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ABSTRACT The navigation of a mobile robot is a very important issue, especially for an autonomousmobile
robot. A robot autonomously can track the area by interpreting the arena, building an adequate map, and
localizing itself to this map. This paper proposes a Hybrid filter for Concurrent Localization and Mapping
(CLAM) in the navigation to rectify the faults, basically Unscented Fast Simultaneous Localization and
Mapping (SLAM) (UFS). We also interrogate the effectiveness of the IF system to investigate nonlinear
attributes. A probabilistic method has planned the solution to the CLAM issue, which is an essential
requirement for the navigation of robots. The Hybrid filter CLAM contains an Intuitionistic Fuzzy Logic
(IFL) and Unscented Kalman Filter (UKF). The IFL is first ordered by using a correctness function explained
on score functions for the non-membership function (NMF) and membership function (MF) of the IFL. Then
this ordering is utilized to develop a method for a sufficient decision on the CLAM issue. The proposed
method has a few privileges in management robot navigation with nonlinear movements owing to the
inference feature of the IFL, which also needs a fewer quantity of comparisons than the UFS and shows
much better efficiency from the robustness, perspective assessment exactitude, and reliability than the UFS,
also, for learning the measurement and control noise covariance matrices for increasing correctness and
consistency are utilized IFL. The Hybrid filter CLAM proficiency compared with the UFS has a smaller
quantity of computations and good efficiency for bigger areas as demonstrate in the results of simulation
and experimental.

18 INDEX TERMS Intuitionistic fuzzy logic, unscented Kalman filter, navigation, hybrid filter, CLAM.

I. INTRODUCTION19

Navigation is one of the most main problems for a mobile20

robot as the mobile robot keeps follow of its location via21

retaining a map of environments and an estimate of its loca-22

tion on that map. The investigation attempts on mobile robots23

have mainly paid attention on problems. One of the signifi-24

cant issues for robots as the robots keeps track of their posi-25

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

tion by holding an outline of areas and an assessment of their 26

localization is navigation. In addition, data from a Frequency- 27

Modulated Continuous-Wave (FMCW) Radar, Inertial Mea- 28

surement Unit (IMU) and encoders that are capable of with- 29

standing fire environments were fused to localize the robot 30

in indoor fire environments [1]. The SLAM is the most 31

generic widely investigated main subfields of mobile robots. 32

For solving the SLAM issues, statistical methods, such as 33

Bayesian filters, have attained extensive acknowledgment. 34

Certain of the more general methods consist of the Kalman 35
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filter family and particle filter (PF). To achieve consensus36

estimation, each sensor node is allowed to communicate with37

its neighboring nodes according to a prescribed communica-38

tion topology. Firstly, a new hybrid consensus-based filtering39

algorithm under random link failures, which affect the infor-40

mation exchange between sensors and are modeled by a set of41

independent Bernoulli processes, is designed via redefining42

the interaction weights. Second, a novel observability con-43

dition, called parameterized jointly uniform observability is44

proposed to ensure the stochastic boundedness of the error45

covariances of the hybrid consensus-based filtering algorithm46

[2]. A robust UKF under a quaternion-error method is pro-47

posed for the assessment in the presentment of measurement48

flaws. This method utilizes a statistic function containing49

measurement residuals to discover measurement flaws and50

then utilizes a conformity plan under the multiple measure-51

ment criterion items for filter efficiency versus defective52

measurements. The robust UKF, the EKF, and UKF are also53

implemented under the same simulation conditions, to com-54

pare the estimated efficiency of the proposed method [3].55

The FastSLAM (FS) has two main restrictions, that involve56

the Jacobian computations and the nonlinear functions linear57

estimates. These can create inconsistencies. Another vital58

issue is to decline the number of probes whenever keeping59

the assessment exactitude. The proposed method under the60

scaled unscented transformation (UT) is called the UFS.61

It dominates the significant drawbacks of the past research62

via straightly using nonlinear relations. The results in harsh63

environments are offered, representing the superiority of the64

UFS [4]. Using robust model prediction offered a novel65

UKF. This strategy compounds framework driving noise in66

framework state via increase of state span size to extend the67

input of systems state data. The framework model blame68

is made through show forecast and is utilized to refine the69

unscented Kalman filter (UKF) procedure to attain the assess-70

ment of the genuine framework state. The proposed method71

creates the strength of the UKF, therefore overbearing the72

constraint that the UKF is influenced via a framework model73

error. The experimental results illustrate that the convergence74

rate and precision of the proposed method are premieres75

to the UKF and EKF [5]. A robust controller proposed for76

actuators helicopter control in attendance of actuator and77

sensor errors. The proposed method allows evading effort-78

ful modeling, declining the number of rules for the fuzzy79

overseer, attenuating the chattering efficacy of the sliding80

manner control, and assuring the consistency of the system.81

This method can greatly diminish the chattering performance,82

exploring good in the attendance of actuator and sensor83

errors. This method allows evading effortful modeling, reduc-84

ing the number of rules for the fuzzy controller, attenuating85

the chattering efficacy of the sliding manner control, and86

assuring the consistency of the system. The results show87

that this method can greatly diminish the chattering perfor-88

mance, exploring good in the attendance of actuator and89

sensor errors [6]. Two fuzzy preprocessing approaches were90

presented, utilizing an intuitionistic fuzzy set and the fuzzy91

set to standard datasets. Using three existent gene expression 92

datasets, the fuzzy normalization methods were compared 93

with two standard normalizations also a raw gene phrase. The 94

exactitude of selected features was distinguished using The 95

classifiers of random forest, k-nearest-neighbor, and support 96

vector machine. The results demonstrate that the intuitionistic 97

fuzzy set is better than the fuzzy set normalization [7]. They 98

propose for path tracking and autonomous navigation the 99

utilizing of the calculated roughly state vector in a control 100

chain. The rough calculation of the robot position vector is 101

accomplished with the utilization of PF, Sigma-Point Kalman 102

Filtering (SPKF), extended Kalman filter (EKF), and a new 103

nonlinear roughly calculation approach that is the Derivative- 104

free nonlinear Kalman Filtering (DKF). Comparing these 105

filtering methods to roughly calculation exactitude and speed 106

of computation, DKF demonstrates that the SPKF is a trust- 107

worthy and computationally effective method to control state 108

roughly calculation. Also, the DKF is speedier than the other 109

filters when so successful in exact, to variance, state roughly 110

calculations [8]. 111

The neural network is learned using heuristic optimization 112

to train the remaining error of the motion model, which is 113

then augmented to the odometry data to attain the fulfill- 114

ment motion model estimate. heuristic optimization is uti- 115

lized, to match any kind of cost function. The prediction and 116

correction are applied concurrently within our new method, 117

which merges the motion and sensor models. A heuristic 118

method is applied to progressively rectify the neural model 119

till it generates a path that is most solid with the real sensor 120

measurements. The novel method does not need any previous 121

wisdom of the motion or sensor models and offers the sensor 122

noise and good efficiency irrespective of the mobile robot, 123

during this training procedure always. Moreover, it does not 124

need the data association stage at loop closing which is vital 125

in many other SLAM methods but can still create a correct 126

map. The results in different harsh areas with a kind of noise 127

display which the training ability of novel methods certifies 128

efficiency which is always less sensitive to noise and more 129

correct than that of other SLAM methods [9]. Adaptive Neu- 130

ral Network Unscented Kalman Filter (ANFUKF) has been 131

applied to the attribute position’s assessment and PSO (Parti- 132

cle SwarmOptimization) has been applied to themobile robot 133

pose assessment. The results demonstrate that approximated 134

exactitude and the consistency of the proposed method are 135

excellent for FS. Also, in this method to attain better consis- 136

tency, the adaptive Neuro-fuzzy incorporates square root cen- 137

tral distinction Kalman Filter (KF) utilized for the attribute 138

position’s assessment. In addition, will decrease the number 139

of particles and the computational complexity [10]. A novel 140

method proposed with a fuzzy 3D grid explained by dual 2D 141

grid maps for self-navigation. A syntactic preprocessing is 142

proposed to carry out positioning via substitution amongst 143

the weighted three and two-point positioning approach and 144

the weighted average localization approach. The presented 145

approach has better attributes in the robustness of navigation 146

and fewer calculations than the other methods. Fuzzy logic is 147
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used to optimize the parameters of a Fuzzy Logic Controller148

(FLC’s) function to find the best rational controller for an149

automated robot. Because discontinuous endpoint friction is150

undetectable to the pressure of the fluid internally, feedback151

from traditional external force using force/tactile sensing is152

preferred. As a result, a fuzzy-based control using linear153

feedback was developed and used to test the integrated sys-154

tem’s response dynamically and location accuracy [11]. The155

UKF utilizes the UT (Unscented Transformation) but the156

EKF that applies different types of nonlinear functions. Non-157

differentiable MFs can be Intended on the Takagi-Sugeno158

(TS) models. This makes to be appropriate for the online159

item computing of vast classes of TS. The results determine160

the advantage of proposed methods and efficiency better-161

ment according to the root mean square of the assessment162

error [12]. An efficiency of fuzzy logic controllers is pro-163

posed by the heuristic learning method. The robots should164

be able to train with dynamic changes in their surroundings.165

An appropriate tool for the navigation of robots is the Fuzzy166

logic control. The ameliorated efficiency of fuzzy logic is167

controlled by evolutionary training methods. This method168

deals with automatically training to adjust the MF parame-169

ters for robot motion control [13]. Tracking of area mobile170

objects is significant for the expansion of robot navigation.171

The presented fuzzy controller according to numerous input172

systems to adjust noise covariance the advancement arrange-173

ment of a KF. This proposed method has a good efficiency174

for the object tracking issue on standard KF because of its175

ability to recover the filter divergence issue [14]. Incertitude176

measures can carry out a new opinion for analyzing wisdom177

transmitted. Also, incertitude measurement is a key subject,178

similar to the role in probability theory. The existing mea-179

sures of incertitude cannot attain all schemas of incertitude.180

An incertitude measure including these three uncertainties181

is proposed, generally. In addition, the presented incertitude182

measure can discriminate incertitude concealing in classical183

sets. It supplies an alternative approach to creating unified184

incertitude measures [15]. They propose a new method that185

utilizes the sterling interpolation approach using the Cholesky186

decomposition approach confronted with the nonlinear sys-187

tem issue. This method not only declines the local lineariza-188

tion truncation error but also warrants the positive definitive189

feature of the covariance matrix. It updates any sigma point190

(SP) utilizing a novel method that attains optimum filter191

gain via the Strong Tracking Filter online tuning factor and192

excludes indecisive noise. The proposed method is much bet-193

ter efficiency in assessment correctness, talent, and capability194

than Central Difference FS [16]. An amended significance195

sampling is presented under the transformed UKF to amend196

the efficiency of the FS. The amendment is combined with197

a novel fuzzy noise estimator, that can regulate the state198

noises online and observation under the related residual,199

covariance and so decline the faults caused by model inex-200

actitude, generally. An adaptive resampling is presented to201

substitute the conventional resampling to prevail over these202

defects, retrieved from genetic optimization [17]. Normalized203

cross-correlation is unpopular for its high computing cost; 204

anyway, it is plump for illumination situations between two 205

cameras. It is practical in real-time stereo systems, rarely. 206

The computational complexity has no relationship with the 207

matching window size. The novel method has fewer comput- 208

ing costs [18]. A Genetic approach is carried out to construct 209

a collision-free optimum path joining an initial configuration. 210

This approach is operated to smooth the optimal route built. 211

via transition, the sufficient left and right velocities to con- 212

tinue exploring on the desired smoothed route are designated. 213

Kinect sensors and odometry sensors are operated to estimate 214

the position of the robot and current orientation using KF 215

[19]. Decision-makers can eliminate the reception degree, 216

the refusal degree, the reception degree, and the hesitation 217

degree, with the help of the Intuitionistic Fuzzy theory. These 218

are unknown quantities with incertitude. So, to Cope with 219

the incertitude with suspicion the Intuitionistic Fuzzy theory 220

seems to be more trusty than the Fuzzy Set theory. This 221

nominates several concepts, including the fuzzy theory and 222

the Intuitionistic Fuzzy. In this paper, we propose a Hybrid 223

filter CLAM for depreciatory incertitude in comparison to the 224

UFS.We also interrogate the effectiveness of the IF system to 225

investigate nonlinear attributes. A review of the UKF method 226

is explained in part 2, and the Hybrid filter CLAM is proposed 227

in part 3. Part 4 demonstrates the simulation and experimental 228

results of the UFS and Hybrid filter CLAM. Part 5 discussed 229

Concluding. 230

II. REVIEW OF THE UKF METHOD 231

TheUTunder the transformation in theUKF is expanded [20]. 232

In the UKF isn’t a need to calculate the Jacobian matrix [21]. 233

The UKF is choosing a special quantity of points from the 234

previous landmarks [22]. The state model of robot motion is 235

given as per the following: 236{
xk = f (xk−1, uk−1)+ w
zk = Hxk + Vk

(1) 237

wherein zk and uk−1 are the output and input vectors and 238

xk is the state vector, k index is the time stage. The covari- 239

ance matrix of procedure noise (CMPN) is displayed with 240

Qk and the CMPN vector is displayed with wk . H is the 241

observation matrix. The covariance matrix of measurement 242

noise (MNCM) is displayed with Rk and MNCM vectors are 243

displayed with Vk . 244

Given the error covariance matrix Pk−1, the state vec- 245

tor x̂k−1 and the Sigma Points (SPs) Xi,k−1 are as per the 246

following: 247
Xi,k−1 = x̂k−1 i = 0

Xi,k−1 = x̂k−1 +
(
a
√
nPk−1

)
i = 1, . . . , n

Xi,k−1 = x̂k−1 −
(
a
√
nPk−1

)
i = L + 1, . . . , 2n

(2) 248

The scalar a is a little positive amount and decides the expan- 249

sion of the SPs around x̂k−1. The ith column of the square 250

root of the matrix P is displayed with
(√

P
)
i. 251
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The novel SPs are operating via the UT and transition252

function f on the past SPs:253

Xi,k = f
(
Xi,k−1, uk−1

)
(3)254

The predicted mean as per the following:255

x̂k =
∑2n

i=0
wiXi,k (4)256

And the covariance of error as per the following:257

Pk =
∑2n

i=0
wi
(
Xi,k − x̂k

) (
Xi,k − x̂k

)T
+ Qk (5)258

wherein x̂k is the predicted amount of a state parameter, Pk is259

the mean squared error of x̂k , wi is the SPs weight and Xi,k is260

the updated sampling point, a is a constant, illustrated as per261

the following:262 
wi = 1−

1
a2

i = 0

wi =
1

2na2
i = 1, . . . , 2n

(6)263

The SPs measurements are formulated as per the following:264

Zk = H
(
Xi,k − uk

)
(7)265

The predicted measurements weighted mean as per the266

following:267

Z k
∑2n

i=0
wiZk (8)268

The UKF updated measurement as per the following:269

Pxkxk =
∑2n

i=0
wi
(
Zk − Z k

) (
Zk − Z k

)T
+ Rk (9)270

Pxkyk =
∑2n

i=0
wi
(
Xi,k − x̂k

) (
Zk − Z k

)T
(10)271

Kk = PxkykPxkxk
−1 (11)272

x̂k = x̂k + Kk
(
Zk − Z k

)
(12)273

Pk = Pk − KkPxkxkKk
T (13)274

wherein Pxkxk is the predicted measurement covariance275

parameter, Pxkyk is the covariance parameter between the276

measurement and state, Kk is the Kalman gain, Pk is the277

covariance parameter and x̂k is the state assessment [23].278

Stages 1–3were repeated until all parameters were computed.279

III. CLAM ALGORITHM USING THE HYBRID FILTER280

As the core of the proposed method is the betterment of errors281

towards UFS processing via the learning procedure, the IFL282

is very important. The IFL can carry out as a fast and precise283

tool approximating via observed data. In the UFS, the mea-284

surement data is very effective for the learning procedure that285

can be obtained via several types of sensors. Inference proce-286

dures, calculating the weight, are effective to ameliorate the287

exactitude via decreasing the robot pose’s errors. The IFL is288

very effective in declining the time of computation and incre-289

menting the exactitude of CMPN and MNCM, especially.290

Also, it increments the exactitude of choosing SPs whenmov-291

ing the robot upon various routes from various observation292

things, and this will increment the robot movement reliability. 293

the proposed method requires learning about fundamental 294

information via observation stages of the proposed method. 295

Also, the computation time declined. Significant inputs are 296

the covariance and mean that is computed via previous input, 297

uk−1 and exposure input, uk . The robot computes the previous 298

covariance and means in a prediction stage, in an observation 299

stage, it computes a Kalman gain, suggesting covariance and 300

mean described attributes [24]. Using the learning procedure, 301

the IFL as the core of the proposed method is the complemen- 302

tation of errors in the UFS procedure. The IFL can be used as 303

a quick and exact means of approximating a mapping under 304

data seen. 305

A. THE BEST SPs CHOOSING IN THE HYBRID FILTER 306

CLAM 307

For solving a CLAM issue having incertitude and hesitation 308

in the prediction of the robot position, one describes a CLAM 309

as having intuitionistic fuzzy localization exactitude. The 310

CMPN or MNCM of probabilities model, that are related to 311

the IFL, as per the following: 312

Oij =


O11 O12 · · · O1j
O21 O22 · · · O2j
...

... · · ·
...

Oi1 Oi2 · · · Oij

 = RorQ (14) 313

wherever i, j = 1, 2, . . . , r , and r is the quantity of SPs. Com- 314

puting the matching probabilities of SPs in diverse observa- 315

tions with possibility matrix Oij and the Gaussian matching 316

probabilities are done by the equations: 317

µ
i|j
k−1 =

1
t j
Oijµik−1 (15) 318

The normalization factor is given as per the following: 319

t j =
∑r

i=1
Oijµ

i|j
k−1 (16) 320

The matching possibility model µi|jk is updated under model 321

likelihood and model transition possibility controlled via the 322

IFL as per the following: 323

µk =
1
t
Ajk t j (17) 324

wherever 325

t =
∑r

j=1
t jA

j
k (18) 326

And Ajk is a likelihood function as per the following: 327

Ajk =
1√

2π
∣∣∣Pjxkxk ∣∣∣exp

[
−
1
2

(
Zk − Z k

)T (
Pjxkxk

)−1]
(19) 328

γk = (1− µk )d , d ≥ 1 (20) 329

wherein s and c are the standard deflections and the center 330

of the Gaussian basis function, d is a parameter that must be 331

designed. If d = 0µA + γA = 1 and the hesitation degree πA 332
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FIGURE 1. Hybrid filter CLAM framework.

also is zero. The NMD and MD of the ith rule are represented333

as per the following:334

µj = µ1jµ2j . . . µnj =
∏n

i=1
µij (21)335

γ j = γ1jγ2j . . . γnj =
∏n

i=1
γij (22)336

It normalized the NMD and MD of the fuzzy and computed337

the hesitation margin index.338

ϕj =
µj∑m
j=1 µj

(23)339

∅j =
γ j∑m
j=1 γj

(24)340

πj = 1− ϕj − ∅j (25)341

The output of the intuitionistic fuzzy with n rules can be342

computed as per the following:343

y =
∑m

j=1

((
1− π j

)
sjϕj + πjsj∅j

)
=

∑m

j=1
yj (26)344

The polynomial parameter s, si can be solved via least square345

regression techniques. If Oij = Q then, will construct Qy or346

Oij = R then construct Ry.347

Finally, the Pseudocode of the IFL phase for the selection348

of the best SPs is given in Algorithm 1.349

B. THE HYBRID FILTER CLAM PREDICTION STAGE350

The Hybrid filter is explained using the poses of a robot351

and features, including the position of landmarks. For the352

CLAM, themain robot motion requirements are to be offered.353

The Hybrid filter CLAM framework has a few privileges354

in management robot navigation with nonlinear movements355

owing to the inference feature of the IFL, which also needs a356

fewer quantity of comparisons than the UFS and shows much357

better efficiency from the robustness, perspective assessment358

exactitude, and reliability than the UFS. The Hybrid filter359

CLAM framework, as shown in Fig. 1.360

The following state equation shows a configuration of the 361

robot, Xa = (xyθQyRy)
T as per the following: 362

Xak =


xk
yk
θk
Qy,k
Ry,k

 =


xk−1 + vk1tcos(θk )

yk−1 + vk1tsin(θk )

θk−1 + vk1tsin(
1θ

L
)

Qy,k−1
Ry,k − 1

 (27) 363

uk = vk + N (0,Mk ) (28) 364

The wheels velocity is vk , 1t is the sampling period and L 365

is the distance between the robot’s wheels. Eventually, Mk 366

demonstrates the MNCM period. The vector Yk is a combi- 367

nation ofXa and the position of the robot as per the following: 368

Y ak =
[
Xak
m

]
= (xkykθkQy,kRy,k ,mik,xm

i
k,ys

i
k00)

T
(29) 369

The probability of Xa as per the following: 370

Xak = f
(
Xak−1, uk−1

)
+ N (0,Qy,k ) (30) 371

wherein f demonstrates the nonlinear functions, Qy,k is the 372

procedure noise, and uk is an input of control. The f it is 373

partial insulate is utilized with Xak for the Taylor extension 374

of function, as per the following: 375

f́
(
Xak−1, uk

)
=
∂f
(
Xak−1, uk

)
∂Xak

(31) 376

f is approximated at uk and uk−1. The linear extraction is 377

arrived at using the gradient of f at uk and uk−1 as per the 378

following: 379

f
(
Xak−1, uk

)
= f (uk−1, uk)+ f́ (uk−1, uk )(Xak , uk−1) (32) 380

With the substitution quantities acquired from Eqs. (1-5), the 381

previous covariance and mean as per the following: 382

x̂k =
∑2n

i=0
wiXai,k (33) 383

As explained in Eq.(34), the observation model Zk involves 384

the observation noise Ry,k , and nonlinear measurement func- 385

tion h, m involved vector of landmark,s pose. 386

Zk = h
(
Y ak
)
+ N

(
0,Ry,k

)
387

=


√
(mik,x − xk )

2
+ (mik,y − yk )

2

tan−1
(
mik,y − yk

mik,x − xk

)
− θk

+N (0,Ry,k ) (34) 388

mi = (mixm
i
y)
T

(35) 389

Z k =
2n∑
i=0

wiZk (36) 390
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Algorithm 1: Pseudo-Code for the IFL Phase for Choosing the Best Weight for SP
1: for i=1 to r
2: for i=1 to r
3: computing of state probabilities model Oij (14)
4: computing the matching probabilities µi|jk−1 (15)
5: computing the normalization factor t j (16)
6: update matching probabilities model µi|jk (17),(18),(19)
7: computing the likelihood function Ajk (7),(8),(9)
8: computing MD and NMD µj, γ j (21),(22)
9: computing normalization of membership and non-membership ∅j, ϕj (23),(24)
10: computing the hesitation degree πj (25)
11: end for
12: end for
13: computing the output of the IFL system y (26)

C. THE HYBRID FILTER CLAM MEASUREMENT UPDATE391

STAGE392

To attain the Kalman gain Kk , we should compute Pxkxk and393

Pxkyk . To get the amounts Pxkxk and Pxkyk , we require to394

calculate x̂k ,Zk ,Z k that derived from equations 27, 33, 34,395

36, by the substitution of these quantities, we will have as per396

the following:397

Pxkxk =
∑2n

i=0
wi[Zi,k − Z k ][Zi,k − Z k ]

T
+ Ry,k (37)398

Pxkyk =
∑2n

i=0
wi[Xai,k − x̂k ][Zi,k − Z k ]

T
(38)399

Kk = PxkykP
−1
xkxk (39)400

In the again sampling stage, some SPs with moderately huge401

jumbles with their objective, called bad SPs, are dismissed.402

Other SPs with moderately huge jumbles with their objective,403

is called good SPs. Nevertheless, the UFS has been patroniz-404

ing the SP reduction issue and the filter convergence issue405

that are via the mistake weights, the rejection, and replication406

during the again sampling phase, but the Hybrid filter CLAM407

does not have these issues. The IFL system includes inference408

using measurement quantities and input quantities. The next409

stage to attain the previous covariance and mean is to reform410

the results. The procedure mentioned in the top five stages411

iterates at the end of the navigation.412

x̂k = x̂k + Kk (Zk − Z k ) (40)413

Pk = Pk − KkPxkxkK
T
k (41)414

Finally, the Hybrid filter CLAMpseudocode is given in Algo-415

rithm 2.416

IV. SIMULATION AND EXPERIMENTAL ANALYSIS417

The Python code, to demonstrate the efficiency of the418

Hybrid filter CLAM expanded by Atsushi, was modi-419

fied [25]. In this paper, two navigation types of a robot420

are surveyed: Floor navigation, and Victoria Park naviga-421

tion. peculiarities of the navigation maps are explained in422

Table 1.423

TABLE 1. Main specifications for navigation.

FIGURE 2. Navigation result in the floor map.

A. NAVIGATION RESULTS IN THE FLOOR MAP 424

In this case of the floor navigation, navigation according 425

to the Hybrid filter CLAM and UFS. The results are based 426

on competition of the UFS and Hybrid filter CLAM. The 427

navigation pursuant to both methods is illustrated in Fig. 2. 428

The efficiency of the Hybrid filter CLAM is compared to 429

UFSwhere itsMNCM ismaintained stationary. The proposed 430

method wrongly adapts MNCM and CMPN matrix in UKF 431

using IFL and decides to a minimum the conformity between 432

the actual and theoretical quantities of the innovation pro- 433

cedure in UKF. The robot specifies a direction pursuant to 434

the data from the locations of landmarks identified for the 435

navigation, but due to unpredictable changes in incoming 436

data, it does not right away turn in the edges. The paths a 437

robot must cover are shown with the blue line, the robot path 438

is shown with the red line and the laser rays are shown with 439

a green line. The location of the landmarks is shown with the 440

plus points (+). 441
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Algorithm 2: Pseudocode of the Hybrid Filter CLA
1: Initialization parameters
2: for k = 1 to M
3: % state estimation of Robot
4: Extract the robot position xk using SPs collection Xk−1 (2),(6)
5: Predict mean x̂k (4) and covariance Pk (5) of robot associate observation data
6: Attain the robot predicted covariance
7: for k =known feature
8: Update mean x̂k (12) and covariance Pk (13) of the robot
9: Update SPs (30)
10: Compute importance weight wi (33)
11: end for
12: % position estimation of environmental features
13: if k = new feature
14: Initialize new feature mean x̂k and covariance Pk
15: else
16: Update mean (39) and covariance (40) of features
17: end if
18: end for

FIGURE 3. Mapping result in the floor map.

In Fig. 3, are shown generated maps via the received442

data. Because the proposed method detects the position of443

landmarks more carefully, this can construct required maps444

of the mapping stage with the GICP method, more carefully.445

We were able to decline the iterative matching procedure to446

estimate the robot pose and construct a 2Dmap. The proposed447

method was able to quickly obtain the robot pose and make a448

map. Also, the proposed method is more precise.449

In Fig. 4, the errors and incertitude of position for the450

UFS and Hybrid filter CLAM, respectively. By comparing451

the ultimate approximation of the position and the real posi-452

tion deflection, the standard deflection curve of the position453

deflection and the state amount of x, y are shown in Fig. 4.454

Generally, the position deflection attained via the Hybrid455

filter CLAM is fewer than that of the UFS deflection. These456

deflections may demonstrate that there is no good deflec-457

tion control to calculate for the robot’s rotation. Generally,458

ameliorated position deflection of the Hybrid filter CLAM is459

well preserved at around 0.2 m, so the IFL has good efficacy460

on positioning exactitude. Amid the total procedure of robot461

navigation, the localization error always has a small range,462

FIGURE 4. Errors and incertitude of position in the floor map.

and the robustness of the Hybrid filter CLAM is effectually 463

ameliorated. 464

In Fig. 5, simultaneously errors of the angular and position 465

in scan and odometry state for the UFS and Hybrid filter 466

CLAM, respectively. The angular deflection and position 467

deflection of the motion model is computed via an odometer 468

and scan matching is shown in Fig. 5. 469

From the Hybrid filter CLAM, it is made clear the angle 470

and position deflection will be confirmed, amid which the 471

position and angle deflection of the odometer motion model 472

gotten to be litter. The relevant weights are adjusted to ensure 473

the exactitude of the position assessment and prediction stage. 474

Table 2 provides the running time and the RMSE of the 475

mobile robot position of the Hybrid filter CLAM compared 476

to the UFS. The results illustrate that Hybrid filter CLAM 477

ameliorates the positioning exactitude of a robot compared to 478

the UFS in the floor Map. Moreover, the Hybrid filter CLAM 479

utilized a shorter running time of 7.1%. Therefore, theHybrid 480

filter CLAM has better computational efficiency exactitude 481
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FIGURE 5. Simultaneously errors of the angular and position in scan and
odometry state in the floor map.

TABLE 2. RMSE of running time and vehicle position of methods in the
floor map.

FIGURE 6. (a) The mobile vehicle was utilized for data collection. (b) The
motion model of mobile vehicle [27].

than the UFS. This can be since the Hybrid filter CLAM482

adaptively adjusted the MNCM and CMPN. These matrices483

merge to the actual MNCM and CMPN while MNCM and484

CMPN in UFS are constant over time.485

B. EXPERIMENTAL RESULT OF NAVIGATION WITH486

‘‘VICTORIA PARK DATASET’’487

The experiment is carried out in the Victoria Park dataset488

until validation of the efficiency of the proposed method489

is illustrated for solving the CLAM problem. The Victoria490

Park dataset was gathered via the Australian Centre for Field491

Robotics in Victoria Park. The vehicle provided with different492

sensors is shown in Figure 7a. The environment is the trajec-493

tory is long (4.5 km), large (250 × 300), and there are many494

FIGURE 7. Experimental results in the Victoria Park map.

FIGURE 8. (a) and (b) errors and incertitude of position in the Victoria
Park map.

loops (14 loops). The observations havemuch spurious detec- 495

tion of trees. Figure 8 shows the map and trajectory created 496

via the Hybrid filter CLAM and FastSLAM. In both methods, 497

the free parameters, such as covariance matrices of noises and 498

error bounds, are chosen via the error and experimentmethod. 499

AGPSwas utilized to supply ground truth data, steering angle 500

and vehicle velocity were gathered with an inertial sensor. 501

A laser range finder was utilized to the bearing landmarks 502

and measure the range with the vehicle. Therefore, those 503

observations with high gravity data are exploited from laser 504

data as eventual landmarks, and the nearest neighbor method 505

is utilized for the data association step [26]. The different 506

sensors of the vehicle are shown in Fig 6a [26]. Fig 6 shows 507

the map and path made using the Hybrid filter CLAM and 508

UFS. In both methods, covariance matrices of noises and 509

error bounds are chosen by the experiment and error method. 510

511

The vehicle structure is shown in Fig. 6a. The motion 512

model is illustrated as per the following: 513

xv=vcos (θ) , yv=vsin (θ) and θv=v |Ltan(α) (44) 514

The motion model of the mobile vehicle shown in Fig. 6b 515

and Eq. (44) demonstrates the pose of the back axle center, 516
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FIGURE 9. Simultaneously angular and position of the error in scan and
odometery state in the Victoria Park maps.

but a Global Positioning System (GPS) and laser range finder517

are installed at the front of the vehicle. Therefore, to simplify518

the update procedure, the motion model must be reformed to519

illustrate the GPS pose and laser sensor. The discrete motion520

model is explained as per the following: [28]. (42) and (43),521

as shown at the bottom of the page, wherever the sampling522

time is t and v is the velocity is v, but ve get from the523

sensor demonstrates the velocity of the left rear wheel. The524

navigation pursuant to the UFS and Hybrid filter CLAM is525

illustrated in Fig. 7, wherever more deflections are shown on526

corners with bigger angles during the navigation procedure.527

The vehicle determines a direction for the navigation pur-528

suant to the data from the landmarks identified positions. The529

green line is shown the mobile robot paths with GPS data530

should be covered and the robot path is shown with a black531

line, pursuant to data explained via the Hybrid filter CLAM.532

The pink circle (o) describes the location of the landmark that533

is known and stationary in the area.534

The efficiency of the Hybrid filter CLAM is better than that535

of the UFS. Also, the efficiency of the UFS and Hybrid filter536

CLAM depends on increasing the number of loops and the537

number of hypothetical Jacobians.538

Also, when the Hybrid filter CLAM and UFS are utilized539

to solve a variety of issues with higher dimension variable540

complexity more nonlinear systems may be incremented.541

TABLE 3. RMSE of running time and vehicle position of methods in the
Victoria Park map.

In Fig. 8, position errors and position incertitude of the 542

Hybrid filter CLAM and UFS, respectively. 543

By comparing the ultimate approximation of the position 544

and the real position deflection, the standard deflection curve 545

of the position deflection and the state amount of x and y are 546

shown in Fig. 8. 547

Generally, the position deflection attained via the Hybrid 548

filter CLAM is fewer than that of the UFS deflection. These 549

deflections may demonstrate that there is no good deflection 550

control to calculate for the robot’s rotation. Generally, ame- 551

liorated position deflection of Hybrid filter CLAM is well 552

maintained at around 0.15 m, so the IFL has good efficacy 553

on positioning exactitude. Amid the total procedure of robot 554

navigation, the localization error always has a small range, 555

and the robustness of the Hybrid filter CLAM is effectually 556

ameliorated. 557

In Fig. 9, simultaneously errors of the angular and position 558

in scan and odometry state for the UFS and Hybrid filter 559

CLAM, respectively. The angular deflection and position 560

deflection of the motion model is computed via an odometer 561

and scan matching is shown in Fig. 9. 562

From the Hybrid filter CLAM, it is made clear the angle 563

and position deflection will be confirmed, amid which the 564

position and angle deflection of the odometer motion model 565

gotten to be litter. The relevant weights are adjusted to ensure 566

the exactitude of the position assessment and prediction stage. 567

Table 3 provides the running time and the RMSE of the 568

mobile robot position of the Hybrid filter CLAM compared 569

to the UFS. The results illustrate that Hybrid filter CLAM 570

ameliorates the positioning exactitude of a robot compared 571

to the UFS in the Victoria park Map. Moreover, the Hybrid 572

filter CLAM utilized a shorter running time of 8.9%. There- 573

fore, the Hybrid filter CLAM has better computational effi- 574

ciency exactitude than the UFS. This can be since the Hybrid 575

filter CLAM adaptively adjusted the MNCM and CMPN. 576

These matrices merge to the actual MNCM and CMPNwhile 577

MNCM and CMPN in UFS are constant over time. 578

 xk,vyk,v
θk,v

 =

xk−1,v +1t(vk−1 cos

(
θk−1,v

)
−
vk−1
L

tan(αk−1)(asin
(
θk−1,v

)
+ bcos(θk−1,v)))

yk−1,v +1t(vk−1 sin
(
θk−1,v

)
+
vk−1
L

tan(αk−1)(acos
(
θk−1,v

)
+ bsin(θk−1,v)))

θk−1,v +1t
vk−1
L

tan(αk−1)

+Wk−1 (42)

vk−1 =
vk−1,e

1− H
L tan(αk−1)

(43)
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V. CONCLUSION579

This paper, proposes a new method with the name of Hybrid580

filter CLAM for the navigation procedure of a robot. It is con-581

cluded with the correction of the formula utilized to compute582

the linear approximation process and the observation function583

Jacobian matrix. The incorrect previous information around584

the CMPN and MNCM may many declines the efficiency585

of UFS. An additional stage for adjusting the CMPN and586

MNCM is proposed in the proposed method. To decline the587

efficacy of the cumulative. Based on the results, the UFS has588

more errors than the Hybrid filter CLAM and can ameliorate589

the exactitude of assessment and maintain diversity. It does590

not utilize the linear approximations and the production of591

the Jacobian matrices in the UKF framework is a significant592

benefit and updates the mean and covariance of the attribute593

state via utilizing the unscented filter. In the localization pro-594

cedure, the Hybrid filter CLAM is developed in the prediction595

stage of the robot state, and theUKF offers improved proposal596

distribution without computing the Jacobian matrices. The597

IFL is engaged in dynamically regulating the MNCM and598

CMPN.When a designer does not have to equate information599

to extend the complete filter models or when the filter param-600

eters are sedately changing with time, the IFL can be engaged601

to ameliorate the UFS efficiency. The proposed method It602

does not use the production of the Jacobian matrices and603

linear approximations to the nonlinear functions in the UFast-604

SLAM is the major advantage of this method and updates605

the covariance and mean of the feature state via IFLS in the606

feature estimation. The proposed method has the additional607

benefit of decreasing the quantity of SPs when maintaining608

the assessment exactitude. In addition, the results admit that609

the Hybrid filter CLAM is better for navigation procedure610

results, and also the consistency is higher than that of the611

UFS. However, computational complexity is incremented612

using more hypothetical Jacobians. Also, exploiting the pro-613

posed method to a more nonlinear system may increment the614

complexity with higher dimension variables. Therefore, it is615

significant to make a tradeoff between assessment exactitude616

and computational complexity. In addition, decreasing the617

Kalman filters family dependent on the characteristic of a618

system such as nonlinearity and dimension variables can be a619

great research subject in the future and also use another meta620

heuristic method for improvement of the sampling process.621
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