 7 8 Average using 5 | Normalised
No. Point Score Average Score
1 [|C]| 0.333
3 IS all 0.489
4 T; 0.5 1 1 0.5 1 1 1 1 0.87
5 Tpr 0.2 0.2 0 0.1 0 0 0 0 0.06
6 Tpn 0.5 1.5 0.5 1 2 1.5 2 2 1.37
10 Iin 1.5 2 2 2 2 2 2 2 1.93
11 Iyro 0 0 0 0 0 0 0 0 0
12 Tow 1.5 2 2 1 1 2 1 1 1.43

B. AXAI CAPABILITY ASSESSMENT OF ASAM-2

Deriving the predictive accuracy vector components: Firstly,
the test/train data ratio ‘ry—z,," was kept at 80 : 20 similar
to the ASAM, resulting in a normalized score of 1. The
RAVDESS dataset was used for both training and valida-
tion of the facial expression and paralinguistic classification
subsystems. The facial expression classifiers were trained
using approximately 1500-2500 samples per class (total =
76270 samples) giving it a dy,,, score of 5/5 = 1.0. The paralin-
guistic speech classifiers in comparison, were trained using
96 samples per class (total = 3744 samples) thus achieving a
score of 3.92/5 = 0.784, which was calculated by mapping the
range of 50-1007,,4,¢s per class to a score range of 3-4. Thus,
the average dy;, score for the ASAM-2 was 4.46/5 = 0.892.
Finally, the Oy metric can be derived through validation
tasks, with ASAM-2 achieving respective naming errors of
16.93% and 4.10% for facial expression and paralinguistic
speech classifiers, resulting in an average naming error of
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10.52% across the systems classifiers, which equates to a
score of 4.965/5 = 0.993. Given: riy_yy = 1.0, dyyy =
0.892 and Op, = 0.993, ASAM-2’s predictive accuracy is
calculated using (2) as:

PAGS. P) =\ "y + d3 + O

V12 40.8922 4 0.9932
= /1 + 0.795664 + 0.986049
= 1.66785

The scores derived in Table 5 determine ASAM-2’s
comprehensibility and system accountability scores i.e.:
C = 1275 and S4 = 1.453, we can see that the
changes made throughout the design process using feed-
back from the ASAM shows significant improvements in
all three vectors when we compare their scores. Most sig-
nificant, is the improvement in the predicate naming time
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Ty’ (3.05 — 3.75) and the inspect-ability of data process-
ing stages ‘I, (1.9 — 3.5), which significantly enhanced
the user experience, and ultimately showed how the AXAI
framework could be used to improve the usability, trans-
parency and explainability of Al and ML systems.

Deriving the S4, P4 and C scores for the ASAM, ASAM-2
and DAS discussed earlier allow how to plot them within
a three-dimensional AXAI space and compare their AXAI
capabilities as visualised in Fig. 7. Analysing this figure,
we see that ASAM-2 has the highest level of AXAI capability
compared with the other two systems. We could see how
ASAM was improved in terms of the nine factors of the
proposed AXAI capability framework. It could be argued
that the proposed AXAI capability framework provided a
systematic method of assessing and comparing ML systems
for their respective levels of accuracy, accountability and
explainability.

C. AXAI CAPABILITY ASSESSMENT OF THE DAS

The AXAI capability assessment results for DAS are given in
Table 4. The predictive accuracy parameters were estimated
using the system training and testing data. The test/training
data ratio (rs—sm) of the DAS was 1:1 [54] resulting in a
score of 5.0 (normalized value of 1). The training data size
dyn parameter score for the DAS was given as 2.0 and the
score for occurrences of false positive results, Op, was 4.0.
Based on these parameter values, the predictive accuracy (P4)
of DAS was:

PS8, P) = \/rtzst—trn +diy, + O%p

= V12+0.4% +0.8?
V1+40.16 +0.64
= 1.3416

The data in Table 4 suggest that DAS had a low level of
comprehensibility and a less than average level of account-
ability. However, being a statistical classifier, it was able to
offer a high level of predictive accuracy. Specifically, through
the DAS scores, we report comprehensibility, predictive accu-
racy and system accountability values of: C = 0.333, P4 =
1.342, and S4 = 0.489.

V1. DISCUSSION

The three definite (ML) programs assessed in the preced-
ing sections were fundamentally different. The first system
(ASAM) and its enhanced version ASAM-2 were designed
to have the AXAI capability incorporated in them. ASAM-2,
being an improved version of the ASAM, had improvements
leading to better levels of accountability and comprehensibil-
ity. The third program (DAS) was a basic classification and
clustering system that was not designed to have the AXAI
capability incorporated. Despite their fundamental differ-
ences, the proposed AXAI capability framework allowed for
assessing the three programs in terms of predictive accuracy,
comprehensibility and accountability. Delineating the three
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FIGURE 7. The AXAI capabilities of the ASAM (BLUE), ASAM-2 (ORANGE)
and DAS (GREEN) systems are compared to show how the AXAI
framework helps in assessing various ML systems. The three system are
plotted in the tree-dimensional AXAI space. The placement of each circle
shows system scores along the axes of comprehensibility, accountability
and predictive accuracy making it easy for the system developer and
system users to compare various AXAI aspects of the same system or
multiple systems.

ML systems in a 3D AXAI capability space demonstrated
that the proposed framework was helpful in system design
and assessment of ML systems. Furthermore, the AXAI capa-
bility framework also provided an opportunity to systemati-
cally address ethical and professional issues, such as those
highlighted in [40], and [55] while building ML systems.
As evident in the above comparison, the nine measurable
components of the AXAI capability framework ensured pay-
ing attention to system details, ethical responsibilities and
moral duties during the conceptual design and functional
analysis stages. Such manifestations have been desired in Al
and ML systems for quite some time [41], [50]. However, the
AXAI framework does not work as a purpose-built forensic
framework would in tracing and combating any deviations
from the expected system norms.

Building upon the XAI capability centred philosophical
discussions in the literature [23], [42], [61], our proposed
AXALI capability framework provides three sets of quantifi-
able parameters, each having three variables, for assessing
levels of comprehensibility, accuracy and accountability.
Through these parameters, the AXAI capability frame-
work ensures incorporating important ethical, moral and
legal safeguards in Al systems. This makes the proposed
AXAI capability framework relevant and contemporary. The
accuracy, comprehensibility and accountability measures
also provide the required breadth and depth for designing,
comparing and assessing Al systems in a domain-agnostic
manner. Hence, incorporating the AXAI capability frame-
work would not limit the system developer to follow a par-
ticular domain-specific method [6], [9], [12].
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a typical software system design model for helping developers efficiently
build and test an ML. The model would be beneficial for embedding AXAI
capabilities while determining the user requirements and testing the
system at various stages of the system life cycle. Dark boxes highlight
stages where the AXAI framework design protocols would be added.

Al system
design protocols

It is important to mention that the three components of
the AXATI’s comprehensibility vector rely on users’ ability to
inspect and understand information as we did not discuss or
recommend any method of measuring the data inspectability
in this part of the work. However, part two of our work [55]
addresses the issue and recommends a collaborative system
building approach that requires system developers and users
to agree on the quality of inspectable information [64].

It would be safe to suggest that the proposed AXAI capa-
bility framework is step towards meeting DARPA’s perceived
goal of developing human-centred Al systems [64] as it pro-
vides such learning models and decision-making processes
that would be shared, understood and trusted by the relevant
communities [13].

Through the aforementioned AXAI capability assess-
ments, we have demonstrated that system comprehensibility
can be seen in terms of the mean readiness of a human
to apply the knowledge acquired from an Al program and
interpreting unknown problems within the domain.

We have modelled the predictive accuracy of an Al pro-
gram in terms of the ratio of the test and training data,
training data size and the number of false-positive results.
Thus, predictive accuracy features would allow for estimating
the ability of a human to correctly name a predicate symbol
presented as a privately named description in a domain. It is
important to signify that the predictive accuracy in the AXAI
framework is domain-bound.

Finally, system accountability in the AXAI framework is
reflected in the level of accuracy of a human’s realization of
occurrences of logical elements in an ML or Al system and
would use them to solve a problem in a particular domain.
The accountability, manifested through its three components
(inspectability of input cues, processed data and, output cues)
facilitates establishing a chain of responsibility. If any one
or more of the three accountability components were not
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inspectable by users then the system design team could be
held responsible for the shortcomings. However, if these com-
ponents were inspectable then the user could be considered
responsible for any negative consequences. Hence, account-
ability in our AXAI capability framework is assessed in an
appropriate context [1], [34].

Because of the time limitations and the scope of this work,
we could not test hypothesis 3 given in sub-section C of
Section III. However, our inability to test the predictive accu-
racy (P4) of ahuman s to correctly name a predicate symbol p
given as a privately named definition g does not reflect on the
applicability of the AXAI framework. Testing this hypothesis
would require identifying and approaching domain experts
to confirm if the hypothesis is verifiable and useful in the
context of the affective computing systems assessed for this
work.

VIi. CONCLUSION
This work proposes a novel and easy to implement AXAI

capability framework for designing, analysing and assess-
ing machine learning systems. The proposed framework,
as demonstrated through examples, was easy to incor-
porate, application-agnostic and useful in comparing and
delineating various ML systems. While measuring AXAI
capabilities, the proposed framework also provides a measure
of non-explainability and addressed an issue raised in [15].
The measure of assessing the non-explainability is given
as: non-explainability = 1 — explainability. Through the
proposed AXAI framework, automated matching of ‘levels
of abstraction’ [11] was also made possible as interpreta-
tions were connected with interpretations and explanans were
aligned with explanans.

The proposed AXAI capability framework is based on
the realization that ‘fundamentally complex’ prediction tasks
would be influenced by developments in domain-specific
tools and techniques. Hence, the AXAI framework pro-
vides an application-agnostic XAl capability incorporation
mechanism. It operates at a higher-level and is not affected
or influenced by developments in tools and techniques or
domain-specific changes in professional practices.

As explicit in this paper and part two of this paper [55],
the AXAI framework also provides design guidelines and
encourages provision of separable and quantifiable parame-
ters of accuracy, comprehensibility and accountability. This
makes the proposed AXAI capability framework differ-
ent from existing XAl incorporation methods. Part two of
this paper shows how developers and practitioners would
engage in the process of incorporating and evaluating the
efficacy of the proposed framework. Also, translating the
AXALI capabilities into a set of system design requirements
is demonstrated in part two of this paper [55]. Together,
the two papers will be useful in developing the system
requirements and producing a design process model as shown
in Fig. 8. The AXAI capability framework related stages
of the ML and AI system design are explicitly shown
in Fig. 8.
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For building upon the initial success, the ML-centred
AXALI capability framework can be extended to others Al
systems. The framework needs to be tested on a larger set
of existing systems. We anticipate that parts one and two of
this work will initiate works on building more acceptable and
accountable intelligent systems.

We do not claim that the nine elements used for measuring
AXALI capabilities provide the best set of measurable ele-
ments. However, these nine elements provide a set of parsi-
monious, swift and effective AXAI capability measurements.
Though the list of our proposed AXAI elements is not
exhaustive, it would suffice the common comprehensibil-
ity, accuracy and accountability measurement requirements.
Nonetheless, this list of AXAI elements needs more input
from legal practitioners, Al experts, software developers and
cognition scientists. Also, the AXAI framework is unable
to specify if a system would require root-cause analysis
or forensic tracing. Despite these limitations, the proposed
AXALI capability framework, in its current state, provides
foundations for moving toward accountable and explain-
able Al solutions. It would be innocuous to conclude that
the AXAI capability framework promises an era beyond
hypothesis-driven XAl capability frameworks.
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