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ABSTRACT Based on our recent contributions on direct data driven control scheme, this paper continues to
do some new research on direct data driven control, paving another way for latter future work on advanced
control theory. Firstly, adaptive idea is combined with direct data driven control, one parameter adjustment
mechanism is constructed to design the parameterized controller online. Secondly, to show the input-output
property for the considered closed loop system, passive analysis is studied to be similar with stability. Thirdly,
to validate whether the designed controller is better or not, another safety controller modular is added to
achieve the designed or expected control input with the essence of model predictive control. Finally, one
simulation example confirms our proposed theories. More generally, this paper studies not only the controller
design and passive analysis, but also some online algorithm, such as recursive parameter identification and
online subgradient descent algorithm. Furthermore, safety controller modular is firstly introduced in direct
data driven control scheme.

12 INDEX TERMS Adaptive direct data driven control, passive analysis, safety controller, online.

I. INTRODUCTION13

Most current techniques for designing open loop or closed14

loop control systems are based on a good understanding of15

the considered plant under study and its related environment.16

But in some special instances, the plant to be controlled is17

too complex and the basic physical process within it are not18

fully observable. Control design techniques then need to be19

combined with an additional system identification process20

aimed at obtaining a nice understanding of the considered21

plant. It is thus defined as system identification and con-22

trol, i.e. identification for control. Roughly speaking, two23

steps are taken separately. The first step is to apply system24

identification to identify one mathematical equation for the25

considered plant, so the plant model is periodically updated26

on the basis of previous estimates and new measured data-27

identification and control may be performed concurrently.28

Then the plant model or mathematical equation is benefit for29

the latter controller design or other interesting subjects, such30

as fault detection, target recognition, nonlinear analysis and31

structural validation etc. This control method based on the32
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identified plant model is named as the model-based control, 33

whose control performance depends on the plant model. 34

Although system identification could be aimed at deter- 35

mining if the plant to be controlled is linear or nonlinear, 36

finite or infinite dimensional, and has continuous or discrete 37

event dynamics. As the mission of system identification is 38

to identify or construct one mathematical equation for the 39

considered plant through some statistical methods, so as new 40

idea was put forth in these recent years, i.e. can system identi- 41

fication be applied to design the unknown controller directly? 42

It means the observed input-output data sequence are used 43

to obtain the priori knowledge of the unknown controller 44

without any intermediate system identification process, being 45

called as direct data driven control. To describe the more 46

detailed description about direct data driven control, consider 47

one closed loop system structure with unknown plant and 48

unknown controller simultaneously. That traditional model- 49

based control firstly identifies the plant model, the sec- 50

ondly this identified plant model is for the next controller 51

design. But for our considered direct data driven control, the 52

unknown controller is devised from the observed input-output 53

data sequence without the system identification process for 54

that unknown plant. The feasible of this new control strategy 55

is that lots of important and intrinsic information about the 56
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unknown controller are included in the observed data, then57

our mission is to abstract these intrinsic information for the58

unknown controller, while neglecting that unknown plant.59

There are vast references about the research on direct60

data driven control from different points. More specifically,61

system identification is used to extract the intrinsic principle62

of the considered system, is the sample size [1]. In case63

of the number of observations be more exceed this sample64

size, then the input is persistent excitation, while the iden-65

tification model satisfies the expected accuracy. From the66

knowledge of system identification theory, the situation with67

observed disturbance or noise in the output corresponds to the68

robust system identification [2], which being also extended69

to robust optimal control. When using the probabilistic or70

statistical inference in system identification theory in [3]71

to measure the asymptotic accuracy about the final identi-72

fication model. Furthermore in recent years, risk sensitive73

theory and reinforce learning are all introduced in system74

theory and advanced control theory [4] and [5], i.e. the risk75

decision and limitations of policies were considered during76

the whole process of identification and controller design.77

Then the final identification system or plant is more realistic78

then classical theoretical result [6]. From these ongoing sub-79

jects about applying risk theory, dynamic programming and80

probabilistic limitation for system identification and control81

theory, we are thinking to extend graph theory and topology82

to system identification. More specifically, the second step-83

model structure choice is relatedwith graph theory [7], i.e. the84

chosen model is constructed as one network system, being85

formulated as graph theory. System identification theory is86

not only for our considered aircraft system identification, but87

also for robot system identification in [8], where the detailed88

identification steps are all similar with each other, and only89

the considered plants are different. As lots of identification90

processed are transformed into their corresponding constrain91

optimization problems, so some existed optimization results92

can be applied directly, for example, convex optimization [9],93

scenario optimization [10], and scenario robust control [11],94

etc. Consider the last step for system identification-model95

validation, some nice properties are satisfied for the final96

identification model or designed controller, such as control-97

lability, stochastic chance constraints, robustness and nonlin-98

earity, which are seen in reference [10]. For that nonlinearity99

in system identification and control, nonlinear identification100

and nonlinear control are our ongoing work, whose plant and101

system is nonlinear form, not the simple linear form [12].102

Roughly the research on nonlinear identification depends on103

neural network and other mathematical tools, being used to104

change the considered nonlinear plant to its approximated105

linear form, then the existed results about linear identification106

are all applied directly [13]. In our opinions, this linearized107

process is not good in practice, as it is the linear form that108

can not be used to replace the original nonlinear form. Can we109

find out one direct method to identify or design the nonlinear110

plant without the above linearized process? This problem is111

our studying case through topology [14]. Due to the closed112

relation between system identification theory, generally he 113

step of experiment design concerns determining which phys- 114

ical quantities will be measured, how those quantities will be 115

measured, what the test conditions will be and how the system 116

being studied will be excited [15]. 117

During these recent years, the first author studies this 118

direct data driven control too, for example, the closed rela- 119

tion between system identification and direct data driven 120

control [15], and data driven model predictive control [16]. 121

A new interesting subject about persistently of excitation 122

is studied again in data driven control and model predic- 123

tive control.Willem’s fundamental lemma from [17] gives 124

a data based parametrization of trajectories for one linear 125

time invariant system. Based on this Willem’s fundamental 126

lemma, one parametrization of linear closed loop system is 127

derived to pave a way to study important controller design 128

problems [18]. Reference [19] asserts that all trajectories 129

of a linear time invariant system is obtained from a single 130

given one on the condition that a persistently of excitation. 131

One necessary and sufficient condition on the informativity 132

of data is derived for some data driven control and anal- 133

ysis problems [20]. In recent years, more novel ways ar 134

explored to develop direct data driven control, for example, 135

the idea of data driven, mentioned above, is combined with 136

model predictive control to yield a new control strategy- 137

data driven model predictive control. In [21], data driven 138

model predictive control is applied to design the classical PID 139

for a deterministic continuous time system. For the case of 140

switching controllers in some industries, data driven model 141

predictive control is also benefit in regulating the switching 142

rule [22]. Consider the uncertain factors exist in the closed 143

loop situation, one robust data drivenmodel predictive control 144

is proposed to alleviate and suppress the bad effect, coming 145

from these uncertainties [23].To be convenient for the use of 146

data driven model predictive control, some existed softwares 147

are produced for researchers, such as in python package [24] 148

and in its intelligent form to control the heat treatment electric 149

furnace [25]. 150

By the way, in this early year our two new contributions 151

propose new ways for direct data driven control. For exam- 152

ple, paper [26] introduces an adaptive idea into direct data 153

driven control to design the forward controller and feed- 154

back controller simultaneously. The parameter adjustment 155

law is modified to satisfy Lyapunov stability. Then paper 156

[27] combines model predictive control and direct data driven 157

control to form our proposed direct data driven model ref- 158

erence control. Furthermore, some control performances are 159

studied in that paper, such as stability validation, synthe- 160

sis analysis and application engineering for flight simula- 161

tion table, etc. Moreover during the conclusions of these 162

two papers, we point out latter emphasis are concerned on 163

adaptive direct data driven control, robust direct data driven 164

control and learning direct data driven control for linear or 165

nonlinear controller, so this new paper is our ongoing work 166

about our previous contributions on direct data driven control 167

scheme. 168
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Based on above mentioned references and our previous169

contributions on direct data driven control, this new paper170

continues the study of adaptive direct data driven control171

from the point of online way, i.e. online adaptive direct data172

driven control. More generally, adaptive idea is a technique173

of applying some system identification technique to obtain a174

model of the process and its environment from input-output175

experiments and using this method to design a controller. The176

parameters of the controller are adjusted during the operation177

of the plant as the amount of data available for plant iden-178

tification increases. For conciseness adaptive idea covers a179

set of techniques which provides a systematic approach for180

automatic adjustment of unknown controller in real time or181

online, in order to achieve or to maintain a desired level of182

control system performance when the parameters of the plant183

dynamic model are unknown and change in time.184

After reviewing the physical principle of direct data driven185

control, firstly one parameter adjustment mechanism is con-186

structed from the point of adaptive strategy, whose parame-187

ters correspond to the parameterized controller. To show the188

online property, the parameter estimation is derived online189

recursively to be our considered adaptive direct data driven190

control. Secondly, passive analysis about this control strategy191

is considered, as passivity properties or Lyapunov function192

with two terms are well suited for the stability analysis of193

feedback systems. The passivity approach is more natural194

and systematic, but the same results can be obtained by195

using Lyapunov functions of particular form. The passivity196

approach concerns input-output properties of systems and197

the implications of these properties for the case of feedback198

interconnection. We present a pragmatic approach without199

formal generalized and proven results concerning the use of200

the passivity approach for the analysis and the explanation201

of adaptive direct data driven control. Some conditions about202

power spectral and strictly positive real transfer function are203

derived for passive analysis. The above two contributions204

are related with the principle and stability analysis based205

on input-output property is the same with the idea of direct206

data driven control. Thirdly, the designed controller, obtained207

from our proposed adaptive direct data driven control, may be208

bad for the whole closed loop performance,so we add another209

module to change the former controller to be one good or210

appropriate controller. This addedmodule is safety controller,211

while guaranteeing the designed controller approach to its212

desired or expected controller. This safe problem can be213

solved by virtue ofmodel predictive control, i.e. one constrain214

optimization problem is established. Consider this constrain215

optimization problem with the unknown safety controller,216

online subgradient descent algorithm is proposed to yield one217

optimal safety controller, and some optimal analysis are also218

given.219

Generally, the main contributions of this new paper are220

formulated as follows.221

(1) Adaptive direct data driven control scheme is222

proposed, and one parameter adjustment mechanism is223

constructed.224

(2) Passive analysis is studied for the input-output property, 225

being similar to the classical Lyapunov stability. 226

(3) One additional safety controller module is added in 227

the closed loop system structure, and the detailed process of 228

solving this safety controller is given. 229

Moreover, online means two aspects: 230

(1) The unknown controller parameters are identified 231

online within that parameter adjustment mechanism. 232

(2) Online subgradient descent algorithm is applied to get 233

one optimal safety controller. 234

Direct data driven control appears based on the classi- 235

cal model based control, it is suited for the data science 236

period. This paper adds one adaptive mechanism and apply 237

the online subgradient descent algorithm, then its compu- 238

tational complexity is increased surely. But in data sci- 239

ence times, it is tolerable due to some advanced physical 240

devices. 241

This paper is organized as follows. In section 2, adaptive 242

direct data driven control scheme is proposed to design the 243

unknown controller for one closed loop system, while no 244

any information of that unknown plant. For one parame- 245

terized controller, the parameter adjustment mechanism is 246

constructed with online parameter estimation. Similar to 247

the Lyapunov stability analysis, passive analysis is given 248

in section 3, where some necessary conditions are shown 249

to satisfy this input-output properties, i.e. passive property. 250

To validate whether the designed controller be appropriate, 251

one additional safety controller is added to pass through the 252

designed controller, within the case of an desired or expected 253

controller in section 4. The idea of model predictive control 254

is introduced to solve that safety controller, while combining 255

online subgradient descent algorithm. Section 5 uses one 256

numerical example to illustrate the effectiveness of our con- 257

sidered online adaptive direct data driven control scheme. 258

Finally, section 6 ends the paper with final conclusion and 259

points out the next subject. 260

II. ADAPTIVE DIRECT DATA DRIVEN CONTROL 261

Data driven control is developed from the classical model 262

based control,being satisfied for the requirement of data 263

science times. it is well known that in our data science 264

times, lots of data are easily yielded from some advanced 265

physical devices or sensors. The important information about 266

the considered plant or unknown controller are all included 267

in these lots of data, so the mission of data driven control 268

is to extract these important information for the unknown 269

controller from the data. Whatever the important informa- 270

tion exist in the data points explicitly or implicity, statistical 271

method, machine learning or other reinforcement learning etc 272

can be applied to extract these useful information as much as 273

possible. 274

As two system structures exist around our normal life, i.e. 275

open loop or closed loop system structure, here the consid- 276

ered closed loop system structure is plotted in the following 277

Figure 1, due to its more complex than the single open loop 278

system. 279
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FIGURE 1. Closed loop system structure.

where in Figure 1, r(t) is the external input signal, y(t)280

is the output signal for the whole closed loop system,281

u(t) is the input signal for the plant P(z), e(t) = r(t)− y(t) is282

the error value for controller C(z), d(t) is the external noise,283

such as while noise, color noise or bounded noise. z is time284

shift operator. For this unit feedback system, plant P(z) and285

controller C(z) are all unknown.286

From Figure 1, some mathematical relations hold, for287

example288 
y(t) =

P(z)C(z)
1+ P(z)C(z)

r(t)+
1

1+ P(z)C(z)
d(t)

u(t) =
C(z)

1+ P(z)C(z)
r(t)+

C(z)
1+ P(z)C(z)

d(t)
(1)289

The difference between model-based control and direct data290

driven control in that input-output signal {r(t), y(t)} are used291

for model-based control, but input-output signa {u(t), y(t)}292

for direct data driven control. Here we do not mention the293

detailed process for model-based control and direct data294

driven control due to space limitations. Readers can refer295

to our previously published papers, listed in the Reference296

part. Roughly, direct data driven control collects those input-297

output signal {u(t), y(t)}Nt=1 around the unknown controller298

P(z), where N is the total number of signals, then it holds299

that.300

u(t) = C(z)e(t) = C(z)[r(t)− y(t)] (2)301

so prediction error equation ε(t) is that.302

ε(t) = C−1(z){[C0(z)− C(z)]r(t)303

+ [C0(z)− C(z)]y(t)} + y(t)304

= C−1(z)[C0(z)− C(z)][r(t)− y(t)] (3)305

where C0(z) denotes the true controller, and it does not exist,306

only for convenience.307

Consider one special case with respect to the parameterized308

controller. It means the unknown controllerC(z) is parameter-309

ized by one unknown parameter vector θ , then this unknown310

controller is rewritten asC(z, θ). Based on this parameterized311

controller C(z, θ), above equation (2) and (3) are modified as312

u(t) = C(z, θ)[r(t)− y(t)]313

ε(t) = C−1(z, θ)[C0(z)− C(z, θ)][r(t)− y(t)] (4)314

Minimizing mathematical operation E{ε2(t)} leads to the315

basic function of asymptotic bias distribution for the optimal316

controller parameter θ̂ , i.e.317

θ̂ = argminθ

∫ π

−π

|C(z, θ)|−2[C0(z)− C(z, θ)]2318

× (φr (w)+ φy(w))dw (5)319

where {φr (w), φy(w)} are power spectral, corresponding to 320

external input r(t) and output signal y(t) respectively. 321

This ideals case is that C0(z) = C(z, θ), i.e. ∃θ0 such that 322

C0(z) = C(z, θ0), then the above cost function (5) is zero. 323

Consider equation (5) again, it is equal to that. 324

θ̂ = argminθJ (θ ) = argminθ
|C0(z)− C(z, θ)|2

|C(z, θ)|2
325

= argminθ [
C0(z)− C(z, θ)

C(z, θ)
]2 326

J (θ ) = [
C0(z)− C(z, θ)

C(z, θ)
]2 (6) 327

An online recursive algorithm is used to yield the opti- 328

mal controller parameter through computing some partial 329

derivations. 330

∂J (θ )
∂θ
=
−
∂C(z,θ )
∂θ

C(z, θ)− [C0(z)− C(z, θ)]
∂C(z,θ )
∂θ

C2(z, θ)
331

= −2[C0(z)C−1(z, θ)− 1]C0(z)C−2(z, θ)
∂C(z, θ)
∂θ

332

(7) 333

Making use of above partial derivation, an online recursive 334

algorithm is formulated as follows. 335

θ̂ (t + 1) = θ̂ (t)−
∂J (θ )
∂θ
|
θ̂ (t) 336

∂J (θ )
∂θ
|
θ̂ (t) = −2[C0(z)C−1(z, θ̂ (t))− 1] 337

×C0(z)C−2(z, θ̂ (t))
∂C(z, θ)
∂θ

|
θ̂ (t) (8) 338

where this online recursive algorithm is similar to the classi- 339

cal gradient algorithm.In equation (8), θ̂ (t + 1) and θ̂ (t) are 340

the optimal controller parameter at time instant t + 1 and t 341

respectively. 342

Consider one parameterized controller in the closed loop 343

system structure, then the problem of designing controller is 344

transformed into one problem of parameter estimation. This 345

process of parameter estimation can be completed into one 346

adaptive mechanism, being plotted in Figure 2.

FIGURE 2. Online adaptive mechanism.

347

where in Figure 2, three kinds of signals {r(t), u(t), y(t)} 348

are all sent to that adaptive mechanism, then optimal 349

controller parameter θ̂ ,generated by online recursively 350

from equation (8), is substituted into that parameterized 351

controller C(z, θ). 352
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In that online recursive algorithm,i.e. equation (8), we can353

add one adaption gain η(t) to consider the time varying354

property.355

θ̂ (t + 1) = θ̂ (t)− η(t)
∂J (θ )
∂θ
|
θ̂ (t)356

where above adaption gain η(t) is a time varying factor, but357

in equation (8) this adaption gain is chosen as 1, i.e. η(t) = 1.358

If the forgetting property is considered, then this adaption359

gain can be chosen as one decreased function, for example,360

η(t) = 1
t .361

Comment: Due to the parameterized controller is consid-362

ered here, then the controller design is turned to the parame-363

ter estimation. To testify whether the designed controller is364

good, we can check whether the closed loop system satis-365

fies the desired system response or the identified parameters366

approach their true values. More specifically, assume the367

true controller parameter is θ0, then latter we need to check368

whether the following equity is satisfied, i.e. θ̂ (t + 1) →369

θ0, t → ∞. But the case t → ∞ is one ideal case, as the370

number of data point is always limit, so we relax this con-371

dition as that ‖θ̂ (t + 1)‖ < 0.5. It means one approximated372

controller parameter is used in practice.373

III. PASSIVE ANALYSIS374

After designing that controller C(z) by our proposed adaptive375

direct data driven control scheme, stability consideration is376

needed as unstable system is useless.377

A. ANALYSIS RESULT378

Consider that plant P(z) in Figure 1, define its input-output379

product as follows.380

η1(0, t) =
t∑
i=0

u(τ )y(τ ) (9)381

Similarly define the input-output product for that controller382

C(z) as that.383

η2(0, t) =
t∑
i=0

e(τ )u(τ ) =
t∑
i=0

[r(τ )− y(τ )]u(τ ) (10)384

Before to do passive analysis for closed loop system in385

Figure 1, two definitions are needed.386

Definition 1: Plant P(z) is termed passive if387

η1(0, t) =
t∑
i=0

u(τ )y(τ ) ≥ −γ 2
1 ,∀t > 0 (11)388

i.e. the input-output product between input u(t) and output389

y(t) satisfies the above inequality.390

Definition 2: Controller C(z) is termed passive if391

η2(0, t) =
t∑
i=0

e(τ )u(τ ) ≥ −γ 2
2 ,∀t > 0 (12)392

Due to the following relations hold.393

u(t) = C(z)[r(t)− y(t)]394

y(t) = P(z)u(t)+ d(t)395

u(t) = C(z)[r(t)− P(z)u(t)− d(t)] 396

u(t) = C(z)r(t)− C(z)P(z)u(t)− C(z)d(t)] (13) 397

It holds that 398

u(t) =
C(z)

1+ P(z)C(z)
r(t)+

C(z)
1+ P(z)C(z)

d(t) (14) 399

substituting equation (14) into η2(0, t),we have 400

η2(0, t) =
t∑
i=0

e(τ )u(τ ) =
t∑
i=0

[r(τ )− y(τ )]u(τ ) 401

=

t∑
i=0

r(τ )u(τ )−
t∑
i=0

u(τ )y(τ ) ≥ −γ 2
2 402

t∑
i=0

r(τ )u(τ ) ≥ γ 2
2 +

t∑
i=0

u(τ )y(τ ) ≥ −γ 2
1 − γ

2
2 (15) 403

and 404

t∑
i=0

r(τ )u(τ )=
t∑
i=0

C(z)rT (τ )r(τ )
1+P(z)C(z)

+

t∑
i=0

C(z)rT (τ )d(τ )
1+P(z)C(z)

(16) 405

Making use of the property that externa, input r(t) is indepen- 406

dent of external noise d(t), it holds that 407

t∑
i=0

rT (τ )d(τ ) = 0 (17) 408

so equation (16) is reduced to 409

t∑
i=0

r(τ )u(τ ) =
t∑
i=0

C(z)rT (τ )r(τ )
1+ P(z)C(z)

≥ −γ 2
1 − γ

2
2 410

C(z)
1+ P(z)C(z)

φr (w) ≥ −γ 2
1 − γ

2
2 (18) 411

i.e. 412

φr (w) ≥
(−γ 2

1 − γ
2
2 )(1+ P(z)C(z))

C(z)
(19) 413

Equation (19) shows input-output power spectral φr (w) must 414

have one lower bound, while guaranteeing passive property. 415

Generally, let us consider the whole closed loop system 416

with input r(t) and output y(t), the passive property is for- 417

mulated in Theorem 1. 418

Theorem 1: Consider the feedback interconnection 419

between plant P(z) and controller C(z), the input-output 420

product must satisfy that. 421

t∑
i=0

r(τ )y(τ ) =
t∑
i=0

r(τ )[
P(z)C(z)

1+ P(z)C(z)
r(t) 422

+
1

1+ P(z)C(z)
d(t)] 423

=
P(z)C(z)

1+ P(z)C(z)
φr (w) 424

≥
P(z)C(z)

1+ P(z)C(z)

(−γ 2
1 − γ

2
2 )(1+ P(z)C(z))

C(z)
425

= (−γ 2
1 − γ

2
2 )P(z) (20) 426

The proof of Theorem 1 is very easily only through some 427

basic substitution operations. 428
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B. ONE SPECIAL CASE429

When plantP(z) is one special case of linear form, then output430

y(t) is the output of a case of a linear function, characterized431

by a linear transformation, we have.432

y(t) =
1
2π

∫ π

−π

P(ejw)U (ejw)ejtwdw433

U (ejw) =
∑

u(t)e−jtw (21)434

The above integrated exists under the assumption that plant435

P(z) is asymptotically stable.Then we have436

η1(0, t) =
1
2π

∞∑
t=0

∫ π

−π

u(t)ejtwP(ejw)U (ejw)dw (22)437

Interchanging the sum and the integral, one has438

η1(0, t) =
1
2π

∞∑
t=0

∫ π

−π

u(t)ejtwP(ejw)U (ejw)dw439

=
1
2π

∫ π

−π

∞∑
t=0

u(t)ejtwP(ejw)U (ejw)dw440

=
1
2π

∫ π

−π

U (ejw)P(ejw)U (ejw)dw441

=
1
4π

∫ π

−π

U (ejw)[P(ejw)+ P(e−jw)]U (ejw)dw442

(23)443

To satisfy the above passive property, it must hold that444

1
2
[P(ejw)+ P(e−jw)] = ReP(ejw) > 0 (24)445

IV. SAFETY CONTROLLER446

Observing Figure 2 again, the designed controller C(z) or its447

parameterized form C(z, θ) needs to be validated whether it448

is good or appropriate to make plant P(z) work well. If it449

does,then this designed controller is accepted, or refuse it.450

To implement this controller validation process, another mod-451

ular safe controller is added in closed loop system structure,452

plotted in Figure 3.

FIGURE 3. Safety controller modular.

453

where in Figure 3, safety controller modular is added. Its454

mission is to let the obtained control u(t) approach to one455

desired or expected control ud (t). For example, assume plant456

P(z) be an vehicle or UAV, vehicle must work in a limited457

range, i.e. some physical variables y(t) are bounded. Then that458

desired control input ud (t) is safe, while providing an good459

input to keep an vehicle work in its limited range. This section460

gives a way of devising this safety controller modular based 461

on the idea of model predictive control due to the desired 462

control ud (t). 463

A. OPTIMALITY ANALYSIS 464

More precisely, this additional modular wants to guarantee 465

the formal control u(t) approach to its desired control ud (t), 466

i.e. u(t)→ ud (t), so the following receding horizon problem 467

is constructed. 468

min
{u(t)}Nt=1

N∑
t=1

[u(t)− ud (t)]2 469

subject to
[
Hu(1) Hu(2) · · · Hu(N )

]

u(1)
u(2)
...

u(N )

 ≤ hu 470

(25) 471

define some vectors as follows 472

u =


u(1)
u(2)
...

u(N )

 ; ud =


ud (1)
ud (2)
...

ud (N )

 ; 473

Hu =
[
Hu(1) Hu(2) · · · Hu(N )

]
(26) 474

Then that receding horizon problem is reduced to one 475

quadratic programming problem, i.e. 476

minu(u− ud )T (u− ud ) 477

subject to Huu ≤ hu (27) 478

where inequality constraint corresponds to the safety region. 479

The following derivation result is used in equation (27). 480

N∑
t=1

[u(t)− ud (t)]2 481

= [u(1)− ud (1)]2 482

+ [u(2)− ud (2)]2 + · · · + [u(N )− ud (N )]2 483

=
[
u(1)− ud (1) u(2)− ud (2) · · · u(N )− ud (N )

]
484

×


u(1)− ud (1)
u(2)− ud (2)

...

u(N )− ud (N )

 485

= (u− ud )T (u− ud ) 486

= uT u− 2uT ud + uTd ud 487

Consider the quadratic programming problem (27) again, 488

construct its Lagrange function to be that. 489

L(u, λ) = (u− ud )T (u− ud )+ λ(Huu−hu) (28) 490

where λ is Lagrange multiply. 491

Applying the optimality KKT condition to satisfy that. 492

∂L(u, λ)
∂u

= 2[u− ud ]+ λHu = 0 493

λ(Huu−hu) = 0 (29) 494
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If Lagrange multiply λ = 0, then from the first equation495

of (29) we have u = ud , i.e. perfect matching, so it is496

an idea case. In case of λ > 0, then from the second497

equation of equation (29), we have Huu = hu, i.e. u =498

H−1u hu,where H−1u denotes inverse matrix operation.After499

substituting u = H−1u hu into 2[u−ud ]+λHu = 0, it holds that500

λ = −2(H−1u hu − ud )H−1u . From above optimality analysis,501

if some constraints or working bounds are imposed on the502

plant, then the optimal or safety controller is determined on503

the constraint bound.504

B. ONLINE SUBGRADIENT DESCENT ALGORITHM505

For that quadratic programming optimization problem (27)506

with one quadratic cost function and one inequality constrain507

condition, for convenience to show the online subgradient508

descent algorithm, we combine (u, λ) as one unknown vari-509

able v, i.e.510

v = [u λ]T ; λ =


λ1
λ2
...

λN

 (30)511

Then on the basis of optimization theory, our mission is to512

solve the optimal optimization variable v∗ to guarantee that.513

v∗ = min
v
L(u, λ) = min

v
L(v) (31)514

Online subgradient descent algorithm is the following recur-515

rence.516

vt+1 = πv(vt − γtL ′(vt )) (32)517

where γt > 0 are stepsize, πv(v) is the standard projector on518

V , where V is one set, i.e. v ∈ V . L ′(v) is a subgradient of L519

at v, i.e.520

L(w) ≥ L(v)+ (w− v)TL ′(v) (33)521

We always assume that
∫
V 6= φ and that the subgradients522

L ′(v) reported by the first order oracle at point v ∈ V .523

As subgradient operations L ′(v) are needed in that recursive524

form (33), here we derive some subgradients as follows.525

∂L(u, λ)
∂u(t)

= 2[u(t)− ud (t)]+ λtHu(t) = 0526

∂L(u, λ)
∂λt

= Hu(t)u(t)− hu(t) = 0527

To demonstrate the merit of online subgradient descent algo-528

rithm, the following two propositions are given to achieve it.529

Proposition 1: After given the original value v(0), the530

vector e = v−πv(v) forms an accute angle with every vector531

of the form w− πv(v),w ∈ V ,i.e.532

(v− πv(v))T (w− πv(v)) ≤ 0,∀w ∈ V (34)533

Proof: Let w ∈ V , and 0 ≤ t ≤ 1, we have534

φ(t) = ‖[πv(v)+ t(w− πv(v))]− x‖22535

≥ ‖πv(v)− v‖22 = φ(0) (35)536

Then 537

0 ≤ φ′(0) = 2[πv(v)− v]T (w− πv(v)) (36) 538

i.e. 539

(v− πv(v))T (w− πv(v)) ≤ 0 (37) 540

In particular 541

‖w− v‖22 = ‖w− πv(v)‖
2
2 + ‖πv(v)− v‖

2
2 542

+ 2(πv(v)− v)T (w− πv(v)) 543

≥ ‖w− πv(v)‖22 + ‖πv(v)− v‖
2
2 (38) 544

i.e. 545

‖w− πv(v)‖22 ≤ ‖w− v‖
2
2 − ‖πv(v)− v‖

2
2,∀w ∈ V (39) 546

Which completes the proof of the Proposition 1. 547

Proposition 2: For that subgradient descent algorithm, then 548

for every w ∈ V , we have 549

γt (vt − w)TL ′(vt ) ≤
1
2
‖vt − w‖22 550

−
1
2
‖vt+1 − w‖22 551

+
1
2
γ 2
t ‖L

′(vt )‖22 (40) 552

Proof: By using above Proposition 1, we have. 553

dt+1 =
1
2
‖vt+1 − w‖22 554

dt =
1
2
‖vt − w‖22 (41) 555

Then 556

dt+1 ≤
1
2
‖[vt − w]− γtL ′(vt )‖22 557

= dt − γt (vt − w)TL ′(vt )+
1
2
‖L ′(vt )‖22 (42) 558

Summing up inequalities over t = 1, 2, · · ·N , we get 559

N∑
t=1

γt (L(vt )− L(w))≤d1 − d2+
N∑
t=1

1
2
γ 2
t ‖L

′(vt )‖22 (43) 560

Further it holds that 561

d1 − dN ≤ max
w,v∈V

1
2
‖w− v‖22 (44) 562

Then we have the following upper bound in equation (43). 563

max
t∈[1,N ]

L(vt )− L∗ 564

≤
maxw,v∈V 1

2‖w− v‖
2
2 +

∑N
t=1

1
2γ

2
t ‖L

′(vt )‖22∑N
t=1 γt

(45) 565

The above inequality shows the convergence results for the 566

online subgradient descent algorithm. 567
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V. SIMULATION EXAMPLE568

Consider one closed loop system structure in Figure 1, where569

plant is570

P(z) =
(z− 1.5)(z− 0.5)
z(z− 0.3)(z− 0.6)

(46)571

The true controller C0(z) is one parameterized controller with572

a sequence of orthogonal basis function, i.e.573

C0(z) =
[

z4

z4 − z
z3

z4 − z
z2

z4 − z
z

z4 − z
1

z4 − z

]
574

×


0.35
0.24
0.13
0
−0.05

 (47)575

Its parameterized form is that.576

C(z, θ) =
[

z4

z4 − z
z3

z4 − z
z2

z4 − z
z

z4 − z
1

z4 − z

]
577

×


θ1
θ2
θ3
θ4
θ5

 ;578

θ =


θ1
θ2
θ3
θ4
θ5

 (48)579

During the whole simulation process, let that exter-580

nal noise d(t) be one white noise sequence with zero581

mean and variance 1. Input-output measured data sequence582

{u(t), y(t)}Nt=1 are collected in the closed loop experiment583

condition, and the total number N = 1000. Before to start584

our simulation example, one kind of input signal r(t), plotted585

in Figure 4, is used to excite the whole closed loop system,586

then some physical devices are placed to collect the observed587

output signal y(t),being plotted in Figure 5. From Figure 4,588

the excitation input is chosen as the commonly used square589

eave signal, which always satisfied the requirement of persis-590

tent excitation, as it can excite all the internal property of the591

considered system. after the square wave signal is applied,592

then some physical devices or sensors are used to collect the593

output response, being shown in Figure 5.594

The mission of direct data driven control is to extract595

some information about the parameterized controller from the596

input-output data sequence {u(t), y(t)}Nt=1. Due to the param-597

eterized controller C(z, θ) exists, our mission is changed598

to identify that unknown parameter vector θ , existing in599

the unknown parameterized controller. The whole parameter600

identification process is similar to the data fitting problem,601

whose parameter estimations are given online recursively602

from equation (8). Before to implement the recursive algo-603

rithm, the initial parameter vector is chosen as θ (0) =604

(0.1 0.1 0.1 0.1 0.1)T . After 50 steps, we terminate the605

FIGURE 4. The applied input signal.

FIGURE 5. The observed output signal.

identification algorithm. The final identification results, i.e. 606

controller parameters are shown in Figure 6.

FIGURE 6. Controller parameter estimations.

607

Comparing the controller parameter curves in Figure 6 and 608

their true controller parameters in equation (47), we see 609

although some deviations in 10 steps, but finally all parameter 610

estimations will converge to their own true values. 611

To testify the safety controller modular, the designed con- 612

troller output is u(t) = C(z, θ)e(t) = C(z, θ)[r(t) − y(t)]. 613

Suddenly, we set one desired or expected controller output 614

be that u0(t) = C(z, η)e(t) = C(z, η)[r(t) − y(t)], where the 615
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FIGURE 7. Safety controller parameters.

desired controller C(z, η) is as follows.616

C(z, η) =
[

z4

z4 − z
z3

z4 − z
z2

z4 − z
z

z4 − z
1

z4 − z

]
617

×


0.28
0.12
0.05
−0.02
−0.06

 ;618

η =


0.28
0.12
0.05
−0.02
−0.06

 (49)619

so the task about that safety controller modular is switch620

the former controller C(z, θ) to the new controller C(z, η).621

To achieve this sudden switch movement, one receding hori-622

zon problem is established to achieve the perfect match-623

ing, while guaranteeing the bounded inequality, i.e. u ∈624

[−5, 5]. The switch result is seen in Figure 7, where the625

safety controller parameters coincide with their true values626

in equation (49).627

Observing Figure 6 and 7 again, the horizontal axis is the628

iterative step, and the vertical axis is the parameter estimation,629

corresponding to the controller. Firstly in Figure 6, each630

controller parameter is identified by virtue of our considered631

online subgradent descent algorithm. Each curve corresponds632

to each controller parameter. During the 10 iterative steps,633

the parameter estimations are biased, then after 10 iterative634

steps, all parameter curves converge to their true values,635

for example, θ1 → 0.35. Secondly, safety requirement is636

considered in Figure 7. Specifically, when the safety property637

is considered, then the controller parameters must be changed638

automatically with the variety of the safety. This continuous639

modified process is reformulated as follows.640

θ =


θ1
θ2
θ3
θ4
θ5

→


0.35
0.24
0.13
0
−0.05

→ η→


0.28
0.12
0.05
−0.02
−0.06

641

VI. CONCLUSION 642

In this paper, adaptive direct data driven control is pro- 643

posed from the theory and application. Adaptation shows 644

one parameter adjustment mechanism and online recursive 645

parameter identification are combined to devise the unknown 646

controller parameter. Another input-output property, i.e. pas- 647

sive property is analyzed to grasp the closed relation between 648

the input and output. Controller validation is proposed as a 649

safety controller modular by virtue of the principle about 650

model predictive control. During this new paper, new theories 651

on direct data driven control are considered to pave a new 652

road for future work, for example, learning direct data driven 653

control and robust adaptive direct data driven control etc. 654

For example, nonlinearity is one important factor in practice, 655

but it is very difficult to analyze nonlinearity directly. Now 656

the commonly used method for analyzing nonlinearity is to 657

linearized that nonlinear system, so one simplified linear 658

system is obtained. Then all existed knowledge about linear 659

system theory can be applied directly. In our opinion, new 660

strategy is needed to considered that nonlinearity directly, 661

being our next research point. 662
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