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ABSTRACT The temperature of cable conductor is of great significance to improve the current carrying
capacity, asset utilization and safe operation of cable lines. Aiming at the problems of slow calculation
speed, low accuracy and weak anti-interference ability of the current temperature calculation methods, this
paper proposes an inversion method based on improved sparrow search algorithm (ISSA) optimized back
propagation neural network (BPNN). Tent mapping was used to increase the initial population diversity
of sparrow. Modified sparrow optimization formula to improve convergence speed. Chaotic perturbation is
applied to the optimal individual to improve the global and local search ability of SSA. The multi-physics
simulation model of 110kv straight connector was established, and the temperature distribution data
under three different working conditions were obtained. According to the simulation data and CEC2017
standard test experiments, the optimization ability of the improved model is compared with particle swarm
optimization (PSO), whale optimization algorithm (WOA), SSA and MSWOA. To verify the generalization
performance and migration ability of the proposed method, the thermal cycle test and inversion calculation of
the 10kV cable straight-through joint were carried out. The results show that ISSA-BPNN has high accuracy,
fast convergence speed, good robustness, and is less affected by cable joint type, load current and cable
environment conditions. It has good engineering practicability.

INDEX TERMS Sparrow search algorithm, BP neural network, tent chaos, cable straight joint, temperature
inversion.

I. INTRODUCTION

In response to the green development policy, economic and
environmental protection has become the goal of modern
power system to transmit electric energy. With the accelera-
tion of urbanization, electricity demand surges. This increase
has placed a greater burden on existing lines. Therefore, it is
necessary to fully tap the hidden capacity of lines to improve
the actual transmission capacity of transmission lines [1], [2].
The capacity of the line depends on the maximum long-term
allowable operating temperature of the insulating material.
Therefore, the cable core temperature monitoring and diag-
nosis of line safety evaluation and dynamic thermal rating to
determine has an important role in guiding [3], [4], [5], [6].
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Cable joints are more prone to overheating due to their
physical structure and material properties. There are two
main ways to obtain the temperature of the conductor core.
One is the implantable temperature measurement, that is,
the temperature sensor or optical fiber is buried inside
the cable joint when the cable joint is made; the other is
non-implantable temperature measurement, such as infrared
imaging temperature measurement technology [3], [7], [8],
[9]. The built-in temperature measurement unit is at high
potential and withstands long-term high temperature, and its
safety and stability cannot be guaranteed. When transmit-
ting signals to the external receiving unit module, it will
also be interfered by strong electromagnetic fields. Infrared
temperature measurement is also susceptible to meteoro-
logical factors such as ambient temperature, humidity and
wind speed, and the farther the test distance, the lower the
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measurement accuracy. These methods are difficult to ensure
the safe and stable operation of the joint in the whole life
cycle.

In recent years, researchers have conducted a lot of
research on the non-invasive indirect calculation method
of cable joint temperature. Including thermal circuit
method, finite element method (FEM) [10], finite vol-
ume method (FVM) [11], [12], boundary element method
(BEM) [13], [14] and so on. Gao et al. [15] inverted the
temperature of cable joint through the second-order transient
thermal circuit, and combined with parameter identification
for fault diagnosis. Fu et al. [16] proposed a fast calculation
method for temperature rise of transfer matrix based on finite
element data. Although the calculation accuracy has been
improved, most of the methods are aimed at a relatively
single cable model and laying environment. In the face of
new objects and environments, differential equations and
simulation models need to be reconstructed. The calculation
efficiency is not fast enough and the generalization ability is
not strong.

With the development and application of data-driven meth-
ods, many artificial intelligence algorithms have been applied
to cable joint temperature inversion. Ruan et al. [17] used
support vector machine (SVM) to invert the temperature of
medium and low voltage three-core cable, and verified the
accuracy of the inversion effect by measuring multiple posi-
tions and temperature measurement points in the experiment.
He et al. [18] used particle swarm optimization algorithm
to optimize the penalty parameter C and kernel function
parameter § of SVM, and predicted the junction temperature
by historical temperature, current ratio of core and sheath, etc.
Wang et al. [19] proposed a joint ampacity estimation algo-
rithm. Fu et al. [20] proposed a PSO-Elman neural network
method for predicting the temperature of cable conductors.
However, the application of machine learning also introduces
more hyperparameters which are difficult to solve, resulting
in the difficulty of solving the algorithm in some applica-
tion scenarios, especially when the input characteristics are
complex and the dimension is high, overfitting is easy to
occur.

The heuristic algorithm is a kind of optimization algorithm
developed according to the survival characteristics of organ-
isms. In recent years, new swarm intelligence algorithms such
as WOA [21], GWO [22] and SSA have been proposed one
after another, and their optimization performance is better.
Xu et al. [23] used the bird swarm algorithm (BSA) to
improve the way sparrows approach the optimal solution and
shorten the convergence time of SSA. Li et al. [24] proposed
a hybrid algorithm combining SSA and genetic algorithm
(GA), which introduced logistics chaotic mapping, reverse
learning, and Gaussian mutation to enrich the population
[25]. This method takes into account the characteristics of
strong global search ability of GA and strong local search
ability of SSA. N. A. Khan et al. [26], [27] combined WOA
with the local optimization algorithm Nelder-Mead (MN) to
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obtain a hybrid algorithm with shorter time, and performed
well in fluid computing and other fields. Li et al. [21] intro-
duced Gaussian distribution and adaptive weight to construct
the algorithm variant of GDS-WOA, and realized the opti-
mization of constraint problems. Hsu ef al. [28] used GWO
and denoising convolutional neural network (QnCNN) to
refine the recognition effect of quaternion discrete cosine

transform (QDCT) on image watermark. Zhang et al. [29]

combined mayfly algorithm (MA) and SSA, introduced

levy flight and nonlinear weight to balance the relationship

between global search and local search. Tuerxun et al. [30]

mixed SSA and SVM to improve the accuracy of wind tur-

bines fault diagnosis. There are more other improved models

[31], [34], [35], [36]. Although earlier research has increased

the algorithm’s accuracy and speed of convergence, the global

search and local development capabilities of SSA, a recently
developed swarm intelligence algorithm, remain uneven and
the system is still prone to falling into the local optimum.

Additionally, we need to make improvements to it in order to

strengthen its robustness and optimize its optimization effect.

To deal with complicated and variable operating conditions,

the upgraded hybrid algorithm and variant of the swarm

intelligence algorithm must be used to the joint temperature
inversion.

In conclusion, we propose a hybrid approach to enhance
SSA and use the improved SSA to optimize the weights and
thresholds of BPNN. The common test function CEC2017
assesses the upgraded algorithm’s optimization performance.
Using modeling and experimental data, the algorithm’s
impact on the inversion of the cable joint temperature is exam-
ined. We assess the performance of the algorithm using SMaE,
SMAPE, ORMSE, R2 four indicators. The outcomes demonstrate
that the revised algorithm performs significantly better than
the original algorithm.

The main contributions of this study are summarized as
follows.

1. A non-destructive testing method for cable joint core
temperature based on ISSA-BPNN is proposed. It has a
greater inversion accuracy as compared to the PSO, WOA,
SSA, and MSWOA optimization models.

2. It is demonstrated that the improved model outperforms
the other four models, including the original swarm
intelligence algorithm and its variations, in terms of
optimization performance by testing and comparing the
benchmark functions of high dimension, low dimension,
single extremum, and multi-extremum.

3. The performance of each model in cable joint core temper-
ature inversion under different load types in dynamic envi-
ronment is compared and analyzed. The results show that
with the increase of load change rate, the inversion error of
each algorithm increases, but the stability of ISSA-BPNN
is better.

4. On the test objects of different voltage levels and mod-
els, ISSA-BPNN can maintain excellent performance and
strong robustness.
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TABLE 1. Material parameters of cable straight joint.

Structure _ Density Specific _Heat Thermal Conductivity
Parameter Material (kg'm™) Capacity
0-(kg'K)™) (WemK)
conductor copper 8889 383 401
XLPE Cross linked polyethylene 920 2500 0.4
semiconductor tape Polyester fiber 600 2000 0.6
aluminum sheath aluminum 2780 883 218
outer sheath Medium density polyethylene 950 1842 0.5
prefabricated insulation Ethylene Propylene Rubber 1100 2219 0.45
air air 1.293 1004 0.023
waterproof sealant Epoxy resin 1050 1750 0.3
explosion-proof protective shell Glass fiber reinforced plastic 1850 535 1.85

A
B

C
1 2 3 4 5 6 7 8 91011

1-Semiconductor tape; 2-Conductor core; 3-XLPE insulation; 4-
prefabricated insulation; 5-Joint core; 6-Pressure pipe; 7-Screening cover;
8-Air gap; 9-Copper shell; 10-Waterproof sealant; 11-Explosion-proof
protective shell.

FIGURE 1. Structure of single-core 110kV cable straight joint.

II. FINITE ELEMENT SIMULATION OF CABLE JOINTS

A. FINITE ELEMENT SIMULATION MODEL STRUCTURE
The simulation model was constructed with a joint for single-
core 110 kV cable with cross-section 630 mm? as the
object, and its specific structure is shown in Fig.1. Since
the structure of the cable joint was axially symmetrical, and
the sealing tape, epoxy mud sealing port, grounding structure
and other non-completely symmetrical structures had little
effect on the distribution of the thermal field of the joint,
a two-dimensional axisymmetric model of the joint can be
established. In order to improve the simulation efficiency,
appropriate equivalent simplification was carried out on the
structure of cable joint. Firstly, since the good conductor had
little influence on the electrothermal analysis, the anisotropi-
cally compressed stranded structure of the cable core conduc-
tor was equivalent to a solid cylindrical structure. Secondly,
since the semi-conductive shielding layer was thin and similar
to the physical parameters of XLPE insulating layer, it was
simplified and assumed as a whole together. Finally, the cor-
rugated aluminum sheath was replaced by a ring of equivalent
diameter according to the IEC 60287.

B. MATHEMATICAL MODEL OF THERMAL FIELD AND
BOUNDARY CONDITIONS
According to the law of conservation of energy, the increase
of the internal energy of the cable joint at any time is equal
to the difference between the heat generated by the cable
itself and the heat dissipated out of the cable joint. In the
Cartesian coordinate system, the general form of its constant
property, steady state, and two-dimensional thermal differen-
tial equation was as follows:

%t 3%t q

@4‘3—))2-{-7:0 )
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where ¢ represents the temperature; g, is the heat generated
by the heat source in the unit time and area; X is the thermal
conductivity.

The solution of the heat conduction equation in (1) also
required the initial conditions and boundary conditions as
the solution conditions for the partial equations. In the finite
element method for partial equation solution, there are three
main boundary conditions for the thermal field.

The first boundary conditions: the temperature of the
boundary was specified as a constant.

t(x’y)h"] Zf(xvy)h"] (2)

The second boundary conditions: the heat flux density on
the boundary was specified as a fixed value.

ot

A—| = 3
an ., 4n 3

The third boundary condition: the surface heat transfer
coefficient 4 between the object boundary and the surround-
ing fluid, of which temperature was specified as

ol = h(t =)l @

I'3

where 'y, I'2, '3 is the boundary, n is the normal unit vector
of the boundary, & is the convective heat dissipation coeftfi-
cient, g, is the heat flux density, # is the fluid temperature,
and f(x, y) is a constant.

C. PARAMETER AND BOUNDARY CONDITONS SETTING

The material parameters of cable joint is shown in Table. 1.
The actual operating environment of the cable joint was
complex, and the boundary conditions were difficult to be
acquired and determined. When the air velocity around the
cable is less than 0.15 m/s, it is a kind of natural convection.
The surface of the joint adopted the third type of boundary
conditions, the natural convection heat transfer coefficient
was set to 8 W/(m?-°C), and the ambient temperature was
set to 20 °C. When the cable conductor at both ends of the
joint is more then 5 m, the axial heat conduction is assumed
to be in equilibrium state. The simulation results indicated
that the axial heat transfer distance of the joint was 2-3 m
away from the crimping position of the joint. The total length
of the model was 8 m, so both ends can be set to the second

100139



IEEE Access

Q. Zhan et al.: Robustness Temperature Inversion Method for Cable Straight Joints Based on ISSA Optimized BPNN

ANSYS 15.0 ANSYS 15.0
ANSYS 15.0 ANSYS 15.0
- 2000 T W -
mm 21.2823 23.3451 ‘ 24.8174 . 0.0
B 22.1411 | N i [ N B 25.6537

I 24.6873 } I 26.7497 579215
B 22.9999 26.0292 28.682 = -
Em 23-8567 — R o 50,6143 Em 0.0
mu 2E7L70 T 26l7120 O 2lstee mm 2.ss)
3 235763 30,0548 — e N B e

o ] 26.4351 B [ - \ [ . B [ 36-992e

A O 27.2938 \ ] 31.3966 [ 36.4112 | ] 39.2603
O 28.1526 ] 32.7385 [ 38.3435 o 4l.5281
O 20.0114 ] 34.0804 [ 40.2758 ] 43.7958
o 20.8702 ] 35.4223 ] 42.208 ] 46.0636
O 30.729 | ig-zgél = 22%322 O 48.3314
[ 31.5878 (| 30 1499 = 28 004 [ 50.5991
I 32.4466 [ : = 29 9370 [ 52.8669
o 33.3054 mm 40.7897 [ O 55-1347
O 34.1642 mm 42.1316 O 51.8695 D 57.4024
T = L = o i
O 35.8818 . . 0 .

36.7406 ] 46.1572 [ 57.6664 64.2057
% 37.5994 ] 47.4991 [ 59.5987 % 66.4735
— 38.4582 1 48.841 — 61.531 1 68.7412
] 39.317 [ 50.1828 [] ©3.4633 1] 71.009
[ ] 40.1758 ] 51.5247 [] 65.3956 ] 73.2768
[ ] 41.0346 ] 52.8666 [ 67.3279 1 75.5445
] 41.8934 ] 54.2085 ] 69.2602 ] 77.8123
[ 42.7522 ] 55.5503 ] 71.1925 [ 80.0801
[ 43.611 ] 56.8922 1 73.1248 1 82.3478
[ 44.4698 ] 58.2341 ] 75.0571 I 84.6156
O 45.3286 ] 59.5759 [ 76.9894 I 86.8834
I 46.1874 I 60.9178 B 78.9217 I 89.1511
Bl 47.0462 B 62.2597 [ 80.854 I 91.4189
Bl 47.905 Bl 63.6016 Em 52.7863 Bl 936866
(@) (b) (© (d)

ANSYS 15.0 ANSYS 15.0
=i ;=i
R — et
= ey
E gg:gigz I 30.6143
0 34.4789 Eg 22.oeee
O 36.4112 g e
] 38.3435 Em ez
B 402758 B ol
mm 42.208 % 42.208
R R
15,0045 ] 46.0726

- O 48.0049
 49.9372 49.9372

51.8695 =

[ 03 8018 I 51.8695
= 338018 ] 53.8018
= bt O 55.7341
— - ] 57.6664
= s =
[ 63.4633 % 63.4633
[ ©5.395¢6 [ ] 65.3956
[ 67.3279 ] 67.3279
] 6©9.2e02 ] 69.2602
1 71.1925 O 71.1925
] 73.1248 ] 73.1248
O 75.0571 ] 75.0571
O 76.9894 O 76.9894
/= 78.9217 /= 78.9217
I 80.854 & I 80.854
B 82.7863 Bl 52.7863

©

®

FIGURE 2. Temperature field distribution of cable joints under different load currents. (a) 800A; (b) 1000A; (c) 1200A; (d)1300A;
(e)Two-thirds section partial view under1200A; (f) The entire cable joint under 1200A.

boundary conditions, and the normal heat flux density was
set to 0 W/m?2. The excitation of the model is simulated by
applying current to generate Joule heat, which was set as
reference ground potential at one end of the cable core, and
different load currents are loaded at the other end to simulate
different working conditions of the actual operation of the
cable.
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The heat source of a cable joint mainly included the Joule
heat of the conductor core, the loss of the insulating medium
and the circulation loss of the aluminum sheath. Since the
outer sheath of high-voltage cable was cross-connected or
single-ended grounded, the circuit current losses were negli-
gible. The Joule heat of the conductor core included the Joule
heat of the core itself and the heat generated by the contact
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FIGURE 3. The schematic diagram of 110kV cable joint temperature rise test platform.

resistance of the crimping position.

Py = I’R+1°R 5)
R=Ry(l+a(T—20)(1+Y+Y,) (6)

where Ry is the resistance value of the wire core at 20 °C, ¢ is
the temperature coefficient of copper, T is the temperature of
the conductor, ¥ and Y), are the skin effect and the proximity
effect factor, respectively, R; is the contact resistance value
of 7 x 1076,

The loss of the dielectric loss was calculated according
to (7)

P, = 27fCUtans @)

where f is the power frequency of voltage, C is the capac-
itance of insulating layer of cable joint, U is the power
frequency voltage and § is the dielectric loss angle.

D. MODEL SOLVING AND EXPERIMENTAL VERIFICATION
Steady-state temperature distribution of the cable joint under
different loads was as shown in Fig.2. It obvious showed
that the temperature of the joint crimping position was sig-
nificantly higher than that of the cable core, and there were
different degrees of attenuation along the axial and radial
directions. When the connector reaches the allowable long-
term thermal operating temperature 90 °C for XLPE, it was
inferred that the current carrying capacity of the cable joint
was far from being fully utilized.

In this paper, the temperature rise test is carried out by
simulating the same type of cable joint. The concept diagram
is shown in Fig.3. It is found that the simulation and test
data have high consistency for the temperature change of
cable conductor. However, as the temperature measurement
position is far away from the conductor core, there is a certain
difference between the simulation and the experimental data.
The temperature rise of the experimental data is faster than
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the simulation temperature rise, but the final temperature
error between them does not exceed 2 °C, which meets the
engineering error requirements.

lll. ALGORITHM THEORY
A. SPARROW SEARCH ALGORITHM
In 2020, Xue et al. [32] proposed a novel swarm intelligence
optimization algorithm-sparrow search algorithm based on
natural predatory behaviors of sparrows in biology. The
algorithm simulated the process of individual sparrows
avoiding predators and constantly approaching the food
location. The population was consisted of three roles: pro-
ducer, follower and early warning. Producers had a high
energy reserve and a larger foraging area, which provided
foraging area and direction information for the population.
Followers approached producers and grabbed food resources.
The early warning gave warning signal when danger was
appearing, and if necessary, gives up food to avoid dan-
ger. The producer location was updated in the following
way:

Y {Xl{j.exp(m), Ry < ST ®

” Xl{j+Q-L, Ry > ST

where, ¢ represents current iterations, Xt i,j denotes posi-
tion information of the j; dimension of the iy sparrow in
t iterations, « is a random number in the range of [0, 1],
itermax 1S the maximum number of iterations; R, takes the
value in [0, 1], which represents the warning value; ST takes
the value in [0.5, 1], which represents the safety thresh-
old; Q is a random number obeying the standard normal
distribution; L is a 1 x d matrix with all elements being
1. When R, < ST, the population is not in danger and
the foraging range of sparrows will increase; when Ry >
ST, natural enemies appear and the sparrows move to safe
areas.
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The position update mode of the follower was

i>N/2

X -x)). =Ny

&)

where N is the population size; X, is the optimal position
occupied by the producer; X,, is the global worst position.
At =AT(AAT)"!, where A is a 1 x d matrix with all elements
lor—1.

There were a certain number of individuals in producers
and followers who need to act as early warning.

X[i'l'ﬁ Xi’,j—Xlﬁ , fi>fg

t+1 _

Xij = K X! - X, e (10)
W (fi—foy+e 7 7¢

where X}, is the global optimal position; 8 is the step size,
which i is a standard normal distribution random number; K
is a random number of [—1, 1]; f; is the current sparrow’s
fitness value; f,, and f, are the worst and optimal current
global fitness values respectively; ¢ is the minimum constant
to avoid zero denominator; when f; = fg, individuals in the
middle position found danger and update their position; when
fi > f¢.individuals at the edge warn and update their position.

B. IMPROVED SPARROW SEARCH ALGORITHM

1) POSITION UPDATE FORMULAS

Two update methods in solving optimization problems were
usually applied by approaching to the origin point and a
optimal solution, and gained excellent performance where the
optimal value was near the origin point. Since the followers
approached the optimal solution by jumping to the vicinity
of the optimal position, it may cause too much difference
between certain dimensions, which limited the algorithm’s
ability to find the optimal solution. Accordingly, position
update formulas for followers and early warnings were modi-
fied to (11) and (12), so that individuals moved to the optimal
position in the whole solution space.

X!
0 - exp(——5— ), i>N/2

+l

i,j 1 b
b t+1
X+ S > <r . (
j=1

X -x)). =N

(11)
I b S )
SR B s A

where D is the population dimension and r is a random
number of [—1,1]

2) TENT CHAOTIC MAPPING
Generally, swarm intelligence algorithms were randomly ini-
tialized populations, but the uniformity of population was

100142

stochastic distribution in space. The initial population distri-
bution affected the convergence speed and accuracy of the
algorithm. [33], [34]. At the later period of iteration, SSA still
had the common problem of swarm intelligence algorithm.
The population approached to the food location, the foraging
space shrinks, the population diversity decreased, and the
algorithm was easy to fall into the local optimal solution.
The randomness of chaotic mapping could enrich population
diversity and improve the ability of the algorithm to jump
out of local optimum. The common chaos operators included
logistic mapping and tent mapping, etc. However, the proba-
bility of logistic mapping in the interval of [0,0.1] and [0.9,1]
was much higher than the probability of the middle position.
By comparison, the mapping generated by tent chaos map-
ping in the interval of [0,1] had better ergodic and uniformity.
In terms of processing large-scale data, the iteration speed
was also more faster [35], [36]. In addition, to overcome the
shortcomings of traditional tent chaotic mapping and avoid
chaotic particles falling into small period and unstable period
points during iteration [35], a random variable was added to
the original mapping formula, and the modified Tent chaotic
mapping was expressed as follows.

2x; +rand (0, 1) /N 0<x <05
Xiy] = (13)
2(1 —x)+rand(0,1) /N 05 <x; <1
The chaotic values obtain from equation (13) were mapped
to the sparrow population as follow

Xgn = b+ xg (ub — Ib) (14)

where x4 , is a new value of the chaotic sequence carrier to
the population space; uj and [/, are upper and lower bounds
of the sparrow position, respectively; x4 is a chaotic variable.

Then equation (13) was used to perturb the local opti-
mal individuals of the population and retained the optimal
position

Xn = (x +x4,) /2 (15)

where, x,, is the individual after perturbation; x is the individ-
ual to be perturbed.

C. BACK PROPAGATION NEURAL NETWORK
The basic topological structure of BPNN, shown in Fig.4,
consists of an input layer, a hidden layer, and an output layer.
BPNN is a multi-layer feed-forward network trained
according to the error back propagation algorithm, which
has the advantages of strong nonlinear mapping capability
and flexible network structure. The forward propagation of
the information of the input feature quantity is processed
by the hidden layer to obtain the actual output. If the error
between the output value and the expected value does not
meet the set operation termination condition, the error is
propagated from the output layer forward layer by layer,
and the gradient descent method is adopted. Through the
adjustment of the weights and thresholds of the hidden layer
neurons and the connected neurons, the network training is
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Input layer

Hidden layer Output layer

FIGURE 4. Topological structure of BPNN.

stopped until the error setting condition or the maximum
number of iterations is reached.The specific training steps for
the network are as follows:

(1) Initialize the hyperparameters of the network, including
the network weights wy,,v; and thresholds a,b.

(2) Calculate the output value of hidden layer neurons gy .

a=f (Z Wk Xn — ak> (16)

n=1

where k = 1, 2, ..., h. f is the activation function of the
hidden layer. x;, is the nth input.

(3) Calculate the output value of the output layer
neurons o;.

h
o=f (Z Vijak — b,») (17)
k=1

wherej=1,2,...,m.
(4) Update the weights and thresholds of the network.

Wik (t41) = wak (0) + ngr (1—q) X kaj (yi—0))
j=1
(18)

vij (t+1) = vig (1) + ngx (vj—0)) (19)

ap (t+1) = ax () + ngi (1-q;) Y _ vig (yj—0j)  (20)
=1

b (t+1) = b; (1) + (yj—Oj) (21)

where 7 is learning rate, which is between 0 and 1.
(5) Determine whether the iteration termination condition
is reached. If not, return to the second step.

IV. CABLE JOINT TEMPERATURE INVERSION MODEL

Considering that service life of the high-voltage cable joints
was different, surrounding and aging degree, the acquisition
of internal structural material parameters may cause irre-
versible damage to the joint structure, and the sample size of
each operating condition was insufficient [37], [38]. So, this
paper takes the operation monitoring data of a power supply
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company in China as reference, the finite element simulation
of 110 kV cable joint was constructed and the thermal cycle
test of 10 kV cable joint was carried out to obtain sufficient
training samples.

A. DATA COLLECTION FOR TEMPERATURE INVERSION
The cable joint core temperature depended on the dynamic
balance relationship between heat generation and heat dis-
sipation in a cable joint. Therefore, the load currents and
the external surface temperatures of the cable joint end
(Tg), which were easy to measure and can reflect the rela-
tionship between the heat generation and heat dissipation,
were selected as input characteristics, and the temperature
of the joint core (T¢c) was the inversion results. To verify
the performance of the temperature inversion method based
on ISSA-BPNN, The simulation and test were carried out
to obtain the joint temperature data of the following four
operating conditions for inversion.

(1) Simulation load currents were applied in the form of a
single step to simulate the actual cable line load stabi-
lization period. Temperature rises of the joints were not
large when the load current was small, and there was no
over-temperature danger. Therefore, load currents were
set from 800 A to 1300 A, with 100 A interval for a total
of five groups of simulations.

(2) The current was applied in the form of multiple steps
with no fixed time interval and large changes. In sim-
ulation such as winter and summer periods with large
fluctuations in daily electricity consumption, The relation
between joint temperatures and currents applied were as
shown in Fig.5.

(3) To better simulating the actual operating currents, the
actual daily load curve of a residential area was simulated
by a segmentation function with one hour interval, and
Wave-forms of straight joint temperatures of joints and
equivalent current were as shown in Fig.6.

(4) To verify the generalization capability of the algorithm, a
single-core cold-shrink straight joint of 10 kV 185 mm?
was subjected to a thermal cycling test and surface tem-
perature inversion to verify the current and the measured
temperature of each layer of the joint were as shown
in Fig.7.

Under each of the above operating conditions, the ambient
temperature range was set to 18~23 °C. 80% of the sim-
ulation test data were randomly selected as the training set
and 20% as the test set, and the specific number of samples
collected was shown in Table 2.

B. IMPROVED TEMPERATURE INVERSION MODEL
CONSTRUCTION

Due to the high sensitivity of BPNN to weight and threshold
values [39]. In the continuous iteration, if the return error
is large, the autonomous learning time consuming will be
greatly increased. Therefore, in this paper, ISSA was used to
optimize the weights and thresholds of BPNN to reduce the
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FIGURE 8. The flow chart temperature inversion based on ISSA-BPNN for
cable joints.
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Initialization of sparrow population parameters: input
population size, the maximum number of iterations,
number of discoverers, number of early warning, safety
threshold, alarm value.

Tent chaos initialization of population locations.
Calculation and ranking of fitness values for each
sparrow.

Update the positions of producers, followers and early
warnings.

Determine whether the fitness value reaches the con-
vergence condition, and perform a chaotic perturbation
update if it was not reached.

If the maximum number of iterations was reached, the
position information of the global optimal sparrow was
output, and vice versa, returned to the fifth step to con-
tinue the cycle.

Assigning the optimal parameters obtained by SSA to
the weights and thresholds of the neural network for

FIGURE 5. Cable joint temperature under Multi-step load currents.
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FIGURE 7. The relation between load currents and temperature at
different layers of 10kV cable joint.

TABLE 2. Data sets.

Variants Sample total  Training set  Testing set
Condition 1 600 500 100
Condition 2 120 100 20
Condition 3 120 100 20
Condition 4 2640 2200 440

temperature inversion.

C. ALGORITHM PERFORMANCE EVALUATION INDEX
Based on the results of temperature inversion, the five models
were compared using Smag (mean absolute error), SMAPE
(mean absolute percentage error), SRMsg (root mean square
error), and Ry (goodness of fit) as model evaluation indexes
with the following equations:

training time of networks. The flow chart of the temperature
inversion of cable straight joint based on ISSA-BPNN was as

showed in Fig.8, and specific processes were as follows:

(1) Sample data preprocessing to determine the neural net-

work topology.
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TABLE 3. Benchmark function.

Number Function formula Dimension Range Optimal value
n
Fl f=D0x 30 [-100,100] 0
i=1
n n
F2 L= |+ T T 30 [-10,10] 0
i=l1 i=1
n i 2
F3 f;Z[ij} 30 [-100,100] 0
i=1 \_j=1
n—1 2 5
F4 ﬂzZ[lOO(xM—xf) +(x,—1) J 30 [-30,30] 0
i=1
Fs fi=) —x,sin ( x| ) 30 [-500,500]  418.9829D
i=l

1 n 2 1 n
F6 fy==20exp| —0.2,[=>"x |—exp| =) cos(2mx,) |+20+e 30 [-32.32] 0

n iz n o

5 -1
T

F7 ﬁ:—Z[(X—a;)(X—ai) +c,} 4 [0,10] -10.5363

i=1

1
F8 fi=ax” —2.1x" +§xl6+x1x2 —4x,’ +4x," 2 [-5,5] -1.0316
5 2
11 X, (b[ +bl.x2)
F9 1 :Z a-——= 4 [-5,5] 0.000307
P b +bx,+x,
n
3 (yp - y,~)2 intuitively, this paper also gives the test function convergence
R2—1_ = (25) curve shown in Fig.9.

[Op—
Z (yi - Yi,ave)

where 7 is the number of inversion samples, y, is the model
inversion value, y; is the actual value, and y; 4. is the average
of the actual values.

V. RESULTS AND DISCUSSION

A. ALGORITHM OPTIMIZATION EXPERIMENT

BASED ON CEC2017

To verify the optimization ability of the improved algorithm
in this paper, the ISSA is compared with the SSA, PSO,
WOA and MSWOA (Introducing sobol chaos and adaptive
weight) [40] algorithms on the nine benchmark functions of
CEC2017. The specific test functions are shown in Table 3.
F1-F4 are high-dimensional unimodal functions, F5 and F6
are high-dimensional multimodal functions, F7-F9 are low-
dimensional multimodal functions. For avoiding accidental
errors, we run 30 times on each benchmark function indepen-
dently, and select the best value, average value and standard
deviation as evaluation indexes. In the experiment, the popu-
lation size is set to 30, and the maximum number of iterations
is 250. The results are shown in Table 4. To compare the con-
vergence speed and accuracy of each algorithm model more

VOLUME 10, 2022

On F1-F4, the optimization effect of ISSA is better than
that of PSO, WOA, SSA and MSWOA. For F1, SSA,
MSWOA and ISSA can find their optimal values, but the
average and standard deviation of ISSA are 0, indicating
that it has strong stability. The optimization effect of ISSA
on F2 is also tens of orders of magnitude higher than
other algorithms. According to the overall performance of
the model on the single-extremum test function, it can be
seen that it has certain advantages over other swarm intelli-
gence optimization algorithms in its local development abil-
ity. On the F5 function, although the algorithm failed to
find the ideal optimal solution, but the convergence curve
shows that the convergence rate of ISSA is still faster.
This is because chaos perturbation enriches the population
individuals and improves the global search efficiency. The
variants of the swarm intelligence algorithm on F6-F9 can
find the optimal value, indicating that the ISSA and MSWOA
algorithms have better optimization capabilities under low-
dimensional conditions. The convergence speed of ISSA
in Fig.9 (a) (b) (c) (e) (f) is faster. In addition, the conver-
gence speed of ISSA and MSWOA in the convergence graph
is not much different, but the convergence speed of the
improved swarm intelligence algorithm model is significantly
faster than that of the original swarm intelligence algorithm.

100145



IEEE Access

Q. Zhan et al.: Robustness Temperature Inversion Method for Cable Straight Joints Based on ISSA Optimized BPNN

TABLE 4. Comparison of benchmark function test results.

Number Algorithm Optimum value Average value- standard deviation
PSO 5.204E-04 3.764E-02 8.437E-02
WOA 4.516E-29 6.128E-27 8.237E-27
F SSA 2.452E-32 6.423E-32
MSWOA 7.237E-95 4.765E-94
ISSA 0 0
PSO 3.465E-07 9.156E-05 8.935E-05
WOA 1.265E-23 6.984E-19 4.686E-20
F, SSA 6.152E-31 7.164E-23 2.987E-22
MSWOA 1.687E-78 6.893E-69 3.985E-68
ISSA 4.698E-234 7.165E-231 9.465E-230
PSO 3.469E05 6.158E06 1.864E07
WOA 9.165E-02 5.189E02 6.795E03
Fs SSA 6.564E-04 3.372E-02 6.782E-02
MSWOA 4.285E-06 6.542E-04 3.489E-03
ISSA 3.968E-16 4.897E-13 7.156E-13
PSO 1.564E04 3.183E07 9.896E07
WOA 5.166E01 2.468E02 3.457E02
Fy SSA 6.546E01 4.238E02 3.487E02
MSWOA 1.157E01 1.273E01 1.186E01
ISSA 0.756E01 2.452E01 1.895E01
PSO -7.346E03 -5.134E03 1.538E03
WOA -1.216E04 -1.134E04 1.657E03
Fs SSA -9.064E03 -7.648E03 7.264E02
MSWOA -8.063E03 -7.649E03 6.913E02
ISSA -8.643E03 -6.453E03 6.843E02
PSO 1.946E-02 1.339E00 7.158E-01
WOA 4.841E-15 3.194E-14 1.824E-14
F SSA 8.234E-16 7.166E-16 4.727E-17
MSWOA 8.882E-16 8.882E-16 0
ISSA 8.882E-16 8.882E-16 0
PSO -1.054E01 -5.537E00 3.548E00
WOA -1.054E01 -7.164E00 3.164E00
F, SSA -1.054E01 -7.658E00 2.354E00
MSWOA -1.054E01 -1.054E01 0
ISSA -1.054E01 -1.054E01 0
PSO -1.032E00 -1.032E00 3.789E-04
WOA -1.032E00 -1.032E00 7.858E-08
Fy SSA -1.032E00 -1.032E00 3.457E-10
MSWOA -1.032E00 -1.032E00 4.537E-15
ISSA -1.032E00 -1.032E00 2.453E-17
PSO 3.705E-04 1.254E-03 3.452E-03
WOA 3.154E-04 1.374E-03 3.745E-03
Fo SSA 3.075E-04 3.157E-03 1.104E-04
MSWOA 3.241E-04 3.894E-04 4.531E-05
ISSA 3.075E-04 3.075E-04 9.453E-11

F8 function for each algorithm is easy to find its optimal
solution in the beginning of the iteration directly converges
to the optimal solution, so the graph is almost a straight
line. In summary, it can be proved that the optimization
performance of ISSA has been significantly improved, and
the stability is also strong.

B. TEMPERATURE INVERSION PERFORMANCE UNDER
DIFFERENT LOAD CURRENTS

To intuitively evaluate the optimization performance of ISSA
in the proposed cable joint temperature inversion method
based on ISSA-BPNN, it is compared with PSO, WOA,
SSA and MSWOA optimization algorithms. To ensure the
fairness of temperature inversion experiments, the population
for the first iteration used is the same for all algorithms. the
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population of all algorithms is set to 50, the maximum number
of iterations is 100, and the remaining parameters are set
as shown in Table 5. BPNN uses relu as the hidden layer
activation function. The input layer and output layer nodes
are 2 and 1 respectively, and the number of hidden layers is
1. The number of neurons is determined to be 9 according to
the empirical formula (26) and the mean square error on the
training set. The average mean square error on the training set
and the test set is selected as the fitness function, as shown in
Equation (27).

h=+m+n+a (26)
11 & 1
f= > a7 21: (p—0p)” + N XI: (Yr —0r)*| @27
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FIGURE 9. Test function convergence curve of F1-F9.
TABLE 5. Algorithm parameter settings. and MSWOA converge after 21 iterations, but the former
: converges to 6.7 x 1072, and the convergence accuracy is
Algposrgm . P :rfan‘;te;il higher. The minimum fitness value of ISSA means the highest
1—C2— 1.0, W= . . . . . .
WOA =1 convergence accuracy. The first inflection point indicates that
SSA ST=0.8, P=0.8, D=0.2 the ISSA curve converges fastest.
MSWOA S = . . . .
1SSA ST:g g [2’:23’817 [1:0 ) Fig.11 shows the inversion error of single-step load.

where 7 is the number of neurons in the input layer, m is the
number of neurons in the output layer, and « is the constant
between [1,10]. M and N are the sample numbers of training
set and test set respectively; yp, op is the actual output and
expected output under the training sample; Y7, O7 is the
actual output and expected output for the test sample.
Taking the single step optimization results as an exam-
ple, the fitness curves of five optimization algorithms are
compared, as shown in Fig.10. PSO and WOA are stable
at 0.103 and 9.1 x 102 after 27 and 26 iterations, respec-
tively. SSA converges to 8.3 x 1072 after 34 iterations. ISSA
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The BPNN models optimized by the five optimization
algorithms can accurately reflect the joint mandrel temper-
ature. Among them, the inversion error of ISAA-BPNN and
MSWOA-BPNN is the smallest, and the maximum error does
not exceed 0.2 °C. The PSO-BPNN error is the largest, but the
maximum error does not exceed 0.7 °C. When the load does
not fluctuate greatly, the accuracy of each algorithm is high,
and the advantage of ISSA is not easy to reflect.

Compared with the single step working condition,
as shown in Fig.12, the joint temperature inversion error
under multi-step load is generally increased, but the
ISSA-BPNN still has excellent performance, and the error is
stably distributed within 0.5 °C. The inversion error of other
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FIGURE 10. Comparison of fitness curves for five optimization algorithms.
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FIGURE 11. Error comparison of temperature inversion results for 110kV
cable joints under single step load currents test.
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FIGURE 12. Error comparison of temperature inversion results for 110kV
cable joints under multi-step load currents test.

algorithms is increased significantly, compared with Fig.5
especially at sample number 4, 10, 11, 15. These points are
the load step change points, this is due to the influence of
heat capacity and thermal resistance, thermal time constant
lead to load changes, the temperature change of the joint line
core reflected in the surface will appear lag phenomenon.
Taking multi-step loading as an example, the inversion
effects of five models are evaluated. As shown in Table 6,
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TABLE 6. Comparison of evaluation indexes of multi-step inversion

performance of FIVE models.

Model Evaluating index Multi-step
OMAE 0.6955
OMAPE 0.015
SSA-BPNN Suise 0.59
R 0.987
OMAE 0.782
OMAPE 0.017
PSO-BPNN Suise 0.78
R? 0.983
OMAE 0.698
OMAPE 0.015
GWO-BPNN Suise 061
R? 0.984
OMAE 0.332
OMAPE 0.087
MSWOA-BPNN Suise 0167
R? 0.991
OMAE 0.210
OMAPE 0.0043
ISSA-BPNN Suse 0,075
R? 0.998

the R? of ISSA-BPNN and MSWOA-BPNN are more than
99%, but the former reaches 99.84%, which is closer to 1,
and the error is closer to 0. Combined with Fig.12 and Fig.13,
it can be seen that under dynamic load, with the acceleration
of load change time, the inversion effect of the neural network
model optimized by the original heuristic algorithm becomes
worse. However, the performance of ISSA-BPNN is stable,
the fluctuation of inversion error is small, and the change of
load current size and change rate has little effect on the model
inversion effect. It shows that the improved model has strong
generalization ability.

C. THE TRANSFERRING ABILITY AND ROBUSTNESS OF
THE TEMPERATURE INVERSION METHOD

To further verify the generalization capability of the model,
a straight joint for 10 kV 185 mm? cable was replaced for a
three-day thermal cycling test. The inversion validation was
performed based on the data obtained from the tests. As can
be seen from Fig.7, the environmental conditions of the test
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FIGURE 14. Error comparison of temperature inversion results for joints
of 10kV cable.

were different for each day, and the changes in the surface
temperature curve can be seen in the periods of 33-38 and
51-60. The surface temperature fluctuations were very large
and unstable, which might be due to the measurement device
problems, and the data could not characterize the actual state
of the joint and should be discarded. Based on the remaining
data, the model was trained and the results were obtained as
shown in Fig.14. It can be seen that the error of inversion
results remained within 1 °C after replacing the experimental
object, and the average absolute error was only 0.35 °C.

VI. CONCLUSION

In this paper, the temperature inversion method based on
ISSA-BPNN was used to get cable straight joint core tem-
perature by using surface temperature and cable dynamic
load currents.The robustness of this method was validated by
temperature-rise tests compared with algorithms. The tem-
perature inversion results in this paper have high accuracy
and faster convergence speed. The inversion method based
on five optimization algorithms performs well under stable
load currents. The inversion performance of the model in this
paper is stable and not affected by the speed of the load cur-
rents fluctuate. The noise introduced by the actual temperature
measurement has little effect on the model inversion accuracy,
has strong robustness, and is less affected by the external
environment. And it has certain applicability to the joints of
different specifications and types.
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