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ABSTRACT Based on our recent contributions on direct data driven control scheme, this paper continues to
do some new research on direct data driven control, paving another way for latter future work on advanced
control theory. Firstly, adaptive idea is combined with direct data driven control, one parameter adjustment
mechanism is constructed to design the parameterized controller online. Secondly, to show the input-output
property for the considered closed loop system, passive analysis is studied to be similar with stability. Thirdly,
to validate whether the designed controller is better or not, another safety controller modular is added to
achieve the designed or expected control input with the essence of model predictive control. Finally, one
simulation example confirms our proposed theories. More generally, this paper studies not only the controller
design and passive analysis, but also some online algorithm, such as recursive parameter identification and
online subgradient descent algorithm. Furthermore, safety controller modular is firstly introduced in direct

data driven control scheme.

INDEX TERMS Adaptive direct data driven control, passive analysis, safety controller, online.

I. INTRODUCTION

Most current techniques for designing open loop or closed
loop control systems are based on a good understanding of
the considered plant under study and its related environment.
But in some special instances, the plant to be controlled is
too complex and the basic physical process within it are not
fully observable. Control design techniques then need to be
combined with an additional system identification process
aimed at obtaining a nice understanding of the considered
plant. It is thus defined as system identification and con-
trol, i.e. identification for control. Roughly speaking, two
steps are taken separately. The first step is to apply system
identification to identify one mathematical equation for the
considered plant, so the plant model is periodically updated
on the basis of previous estimates and new measured data-
identification and control may be performed concurrently.
Then the plant model or mathematical equation is benefit for
the latter controller design or other interesting subjects, such
as fault detection, target recognition, nonlinear analysis and
structural validation etc. This control method based on the
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identified plant model is named as the model-based control,
whose control performance depends on the plant model.
Although system identification could be aimed at deter-
mining if the plant to be controlled is linear or nonlinear,
finite or infinite dimensional, and has continuous or discrete
event dynamics. As the mission of system identification is
to identify or construct one mathematical equation for the
considered plant through some statistical methods, so as new
idea was put forth in these recent years, i.e. can system identi-
fication be applied to design the unknown controller directly?
It means the observed input-output data sequence are used
to obtain the priori knowledge of the unknown controller
without any intermediate system identification process, being
called as direct data driven control. To describe the more
detailed description about direct data driven control, consider
one closed loop system structure with unknown plant and
unknown controller simultaneously. That traditional model-
based control firstly identifies the plant model, the sec-
ondly this identified plant model is for the next controller
design. But for our considered direct data driven control, the
unknown controller is devised from the observed input-output
data sequence without the system identification process for
that unknown plant. The feasible of this new control strategy
is that lots of important and intrinsic information about the
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unknown controller are included in the observed data, then
our mission is to abstract these intrinsic information for the
unknown controller, while neglecting that unknown plant.
There are vast references about the research on direct
data driven control from different points. More specifically,
system identification is used to extract the intrinsic principle
of the considered system, is the sample size [1]. In case
of the number of observations be more exceed this sample
size, then the input is persistent excitation, while the iden-
tification model satisfies the expected accuracy. From the
knowledge of system identification theory, the situation with
observed disturbance or noise in the output corresponds to the
robust system identification [2], which being also extended
to robust optimal control. When using the probabilistic or
statistical inference in system identification theory in [3]
to measure the asymptotic accuracy about the final identi-
fication model. Furthermore in recent years, risk sensitive
theory and reinforce learning are all introduced in system
theory and advanced control theory [4] and [5], i.e. the risk
decision and limitations of policies were considered during
the whole process of identification and controller design.
Then the final identification system or plant is more realistic
then classical theoretical result [6]. From these ongoing sub-
jects about applying risk theory, dynamic programming and
probabilistic limitation for system identification and control
theory, we are thinking to extend graph theory and topology
to system identification. More specifically, the second step-
model structure choice is related with graph theory [7], i.e. the
chosen model is constructed as one network system, being
formulated as graph theory. System identification theory is
not only for our considered aircraft system identification, but
also for robot system identification in [8], where the detailed
identification steps are all similar with each other, and only
the considered plants are different. As lots of identification
processed are transformed into their corresponding constrain
optimization problems, so some existed optimization results
can be applied directly, for example, convex optimization [9],
scenario optimization [10], and scenario robust control [11],
etc. Consider the last step for system identification-model
validation, some nice properties are satisfied for the final
identification model or designed controller, such as control-
lability, stochastic chance constraints, robustness and nonlin-
earity, which are seen in reference [10]. For that nonlinearity
in system identification and control, nonlinear identification
and nonlinear control are our ongoing work, whose plant and
system is nonlinear form, not the simple linear form [12].
Roughly the research on nonlinear identification depends on
neural network and other mathematical tools, being used to
change the considered nonlinear plant to its approximated
linear form, then the existed results about linear identification
are all applied directly [13]. In our opinions, this linearized
process is not good in practice, as it is the linear form that
can not be used to replace the original nonlinear form. Can we
find out one direct method to identify or design the nonlinear
plant without the above linearized process? This problem is
our studying case through topology [14]. Due to the closed
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relation between system identification theory, generally he
step of experiment design concerns determining which phys-
ical quantities will be measured, how those quantities will be
measured, what the test conditions will be and how the system
being studied will be excited [15].

During these recent years, the first author studies this
direct data driven control too, for example, the closed rela-
tion between system identification and direct data driven
control [15], and data driven model predictive control [16].
A new interesting subject about persistently of excitation
is studied again in data driven control and model predic-
tive control.Willem’s fundamental lemma from [17] gives
a data based parametrization of trajectories for one linear
time invariant system. Based on this Willem’s fundamental
lemma, one parametrization of linear closed loop system is
derived to pave a way to study important controller design
problems [18]. Reference [19] asserts that all trajectories
of a linear time invariant system is obtained from a single
given one on the condition that a persistently of excitation.
One necessary and sufficient condition on the informativity
of data is derived for some data driven control and anal-
ysis problems [20]. In recent years, more novel ways ar
explored to develop direct data driven control, for example,
the idea of data driven, mentioned above, is combined with
model predictive control to yield a new control strategy-
data driven model predictive control. In [21], data driven
model predictive control is applied to design the classical PID
for a deterministic continuous time system. For the case of
switching controllers in some industries, data driven model
predictive control is also benefit in regulating the switching
rule [22]. Consider the uncertain factors exist in the closed
loop situation, one robust data driven model predictive control
is proposed to alleviate and suppress the bad effect, coming
from these uncertainties [23].To be convenient for the use of
data driven model predictive control, some existed softwares
are produced for researchers, such as in python package [24]
and in its intelligent form to control the heat treatment electric
furnace [25].

By the way, in this early year our two new contributions
propose new ways for direct data driven control. For exam-
ple, paper [26] introduces an adaptive idea into direct data
driven control to design the forward controller and feed-
back controller simultaneously. The parameter adjustment
law is modified to satisfy Lyapunov stability. Then paper
[27] combines model predictive control and direct data driven
control to form our proposed direct data driven model ref-
erence control. Furthermore, some control performances are
studied in that paper, such as stability validation, synthe-
sis analysis and application engineering for flight simula-
tion table, etc. Moreover during the conclusions of these
two papers, we point out latter emphasis are concerned on
adaptive direct data driven control, robust direct data driven
control and learning direct data driven control for linear or
nonlinear controller, so this new paper is our ongoing work
about our previous contributions on direct data driven control
scheme.
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Based on above mentioned references and our previous
contributions on direct data driven control, this new paper
continues the study of adaptive direct data driven control
from the point of online way, i.e. online adaptive direct data
driven control. More generally, adaptive idea is a technique
of applying some system identification technique to obtain a
model of the process and its environment from input-output
experiments and using this method to design a controller. The
parameters of the controller are adjusted during the operation
of the plant as the amount of data available for plant iden-
tification increases. For conciseness adaptive idea covers a
set of techniques which provides a systematic approach for
automatic adjustment of unknown controller in real time or
online, in order to achieve or to maintain a desired level of
control system performance when the parameters of the plant
dynamic model are unknown and change in time.

After reviewing the physical principle of direct data driven
control, firstly one parameter adjustment mechanism is con-
structed from the point of adaptive strategy, whose parame-
ters correspond to the parameterized controller. To show the
online property, the parameter estimation is derived online
recursively to be our considered adaptive direct data driven
control. Secondly, passive analysis about this control strategy
is considered, as passivity properties or Lyapunov function
with two terms are well suited for the stability analysis of
feedback systems. The passivity approach is more natural
and systematic, but the same results can be obtained by
using Lyapunov functions of particular form. The passivity
approach concerns input-output properties of systems and
the implications of these properties for the case of feedback
interconnection. We present a pragmatic approach without
formal generalized and proven results concerning the use of
the passivity approach for the analysis and the explanation
of adaptive direct data driven control. Some conditions about
power spectral and strictly positive real transfer function are
derived for passive analysis. The above two contributions
are related with the principle and stability analysis based
on input-output property is the same with the idea of direct
data driven control. Thirdly, the designed controller, obtained
from our proposed adaptive direct data driven control, may be
bad for the whole closed loop performance,so we add another
module to change the former controller to be one good or
appropriate controller. This added module is safety controller,
while guaranteeing the designed controller approach to its
desired or expected controller. This safe problem can be
solved by virtue of model predictive control, i.e. one constrain
optimization problem is established. Consider this constrain
optimization problem with the unknown safety controller,
online subgradient descent algorithm is proposed to yield one
optimal safety controller, and some optimal analysis are also
given.

Generally, the main contributions of this new paper are
formulated as follows.

(1) Adaptive direct data driven control scheme is
proposed, and one parameter adjustment mechanism is
constructed.
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(2) Passive analysis is studied for the input-output property,
being similar to the classical Lyapunov stability.

(3) One additional safety controller module is added in
the closed loop system structure, and the detailed process of
solving this safety controller is given.

Moreover, online means two aspects:

(1) The unknown controller parameters are identified
online within that parameter adjustment mechanism.

(2) Online subgradient descent algorithm is applied to get
one optimal safety controller.

Direct data driven control appears based on the classi-
cal model based control, it is suited for the data science
period. This paper adds one adaptive mechanism and apply
the online subgradient descent algorithm, then its compu-
tational complexity is increased surely. But in data sci-
ence times, it is tolerable due to some advanced physical
devices.

This paper is organized as follows. In section 2, adaptive
direct data driven control scheme is proposed to design the
unknown controller for one closed loop system, while no
any information of that unknown plant. For one parame-
terized controller, the parameter adjustment mechanism is
constructed with online parameter estimation. Similar to
the Lyapunov stability analysis, passive analysis is given
in section 3, where some necessary conditions are shown
to satisfy this input-output properties, i.e. passive property.
To validate whether the designed controller be appropriate,
one additional safety controller is added to pass through the
designed controller, within the case of an desired or expected
controller in section 4. The idea of model predictive control
is introduced to solve that safety controller, while combining
online subgradient descent algorithm. Section 5 uses one
numerical example to illustrate the effectiveness of our con-
sidered online adaptive direct data driven control scheme.
Finally, section 6 ends the paper with final conclusion and
points out the next subject.

Il. ADAPTIVE DIRECT DATA DRIVEN CONTROL

Data driven control is developed from the classical model
based control,being satisfied for the requirement of data
science times. it is well known that in our data science
times, lots of data are easily yielded from some advanced
physical devices or sensors. The important information about
the considered plant or unknown controller are all included
in these lots of data, so the mission of data driven control
is to extract these important information for the unknown
controller from the data. Whatever the important informa-
tion exist in the data points explicitly or implicity, statistical
method, machine learning or other reinforcement learning etc
can be applied to extract these useful information as much as
possible.

As two system structures exist around our normal life, i.e.
open loop or closed loop system structure, here the consid-
ered closed loop system structure is plotted in the following
Figure 1, due to its more complex than the single open loop
system.

VOLUME 10, 2022



W. Jianhong, R. A. Ramirez-Mendoza: On Online Adaptive Direct Data Driven Control

IEEE Access

C(z) > P(z) —»()—»

FIGURE 1. Closed loop system structure.

where in Figure 1, r(¢) is the external input signal, y(¢)
is the output signal for the whole closed loop system,
u(t) is the input signal for the plant P(z), e(t) = r(t) — y(¢) is
the error value for controller C(z), d(t) is the external noise,
such as while noise, color noise or bounded noise. z is time
shift operator. For this unit feedback system, plant P(z) and
controller C(z) are all unknown.

From Figure 1, some mathematical relations hold, for
example

__ PRCQE
YO = e P T T poee @ o
wty= — @ €D 0

1+ P(2)C(z) 1+ P)C(2)

The difference between model-based control and direct data
driven control in that input-output signal {r(¢), y(¢)} are used
for model-based control, but input-output signa {u(z), y(¢)}
for direct data driven control. Here we do not mention the
detailed process for model-based control and direct data
driven control due to space limitations. Readers can refer
to our previously published papers, listed in the Reference
part. Roughly, direct data driven control collects those input-
output signal {u(t), y(t)}fv=1 around the unknown controller
P(z), where N is the total number of signals, then it holds
that.

u(t) = C(2)e(t) = C()[r@) — y(1)] @

so prediction error equation &(t) is that.

£(t) = C™ ([Co(z) — C@Ir(1)
+[Co(2) — C@Iy(O)} + y(1)
= C7'ICo(2) — C@IIr (1) — y)] 3

where Cyp(z) denotes the true controller, and it does not exist,
only for convenience.

Consider one special case with respect to the parameterized
controller. It means the unknown controller C (z) is parameter-
ized by one unknown parameter vector 6, then this unknown
controller is rewritten as C(z, 6). Based on this parameterized
controller C(z, 6), above equation (2) and (3) are modified as

u(r) = C(z, 0)[r(r) — y(1)]
e(t) = C7'(z. 0)[Co(x) — C N[r(t) — ()] (4)
Minimizing mathematical operation E {2(1)} leads to the

basic function of asymptotic bias distribution for the optimal
controller parameter 6, i.e.

6 = arg ming /

-7

M

IC(z, 0)|*[Co(z) — C(z, O)I?
X (¢ (W) + dy(W)dw  (5)
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where {¢,(w), ¢y(w)} are power spectral, corresponding to
external input r(¢) and output signal y(¢) respectively.

This ideals case is that Cy(z) = C(z, 0), i.e. 39y such that
Co(z) = C(z, 0p), then the above cost function (5) is zero.
Consider equation (5) again, it is equal to that.

|Co(z) — C(z, 0)I?

6 = arg min,J(#) = arg min,

IC(z, 0)?
- CE),
= argmlng[w]
Co(z) — C(z,0
J(©) = [M]z (6)

C(z,0)

An online recursive algorithm is used to yield the opti-
mal controller parameter through computing some partial
derivations.

aJ(O) _Bca%,e)c(z,@) — [Co(2) — C(z, 9)]363(39)
90 C2%(z,0)

= —2[Co(z2)C " (z,0) — 11Co(2)C (2, )

aC(z,9)
00
(N

Making use of above partial derivation, an online recursive
algorithm is formulated as follows.

. . aJ(0)
0t +1)=0(@) — Wm(n

8J(6) EPU

i = ~2LCo(C '@ 6() — 11

0C(z,0)

x Co@C @ 6N —lsy  (®)

where this online recursive algorithm is similar to the classi-
cal gradient algorithm.In equation (8), é(t + 1) and é(t) are
the optimal controller parameter at time instant ¢ + 1 and ¢
respectively.

Consider one parameterized controller in the closed loop
system structure, then the problem of designing controller is
transformed into one problem of parameter estimation. This
process of parameter estimation can be completed into one
adaptive mechanism, being plotted in Figure 2.

Adaptive
o mechanism
A
d(1)
r(t) et »(1)
C(z) > P(z) —>
u(t)

FIGURE 2. Online adaptive mechanism.

where in Figure 2, three kinds of signals {r(z), u(z), y(¢)}
are all sent to that adaptive mechanism, then optimal
controller parameter é,generated by online recursively
from equation (8), is substituted into that parameterized
controller C(z, 0).
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In that online recursive algorithm,i.e. equation (8), we can
add one adaption gain 7n(f) to consider the time varying
property.

aJ (0 )|
90 @)
where above adaption gain 7n(f) is a time varying factor, but
in equation (8) this adaption gain is chosen as 1, i.e. n(t) = 1.
If the forgetting property is considered, then this adaption
gain can be chosen as one decreased function, for example,
0 = ;.

Comment: Due to the parameterized controller is consid-
ered here, then the controller design is turned to the parame-
ter estimation. To testify whether the designed controller is
good, we can check whether the closed loop system satis-
fies the desired system response or the identified parameters
approach their true values. More specifically, assume the
true controller parameter is 6y, then latter we need to check
whether the following equity is satisfied, i.e. ot +1) —
6p,t — oo. But the case + — o0 is one ideal case, as the
number of data point is always limit, so we relax this con-
dition as that ||é(t + 1)|| < 0.5. It means one approximated
controller parameter is used in practice.

O(t + 1) = 6(1) — n(t)

Ill. PASSIVE ANALYSIS

After designing that controller C(z) by our proposed adaptive
direct data driven control scheme, stability consideration is
needed as unstable system is useless.

A. ANALYSIS RESULT
Consider that plant P(z) in Figure 1, define its input-output
product as follows.

1

m©,1) =Y u(r)y(r) ©)
i=0
Similarly define the input-output product for that controller

C(z) as that.
t t

10,0 =Y e@ur) =Y [r() —ylu(x) (10)
i=0 i=0
Before to do passive analysis for closed loop system in
Figure 1, two definitions are needed.
Definition 1: Plant P(z) is termed passive if

t
m (0, 5) =Y u(®)y(r) = —y{. ¥t >0 (11)
i=0
i.e. the input-output product between input u(#) and output
¥(t) satisfies the above inequality.
Definition 2: Controller C(z) is termed passive if

t

mO0,0 = emuD)z -y ¥ >0  (12)
i=0
Due to the following relations hold.
u(t) = Cr() — y(1)]
y(t) = PQu(r) +d(1)
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u(t) = C@Ir(t) — PQu(t) — d(1)]
u®) = Cr(t) — C@PQRu(r) — Cxd@®)]  (13)

It holds that
C@) C@)
)= ———r(t) + —————d(t 14
“O=1roce Pt Trroce’™® 1Y
substituting equation (14) into 1,(0, ¢),we have
t t

m(0, 1) =Y e(mu(r) =Y [r(r) — y(¥)lu(r)

i= o i=0
— Zr(‘r)u(l’) - Zu(r)y(r) > -3
i=0

t
> rmur) = v3 + Zu(v)y(r) >—yi—y; (15)
i=0 i=0
and

CRIT (@)  ~C@r (t)d(r)
;;r(r)u(t) ig(; 14+P(2)C(2) +l§ 14+P(2)C(2) (16)

Making use of the property that externa, input 7(¢) is indepen-
dent of external noise d(¢), it holds that

t
> rl(md() =0 (17)
i=0
so equation (16) is reduced to
t

~ CrT (tyr(o) >
r(u(t) = Y[ — V3
; ; 1+ P(x)C(z)
€@ 22
1+P(z)C(z)¢r(W) e S M ) (18)

ie.

(—=yE — yH(1 + P(2)C(2))
¢r(W) = CQ

Equation (19) shows input-output power spectral ¢, (w) must
have one lower bound, while guaranteeing passive property.

Generally, let us consider the whole closed loop system
with input r(¢) and output y(¢), the passive property is for-
mulated in Theorem 1.

Theorem 1: Consider the feedback interconnection
between plant P(z) and controller C(z), the input-output
product must satisfy that.

1

D ) =

i=0

(19)

P(2)C(2)
Z "l pace ™™

1
A ENTETTER

P(2)C(2)
= —————¢:(W)
1 + P(z)C(z)
P()C(2) (—yf— v+ PR)C()
~ 1+ P()C(2) C(2)
= (=¥ —PQ) (20)
The proof of Theorem 1 is very easily only through some
basic substitution operations.
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B. ONE SPECIAL CASE

When plant P(z) is one special case of linear form, then output
¥(t) is the output of a case of a linear function, characterized
by a linear transformation, we have.

W) = % / ! P(™)U(€")e™ dw
U™ = ut)e ™ 21)

The above integrated exists under the assumption that plant
P(z) is asymptotically stable.Then we have

1 & 7 . . .
mo.n=—Yy_ / u®)™ P U@ )dw  (22)
2 g
Interchanging the sum and the integral, one has

1 & rr . . .
(0, 1) = Eg /_ e Ui

_L [ Zu(;)eﬁW'P(e/W)U(e/W)dw

2

T =0
1 T . . .
= — / U@")P(™)U(e™)dw
P
1 (7 , . . .
= — / U@™)[PE") + P(e™)U (" )dw
4 J_»
(23)
To satisfy the above passive property, it must hold that
1 . . .
P(") 4+ P(e7")] = ReP(¢™) > 0 (24)

2[
IV. SAFETY CONTROLLER
Observing Figure 2 again, the designed controller C(z) or its
parameterized form C(z, ) needs to be validated whether it
is good or appropriate to make plant P(z) work well. If it
does,then this designed controller is accepted, or refuse it.
To implement this controller validation process, another mod-
ular safe controller is added in closed loop system structure,
plotted in Figure 3.

u, (1)

C(Z) AEL' Safety controller ——— P(z)
uo(t)

FIGURE 3. Safety controller modular.

where in Figure 3, safety controller modular is added. Its
mission is to let the obtained control u(¢) approach to one
desired or expected control u,(¢). For example, assume plant
P(2) be an vehicle or UAV, vehicle must work in a limited
range, i.e. some physical variables y(¢) are bounded. Then that
desired control input u,4(¢) is safe, while providing an good
input to keep an vehicle work in its limited range. This section
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gives a way of devising this safety controller modular based
on the idea of model predictive control due to the desired
control u;(t).

A. OPTIMALITY ANALYSIS

More precisely, this additional modular wants to guarantee
the formal control u(t) approach to its desired control uy(z),
i.e. u(t) = uq(t), so the following receding horizon problem
is constructed.

N
ming, gy > L) — ua ()1
=1

u(l)
u(2)
subject to [ Hy(1) Hu(2) -+ H(N)]| . | <h
u(}V )
(25)
define some vectors as follows
u(l) ug(1)
u(2) uq(2)
u= . , Ug = . 5
u(N) ug(N)
Hy = [H(1) Hi2) - Hu(N) ] (26)

Then that receding horizon problem is reduced to one
quadratic programming problem, i.e.

miny (u — ug)" (u — uq)
subject to Hyu < hy, 27

where inequality constraint corresponds to the safety region.
The following derivation result is used in equation (27).

N
> lu(t) — ua ()1

t=1
= [u(1) — ug(D)]
+[u2) — ugF + - + [uN) — ug(N)1?
= [u() —ug(D) ) —uq) - wN) —ug(N)]

u(l) — ug(l)
u(2) — ug(2)
X .
u(N) — g (N)

= (u—ug)" (u — ug)
=ulu— 2uTud + ugud
Consider the quadratic programming problem (27) again,
construct its Lagrange function to be that.
L(u, ) = (u = ug)" (u — ug) + M(Huu—hy)  (28)

where A is Lagrange multiply.
Applying the optimality KKT condition to satisfy that.

AL, A
g‘ ) u—ug+ AH, = 0
u
AHyu—hy) = 0 (29)
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If Lagrange multiply A = 0, then from the first equation
of (29) we have u = uy, i.e. perfect matching, so it is
an idea case. In case of A > 0, then from the second
equation of equation (29), we have H,u = hy, ie. u =
H; 'h,,where H! denotes inverse matrix operation.After
substituting u = H, 'h, into 2[u—uy]+1H, = 0, itholds that
A = —2(H;'h, — ug)H,;'. From above optimality analysis,
if some constraints or working bounds are imposed on the
plant, then the optimal or safety controller is determined on
the constraint bound.

B. ONLINE SUBGRADIENT DESCENT ALGORITHM

For that quadratic programming optimization problem (27)
with one quadratic cost function and one inequality constrain
condition, for convenience to show the online subgradient
descent algorithm, we combine (u, 1) as one unknown vari-
able v, i.e.

Al

T A2
v=1[u rl"; rA=| . (30)

AN
Then on the basis of optimization theory, our mission is to
solve the optimal optimization variable v, to guarantee that.

vy = min L(u, A) = min L(v) 31

Online subgradient descent algorithm is the following recur-
rence.

Vip1 = my(v — VIL/(Vt)) (32)

where y; > 0 are stepsize, 7, (v) is the standard projector on
V, where V is one set, i.e. v € V. L'(v) is a subgradient of L
atv, i.e.

Lw) > L)+ w—nTL®) (33)

We always assume that [V # ¢ and that the subgradients
L’(v) reported by the first order oracle at point v € V.
As subgradient operations L’(v) are needed in that recursive
form (33), here we derive some subgradients as follows.

OLw, %) _ 2[u(t) = ua(®)] + AcHy(t) = 0
ou(t)

OL(u,A) _ =
v H,(Hu(t) — h,(t) =0

To demonstrate the merit of online subgradient descent algo-
rithm, the following two propositions are given to achieve it.

Proposition 1: After given the original value v(0), the
vector e = v — 1, (v) forms an accute angle with every vector
of the form w — m,(v), w € V.i.e.

v =m0 (w—m®) <0,YweV (34)
Proof: Letw € V,and 0 <t < 1, we have

o(1) = ) + tow — 7,(W)] — x|3
> ||l (v) — vlI3 = ¢(0) (35)
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Then
0 < ¢'(0) = 2[m,(v) — vI" (w — 7, (v) (36)
ie.
v =) (w—m®) <0 37)
In particular

Iw =I5 = Ilw—mMI3 + I7O) — vIi3
+ 20, (v) — W) (W — 7, (v))
> lw— 73 + lm0) —vI3  (38)

i.e.
Iw — I3 < llw — I3 — () — VI3, ¥Yw € V (39)

Which completes the proof of the Proposition 1.
Proposition 2: For that subgradient descent algorithm, then
for every w € V, we have

1
v —w)TL'(vy) < Slv = wli3
1
= lveer = w3
1
+v ILeol; (40)

Proof: By using above Proposition 1, we have.

1 2
diy1 = §||Vt+l —wli3
1 2
di = ~|lve —wli3 41)
2
Then
1 / 2
diy1 < EH[W —wl =y L (v)ll5
Ty 1 / 2
=di —y(ve —w) L' (vy) + EllL ol (42)

Summing up inequalities over t = 1,2, --- N, we get

N N
1
D nL) = Loy <di —da+Y Sy IL I3 (43)

t=1 t=1

Further it holds that
1
di —dy < max > |w—vl3 (44)
w,veV 2
Then we have the following upper bound in equation (43).
max L(v;) — Ly
1€[1,N]

1 2 N 1 2
_ maxwev g lw = VI3 + 3 372 IL 0013
- N
2 Ve

The above inequality shows the convergence results for the
online subgradient descent algorithm.

(45)
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V. SIMULATION EXAMPLE
Consider one closed loop system structure in Figure 1, where
plant is

(2= 1.5@E—-0.5)
" 2z—0.3)z - 0.6)

The true controller Cy(z) is one parameterized controller with
a sequence of orthogonal basis function, i.e.

P(z)

(46)

Col2) = [ P 2 2 z 1 }
Pz Pz Pz -7 Pz
0.35
0.24
x| 013 47)
0
—0.05
Its parameterized form is that.
4 3 2
C0) = [ 4z 4z 4z 4z 41 :|
-z -7 -z -z -2
01
02
x | 63 |;
04
05
01
0>
0 =103 (48)
04
05

During the whole simulation process, let that exter-
nal noise d(t) be one white noise sequence with zero
mean and variance 1. Input-output measured data sequence
{u(t), y(z‘)}f’:1 are collected in the closed loop experiment
condition, and the total number N = 1000. Before to start
our simulation example, one kind of input signal r(¢), plotted
in Figure 4, is used to excite the whole closed loop system,
then some physical devices are placed to collect the observed
output signal y(z),being plotted in Figure 5. From Figure 4,
the excitation input is chosen as the commonly used square
eave signal, which always satisfied the requirement of persis-
tent excitation, as it can excite all the internal property of the
considered system. after the square wave signal is applied,
then some physical devices or sensors are used to collect the
output response, being shown in Figure 5.

The mission of direct data driven control is to extract
some information about the parameterized controller from the
input-output data sequence {u(z), y(t)}f’=1 . Due to the param-
eterized controller C(z, 0) exists, our mission is changed
to identify that unknown parameter vector 6, existing in
the unknown parameterized controller. The whole parameter
identification process is similar to the data fitting problem,
whose parameter estimations are given online recursively
from equation (8). Before to implement the recursive algo-
rithm, the initial parameter vector is chosen as 6(0) =
(0.1 0.1 0.1 0.1 0.1)T. After 50 steps, we terminate the
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FIGURE 4. The applied input signal.
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FIGURE 5. The observed output signal.

identification algorithm. The final identification results, i.e.
controller parameters are shown in Figure 6.
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FIGURE 6. Controller parameter estimations.

Comparing the controller parameter curves in Figure 6 and
their true controller parameters in equation (47), we see
although some deviations in 10 steps, but finally all parameter
estimations will converge to their own true values.

To testify the safety controller modular, the designed con-
troller output is u(t) = C(z,0)e(t) = C(z, 0)[r() — y(@)].
Suddenly, we set one desired or expected controller output
be that ug(t) = C(z, n)e(t) = C(z, n)[r(t) — y(t)], where the
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FIGURE 7. Safety controller parameters.

desired controller C(z, n) is as follows.
4 3 2

C(Z,n)Z[ Z Z Z Z 1 }

Pz Pz -z -7 P2
0.28
0.12
X 0.05 |;
—0.02
—0.06

0.28
0.12
n=| 005 (49)
—0.02
—0.06

so the task about that safety controller modular is switch
the former controller C(z, 0) to the new controller C(z, n).
To achieve this sudden switch movement, one receding hori-
zon problem is established to achieve the perfect match-
ing, while guaranteeing the bounded inequality, i.e. u €
[—5, 5]. The switch result is seen in Figure 7, where the
safety controller parameters coincide with their true values
in equation (49).

Observing Figure 6 and 7 again, the horizontal axis is the
iterative step, and the vertical axis is the parameter estimation,
corresponding to the controller. Firstly in Figure 6, each
controller parameter is identified by virtue of our considered
online subgradent descent algorithm. Each curve corresponds
to each controller parameter. During the 10 iterative steps,
the parameter estimations are biased, then after 10 iterative
steps, all parameter curves converge to their true values,
for example, 67 — 0.35. Secondly, safety requirement is
considered in Figure 7. Specifically, when the safety property
is considered, then the controller parameters must be changed
automatically with the variety of the safety. This continuous
modified process is reformulated as follows.

0 0.35 0.28
) 0.24 0.12
0=(6s|—> | 013 | ->n—| 0.05
04 0 —0.02
05 —0.05 —0.06
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VI. CONCLUSION

In this paper, adaptive direct data driven control is pro-
posed from the theory and application. Adaptation shows
one parameter adjustment mechanism and online recursive
parameter identification are combined to devise the unknown
controller parameter. Another input-output property, i.e. pas-
sive property is analyzed to grasp the closed relation between
the input and output. Controller validation is proposed as a
safety controller modular by virtue of the principle about
model predictive control. During this new paper, new theories
on direct data driven control are considered to pave a new
road for future work, for example, learning direct data driven
control and robust adaptive direct data driven control etc.
For example, nonlinearity is one important factor in practice,
but it is very difficult to analyze nonlinearity directly. Now
the commonly used method for analyzing nonlinearity is to
linearized that nonlinear system, so one simplified linear
system is obtained. Then all existed knowledge about linear
system theory can be applied directly. In our opinion, new
strategy is needed to considered that nonlinearity directly,
being our next research point.
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