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ABSTRACT The temperature of cable conductor is of great significance to improve the current carrying
capacity, asset utilization and safe operation of cable lines. Aiming at the problems of slow calculation
speed, low accuracy and weak anti-interference ability of the current temperature calculation methods, this
paper proposes an inversion method based on improved sparrow search algorithm (ISSA) optimized back
propagation neural network (BPNN). Tent mapping was used to increase the initial population diversity
of sparrow. Modified sparrow optimization formula to improve convergence speed. Chaotic perturbation is
applied to the optimal individual to improve the global and local search ability of SSA. The multi-physics
simulation model of 110kv straight connector was established, and the temperature distribution data
under three different working conditions were obtained. According to the simulation data and CEC2017
standard test experiments, the optimization ability of the improved model is compared with particle swarm
optimization (PSO), whale optimization algorithm (WOA), SSA and MSWOA. To verify the generalization
performance andmigration ability of the proposedmethod, the thermal cycle test and inversion calculation of
the 10kV cable straight-through joint were carried out. The results show that ISSA-BPNN has high accuracy,
fast convergence speed, good robustness, and is less affected by cable joint type, load current and cable
environment conditions. It has good engineering practicability.
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INDEX TERMS Sparrow search algorithm, BP neural network, tent chaos, cable straight joint, temperature
inversion.

I. INTRODUCTION18

In response to the green development policy, economic and19

environmental protection has become the goal of modern20

power system to transmit electric energy. With the accelera-21

tion of urbanization, electricity demand surges. This increase22

has placed a greater burden on existing lines. Therefore, it is23

necessary to fully tap the hidden capacity of lines to improve24

the actual transmission capacity of transmission lines [1], [2].25

The capacity of the line depends on the maximum long-term26

allowable operating temperature of the insulating material.27

Therefore, the cable core temperature monitoring and diag-28

nosis of line safety evaluation and dynamic thermal rating to29

determine has an important role in guiding [3], [4], [5], [6].30

The associate editor coordinating the review of this manuscript and
approving it for publication was Alireza Sadeghian.

Cable joints are more prone to overheating due to their 31

physical structure and material properties. There are two 32

main ways to obtain the temperature of the conductor core. 33

One is the implantable temperature measurement, that is, 34

the temperature sensor or optical fiber is buried inside 35

the cable joint when the cable joint is made; the other is 36

non-implantable temperature measurement, such as infrared 37

imaging temperature measurement technology [3], [7], [8], 38

[9]. The built-in temperature measurement unit is at high 39

potential and withstands long-term high temperature, and its 40

safety and stability cannot be guaranteed. When transmit- 41

ting signals to the external receiving unit module, it will 42

also be interfered by strong electromagnetic fields. Infrared 43

temperature measurement is also susceptible to meteoro- 44

logical factors such as ambient temperature, humidity and 45

wind speed, and the farther the test distance, the lower the 46
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measurement accuracy. These methods are difficult to ensure47

the safe and stable operation of the joint in the whole life48

cycle.49

In recent years, researchers have conducted a lot of50

research on the non-invasive indirect calculation method51

of cable joint temperature. Including thermal circuit52

method, finite element method (FEM) [10], finite vol-53

ume method (FVM) [11], [12], boundary element method54

(BEM) [13], [14] and so on. Gao et al. [15] inverted the55

temperature of cable joint through the second-order transient56

thermal circuit, and combined with parameter identification57

for fault diagnosis. Fu et al. [16] proposed a fast calculation58

method for temperature rise of transfer matrix based on finite59

element data. Although the calculation accuracy has been60

improved, most of the methods are aimed at a relatively61

single cable model and laying environment. In the face of62

new objects and environments, differential equations and63

simulation models need to be reconstructed. The calculation64

efficiency is not fast enough and the generalization ability is65

not strong.66

With the development and application of data-driven meth-67

ods, many artificial intelligence algorithms have been applied68

to cable joint temperature inversion. Ruan et al. [17] used69

support vector machine (SVM) to invert the temperature of70

medium and low voltage three-core cable, and verified the71

accuracy of the inversion effect by measuring multiple posi-72

tions and temperature measurement points in the experiment.73

He et al. [18] used particle swarm optimization algorithm74

to optimize the penalty parameter C and kernel function75

parameter δ of SVM, and predicted the junction temperature76

by historical temperature, current ratio of core and sheath, etc.77

Wang et al. [19] proposed a joint ampacity estimation algo-78

rithm. Fu et al. [20] proposed a PSO-Elman neural network79

method for predicting the temperature of cable conductors.80

However, the application of machine learning also introduces81

more hyperparameters which are difficult to solve, resulting82

in the difficulty of solving the algorithm in some applica-83

tion scenarios, especially when the input characteristics are84

complex and the dimension is high, overfitting is easy to85

occur.86

The heuristic algorithm is a kind of optimization algorithm87

developed according to the survival characteristics of organ-88

isms. In recent years, new swarm intelligence algorithms such89

as WOA [21], GWO [22] and SSA have been proposed one90

after another, and their optimization performance is better.91

Xu et al. [23] used the bird swarm algorithm (BSA) to92

improve the way sparrows approach the optimal solution and93

shorten the convergence time of SSA. Li et al. [24] proposed94

a hybrid algorithm combining SSA and genetic algorithm95

(GA), which introduced logistics chaotic mapping, reverse96

learning, and Gaussian mutation to enrich the population97

[25]. This method takes into account the characteristics of98

strong global search ability of GA and strong local search99

ability of SSA. N. A. Khan et al. [26], [27] combined WOA100

with the local optimization algorithm Nelder-Mead (MN) to101

obtain a hybrid algorithm with shorter time, and performed 102

well in fluid computing and other fields. Li et al. [21] intro- 103

duced Gaussian distribution and adaptive weight to construct 104

the algorithm variant of GDS-WOA, and realized the opti- 105

mization of constraint problems. Hsu et al. [28] used GWO 106

and denoising convolutional neural network (QnCNN) to 107

refine the recognition effect of quaternion discrete cosine 108

transform (QDCT) on image watermark. Zhang et al. [29] 109

combined mayfly algorithm (MA) and SSA, introduced 110

levy flight and nonlinear weight to balance the relationship 111

between global search and local search. Tuerxun et al. [30] 112

mixed SSA and SVM to improve the accuracy of wind tur- 113

bines fault diagnosis. There are more other improved models 114

[31], [34], [35], [36]. Although earlier research has increased 115

the algorithm’s accuracy and speed of convergence, the global 116

search and local development capabilities of SSA, a recently 117

developed swarm intelligence algorithm, remain uneven and 118

the system is still prone to falling into the local optimum. 119

Additionally, we need to make improvements to it in order to 120

strengthen its robustness and optimize its optimization effect. 121

To deal with complicated and variable operating conditions, 122

the upgraded hybrid algorithm and variant of the swarm 123

intelligence algorithm must be used to the joint temperature 124

inversion. 125

In conclusion, we propose a hybrid approach to enhance 126

SSA and use the improved SSA to optimize the weights and 127

thresholds of BPNN. The common test function CEC2017 128

assesses the upgraded algorithm’s optimization performance. 129

Using modeling and experimental data, the algorithm’s 130

impact on the inversion of the cable joint temperature is exam- 131

ined.We assess the performance of the algorithm using δMAE, 132

δMAPE, δRMSE, R2 four indicators. The outcomes demonstrate 133

that the revised algorithm performs significantly better than 134

the original algorithm. 135

The main contributions of this study are summarized as 136

follows. 137

1. A non-destructive testing method for cable joint core 138

temperature based on ISSA-BPNN is proposed. It has a 139

greater inversion accuracy as compared to the PSO,WOA, 140

SSA, and MSWOA optimization models. 141

2. It is demonstrated that the improved model outperforms 142

the other four models, including the original swarm 143

intelligence algorithm and its variations, in terms of 144

optimization performance by testing and comparing the 145

benchmark functions of high dimension, low dimension, 146

single extremum, and multi-extremum. 147

3. The performance of eachmodel in cable joint core temper- 148

ature inversion under different load types in dynamic envi- 149

ronment is compared and analyzed. The results show that 150

with the increase of load change rate, the inversion error of 151

each algorithm increases, but the stability of ISSA-BPNN 152

is better. 153

4. On the test objects of different voltage levels and mod- 154

els, ISSA-BPNN can maintain excellent performance and 155

strong robustness. 156

100138 VOLUME 10, 2022



Q. Zhan et al.: Robustness Temperature Inversion Method for Cable Straight Joints Based on ISSA Optimized BPNN

TABLE 1. Material parameters of cable straight joint.

FIGURE 1. Structure of single-core 110kV cable straight joint.

II. FINITE ELEMENT SIMULATION OF CABLE JOINTS157

A. FINITE ELEMENT SIMULATION MODEL STRUCTURE158

The simulation model was constructed with a joint for single-159

core 110 kV cable with cross-section 630 mm2 as the160

object, and its specific structure is shown in Fig.1. Since161

the structure of the cable joint was axially symmetrical, and162

the sealing tape, epoxy mud sealing port, grounding structure163

and other non-completely symmetrical structures had little164

effect on the distribution of the thermal field of the joint,165

a two-dimensional axisymmetric model of the joint can be166

established. In order to improve the simulation efficiency,167

appropriate equivalent simplification was carried out on the168

structure of cable joint. Firstly, since the good conductor had169

little influence on the electrothermal analysis, the anisotropi-170

cally compressed stranded structure of the cable core conduc-171

tor was equivalent to a solid cylindrical structure. Secondly,172

since the semi-conductive shielding layer was thin and similar173

to the physical parameters of XLPE insulating layer, it was174

simplified and assumed as a whole together. Finally, the cor-175

rugated aluminum sheath was replaced by a ring of equivalent176

diameter according to the IEC 60287.177

B. MATHEMATICAL MODEL OF THERMAL FIELD AND178

BOUNDARY CONDITIONS179

According to the law of conservation of energy, the increase180

of the internal energy of the cable joint at any time is equal181

to the difference between the heat generated by the cable182

itself and the heat dissipated out of the cable joint. In the183

Cartesian coordinate system, the general form of its constant184

property, steady state, and two-dimensional thermal differen-185

tial equation was as follows:186

∂2t
∂x2
+
∂2t
∂y2
+
qv
λ
= 0 (1)187

where t represents the temperature; qv is the heat generated 188

by the heat source in the unit time and area; λ is the thermal 189

conductivity. 190

The solution of the heat conduction equation in (1) also 191

required the initial conditions and boundary conditions as 192

the solution conditions for the partial equations. In the finite 193

element method for partial equation solution, there are three 194

main boundary conditions for the thermal field. 195

The first boundary conditions: the temperature of the 196

boundary was specified as a constant. 197

t (x, y)|01
= f (x, y)|01 (2) 198

The second boundary conditions: the heat flux density on 199

the boundary was specified as a fixed value. 200

λ
∂t
∂n

∣∣∣∣
02

= qn (3) 201

The third boundary condition: the surface heat transfer 202

coefficient h between the object boundary and the surround- 203

ing fluid, of which temperature was specified as 204

λ
∂t
∂n

∣∣∣∣
03

= h
(
t − tf

)∣∣
03

(4) 205

where 01, 02, 03 is the boundary, n is the normal unit vector 206

of the boundary, h is the convective heat dissipation coeffi- 207

cient, qn is the heat flux density, tf is the fluid temperature, 208

and f (x, y) is a constant. 209

C. PARAMETER AND BOUNDARY CONDITONS SETTING 210

The material parameters of cable joint is shown in Table. 1. 211

The actual operating environment of the cable joint was 212

complex, and the boundary conditions were difficult to be 213

acquired and determined. When the air velocity around the 214

cable is less than 0.15 m/s, it is a kind of natural convection. 215

The surface of the joint adopted the third type of boundary 216

conditions, the natural convection heat transfer coefficient 217

was set to 8 W/(m2
·
◦C), and the ambient temperature was 218

set to 20 ◦C. When the cable conductor at both ends of the 219

joint is more then 5 m, the axial heat conduction is assumed 220

to be in equilibrium state. The simulation results indicated 221

that the axial heat transfer distance of the joint was 2-3 m 222

away from the crimping position of the joint. The total length 223

of the model was 8 m, so both ends can be set to the second 224
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FIGURE 2. Temperature field distribution of cable joints under different load currents. (a) 800A; (b) 1000A; (c) 1200A; (d)1300A;
(e)Two-thirds section partial view under1200A; (f) The entire cable joint under 1200A.

boundary conditions, and the normal heat flux density was225

set to 0 W/m2. The excitation of the model is simulated by226

applying current to generate Joule heat, which was set as227

reference ground potential at one end of the cable core, and228

different load currents are loaded at the other end to simulate229

different working conditions of the actual operation of the230

cable.231

The heat source of a cable joint mainly included the Joule 232

heat of the conductor core, the loss of the insulating medium 233

and the circulation loss of the aluminum sheath. Since the 234

outer sheath of high-voltage cable was cross-connected or 235

single-ended grounded, the circuit current losses were negli- 236

gible. The Joule heat of the conductor core included the Joule 237

heat of the core itself and the heat generated by the contact 238
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FIGURE 3. The schematic diagram of 110kV cable joint temperature rise test platform.

resistance of the crimping position.239

P1 = I2R+ I2Rj (5)240

R = R20 (1+ α (T − 20))
(
1+ Ys + Yp

)
(6)241

whereR20 is the resistance value of the wire core at 20 ◦C, α is242

the temperature coefficient of copper, T is the temperature of243

the conductor, Ys and Yp are the skin effect and the proximity244

effect factor, respectively, Rj is the contact resistance value245

of 7× 10−6.246

The loss of the dielectric loss was calculated according247

to (7)248

P2 = 2π fCU2tanδ (7)249

where f is the power frequency of voltage, C is the capac-250

itance of insulating layer of cable joint, U is the power251

frequency voltage and δ is the dielectric loss angle.252

D. MODEL SOLVING AND EXPERIMENTAL VERIFICATION253

Steady-state temperature distribution of the cable joint under254

different loads was as shown in Fig.2. It obvious showed255

that the temperature of the joint crimping position was sig-256

nificantly higher than that of the cable core, and there were257

different degrees of attenuation along the axial and radial258

directions. When the connector reaches the allowable long-259

term thermal operating temperature 90 ◦C for XLPE, it was260

inferred that the current carrying capacity of the cable joint261

was far from being fully utilized.262

In this paper, the temperature rise test is carried out by263

simulating the same type of cable joint. The concept diagram264

is shown in Fig.3. It is found that the simulation and test265

data have high consistency for the temperature change of266

cable conductor. However, as the temperature measurement267

position is far away from the conductor core, there is a certain268

difference between the simulation and the experimental data.269

The temperature rise of the experimental data is faster than270

the simulation temperature rise, but the final temperature 271

error between them does not exceed 2 ◦C, which meets the 272

engineering error requirements. 273

III. ALGORITHM THEORY 274

A. SPARROW SEARCH ALGORITHM 275

In 2020, Xue et al. [32] proposed a novel swarm intelligence 276

optimization algorithm-sparrow search algorithm based on 277

natural predatory behaviors of sparrows in biology. The 278

algorithm simulated the process of individual sparrows 279

avoiding predators and constantly approaching the food 280

location. The population was consisted of three roles: pro- 281

ducer, follower and early warning. Producers had a high 282

energy reserve and a larger foraging area, which provided 283

foraging area and direction information for the population. 284

Followers approached producers and grabbed food resources. 285

The early warning gave warning signal when danger was 286

appearing, and if necessary, gives up food to avoid dan- 287

ger. The producer location was updated in the following 288

way: 289

X t+1i,j =

{
X ti,j · exp(

−i
α×itermax

), R2 < ST

X ti,j + Q · L, R2 ≥ ST
(8) 290

where, t represents current iterations, Xt i,j denotes posi- 291

tion information of the jth dimension of the ith sparrow in 292

t iterations, α is a random number in the range of [0, 1], 293

itermax is the maximum number of iterations; R2 takes the 294

value in [0, 1], which represents the warning value; ST takes 295

the value in [0.5, 1], which represents the safety thresh- 296

old; Q is a random number obeying the standard normal 297

distribution; L is a 1 × d matrix with all elements being 298

1. When R2 < ST, the population is not in danger and 299

the foraging range of sparrows will increase; when R2 ≥ 300

ST, natural enemies appear and the sparrows move to safe 301

areas. 302
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The position update mode of the follower was303

X t+1i,j =


Q · exp(

X tw−X
t
i,j

i2
), i > N/2

X t+1p +
1
D

D∑
j=1

(
r ·
(∣∣∣X ti,j − X t+1p

∣∣∣)) , i ≤ N/2
304

(9)305

where N is the population size; Xp is the optimal position306

occupied by the producer; Xw is the global worst position.307

A+ = AT(AAT)−1, where A is a 1× dmatrix with all elements308

1 or −1.309

There were a certain number of individuals in producers310

and followers who need to act as early warning.311

X t+1i,j =


X tb + β ·

∣∣∣X ti,j − X tb∣∣∣ , fi > fg

X ti,j + K ·

∣∣∣X ti,j − X tw∣∣∣
(fi − fw)+ ε

, fi = fg

(10)312

where Xb is the global optimal position; β is the step size,313

which i is a standard normal distribution random number; K314

is a random number of [−1, 1]; fi is the current sparrow’s315

fitness value; fw and fg are the worst and optimal current316

global fitness values respectively; ε is the minimum constant317

to avoid zero denominator; when fi = fg, individuals in the318

middle position found danger and update their position; when319

fi > fg, individuals at the edge warn and update their position.320

B. IMPROVED SPARROW SEARCH ALGORITHM321

1) POSITION UPDATE FORMULAS322

Two update methods in solving optimization problems were323

usually applied by approaching to the origin point and a324

optimal solution, and gained excellent performance where the325

optimal value was near the origin point. Since the followers326

approached the optimal solution by jumping to the vicinity327

of the optimal position, it may cause too much difference328

between certain dimensions, which limited the algorithm’s329

ability to find the optimal solution. Accordingly, position330

update formulas for followers and early warnings were modi-331

fied to (11) and (12), so that individuals moved to the optimal332

position in the whole solution space.333

X t+1i,j =


Q · exp(

X tw − X
t
i,j

i2
), i > N/2

X t+1p +
1
D

D∑
j=1

(
r ·
(∣∣∣X ti,j − X t+1p

∣∣∣)) , i ≤ N/2
334

(11)335

X t+1i,j =

X tb + β ·
∣∣∣X ti,j − X tb∣∣∣ , fi > fg

X ti,j + K ·
∣∣∣X ti,j − X tw∣∣∣ , fi = fg

(12)336

where D is the population dimension and r is a random337

number of [−1,1]338

2) TENT CHAOTIC MAPPING339

Generally, swarm intelligence algorithms were randomly ini-340

tialized populations, but the uniformity of population was341

stochastic distribution in space. The initial population distri- 342

bution affected the convergence speed and accuracy of the 343

algorithm. [33], [34]. At the later period of iteration, SSA still 344

had the common problem of swarm intelligence algorithm. 345

The population approached to the food location, the foraging 346

space shrinks, the population diversity decreased, and the 347

algorithm was easy to fall into the local optimal solution. 348

The randomness of chaotic mapping could enrich population 349

diversity and improve the ability of the algorithm to jump 350

out of local optimum. The common chaos operators included 351

logistic mapping and tent mapping, etc. However, the proba- 352

bility of logistic mapping in the interval of [0,0.1] and [0.9,1] 353

was much higher than the probability of the middle position. 354

By comparison, the mapping generated by tent chaos map- 355

ping in the interval of [0,1] had better ergodic and uniformity. 356

In terms of processing large-scale data, the iteration speed 357

was also more faster [35], [36]. In addition, to overcome the 358

shortcomings of traditional tent chaotic mapping and avoid 359

chaotic particles falling into small period and unstable period 360

points during iteration [35], a random variable was added to 361

the original mapping formula, and the modified Tent chaotic 362

mapping was expressed as follows. 363

xi+1 =

{
2xi + rand (0, 1) /N 0 ≤ xi < 0.5
2 (1− xi)+ rand (0, 1) /N 0.5 < xi ≤ 1

(13) 364

The chaotic values obtain from equation (13) were mapped 365

to the sparrow population as follow 366

xd,n = lb+ xd (ub− lb) (14) 367

where xd,n is a new value of the chaotic sequence carrier to 368

the population space; ub and lb are upper and lower bounds 369

of the sparrow position, respectively; xd is a chaotic variable. 370

Then equation (13) was used to perturb the local opti- 371

mal individuals of the population and retained the optimal 372

position 373

xn =
(
x + xd,n

)
/2 (15) 374

where, xn is the individual after perturbation; x is the individ- 375

ual to be perturbed. 376

C. BACK PROPAGATION NEURAL NETWORK 377

The basic topological structure of BPNN, shown in Fig.4, 378

consists of an input layer, a hidden layer, and an output layer. 379

BPNN is a multi-layer feed-forward network trained 380

according to the error back propagation algorithm, which 381

has the advantages of strong nonlinear mapping capability 382

and flexible network structure. The forward propagation of 383

the information of the input feature quantity is processed 384

by the hidden layer to obtain the actual output. If the error 385

between the output value and the expected value does not 386

meet the set operation termination condition, the error is 387

propagated from the output layer forward layer by layer, 388

and the gradient descent method is adopted. Through the 389

adjustment of the weights and thresholds of the hidden layer 390

neurons and the connected neurons, the network training is 391
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FIGURE 4. Topological structure of BPNN.

stopped until the error setting condition or the maximum392

number of iterations is reached.The specific training steps for393

the network are as follows:394

(1) Initialize the hyperparameters of the network, including395

the network weights wnk ,vkj and thresholds a,b.396

(2) Calculate the output value of hidden layer neurons qk .397

qk= f

(
i∑

n=1

wnkxn − ak

)
(16)398

where k = 1, 2, . . . , h. f is the activation function of the399

hidden layer. xn is the nth input.400

(3) Calculate the output value of the output layer401

neurons oj.402

oj= f

(
h∑

k=1

vkjqk − bj

)
(17)403

where j = 1, 2, . . . , m.404

(4) Update the weights and thresholds of the network.405

wnk (t+1) = wnk (t)+ ηqk
(
1−qk

)
xn

m∑
j=1

vkj
(
yj−oj

)
406

(18)407

vkj (t+1) = vkj (t)+ ηqk
(
yj−oj

)
(19)408

ak (t+1) = ak (t)+ ηqk
(
1−qk

) m∑
j=1

vkj
(
yj−oj

)
(20)409

bj (t+1) = bj (t)+
(
yj−oj

)
(21)410

where η is learning rate, which is between 0 and 1.411

(5) Determine whether the iteration termination condition412

is reached. If not, return to the second step.413

IV. CABLE JOINT TEMPERATURE INVERSION MODEL414

Considering that service life of the high-voltage cable joints415

was different, surrounding and aging degree, the acquisition416

of internal structural material parameters may cause irre-417

versible damage to the joint structure, and the sample size of418

each operating condition was insufficient [37], [38]. So, this419

paper takes the operation monitoring data of a power supply420

company in China as reference, the finite element simulation 421

of 110 kV cable joint was constructed and the thermal cycle 422

test of 10 kV cable joint was carried out to obtain sufficient 423

training samples. 424

A. DATA COLLECTION FOR TEMPERATURE INVERSION 425

The cable joint core temperature depended on the dynamic 426

balance relationship between heat generation and heat dis- 427

sipation in a cable joint. Therefore, the load currents and 428

the external surface temperatures of the cable joint end 429

(TB), which were easy to measure and can reflect the rela- 430

tionship between the heat generation and heat dissipation, 431

were selected as input characteristics, and the temperature 432

of the joint core (TC) was the inversion results. To verify 433

the performance of the temperature inversion method based 434

on ISSA-BPNN, The simulation and test were carried out 435

to obtain the joint temperature data of the following four 436

operating conditions for inversion. 437

(1) Simulation load currents were applied in the form of a 438

single step to simulate the actual cable line load stabi- 439

lization period. Temperature rises of the joints were not 440

large when the load current was small, and there was no 441

over-temperature danger. Therefore, load currents were 442

set from 800 A to 1300 A, with 100 A interval for a total 443

of five groups of simulations. 444

(2) The current was applied in the form of multiple steps 445

with no fixed time interval and large changes. In sim- 446

ulation such as winter and summer periods with large 447

fluctuations in daily electricity consumption, The relation 448

between joint temperatures and currents applied were as 449

shown in Fig.5. 450

(3) To better simulating the actual operating currents, the 451

actual daily load curve of a residential area was simulated 452

by a segmentation function with one hour interval, and 453

Wave-forms of straight joint temperatures of joints and 454

equivalent current were as shown in Fig.6. 455

(4) To verify the generalization capability of the algorithm, a 456

single-core cold-shrink straight joint of 10 kV 185 mm2
457

was subjected to a thermal cycling test and surface tem- 458

perature inversion to verify the current and the measured 459

temperature of each layer of the joint were as shown 460

in Fig.7. 461

Under each of the above operating conditions, the ambient 462

temperature range was set to 18∼23 ◦C. 80% of the sim- 463

ulation test data were randomly selected as the training set 464

and 20% as the test set, and the specific number of samples 465

collected was shown in Table 2. 466

B. IMPROVED TEMPERATURE INVERSION MODEL 467

CONSTRUCTION 468

Due to the high sensitivity of BPNN to weight and threshold 469

values [39]. In the continuous iteration, if the return error 470

is large, the autonomous learning time consuming will be 471

greatly increased. Therefore, in this paper, ISSA was used to 472

optimize the weights and thresholds of BPNN to reduce the 473
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FIGURE 5. Cable joint temperature under Multi-step load currents.

FIGURE 6. Joint temperature under equivalent load currents.

FIGURE 7. The relation between load currents and temperature at
different layers of 10kV cable joint.

TABLE 2. Data sets.

training time of networks. The flow chart of the temperature474

inversion of cable straight joint based on ISSA-BPNN was as475

showed in Fig.8, and specific processes were as follows:476

(1) Sample data preprocessing to determine the neural net-477

work topology.478

FIGURE 8. The flow chart temperature inversion based on ISSA-BPNN for
cable joints.

(2) Initialization of sparrow population parameters: input 479

population size, the maximum number of iterations, 480

number of discoverers, number of early warning, safety 481

threshold, alarm value. 482

(3) Tent chaos initialization of population locations. 483

(4) Calculation and ranking of fitness values for each 484

sparrow. 485

(5) Update the positions of producers, followers and early 486

warnings. 487

(6) Determine whether the fitness value reaches the con- 488

vergence condition, and perform a chaotic perturbation 489

update if it was not reached. 490

(7) If the maximum number of iterations was reached, the 491

position information of the global optimal sparrow was 492

output, and vice versa, returned to the fifth step to con- 493

tinue the cycle. 494

(8) Assigning the optimal parameters obtained by SSA to 495

the weights and thresholds of the neural network for 496

temperature inversion. 497

C. ALGORITHM PERFORMANCE EVALUATION INDEX 498

Based on the results of temperature inversion, the five models 499

were compared using δMAE (mean absolute error), δMAPE 500

(mean absolute percentage error), δRMSE (root mean square 501

error), and R2 (goodness of fit) as model evaluation indexes 502

with the following equations: 503

δMAE =
1
n

n∑
i=1

∣∣yp − yi∣∣ (22) 504

δMAPE =
1
n

n∑
i=1

∣∣∣∣yp − yiyi

∣∣∣∣ (23) 505

δMSE =
1
n

n∑
i=1

(
yp − yi

)2 (24) 506
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TABLE 3. Benchmark function.

R2 = 1−

n∑
i=1

(
yp − yi

)2
n∑
i=1

(
yi − yi,ave

)2 (25)507

where n is the number of inversion samples, yp is the model508

inversion value, yi is the actual value, and yi.ave is the average509

of the actual values.510

V. RESULTS AND DISCUSSION511

A. ALGORITHM OPTIMIZATION EXPERIMENT512

BASED ON CEC2017513

To verify the optimization ability of the improved algorithm514

in this paper, the ISSA is compared with the SSA, PSO,515

WOA and MSWOA (Introducing sobol chaos and adaptive516

weight) [40] algorithms on the nine benchmark functions of517

CEC2017. The specific test functions are shown in Table 3.518

F1-F4 are high-dimensional unimodal functions, F5 and F6519

are high-dimensional multimodal functions, F7-F9 are low-520

dimensional multimodal functions. For avoiding accidental521

errors, we run 30 times on each benchmark function indepen-522

dently, and select the best value, average value and standard523

deviation as evaluation indexes. In the experiment, the popu-524

lation size is set to 30, and the maximum number of iterations525

is 250. The results are shown in Table 4. To compare the con-526

vergence speed and accuracy of each algorithm model more527

intuitively, this paper also gives the test function convergence 528

curve shown in Fig.9. 529

On F1-F4, the optimization effect of ISSA is better than 530

that of PSO, WOA, SSA and MSWOA. For F1, SSA, 531

MSWOA and ISSA can find their optimal values, but the 532

average and standard deviation of ISSA are 0, indicating 533

that it has strong stability. The optimization effect of ISSA 534

on F2 is also tens of orders of magnitude higher than 535

other algorithms. According to the overall performance of 536

the model on the single-extremum test function, it can be 537

seen that it has certain advantages over other swarm intelli- 538

gence optimization algorithms in its local development abil- 539

ity. On the F5 function, although the algorithm failed to 540

find the ideal optimal solution, but the convergence curve 541

shows that the convergence rate of ISSA is still faster. 542

This is because chaos perturbation enriches the population 543

individuals and improves the global search efficiency. The 544

variants of the swarm intelligence algorithm on F6-F9 can 545

find the optimal value, indicating that the ISSA andMSWOA 546

algorithms have better optimization capabilities under low- 547

dimensional conditions. The convergence speed of ISSA 548

in Fig.9 (a) (b) (c) (e) (f) is faster. In addition, the conver- 549

gence speed of ISSA and MSWOA in the convergence graph 550

is not much different, but the convergence speed of the 551

improved swarm intelligence algorithmmodel is significantly 552

faster than that of the original swarm intelligence algorithm. 553
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TABLE 4. Comparison of benchmark function test results.

F8 function for each algorithm is easy to find its optimal554

solution in the beginning of the iteration directly converges555

to the optimal solution, so the graph is almost a straight556

line. In summary, it can be proved that the optimization557

performance of ISSA has been significantly improved, and558

the stability is also strong.559

B. TEMPERATURE INVERSION PERFORMANCE UNDER560

DIFFERENT LOAD CURRENTS561

To intuitively evaluate the optimization performance of ISSA562

in the proposed cable joint temperature inversion method563

based on ISSA-BPNN, it is compared with PSO, WOA,564

SSA and MSWOA optimization algorithms. To ensure the565

fairness of temperature inversion experiments, the population566

for the first iteration used is the same for all algorithms. the567

population of all algorithms is set to 50, themaximumnumber 568

of iterations is 100, and the remaining parameters are set 569

as shown in Table 5. BPNN uses relu as the hidden layer 570

activation function. The input layer and output layer nodes 571

are 2 and 1 respectively, and the number of hidden layers is 572

1. The number of neurons is determined to be 9 according to 573

the empirical formula (26) and the mean square error on the 574

training set. The average mean square error on the training set 575

and the test set is selected as the fitness function, as shown in 576

Equation (27). 577

h =
√
m+ n+a (26) 578

f =
1
2

[
1
M

M∑
1

(
yp−op

)2
+

1
N

N∑
1

(YT − OT )2
]

(27) 579
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FIGURE 9. Test function convergence curve of F1-F9.

TABLE 5. Algorithm parameter settings.

where n is the number of neurons in the input layer, m is the580

number of neurons in the output layer, and a is the constant581

between [1,10].M and N are the sample numbers of training582

set and test set respectively; yp, op is the actual output and583

expected output under the training sample; YT , OT is the584

actual output and expected output for the test sample.585

Taking the single step optimization results as an exam-586

ple, the fitness curves of five optimization algorithms are587

compared, as shown in Fig.10. PSO and WOA are stable588

at 0.103 and 9.1 × 10−2 after 27 and 26 iterations, respec-589

tively. SSA converges to 8.3× 10−2 after 34 iterations. ISSA590

and MSWOA converge after 21 iterations, but the former 591

converges to 6.7 × 10−2, and the convergence accuracy is 592

higher. Theminimumfitness value of ISSAmeans the highest 593

convergence accuracy. The first inflection point indicates that 594

the ISSA curve converges fastest. 595

Fig.11 shows the inversion error of single-step load. 596

The BPNN models optimized by the five optimization 597

algorithms can accurately reflect the joint mandrel temper- 598

ature. Among them, the inversion error of ISAA-BPNN and 599

MSWOA-BPNN is the smallest, and the maximum error does 600

not exceed 0.2 ◦C. The PSO-BPNN error is the largest, but the 601

maximum error does not exceed 0.7 ◦C. When the load does 602

not fluctuate greatly, the accuracy of each algorithm is high, 603

and the advantage of ISSA is not easy to reflect. 604

Compared with the single step working condition, 605

as shown in Fig.12, the joint temperature inversion error 606

under multi-step load is generally increased, but the 607

ISSA-BPNN still has excellent performance, and the error is 608

stably distributed within 0.5 ◦C. The inversion error of other 609
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FIGURE 10. Comparison of fitness curves for five optimization algorithms.

FIGURE 11. Error comparison of temperature inversion results for 110kV
cable joints under single step load currents test.

FIGURE 12. Error comparison of temperature inversion results for 110kV
cable joints under multi-step load currents test.

algorithms is increased significantly, compared with Fig.5610

especially at sample number 4, 10, 11, 15. These points are611

the load step change points, this is due to the influence of612

heat capacity and thermal resistance, thermal time constant613

lead to load changes, the temperature change of the joint line614

core reflected in the surface will appear lag phenomenon.615

Taking multi-step loading as an example, the inversion616

effects of five models are evaluated. As shown in Table 6,617

FIGURE 13. Error comparison of temperature inversion results for 110kV
cable joints under equivalent actual load current test.

TABLE 6. Comparison of evaluation indexes of multi-step inversion
performance of FIVE models.

the R2 of ISSA-BPNN and MSWOA-BPNN are more than 618

99%, but the former reaches 99.84%, which is closer to 1, 619

and the error is closer to 0. Combined with Fig.12 and Fig.13, 620

it can be seen that under dynamic load, with the acceleration 621

of load change time, the inversion effect of the neural network 622

model optimized by the original heuristic algorithm becomes 623

worse. However, the performance of ISSA-BPNN is stable, 624

the fluctuation of inversion error is small, and the change of 625

load current size and change rate has little effect on the model 626

inversion effect. It shows that the improved model has strong 627

generalization ability. 628

C. THE TRANSFERRING ABILITY AND ROBUSTNESS OF 629

THE TEMPERATURE INVERSION METHOD 630

To further verify the generalization capability of the model, 631

a straight joint for 10 kV 185 mm2 cable was replaced for a 632

three-day thermal cycling test. The inversion validation was 633

performed based on the data obtained from the tests. As can 634

be seen from Fig.7, the environmental conditions of the test 635
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FIGURE 14. Error comparison of temperature inversion results for joints
of 10kV cable.

were different for each day, and the changes in the surface636

temperature curve can be seen in the periods of 33-38 and637

51-60. The surface temperature fluctuations were very large638

and unstable, which might be due to the measurement device639

problems, and the data could not characterize the actual state640

of the joint and should be discarded. Based on the remaining641

data, the model was trained and the results were obtained as642

shown in Fig.14. It can be seen that the error of inversion643

results remained within 1 ◦C after replacing the experimental644

object, and the average absolute error was only 0.35 ◦C.645

VI. CONCLUSION646

In this paper, the temperature inversion method based on647

ISSA-BPNN was used to get cable straight joint core tem-648

perature by using surface temperature and cable dynamic649

load currents.The robustness of this method was validated by650

temperature-rise tests compared with algorithms. The tem-651

perature inversion results in this paper have high accuracy652

and faster convergence speed. The inversion method based653

on five optimization algorithms performs well under stable654

load currents. The inversion performance of the model in this655

paper is stable and not affected by the speed of the load cur-656

rents fluctuate.The noise introduced by the actual temperature657

measurement has little effect on themodel inversion accuracy,658

has strong robustness, and is less affected by the external659

environment. And it has certain applicability to the joints of660

different specifications and types.661
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