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ABSTRACT The multi-objective design of PM motor is time-consuming. The accuracy complexity of the
solver model and the efficiency of the optimizer affect the cycle of electromagnetic design. A fast design
method of spoke-type PM motors with auxiliary notches based on lumped-parameter magnetic equivalent
circuit (MEC)model and a hybrid multi-objective optimizer (HyMOO) are proposed in this article. TheMEC
model is established to quickly reflect the influence of design parameters on electromagnetic and torque
performance in the account of auxiliary notch structure in the rotor lamination. Meanwhile, an HyMOO
is proposed considering the Grey Wolves Optimization (GWO) model, to solve more complex multimode
problems involving more parameters. The accuracy and high calculation speed of the proposed MEC are
verified in comparison with the FE method. A benchmark test by general distance (GD) and inverted
generational distance (IGD) proves the HyMOO with better converge speed and robustness. Based on the
MEC model and HyMOO, a fast electromagnetic design is applied for the motor with requirements of
140Nm rated torque and 4.5% torque ripple. The optimal solutions are validated by FE analyses, and the
best design are chosen, manufactured as prototype, and tested. Both the FE and experimental analyses verify
the reliability of the fast design and the proposed motor.
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INDEX TERMS Auxiliary notch, fast multi-objective design, multi-objective optimizer, lumped-magnetic
equivalent circuit model, spoke-type permanent magnetic machine.

I. INTRODUCTION17

Benefit from permanent magnets (PMs), PM synchronous18

machines (PMSMs) acquire higher efficiency, torque density,19

and a wider range of constant power operation [1], [2], which20

are extensively used as electric vehicle (EV) drive motors [3].21

Among them, spoke-type PM synchronous machines can22

offer higher power densities owing to the magnetic concen-23

tration effect of rotor tangential magnetic circuits, which24

are suitable for limited space requirements of mini EVs [4].25

Furthermore, with the use of FSCW, the power density is26

increased again while efficiency and cogging torque are27

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinquan Xu .

also improved, which amplifies the prominent merits of the 28

spoke-type PM machine aforementioned [5]. However, there 29

are drawbacks in traditional spoke-type PM motors, espe- 30

cially high torque ripple, low flux weakening capacity, and 31

relatively high flux leakage ratio [6], which become the pri- 32

mary issues to be solved when spoke-type PM motors are 33

used in mini EVs [7]. 34

Meanwhile, due to the conflicts between design parame- 35

ters on several performance indicators in the practical motor 36

designing and optimization process, single-objective opti- 37

mization methods can hardly meet the practical needs. For 38

example, low torque ripple may always be obtained at the sac- 39

rifice of average torque [8]. Recently, various multi-objective 40

optimization methods have been used in the design and 41
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optimization of PM machines. Reference [9] proposed finite42

element (FE) based multi-objective large-scale design opti-43

mization method, and a CombinedMulti-objective Optimiza-44

tion and Differential Evolution (CMODE) algorithm were45

used for the optimized parametric searching process. Though46

FE has proven highly accurate, the solution process con-47

sumes time and computational resources due to the complex48

FE model [10]. In [11], a Response Surface Methodology49

(RSM)-based method for experimental design with genetic50

algorithm (GA) was applied to multi-objective optimization.51

Using RSM as the solver of motor can greatly reduce the52

complexity of the mathematical model and allow the opti-53

mization algorithm to be subjected to less pressure [12].54

However, the polynomial degree often does not represent the55

nonlinearity of solver model, and low approximation qual-56

ity might lead to misjudgment [13]. Reference [14] offered57

a designing method for multi-objective deterministic and58

robust optimization using RSM and Multi-Objective Particle59

Swarm Optimization (MOPSO). The design for six sigma60

and Monte Carlo analyses were applied for further robust61

validation, which brought relatively convincing results, but62

a comprehensive and time-consuming process. Compared to63

the FE, the analytical model, such as magnetic equivalent cir-64

cuit (MEC) model and sub-domain model, does have a con-65

siderable advantage in the computing process. Still, there is66

a problematic trade-off between computational accuracy and67

pre-maintenance workload [15], [16], [17]. Among the pre-68

vious research, the study objects are generally consisting of a69

parametric solution model or a mathematical model that indi-70

rectly reflects the solution of multi-objective design and opti-71

mization. Few works has been done to offer the model a real72

computational time advantage and a high accuracy in quick73

design or pre-design. In addition, traditional multi-objective74

optimization algorithms such as Multi-Objective Evolution-75

ary Algorithm (MOEA) or MOPSO for global optimiza-76

tion, are widely used in practical engineering problems with77

acceptable robustness but low search speed [18]. In another78

word, traditional optimizers may have convergence difficul-79

ties in multimode problems covering multiple inputs and out-80

puts. Therefore, how to design and optimize the machines’81

design parameters fast to meet multiple variable performance82

requirements in a short time and meanwhile with guaranteed83

accuracy becomes a vital issue.84

In this paper, a lumped parameter magnetic equivalent cir-85

cuit (MEC) model based on a 16-pole 18-slot spoke-type PM86

FSCWmotor with auxiliary notches for mini EV is presented.87

The MEC model with the ability to capture essential effects,88

including stator slot leakage, core saturation and moving air-89

gap, is designed to solve and analyze the proposed machine’s90

general performance in an early design stage. Besides, a new91

Hybrid Multi-Objective Optimizer (HyMOO) based on the92

proposed EnhancedMulti-Objective GreyWolf Optimization93

(EMOGWO) algorithm and MOPSO is developed with fast94

convergence and good robustness, to make the optimization95

more efficient in the complex MEC solver. With the com-96

bination of MEC model and HyMOO, the multi-objective97

design process shows high efficiency and high accuracy, and 98

solves the problem of rapid and stable optimization design 99

that meets the design requirements of the proposed machine 100

in the early stage of the project. 101

The rest of the article begins with a description of the 102

machine topology, design requirements, and performance 103

specifications in Section II. In Section III, an original FE 104

model, MEC and parametric chart, including special struc- 105

tural designs, are developed. The baseline comparison results 106

with FE model are presented according to the requirement of 107

analyzing the electromagnetic performance characteristics of 108

machine fast and accurately. The development of EMOGWO 109

and HyMOO result in Section IV, as well as the verification 110

benchmarks of optimizer performance. Section V carries out 111

the multi-objective designing for machine’s torque perfor- 112

mance, including establishing parameter constraints based on 113

design requirements and the mechanical structure of machine 114

topology. The resultant solutions are testified by FE analysis 115

and prototype experiments in Section V. Section VI draws a 116

conclusion to the article. 117

II. INITIAL MACHINE TOPOLOGY AND SPECIFICATION 118

The proposed FSCW spoke-type PM motor is a 16-pole/ 119

18-slot design, and its cross-section is shown in Fig. 1. 120

The tangential magnetic circuit design of rotor provides a 121

significantly enhanced magnetic concentration effect, while 122

FSCW has a lower slot-per-pole ratio than distributed wind- 123

ing, which significantly improves the air-gap magnetic den- 124

sity and increases the average torque. Compared to conven- 125

tional spoke-type PM motors or derivations with eccentric 126

poles used by previous study [6], [17], [19], the machine has 127

auxiliary notches (ANs) to adjust the rotor magnetic circuit 128

and linearly changes part of the air-gap length along the 129

circumferential direction, equivalently adjusting the air-gap 130

magnetic density to make it more sinusoidal, thus reducing 131

harmonics (Fig. 1(a)). Meanwhile, the notch structure opti- 132

mizes the magnetic concentration effect and reduces man- 133

ufacturing accuracy requirements compared with eccentric 134

poles. 135

At the same time, to further weaken the potentially 136

harmonic-related problems caused by FSCW, a four-layer 137

concentrated winding layout is applied. Compared with 138

double-layer winding, the four-layer winding, based on the 139

advantage of spatial misalignment, can reduce both the sub- 140

and super-stator magneto-motive force (MMF) harmonics 141

by further stacking the number of winding layers per slot. 142

As shown in Fig. 1(b), each phase has three positive and three 143

negative sectors, and the back-EMF is proven to be more 144

sinusoidal with less total harmonic distortion (THD) [20]. 145

In addition, another combination of ANs is set at the inner 146

edge of the rotor lamination, right in the middle of two adja- 147

cent PMs, to further modify the rotor magnetic circuit, reduce 148

flux leakage and maximize PM utilization. 149

The specifications of pre-design are demoed in Table. 1. 150

The main stator/rotor lamination factors and winding speci- 151

fications have been constrained by the space or mechanical 152
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FIGURE 1. Machine topology illustration. (a) Cross-section of proposal
machine. (b) Winding pattern of proposal machine.

TABLE 1. Units for magnetic properties.

constraints and initial experimental calculations. The design-153

ing and optimization objective is to ensure that the average of154

rated torquemeets the requirements while achieving optimum155

value for torque ripple.156

III. FE AND MEC MODEL DESCRIPTION157

In order for simplifying the computational difficulties of the158

model, both the baseline FE and MEC models were built159

based on the following assumptions,160

1) Spoke PMs are tangentially magnetized with linear161

demagnetization characteristics.162

2) End effects and eddy current influence are ignored.163

3) Magnetic leakage along axial direction at both ends of164

laminations is ignored.165

4) The structure of retaining sleeves is ignored.166

Hence, the 3-D machine structure can be simplified to a 2-D167

model, and some of the weakly influenced structures can be168

approximated.169

A. BASELINE PARAMETRIC FE MODEL 170

To ensure the accuracy of the baseline FE model, the model 171

consists of 27266 cells, where the air gap section is divided 172

into 3 layers along tangential direction to capture the mas- 173

sive air gap magnetic flux density distribution of the pro- 174

posal spoke-type FSCW PM motor. Fig. 2 shows the rotor 175

configuration and design variables of the target parametric 176

model topology. 10 design parameters need to be rationally 177

considered and optimized. wm and hm are the thickness and 178

length of the PM, respectively, hmo1 and hmo2 are the length of 179

the PM outer and inner offset, α1 is the electric angle between 180

the ends of two adjacent outer ANs, α2 is the electric angle 181

between the ends of the inner AN, hn1 and hn2 are the length 182

of the outer and inner AN respectively. Rro is the rotor outer 183

radius obtained from the initial design specification. 184

B. MEC MODEL 185

The development of the Magnetic Circuit Model (MCM) is 186

based on the magnetic flux pattern of study object. During 187

the analytical design of the PM machine, the machine struc- 188

ture was divided into several main lumped permeances, flux 189

sources and MMF sources elements for approximate calcula- 190

tions based on the flux paths and the relative spatial-temporal 191

positions of each phase armature winding and PMs. The gov- 192

erning equation at each lumped element is given as: 193

8 = P ∗ F (1) 194

where, 8, P and F are magnetic flux, permeance, and 195

MMF, respectively. In general, difficulties are found for 196

MCMs to accurately approximate the on-load operating con- 197

ditions of interior permanent magnet (IPM) machines with- 198

out magnetic barriers constrained, in that the varying q- and 199

d-axis fluxes generated by armature winding excitation cause 200

unpredictable distortions in the rotor flux pattern. However, 201

as shown in Fig. 3(a)(b), in the spoke-type PM motor pro- 202

posed here, the rotor magnetic flux path is limited by a strong 203

magnetic concentration effect as well as both outer and inner 204

ANs, which a well-designed MCM can accurately predict. 205

To simplify the modelling and calculation process, the MEC 206

model uses a 1/2-cell unit of the original 16-pole/18-slot 207

design which consists of 8 units of rotor pole, 9 units of stator 208

tooth and a combination of adaptive air-gap units (Fig. 4). 209

In the pictures, air linear permeances, PM linear permeances, 210

nonlinear permeances, PM flux sources and winding MMF 211

sources are represented by different symbols and adjacent 212

elements are connected by sequential nodes. All permeances 213

can be calculated using the following equation. 214

P =
µ0µiAi
Li

(2) 215

in which Ai is the area flux passing through, Li is the length in 216

flux direction, µ0 and µi are the air permeability and relative 217

permeability, respectively. 218

All elements are interconnected by nodes to form a nodal 219

network system, calculated by applying Kirchhoff’s law. 220
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FIGURE 2. Rotor parametric construction of the proposal machine.

FIGURE 3. Rotor flux path of the proposal machine. (a) Irms = 210Arms,
γ = 50◦. (b) Irms = 210 Arms, = 0◦.

FIGURE 4. Proposed MEC model for the machine.

Descriptions of the main components modeling are presented221

in the following subsections.222

C. STATOR UNIT FOR MEC223

In FSCW machines, the lower slot-per-pole ratio results in a224

large number of saturated areas in the stator teeth, especially225

in the tooth tips, so leakage in the stator slots and tooth tips226

needs to be taken into account. In Fig. 5, the modelling of227

FIGURE 5. Specification of stator magnetic circuit model.

FIGURE 6. Specification of rotor magnetic circuit model. (a) Single rotor
pole. (b) The outer AN.

the stator unit is divided into four main sections, namely the 228

stator yoke, teeth, tooth tips and slots. 229

The yoke consists of one non-linear permeance element. 230

A tooth tip unit is subdivided into three non-linear perme- 231

ance elements and two air linear permeance elements. The 232

elements form nodes at the junction with the air-gap, respec- 233

tively, to capture flux paths and leakage accurately. 234

The MMF generated by the armature winding can be cal- 235

culated by, 236

Fwi = NwIi (3) 237

where, Nw and Ii are the number of turns and phase current, 238

respectively. The tooth is split into two parts so that each 239

winding of the four-layer winding form can be represented by 240

the corresponding MMF source and a non-linear permeance 241

element in series. Finally, the leakage in the slot is calculated 242

by a single air linear permeance element connected to the 243

central node of the adjacent tooth, respectively. 244

D. ROTOR UNIT FOR MEC 245

To approach the actual situation, the non-linear flux elements 246

of the rotor core are divided into more parallel branches in 247
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various shapes based on the spatial dimension of the flux path,248

while the previously mentioned parameters to be optimized249

need to be accurately expressed in these elements.250

According to the results shown in Fig. 3, the flux in the251

rotor is divided into three main flux paths interconnected to252

the air gap region and three leakage flux paths in parallel with253

each other, as shown in Fig. 6(a). The permeance values are254

explained as follows:255

P1 =
µ0µ1Lw1

hn1
log

(
h1 + hmo1
hmo1

)
(4)256

P2 =
µ0µ2L (α1Rro + 4w2)

8(h2 − hn1 − hmo1)
log

(
h2

h2 + hmo1

)
(5)257

P3 =
µ0µ3L(α1Rro + 4w3)

8 (h3 − h2)
log

(
h3
h2

)
(6)258

P4 =
µ0µ4L (hm + hmo2 − hn2)

2 (w4 − w1)
log

(
w4

w1

)
(7)259

P5 =
µ0µ5L (hm + hmo2 − hn2)

2 (w5 − w4)
log

(
w5

w4

)
(8)260

P6 =
µ0µ5L (w5 − w6)

hn2 · log
(
w5
w6

) (9)261

Pla1 =
µ0Lhmo1
wm

(10)262

Pla2 =
µ0Lhmo2
wm

(11)263

Ple =
8µ0L
π
+
µ0Lw6

wm
(12)264

Pm =
µ0µrLwm

hm
(13)265

where, wi and hi represent the width and height of corre-266

sponding area for Pi (i = 1, 2, . . . , 6), L represents the267

axial length of lamination stack.268

Further, the unequal length of the air-gap caused by the269

outer ANs needs to be considered. In Fig. 6(b), the outer AN270

area as referred is divided into smax parallel air linear flux271

elements of equal length along the radial direction, and form272

nodes at the junction with the air-gap, respectively, expressed273

by:274 PANs =
µ0L
4smax

√
4hn12 + wm2 log(

s+ 1
s

)

s = 1, 2, . . . , smax
(14)275

E. AIR GAP MODELING276

Due to the massive air-gap flux density of the FSCW277

machine, especially the proposal spoke-type pattern with278

equivalent uneven air-gap length, the magnetic density of the279

air gap region needs to be captured precisely. Based on the280

independent distribution of each unit in this MEC model and281

the node network connection, an adaptive multi-layer air-282

gap modelling method proposed in [21] is considered here.283

The air-gap is first divided into quantities of two-layer radial284

air linear elements by interconnections of rotor- and stator-285

side nodes, each rotor-side network node is connected to a286

FIGURE 7. Specification of air-gap modeling.

minimum of two nodes on the stator side, and the comple- 287

mentary condition is proper for each stator-side node. Then, 288

the adjacent nodes in the middle of two radial elements are 289

connected using the permeance in circumferential direction, 290

respectively (Fig. 7). This division requires the model to be 291

updated in real-time during the calculation process based on 292

the relative physical positions of the rotor and stator; the 293

increase in calculation time is inevitable but enables fine 294

approximation to be made. 295

F. MEC CALCULATION 296

The iterative calculation flowchart ofMECmodel is shown in 297

Fig. 8. First, the nodal system and element calculation func- 298

tions are initialized according to the design specifications, 299

operating conditions, and parameter values to be optimized 300

for the machine. A structure array is created to track theMMF 301

of the node network and the relative permeability of each 302

permeance element [22]. In combination with this structural 303

array, the permeance and flux matrices are built and used to 304

calculate the MMF matrix at each iteration. After that, the 305

relative permeability fit values of the non-linear permeability 306

elements can be calculated by interpolation of the BH curve 307

of materials and basic equations below: 308

µr [i+ 1] = µr [i]0.05 ∗ µrf [i]0.95 (15) 309

where µr and µrf represent the former and fit value of ele- 310

ment permeability. The nonlinear iterative calculation contin- 311

ues until µr converges to within a set tolerance, after which 312

the relevant results are recorded, and the model is reinitialised 313

to start the next set of calculations. 314

G. MEC RESULTS AND VALIDATION 315

To validate the accuracy and calculation speed of the pro- 316

posed MEC model, the calculation results were compared 317

with the FE model results and computational time for an 318

original sample in Fig. 1. The validation was carried out 319

mainly from open-circuit characteristics, on-load character- 320

istics calculation, and processing time. The environment of 321

MECmodel was chosen to be Python 3.9, and the device was 322

an AMD Epyc-7601 32-core processor with 60GB of RAM. 323
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FIGURE 8. Flowchart for MEC calculation.

The MECmodel uses a discrete parallel computing bundle of324

32 consistent with the number of processor cores, and the FE325

model is set up in a commercial software for themost efficient326

operating environment as well.327

1) OPEN-CIRCUIT CHARACTERISTICS328

Fig. 9(a) and (b) provide the calculation results of the radial329

and circumferential flux density traces, respectively, where330

traces with solid lines represent MEC results and traces with331

dotted lines represent FE model results. The MEC computed332

circumferential flux density waveform is slightly coarser than333

the FE model due to the local saturation of core edge. How-334

ever, it can still accurately calculate the peak flux density and335

the waveforms are generally consistent.336

Fig. 10 and Fig. 11 show the calculated waveforms of the337

flux linkage and back EMF of phase A for both models at338

1000 rpm. The MEC waveform looks good in comparison339

with the FE and accurately reflects the open-circuit electro-340

magnetic characteristics of the machine.341

Fig. 12 shows the calculated waveform for cogging torque342

over a certain period which will be important when evaluating343

the machine torque performance. The two waveforms are344

similar, especially at the peak points, and some of the errors345

that occur in theMEC result do not affect the visual evaluation346

of performance.347

FIGURE 9. Comparison of air-gap flux density. (a) radial.
(b) circumferential.

FIGURE 10. Comparison of flux-linkage.

In summary, theMECmodel is fully capable ofmeeting the 348

computational accuracy of the open-circuit characteristics of 349

the proposed machine. 350

2) ON-LOAD CHARACTERISTICS 351

Fig. 13 shows the comparison of torque waveforms of MEC 352

and FE calculations under an on-load condition of 1500 rpm 353

for rotor rotation in the presence of 100Arms for stator cur- 354

rent. The two waveforms maintain matched, where the mag- 355

nitude error is within 5%. 356
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FIGURE 11. Comparison of back-EMF.

FIGURE 12. Comparison of cogging torque.

FIGURE 13. Comparison of torque output.

Fig. 14 shows the calculated values of average torque and357

torque ripple for the stator current angle varied in experimen-358

tal range γ ∈ [0, 50] by MEC and FE analysis. The MEC359

calculations basically match the FE for the whole range of360

current angles and the errors are negligible.361

Thus, the proposed MEC model can accurately predict362

the torque performance of the corresponding machine design363

under on-load conditions.364

FIGURE 14. Comparison of torque output.

FIGURE 15. Comparison of torque output.

H. PROCESSING TIME COMPARISON 365

Table. 2 shows the comparison of processing time in the 366

prementioned subsections by the proposal MEC and FE 367

model, respectively. In single-step calculation, the MEC 368

model requires less than 13% of processing time compared 369

with FE. In 60-step calculation for one electrical cycle, the 370

final time is still significantly ahead of the FE model with 371

calculation speed that is about 22 times faster than FE, even 372

though the discrete calculation approach and data processing 373

causes the parallel MEC process to lose some time. 374

Fig. 15 shows the processing speed performance of the 375

proposal MEC and FE model in multi-process calculation. 376

The processing time of FE increases significantly due to the 377

intervention of parallel computing; the proposed MECmodel 378

uses linear logic in the multi-process calculation, thus the 379

processing time increases linearly. 380

With smaller computational resources, the proposed MEC 381

model has a massive speed advantage over FE, with a 78% 382

reduction in processing time compared to FE for a maximum 383

parallel computation of 30; at the same time, the results of 384

the MEC model are very close to FE under various load 385

conditions, and the errors can be neglected in fast design. 386

Thus, the MEC model is proven to be a good combination 387

of computational speed and computational accuracy. 388

VOLUME 10, 2022 99427



C. Xiao et al.: Fast Design of Spoke-Type PM Motor With ANs Based on Lumped-Parameter MEC Model and HyMOO

TABLE 2. Processing time.

IV. DEVELOPMENT OF HYMOO389

The significance of multi-objective optimization in engineer-390

ing is to obtain the Pareto optimal solution set from all the391

solution vectors of the problem and select robust designs392

from the actual situation [23]. According to this feature,393

various single-objective natural heuristic optimization algo-394

rithms evolve into multi-objective optimization algorithms,395

such as MOEA [24] and MOPSO [25], which are widely396

used.397

Whether in this paper or other practical engineering398

optimization problems, the calculation of objective func-399

tion value occupies most of the computing resources and400

time. Obtaining accurate and optimal results in less time401

with limited computing resources is the key to improving402

optimization efficiency. Therefore, for the optimizer, when403

the number of parallel computing processes is constrained,404

representative solutions should be obtained with the least405

iterations.406

Like the above meta-heuristics, the MOGWO algorithm407

inherits the fast convergence characteristics of the grey wolf408

optimization (GWO) algorithm [26], which is precisely what409

is needed in multi-objective machine design and optimiza-410

tion, but it is extremely easy to fall into local optimum [27].411

Some efforts have been made without the possibility of prac-412

tical application in engineering problems [28]. To improve413

the shortcomings of MOGWO algorithm and highlight the414

advantages of its convergence efficiency, a hybrid optimizer415

using EMOGWO algorithm with MOPSO assisted is pro-416

posed and verified.417

A. BRIEF DESCRIPTIONS OF MOGWO ALGORITHM418

The basic idea of MOGWO is still inherited from GWO,419

which is inspired by the natural phenomenon that the leader420

wolves always lead the whole wolves during hunting. Here is421

the optimization process of the algorithm:422

Consider each individual in the population as a solution and423

obtain three of the most dispersed solutions from the Pareto424

optimal solutions as leaders α, β and δ respectively. The425

individuals eventually approach the global optimal solution426

under the guidance of the three leaders. The specific guiding427

equations are as follows:428

Dp = C ·Xp (t)− X (t) (16)429

X (t + 1) =
1
3

∑
p=α,β,δ

(
Xp (t)− A · Dp

)
(17)430

where, X is the individuals’ position, Xp is the leaders’ posi-431

tion, t is the iteration number. A and C are guiding coefficient432

calculated by, 433{
A = 2a·r1 − a
C = 2r2

(18) 434

where, both r1 and r2 are random values in [0, 1], a is the 435

control factor in [0, 2] linear increasing with the iteration 436

number. 437

B. DEVELOPMENT OF EMOGWO 438

Given the above MOGWO problems and combined with 439

the actual application requirements, EMOGWO is proposed 440

based on the following detailed improvements. 441

1) LOCAL BEST STRATEGY 442

When MOGWO runs, it can be observed that individuals 443

are too blond to the leader because they do not have their 444

own cognitive ability, abandoning the possibility of individual 445

tracking the local optimal solution, and become one of the 446

key factors that lead to the algorithm easy to fall into local 447

optimum. Inspired by the MOPSO algorithm, the local best 448

position of each individual is recorded and introduced into 449

the guiding (19), and the influence intensity is adjusted by 450

the weight coefficient σ , which is expressed as follows: 451

X (t + 1) =
1− σ
3

∑
p=α,β,δ

(
Xp (t)− A · Dp

)
452

+ σ
(
Xpbest (t)− A · Dp

)
(19) 453

where Xpbest represents indivisuals’ local best position. 454

In anticipation, the introduction of local best is more feasible 455

for enhancing the individual exploration ability and adjusting 456

the head guidance strength according to the pre-set value. 457

2) NON-LINEAR CONTROL FACTOR 458

In the original MOGWO algorithm, the control parameter 459

increases linearly with the iteration, and the exploration inten- 460

sity of the algorithm decreases. The application of nonlin- 461

ear control parameter a in the GWO algorithm is discussed 462

in [29], and it is also applicable in multi-objective algorithms. 463

Under the premise of lack of exploration ability, a is adjusted 464

to power function form, expressed as: 465

a = 2− 2

(
t

tmax ·
(
1+ tf

))k (20) 466

where tmax is the maximum iteration value, tf is the compen- 467

sation iteration value in [0, 0.5], and k is a rational number 468

greater than 1. Specifically, tf is used to adjust the response 469

delay of function a to t , and k is the exponent of the power 470

function, which two jointly affect the convergence speed and 471

exploration ability of the algorithm. The larger values of tf 472

and k can improve the searching ability of the algorithm in 473

the pre- and mid-iteration period. 474
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C. DEVELOPMENT OF PROPOSED HYMOO475

1) IMPLEMENTATION OF MOPSO476

On the premise of keeping the total number of individuals477

consistent, a relatively independent efficiency population is478

introduced, which accounts for 1/3 of the total. This popula-479

tion will execute the MOPSO algorithm, and the others will480

execute the EMOGWO algorithm, which is called the con-481

verge population. The two populations share the same Pareto482

archive, which gives play to both MOGWO in convergence483

speed and MOPSO in search advantages.484

2) RANDOM SEARCHING485

After each iteration in the optimization process, there should486

be no individuals with duplicated or over-approximate design487

parameters. This is not only easy to lead individuals to488

an extreme point, but also takes up unnecessary computing489

resources in practical projects. Therefore, the algorithm adds490

the process of screening aggregation individuals and random491

searching, in which screening is followed by searching. If and492

only if:493 [
∀i, j ∈ {1, 2 . . . , pop} ,X i = X j

]
∩494 [

∃i, j ∈ {1, 2 . . . , pop} ,
∣∣X i − X j

∣∣ ≤ X tol
]

(21)495

where pop represents the population of all individuals, X tol496

is the tolerant difference array, for X j satisfying (21) will497

be reset before the objective function is calculated as the498

descriptions below:499 {
x′(x ′1, x

′

2, . . . x
′
i , . . . , xdim′) =

{
x ′i = r · (xubi − xlbi )

}
X j = X j + x′

(22)500

where dim is the dimension of X , r is a random value in501

[−0.3, 0.3], xubi and xlbi represents the upper and lower502

boundary of xi respectively.503

In summary, this random search step will greatly504

reduce repeated or similar calculations and save computing505

resources. Meanwhile, the population can break away from506

local optimum, which enables the algorithm’s exploration507

capabilities to be enhanced, speeding up the process of find-508

ing the complete Pareto front.509

The main process of the HyMOO is shown in Fig. 16.510

D. OPTIMIZER PERFORMANCE VERIFICATION511

To test the actual performance of algorithms, the HyMOO is512

compared with the original MOGWO andMOPSO algorithm513

for simulation verification.514

1) BENCHMARK FUNCTION AND INDICATORS515

The benchmark functions were chosen from the UF multi-516

mode test suite [30] for UF2 and UF4, where UF2 and UF4517

are two-objective test problems while both have many local518

optimal solutions.519

A relatively generic performance indicator, Generational520

Distance (GD), is used as an evaluation criterion for algorithm521

FIGURE 16. Flowchart for the proposal HyMOO.

validation, calculated as follows [31]. 522

GD (S) =
1
|S|

∑
z∈S

min
z′∈Ps

{
d
(
z, z′

)}
(23) 523

where S is the resultant solutions of optimization algorithm, 524

Ps is the real Pareto front of objective function. GD accurately 525

reflects the convergence of the optimization results, with 526

lower GD values representing more reliable results, which 527

is suitable for verifying the accuracy of a multi-objective 528

optimization algorithm that needs to be applied in practical 529

engineering. 530

Meanwhile, another performance indicator Inverted Gen- 531

erational Distance (IGD) is considered here [32], 532

IGD (S) =
1
|Ps|

∑
z′∈Ps

min
z∈S

{
d
(
z, z′

)}
(24) 533

IGD represents the inverse mapping of GD to reflect 534

the distribution of optimization results on the real Pareto 535

front. A multi-objective optimization algorithm with fine 536

robustness can always obtain the resultant solutions with high 537

diversity and lower IGD value. Combining IGD and GD, the 538

optimization and convergence effect of the algorithm can be 539

well evaluated. 540
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FIGURE 17. Resultant solutions of algorithms. (a) UF2. (b) UF4.

2) ALGORITHM PARAMETERS541

The testing environment was chosen to be Python-3.9, and542

the device was an AMD Epyc-7601 32-core processor with543

60GB of RAM.544

For enabling the algorithm performance to be realisti-545

cally represented by the actual parallel computing capabilities546

of the aforementioned environment under engineering prob-547

lems, the test problems are in 6 dimensions. The populations548

are all set to 30 to approximate the maximum number of549

parallel calculations for CPU, and the maximum iteration550

number is 50 to reflect the convergence efficiency of the551

optimizer.552

k and tf act as important control factors for the EMOGWO553

algorithm in HyMOO and play a decisive role in regulating554

the convergence trend of the algorithm. During the prelim-555

inary preparation, several sets of replicate tests were carried556

out using different factor values, with UF2 and UF4 as bench-557

mark functions. It was concluded that the robustness of the558

EMOGWO algorithm tends to increase and then decrease559

as k rises and reaches the best convergence success rate at560

k = 5. At the same time, an increase in tf directly prolongs561

the lag time of convergence, and a relative optimum value of562

tf = 0.1 is achieved after k is determined.563

The relevant MOPSO parameters were set as: c = 4,564

j = 10 [25]. All parameters set for HyMOO and other candi-565

dates are shown in Table. 3.566

3) PERFORMANCE VERIFICATION567

20 independent calculations of each benchmark function568

were performed. The GD and IGD values of the test results569

are shown in Table. 4 and 5.570

In UF2 benchmark, HyMOOhas better GD and IGDvalues571

than the MOPSO algorithm. The MOGWO algorithm has a572

TABLE 3. Parameters of testing algorithms.

TABLE 4. GD of resultant solutions.

TABLE 5. IGD of resultant solutions.

significant GD advantage, however, the IGD values are very 573

poor, indicating that the algorithm may have trapped into 574

local optimum several times during convergence, as verified 575

in Fig. 17(a), which illustrates the distributions of resultant 576

solutions from 20 tests of the three algorithms. 577

With the relatively more complex UF4 problem, both 578

GD and IGD of HyMOO outperform the MOPSO and the 579

MOGWO algorithm. The distributions of the resultant solu- 580

tions are shown in Fig. 17(b), where the HyMOO results have 581
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TABLE 6. Design parameters Set.

FIGURE 18. Resultant solutions distribution from HyMOO.

a good distribution and converge significantly better than the582

MOPSO algorithm.583

In summary, HyMOO successfully inherits the advantages584

of the convergence speed of the original MOGWO algorithm585

and has good exploration ability and robustness. Under a lim-586

ited computational resource, HyMOO can obtain more accu-587

rate optimization results in less time compared with MOPSO588

as well as the original MOGWO algorithm, which will be589

of great help to the optimization process and other practical590

engineering problems to be carried out below.591

V. FAST DESIGN AND VERIFICATION592

The proposed fast design method based on the MEC model593

and HyMOO is realized based on the specifications in594

Section II-IV.595

The design parameters are calculated based on the require-596

ments shown in Table 1 and the boundaries shown in Table 6597

considering spatial constraints, pre-design calculations, and598

total material quality limit. The fast design process with FE599

and experimental validation are presented in the following600

subsections.601

A. QUICK DESIGN AND RESULTANT SOLUTIONS602

The corresponding parameters of the MEC model are first603

initialized in equal order based on the range of design param-604

eters and the parallel calculation numbers. A 30-thread pro-605

cess of 50 iterations was executed in just 3:37:22, which is a606

significant computing speed advantage.607

FIGURE 19. Comparison of resultant solutions distribution from MOPSO.

FIGURE 20. Final design and prototype lamination.

TABLE 7. Comparison of optimal solutions.

According to the calculated results in the present study 608

average torque and torque ripple, the proposed HyMOO is 609

used to find the optimal solution sets. The calculation results 610

are shown in Fig. 18, where the Pareto solution sets are 611

marked in red and are considered as the selection range for 612

the optimal designs. 613

In addition, a computational comparison of the MOPSO 614

algorithm under the same simulation environment and initial 615

conditions needs to be mentioned in Fig. 19. It is easy to 616

see that the conventional MOPSO algorithm runs into local 617

optimal after the same converge iterations, which illustrate 618

that MOPSO is no longer able to meet the requirements at 619
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FIGURE 21. Mechanical analysis of final design. (a) Mesh used for FEA
analysis. (b) Stress distribution in the rotor lamination at 6000 rpm.

FIGURE 22. Prototype design and testing environment.

all in terms of optimization efficiency compared to the pro-620

posed HyMOO under a high-dimensional model of the actual621

problem.622

Three sets of compliant design parameter values were623

selected fromHyMOO results and fine-tuned to consider pos-624

sible errors in the manufacturing process, recalculated by the625

MEC and FE models. The comparison results are shown in626

Table. 7.627

In the three preferred designs, the MEC and FE calcula-628

tions maintain a high level of agreement, with errors of less629

than 3% for average torque and less than 5% for torque ripple,630

proving that the solutions from the MEC model calculations631

can be accepted. Combining manufacturing cost and struc-632

tural strength, Design II was chosen for the final solution.633

B. PROTOTYPE VALIDATION634

Based on Design II, lightening holes and stiffeners are prop-635

erly designed without affecting the main magnetic circuit636

(Fig. 20).637

A detailed mechanical analysis for rotor lamination is per-638

formed to make sure of the structure integrity. Fig. 21 shows639

the mesh of FEA mechanical analysis, and the result of stress640

distribution in the rotor lamination at themachine’smaximum641

operating speed of 6000 rpm. It can be seen that the optimized642

rotor structure dose not exceed the yield strength limit of643

FIGURE 23. Back EMF comparison of MEC, FE, and experimental results.

FIGURE 24. Output torque comparison of MEC, FE, and experimental
results.

silicon steel material. Hence, the structural strength of final 644

design meets the requirements of the machine’s operating 645

requirements. 646

A prototype FSCW spoke-type PM motor was built for 647

experimental verification. The prototype and the testing rig 648

are shown in Fig. 22. 649

Fig. 23 shows the experimental result of open-circuit line 650

voltage waveform at 3000 rpm along with the calculation 651

waveforms from MEC and FE model. The measured wave- 652

form looks quite good, and its value can be equated to 653

189.84V as DC voltage. The calculated line voltage equiv- 654

alents are 191.69V in the MEC model and 194.75V in the 655

FE model respectively, and the three waveforms are highly 656

consistent as expected. 657

Fig. 24 shows the measured output torque curve from the 658

prototype under 140Arms condition at 3000 rpm. According 659

to the calculations, the average output torque of the prototype 660

is 143.7Nm, which meets the design requirement of 140Nm; 661

the torque ripple is 2.90%, which is less than the design 662

requirement of 4.5%. Minor degradation in torque perfor- 663

mance occurred, but the MEC model calculations proved to 664

still be an accurate reference in the fast design, while the 665

rated average torque and torque ripple of the prototype meets 666

the design requirements. Besides, the measured efficiency 667
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FIGURE 25. Measured efficiency map of prototype.

map in the speed range of 0 to 9,000 rpm are presented in668

Fig. 25. An ample high-efficiency zone is achieved for motor669

operating.670

VI. CONCLUSION671

In this article, a fast multi-objective analytical design for a672

spoke-type PM motor with AN structure is proposed based673

on lumped-parameter MEC and HyMOO. TheMECmodel is674

established according to 16-pole 18-slot FSCW motor topol-675

ogy, which is divided into 4 independent units, considering676

the core saturation effect and the influence of AN on air-gap677

flux density. The performance indices of air-gap flux den-678

sity, flux linkage, back-EMF, cogging torque, torque output,679

as well as the processing time, are derived and validated by680

baseline FE model. Meanwhile, for better convergence speed681

and robustness, the HyMOO was developed based on the682

proposal EMOGWO, MOPSO, and random searching. The683

HyMOO is verified by benchmark tests, with much better684

efficiency than the original MOGWO and MOPSO. Finally,685

the fast multi-objective parametric design is adopted for the686

proposed motor prototype, using the MEC model as solver687

and HyMOO as optimizer, and the design requirements of688

140Nm rated torque and 4.5% torque ripple are achieved.689

It is found that MEC model can accurately reflect the690

influence of various parameters on the electromagnetic per-691

formance of the machine, and it takes only a very small cal-692

culation time compared with FE. At the same time, under693

the limited calculation process and iteration steps, HyMOO694

obtains a complete Pareto boundary based on MEC model695

as the solver. The analytical results of optimal designs match696

well with the FEM and prototype experimental results. The697

above multi-objective design and calculation process only698

takes less than 4 hours, and convincible electromagnetic699

parametric designs are obtained based on the initial motor700

topology, which shows great advantage in the multi-objective701

optimization in primary design stage of PM motor and702

shortens the design cycle of EV drive motor.703

However, the limitation of using the proposed MEC model704

as a mathematical solver is obvious, that is, the MEC705

model is completely constrained by the corresponding motor706

topology. Even if the MEC model is modular designed to 707

adapt to different pole-slot combinations, how to establish 708

a more general analytical model for PM motor is still the 709

primary task of future research. 710
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