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ABSTRACT The Sloan Digital Sky Survey (SDSS) comprises about one billion objects classified spectro-
metrically. Because astronomical datasets are so enormous, manually classifying them is nearly impossible—
a huge dataset results in class imbalance and overfitting. We recommend a framework in this research study
that overcomes these constraints. The framework uses a hybrid Synthetic Minority Oversampling Technique
+ Edited Nearest Neighbor (SMOTE + ENN) balancer. The balanced dataset is then used to extract features
via a non-linear algorithm using Kernel Principal Component Analysis (KPCA). The features are then passed
into the proposed Int-T2-Fuzzy Support Vector Machine classifier, which uses a modified type reducer and
inference engine to achieve more precise categorization. Using the Sloan Digital Sky Survey dataset and a
number of evaluation metrics, the SMOTE+ENN model’s performance is measured. The research shows
that the model does a good job.

INDEX TERMS Sloan digital sky, fuzzy logic, fuzzy control, support vector machine, nearest neighbor,

machine learning, astronomical, kernel principal component analysis.

I. INTRODUCTION them into likely quasars, stars, and galaxies. Transients like

Astronomy has recently seen significant advances in detec-
tors, instruments, telescopes, and even probes launched into
outer space and distant planets to collect data for sky surveys
to map our universe. Data-oriented astronomy refers to the
organization of acquired data into very large datasets. These
astronomical datasets are in distinct forms, including light
curves, optical and infrared spectra, image data, and pho-
tometric redshifts, representing a wide range of astronomi-
cal data and objects. Astronomers begin the categorization
process by carefully scanning the dataset and categorising
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asteroids, gamma rays, and supernovae that appear for a
concise volume of time in space can also be found in imaging
data. Many challenges arise when processing these data with
a large number of bands, including image calibration noises,
spatial distortion, and restricted or unbalanced labelled train-
ing samples, i.e., Hughes phenomenon and dimensionality
reduction-related artefacts such as overfitting, redundancy,
spectral variability, loss of significant features between the
channels, and so on.

Significant efforts are invested in investigating the idea of
applying Machine Learning (ML) techniques that automate
the knowledge discovery process and astronomical informa-
tion extraction within these massive unprocessed datasets,
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which could probably be a definite solution to the chal-
lenges mentioned earlier. Astro-informatics, a new study
in astronomical data science, helps determine the astro-
nomical knowledge and information from these vast raw
databases. These tools help automate astronomical data’s
scanning process using cutting-edge data mining techniques,
data science tools [1], and statistical methods. Initial efforts
were made in 2010 by the National Research Council-
USA. It laid the groundwork for future scientific contri-
butions [2], [3], [4] to the field in which it was centered.
It enriched it by leveraging vast, globally dispersed digital
astronomy database collections such as the United States
Naval Observatory Astrometric (USNO-A2), Digitized Palo-
mar Observatory Sky Survey (DPOSS), Square Kilome-
ter Array Observatory (SKAO), Sloan Digital Sky Survey
(SDSS) and new initiatives such as Large Synoptic Survey
Telescope (LSST) and Visible and Infrared Survey Tele-
scope (VISTA). However, the area is immobile in its early
phases. More case studies are needed to develop new accurate
methodologies, particularly in ML and, in particular, Deep
Learning (DL), in addition to the availability of large datasets
from astronomy that are now freely accessible to the public.
The classification problem must be solved in order to map our
universe, better understand it correctly, and support existing
and emerging cosmological theories. DL is the ideal candi-
date technique, as it has demonstrated its ability to work with
large image databases like the one in our domain.

When certain classes have considerably more examples
than others, the problem of class imbalance arises. Classifiers
perform poorly on unbalanced datasets because they extrap-
olate from sample data and produce an essential hypothesis
that best matches the facts [5]. By practice, in a binary clas-
sification problem, the minority examples’ <Class Label>
is positive, and the majority <Class Label> is negative. Yet,
when dealing with unbalanced data sets, the most straight-
forward theory frequently categorizes nearly all occurrences
as negative. Hence, biased classifiers have a high level of pre-
dictability for the negative class, but their prediction accuracy
is weak for the positive class. Minority case classification
is usually a challenge in various disciplines, including fraud
detection, the discovery of network intrusion, web-based
research, medical evaluation, text classification, and the cat-
egorization of astronomical objects. Various methods have
been offered to address the problem of class imbalance. Such
methods are grouped as internal [6], [7] and external [8], [9].
In the internal approach, the imbalance problem is addressed
by changing/developing new algorithms for learning. In an
external system, resample the original data collection by
over-sampling or under-sampling the minority or majority
class, respectively, to create a balanced set of data that allows
those classifiers to work better on the minority class.

Oversampling techniques are preferred over undersam-
pling methods in most circumstances. It is because, dur-
ing undersampling, we likely exclude occurrences that may
contain crucial information. Researchers in recent years
have suggested many different classification approaches. Two
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methods for automatic classification of star spectra, such as
x2-minimization and Artificial Neural Network (ANN), are
proposed [10]. Singh et al. [11] describes a rapid and reliable
method for identifying an optical stellar spectrum library
ranging from O-to M-type stars. To automate the classifi-
cation process, the technique uses two tools: (a) Principle
Component Analysis (PCA) to reduce the data dimensional-
ity; and (b) a Multilayer Back Propagation Network (MBPN)
that relies on ANN for automation of the classification
process.

The ANN method using a backpropagation based super-
vised learning algorithm was used to categorise Calgary’s
Infrared Astronomical Satellite (IRAS) spectra in the area
of 8 um to 23 wm, which contains 2000 bright sources [12].
Bora et al. [13] uses an ANN for star classification. The
training set used is synthetic spectra in the ultraviolet (UV)
area range of 1250-3220A and the International Ultraviolet
Explorer (IUE) of the low-resolution test set. Bazarghan and
Gupta [14] proposed a Probabilistic Neural Network (PNN),
which automatically classified approximately 5000 SDSS
spectrum into nearly 158 reference library spectral types
ranging from O- to M-type stars.

The Support Vector Machine (SVM) is the most common
classification method used in ML and data mining. Scien-
tists focus more attention on SVM and suggest several new
improvements. For multitask learning, the proximal SVM is
used [15]. Datta and Das [16] presents the Near-Bayesian
Support Vector Machine (NBSVM) to handle the problem of
unbalanced classification. Liu et al. [17] proposed Ramploss
Non-Parallel SVM (RNPSVM), a nonparallel hyperplane that
is sparse and resilient [18]. Nonparallel SVM [NPSVM],
a new non-parallel classifier, is proposed. SVM can also be
widely used in astronomical research, particularly in the field
of automatic spectral categorization. SVM is employed to
categorise spectra using the dimension reduction approach
PCA [19]. In another method, ISOMAP was used to reduce
the number of dimensions, and SVM was used to classify star
spectra [20], [21].

ML is used extensively in cosmology and also in astro-
physics [22]. A non-exhaustive list of applications includes
(1) supernova photometric classification [23], [24], (ii) gravi-
tational wave research [25], (iii) photometrical redshift [26],
(iv) galaxy morphology [27], and (v) atmospheric param-
eter determination for stellar sources [28]. Many surveys
have successfully used ML applications to separate stars
and galaxies. For instance, they classified the Sloan Digital
Sky Survey’s SDSS sources using multiple tree approaches.
Whitten et al. [29] used data from the Canada-France-Hawaii
Telescope Lensing Survey (CFHTLenS) to train classifiers
that combined supervised and unsupervised ML methods.
Convolutional Neural Networks (CNN) have recently been
used with images as input to attain an Area Under the Curve
(AUC) > 0.99 for Canada-France-Hawaii Telescope Lens-
ing Survey data and SDSS [30]. And others have published
numerous ML methods in the context of star and Galaxy
categorization [31], [32].
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At the close of the past decade, a Type-2 Fuzzy Logic Sys-
tem (T2FLS) was suggested that employs nearly two fuzzy
Membership Functions (MFs), which increases the capabil-
ity to handle language uncertainty representation [33], [34].
T2FS and T2FLS are used in the following applications:
(i) control and system modelling [35], [36], (ii) robots
and motion control [37], [38], and (iii) image process-
ing [39], [40]. When the systems are subjected to various
uncertainties, T2FLS outperforms standard Type-1 fuzzy sys-
tems. Later, an interval T2FLS was developed to reduce
computational complexity, and the notion of an Interval Type-
2 Fuzzy Kernel, known as IT2FK, was not employed during
the prior SVM approach. Such things make it more likely that
IT2FK-SVM will be used in this research to put astronomical
objects into groups.

Int-type-2 fuzzy sets, a subset of type-2 fuzzy sets, are
widely used in practice due to their low computing cost and
ease of implementation. The researchers demonstrated that
Int-type-2 fuzzy ideas handle uncertainties better than type-1
fuzzy techniques. When determining the exact membership
functions of the fuzzy sets utilised, interval type-2 fuzzy sets
are beneficial since they provide more robust generalisations.
This is why we used the Interval type-2 fuzzy model for our
study.

In this research paper, Int-T2-FSVM, an interval type
2 Fuzzy SVM model, is proposed to classify astronomi-
cal objects such as stars, quasars, and galaxies. The work
employs the SDSS dataset to study the model’s efficacy.
To avoid the class imbalance issue in the dataset, the model
employs a SMOTE + ENN hybrid balancer. Then the fea-
tures are extracted from the balanced dataset using Kernel
Principal Component Analysis (KPCA) non-linear feature
extraction. The parts are then fed into the proposed Int-T2-
FSVM classifier, and the model employs a modified type
reducer and inference engine to generate a more accurate
classification. The performance of the model is tested using
the SDSS dataset and different evaluation metrics. The results
show that the performance of the model is good.

The paper is structured in such a way that Section 2 dis-
cusses fundamental technologies utilised to build the cat-
egorization framework suggested throughout this work,
Section 3 discusses the methods involved, Section 4 dis-
cusses the proposed model’s performance evaluation, and
Section 5 ends the work.

Il. PRELIMINARIES

A. SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE
(SMOTE)

SMOTE is an oversampling method that generates synthetic
samples on behalf of the minority class. The approach aids
in overcoming the ‘““overfit” issue caused by random over-
sampling. The method focuses on all of the features to make
examples by combining positive and closer examples (see
Fig. 1).
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FIGURE 1. Synthetic minority oversampling technique.

1) PROCEDURE OF SMOTE
First, the total number of observations for oversampling N
is determined. In general, it is selected so that the distri-
bution of binary classes is 1:1; however, it can scale back.
Iteration starts by choosing a random class instance that is
positive. Then, the k-Nearest Neighbor (KNN)’s value (by
default 5) is obtained for such cases. Lastly, N of those K
occurrences were selected to create synthetic models through
interpolation. The difference between the feature vector and
its neighbours is calculated using a distance metric. Such
variation is then multiplied by any number in the range (0,
1), and summed up with an earlier feature vector. It can be
depicted graphically as below:

Although the above method is beneficial, it does have a few
limitations.

a) The generated synthetic instances point in a similar direc-
tion and are linked with artificial lines connecting diago-
nal models. As a result, the generated decision surface by
some classifier algorithms becomes more complicated.

b) SMOTE generates a massive number of noisy data points
in feature space.

B. HYBRIDIZED SMOTE

Undersampling, as well as oversampling techniques, are com-
bined in hybridization approaches. This was done to improve
the performance of the classifier model for samples made
with these techniques.

C. SMOTE+ENN

The alternative hybrid approach employed in this work is
SMOTE+ENN, which eliminates many observations from
the test space. In this case, Edited Nearest Neighbor (ENN)
is an alternative under-sampling approach that estimates the
nearest neighbours of the majority class. It is eliminated if the
nearest neighbours incorrectly label a specific majority class
instance.
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1) EDITED NEAREST NEIGHBOR

The deployed ENN approach operates by defining each
observation’s KNN and then determining if the observation’s
KNN'’s majority class is matched with a class of observation.
In ENN, the number of nearest neighbours is K = 3 by default.
The following explains the ENN algorithm:

o It provided a dataset of N observations and calculated
K, the number of nearest neighbours. If K cannot be
calculated, assume it is 3.

« Use the rest of the observations in the dataset to figure
out KNN for the class of the observation, and then use
KNN to find the majority class.

« If aclass of observation and the majority class KNN dif-
fer, the observation and KNN are forbidden in a dataset.

o Step 2 and step 3 are iterated until the necessary parts of
every class are matched.

This approach has much potential compared to Tomek
Links [41] because ENN eliminates the observation and its
KNN when the observation’s class and K-NN’s majority class
differ, rather than simply removing the statement and its
nearest neighbour with different classes. So, it is expected that
ENN will clean up more data related to Tomek Links.

Incorporating the above approach with SMOTE’s oversam-
pled data substantially cleans the data. NN’s samples’ mis-
classifications are deleted in the above two classes. Hence,
the separation of the classes is more evident and briefer.

The following explains the SMOTE-ENN process:

Step 1: From the minority, the class selects random data.

Step 2: Find the distance between the randomly generated
data and also its KNN.

Step 3: The difference is multiplied by the random values
0 and 1, and the result is added to the synthetic
sample of the minority class.

Step 4: Repeat until the appropriate proportion of the minor-
ity class is reached (Step 2— Step 3).

Step 5: The nearest neighbours are determined as K.
Assume K as Step 3 if K cannot be estimated.

Step 6: Calculate KNN for the class of observation from
the remaining dataset observations, and then, from
KNN, return the majority class.

Step 7: If a class of observation and the majority class KNN
differ, the statement and KNN are eliminated in a
dataset.

Step 8: It is repeated until the necessary proportion of every
class is met (Step 2 and Step 3).

D. FEATURE EXTRACTION MODE

1) KPCA-THEORY OF NON-LINEAR FEATURE EXTRACTION
After the dataset is balanced, the next step is to extract fea-
tures from the dataset. PCA is feature extraction and linear
dimensional reduction technique for High-Dimensional (HD)
data. It converts the primary HD space’s input data to the
typical subspace, extracts the input data’s primary feature
vector, and achieves the goal of exploring the data. Most of
the time, PCA can be done quickly and effectively on a set
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FIGURE 2. Kernel principal component analysis framework.

of data represented by 2" -order correlations that change
linearly or come from a Gaussian distribution. The variations
of the accurate data, on the other hand, are widely known to
be non-linear as well as highly non-Gaussian; correlations
of 2"-order could not represent the majority of the data.
As aresult, if PCA is used, it would give a bad performance.
Here, for our work, we propose “KPCA”, a modified PCA
approach that is non-linear and depends on functions of the
kernel by inherently constructing a mapping from input space
to feature space F, which is non-linear via non-linear transfor-
mation (®) as well as achieves PCA that is linear in feature
space F. Among the two input samples, say (X, y), thatis in the
primary universe, it is possible to avoid non-linear mappings,
and by using the Kernel Function (KF) given below, we can
calculate the dot products in feature space:

k(x,y) = @(x) - d(y) ey

The KPCA approach conceptual structure is depicted
schematically in Fig. 2. There are numerous KF forms in
Equation 1. If KF is a positive integral operator’s continuous
kernel, a mapping exists (@) into a dot product space (F),
so that method holds, according to Mercer’s functional anal-
ysis theorem. It can reduce dimensionality more effectively if
the KF requirement meets Mercer’s theorem [42] and a good
KF is chosen.

Few examples of KFs, EQU (2), EQU (3) and EQU (4):

k(x,y) = (x,»)¢ 2
k(x,y) = tanh (Bo(x,y) + B1) (3)

o B I x—yI?
Radial basis kernel, k(xy) = exp| ———— @)
c

Polynomial kernel,

Sigmoid kernel,

where d, By, B1, and c are prior defined by the user
Mercer’s theorem constantly satisfies the polynomial and
the radial-based kernels, but the sigmoid kernel only helps
it for specific By, B1 values (Equation 2). For its better per-
formance, the radial basis function is frequently used as a
KF in KPCA; hence, the radial-based kernel is used as the
KPCA-KF in this research (Equation 3). The radial basis
function is often used as a KF in KPCA because it works
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better. Because of this, the radial-based kernel is used as the
KPCA-KEF in this research (Equation 4).

Providing an input data set (witha ‘0’ mean X (xq, ..., xn)
€ R, where N is the number of samples and m is the
measurement variables dimension) and the covariance matrix
calculated by the PCA and KPCA algorithms, such as (i) PCA
covariance and (ii) KPCA covariance, Equation 5 within a
linear feature space F rather than a non-linear input space:

1 1
C= ﬁx,»x,.T = NXXT )
and Equation 6
1 N
F_ Z _ (T
= ]v =1 q)](x)(bj(x) (6)

where it is assumed that Equation 7

N
Do, @) =0, ™

®(-) is a non-linear mapping function that maps input vectors
from input space to F.

It is noted that the feature space’s dimension can be
immense, probably infinite. For the covariance matrix to
be calculated, the eigenvalue problem in feature space must
be fixed: Equation 8

aw=cly (8)

Here,
Eigenvalues > 0;
Eigenvectorv € F,
Equation 9 linearly expresses eigenvector ‘v’ for any ®(x;):

=3

Equation 10 can be rewritten as the kernel eigenvalue
problem:

a(i)d (x;) 9

NXta = Ka, (10)

where a N *+ N matrix ‘K’ is a kernel matrix, K = k; =
(@ (x;) - ®(x5)) = k(xi,x) and ‘@’ is the feature vector
of the kernel matrix. When reconstructing input data from
feature space, we use Equation 11.

o=, @) = 3 d (@), am) (D)
l

E. SUPPORT VECTOR MACHINES

This section discusses SVM theory, the theoretical founda-
tion for the proposed Int-T2-FSVM framework. The SVM
algorithm is a type of supervised learning algorithm. This
indicates that for the training phase, data that is already
labelled is used. Thus, it is feasible to develop a classifier that
is used on a sample of items with an unknown assignment
(this part is referred to as generalization). It is challenging
to differentiate classes in the input space, even with labelled
data. The SVM algorithm’s primary principle is mapping data
into HD feature space, where hyperplanes can be separated.
The location of categorised items within the separated hyper-
planes determines the output of a classifier.
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We provided a dataset S with labelled training points,
Equation 12

N, XN)

where the training point is denoted by a vector x;, the label
is also denoted by a vector y;, and the number of samples is
denoted by ‘N’.

Vector x; is allotted to any of the two classes, which are
denoted with <Class Label> yi € {—1,1}. A hyperplane
can be optimally positioned in the middle, separating the two
classes. Data points closest to the margin serve as the foun-
dation for such a definition and are referred to as “Support
Vectors™ (SV).

Fig. 3 shows a linearly non-separable case. Slack variables
&; refer to violations of strict separation.

Misclassification penalization, & > 0, is proportional
to the distance between the misclassified point of x; and
canonical hyperplane restricting its class. Objective functions
associated with margin maximization are denoted by Equa-
tion 13 and Equation 14:

O x) 5., i=1,2,...,N (12)

1 2 2
SIwIiP+Cy & (13)
subject to: y; (xlT w + ) >1-—

>0 i=1,2,...,N (14)

C is weighted to account for classification errors. During
classification errors that are unavoidable due to the linearity
of the separating hyperplane, minimization of the objective
function (1) with constraint (2) offers the maximum possible
margin. By arranging the Lagrange function, the optimal
hyperplane is initiated. The Lagrange function for the primary
problem is as follows: Equation 15:

1 2 n
ShwiP4cy &

— Z?:lai {yi (xiTW—i—b) -1+ &'}
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- ik (15)

where o; > 0 and p; > O are Lagrange multipliers. The
primaeval problem is expressed as Equation 16:

miny, p & Ly(W,b, §) (16)

In this situation, first-order conditions are revealed in
Equation 17

oL, .
W =O.W—Zl_:] oc,-y,-xi=0

aL, "

E =0: Zi=1(¥iyl’—0

Ly 0 Cmai—pi =0 (17)
3E; =VU: o — Ui =

With particular reference to the Lagrange multipliers’ sce-
narios, Equation 18:

o >0
ni =0
o; [yi (xl-TW—l-b) —1—|—Ei} =0

u1& =0 (18)

Therefore Y, ajy;b = 0, the primal problem translates into
Equation 19:

1 n T
Lp(e) = Ezi:12j=1“ia/yl‘iji Xj
n n n
_ Z Oliyix,'TZj:lOliy,‘x]‘ + CZiZlgi
n n
+ j=1 U Zj:laiéi_zj':luiéi
n n
T
- j:]ai - 52i=12j210‘i0‘j3’i3’1xi Xj
n
+Y 0 E(C == ) (19)

As the last term is 0, the first level dual problem results in
Equation 20:

Lp(a) = Z - = Zl 12, | VIV Txi (20

The following is the initial decision function: Equation 21:

D) = ZieS

S is a collection of SV indices. Since «; It is non-zero for
SV sum-up in Equation 22; it is applied only for SV. Forever
and ever «;,

ayixlx +b (1)

b=y —wx (22)

is fulfilled. To assure the value of precision, an average of b
computed for unbounded SV is assumed; equation 23:

_ ! T 23
= {7 Ly (1= w') *9
where U denotes a collection of unbounded SV indices.

SVM solves the classification problem by mapping the
inputs ‘x” into a HD space by mapping non-linear features
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¢(x) separated by complicated decision boundaries in the
input space. Because of this, the problem becomes a situation
in the feature space that can be separated in a linear way.

xl.ij substituting just a scalar product by KF, K (x;, )g,)¢T
(x))¢(xj) supposed to be symmetric and positive-definite,
subject to constraints, the dual problem is reformulated as
follows: Equation 24 and Equation 25

Q(a)———Z p

Subject to E
) =
i=12,...,N (25)

y,yjaa, xl,x, +Z o (24)

lyiai=0,0§01i§C

K (x, x;) = xTx; in (8) is a linear kernel.
The Gaussian kernel is the most common, and its most
common definition is Equation 26

— x:12
Ix xln) 06

K (x, x;) = exp <— 752

1) INFLUENCE OF KARUSH-KUHN-TUCKER THEOREM
(KKTT)

KKTT is significant to the SVM’s development. Accord-
ing to the theorem, the answer must meet the following
requirements:

o yi(w-zi+b)—1+&) =0,
(C—a)& =0,

i=1,2,...,N (27)
i=1,2,...,N (28)

Equation 27 and Equation 28 imply that only non-zero
values ‘o;’, meet the requirements. SVs are the values ‘x;’ that
corresponds to the solution ‘o;”. When ‘x;’, it corresponds to
a; = 0 and a sufficient distance from the decision margin, the
instance is appropriately classified.

In order to build the best possible hyperplane w - z + b,
we would require that Equation 29

N
w = Zi:l ®GYizi (29)

The scalar bias b should be calculated using the KKTT con-
ditions. The decision function can hence be obtained from
Equation 30 and Equation 31 as follows:

f(x) = sgn(w - z+ b) = sgn <Z;ilaiy[zi -2+ b) (30)

where sgn(-) is the sign function that determines the sign
(+/—) of a real value. Since we lack data for feature space
of higher dimension ¢(-), the calculations in EQU (31) are
impractical because of their complexity. A beneficial feature
of the SVM is that it does not require determining’¢(-).
Complexity is resolved using a KF that can compute data
points as dot products in the ‘z’ feature space. Before these
functions can be used to figure out the dot products, they must
prove Mercer’s theorem.

=9 @) ¢(x) =K (x,x) 31

Here, K (xi,x;) = @ (xi) - ¢ (x;) KF is used for mapping
onto a feature space of a higher dimension. KFs can be either
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FIGURE 4. Membership function of type-2.

linear or non-linear. Solving the following Equation 32 and
EQU (33) yields the non-linear separating hyperplane:

1 N N N
52i=12j=1)’i}’jaiajl( (Xi, Xj) - Zizlai

(32

minQ(a) =

subject to Equation 33

Zi.vzl yiai =0,

The Decision function can finally be illustrated as Equation
34:

0<e;<C, i=12,....N (33)

N
f(x)=sgn(w - z+b)=sgn (Zizl a;yiK (x, xi)—i—b) (34)

F. FUZZY SETS OF TYPE-2 AND INTERVAL TYPE-2 FLS
In various scientific and technical implementations, espe-
cially in control systems, Fuzzy Logic (FL) is vital. In 1965,
Zadeh developed fuzzy sets to analyse unprobabilistic uncer-
tainty in information. In the Fuzzy Logic System (FLS), the
information utilised to generate the rules is uncertain [43].
Uncertainty about the antecedent and consequent regenerates
into uncertainty about the antecedent and consequent Mem-
bership Functions (MF). Antecedent and consequent MFs
in Type-2 FLSs are Type-2 fuzzy sets that simply manage
rule uncertainty. So an expansion of the standard fuzzy set
concept, i.e., a Type-2 fuzzy set, into the concept of Type-1
fuzzy sets was commenced. In type-2 fuzzy, the grades of
MF are also fuzzy. Membership of the Type-2 grade is any
subset of (0, 1), which is known as primary membership
[44]. A secondary membership (0,1) corresponds to each
primary membership and describes the primary membership
probability. Type-2 fuzzy defines a subset of Type-1 fuzzy,
which is represented by a MF, as shown in Fig. 4, by a triangle
MF [45].

The output processor, which contains a de-fuzzifier and
a type reducer, produces a Type-1 output of a fuzzy set or
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FIGURE 5. Membership function showing grading.

a definite number. If Type-2 logic MF is expressed as an
interval, FL Type-2 is transformed into an interval of Type-2
FL. Even though If-Then rules were commonly active for FL
Type-2 characterization, antecedent/consequential sets are
Type-2 now.

type-2 fuzzy set, represented by A, classified by type-2 MF
i (x,u),x € X andu € jy C [0, 1], denoted by Equation

35:
/’ / 15 (6, 1)
xeX Juely X, U ’

where J / implies the union’s overall maximum allowable x,
u, and J, C [0, 1], J, which is termed as x’s basic member-
ship.

A secondary membership value for each primary member-
ship value describes the possibility of a primary membership
value. However, secondary MF has values in the [0, 1] range
illustrated in Fig. 5. The most critical task in the Type-2
FLS design is the MF’s specification. The choice of MF
style (Gaussian, Triangular) and thus selecting their specific
parameters directly impacts performance. IT2FLSs are being
studied for a variety of mitigation techniques. Most of the
time, these strategies are built on the knowledge of experts,
Genetic Algorithms (GA), Neural Networks (NN), and other
similar methods.

Nonetheless, there is a need to simplify and optimise the
classification of unambiguous MFs in this space. IT2FLS
practices are used in a wide range of science and engineering
fields due to the increased practicability within the compu-
tations. If the MF position cannot be determined precisely,
the degree of membership cannot be taken as a fixed range
of (0, 1), and Type-2 fuzzy sets are the best option. If all
A are assigned to their distribution, the Type-2 3-D FL-MF
specifies the formation of Type-2 fuzzy set features. The
Footprint Of Uncertainty (FOU) is defined as a union of pri-
mary memberships bounded by the upper and lower Type-1
MF, referred to as upper MF [i5 (x) and lower MF u (x)

Je €0, 1] (35)
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FIGURE 6. IT2 MFs examples; dashed line: LMF; dotted line: UMF; blue
area: FOU.

When the unknowns in the MFs are taken out, type-2 fuzzy
sets are reduced to type-1 fuzzy sets that can be identified
exactly.

FLS of Type-2, like FLS of Type-1, has 4 general mod-
ules: (1) Fuzzifier; (2) Fuzzy rule base; (3) Fuzzy Inference
Engine (FIE); and (4) Output processor. A notable distinction
between FLS of Type-1 and FLS of Type-2 is that Type-2 FLS
processor output requires an added step: This type-reducer
directly before the defuzzifier is needed to lower the fuzzy
output sets of Type-2 to fuzzy output sets of Type-1. After
type reduction, the defuzzifier takes the fuzzy output sets of
Type-1 and turns them into clear values.

G. INTERVAL TYPE-2 FUZZY INFERENCE SYSTEM
(INT-T2-FIS)

Int-T2-FIS is being employed as an alternative to T2FIS since
the arithmetic needed for Int-T2- FIS is significantly more
accessible than the arithmetic needed for T2FIS.

Different types of MF can be used for the research being
directed. Fig. 6 shows the triangular Int-T2-FIS MF. The
dashed lines denote the lower MF named LMF, while the
dotted line denotes the upper MF called UMF. Yet, due to its
ease of implementation, the triangle MF was utilized. In the
perception that every non-linear process can be imprecise
to an arbitrary level of precision in a confined domain, FL.
Type-1 is a global approximator. This trait is prolonged to
the Type-2 scenario; thus, we can assume a comparable level
of competence. Keeping this point in mind, Int-T2-FIS must
perform well regardless of the MF shape, as other factors
influence performance, such as the number of fuzzy rules
used. Users can predefine the MF or design it using optimiza-
tion approaches like the GA. The GA can optimise MF for
each input, denoted by nearly seven points: pl, p2, p3, p7.

FOU is defined as the space between UMF and LMF,
which is seen in Fig. 7 as a blue area. A FOU is a union of
the entire Type-2 FS fuzzy membership grades, representing
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FIGURE 8. Type-2 FLS with reducer.

uncertainties in a fuzzy system. Because a type-2 FS’s FOU
adds a dimension of mathematics, type-2 FSs are likely to
outdo their counterparts of type-1. Contradict to the Type-1
example, in which the grade of membership is a single value,
the membership grade of Int-T2-FIS is a range. Int-T2-FIS is
limited at the two extremities of the period to yield LMF and
UMEF, both of which are fuzzy sets of Type-1.

The construction of the Int-T2-FIS details the relationship
between input and output. The Int-T2-FIS is made up of
five primary modules: (1) Fuzzifier; (2) Fuzzy Rules; (3)
Inference Engine; (4) Type Reducer; and (5) Defuzzifier. The
output unit of an Int-T2-FIS is made up of 2 blocks: (a) type-
reducer and (b) defuzzifier. Because fuzzy settings activate
the rule basis, rather than numbers, in the fuzzifier block,
crisp inputs are initially converted to FS. Once measurements
are excellent, input is preserved as a crisp data set in the
fuzzification step; once the measurements are chaotic but
stable, input is represented as a Type-2 fuzzy interval set.
A set of fuzzy inputs is mapped onto fuzzy outputs with the
help of a fuzzy inference engine after the input has been
fuzzified. This is accomplished by quantifying every rule
using the fuzzy set theory and then applying the mathematics
underlying the theory of the fuzzy set to produce an output
favouring every rule. The fuzzy inference block’s result now
has one of many sets from fuzzy production. With the help
of output processing units, the fuzzy output collections are
turned into crisp output.

Provided an Int-T2- FIS with ninputs x; € X;, ..., x, € X,
to produce a single output € Y. This Int-T2- FIS ’s rule base
is made up of K IT2 fuzzy rules, written as follows: Equation
36

R If xy is F¥ and - - - and x, is F* THEN y is G*  (36)
k=1,...,K, F,’f and G*, epitomizes Type-2 fuzzy sets.

101283



IEEE Access

A. L. Karn et al.: Fuzzy and SVM Based Classification Model to Classify Spectral Objects in Sloan Digital Sky

1) COMPUTATIONALLY EFFICIENT TYPE-REDUCER

The Karnik-Mendel (KM) iterative approach using the center
of sets is a prominent type-reducer. Unfortunately, such a
type-reduction approach is mathematically demanding, espe-
cially when many MFs have a considerable rule base. Fig. 8,
the schematic construction of a Type-2 FIS, demonstrates that
type-reduction is conducted on the FIE’s output. As a result,
the inference engine and the type-reducer must deal with
intermission firing strength. These raise the mathematical
load and make Type-2 FLSs inappropriate for some real-time
functions. Equivalent Type-1 fuzzy systems, termed ET1FSs,
allow Type-2 fuzzy systems, which are considered Type-1
fuzzy systems collections [46]. This notion can reduce type-
reduction to identify an equivalent Type-1 fuzzy system cor-
responding to a specific input. The type-reducer must identify
the equivalent type-1 membership grade (ETIMG) for every
interval fuzzy set. When the ETIMG is determined, the type-
2 fuzzy set FS is reduced to a crisp value, and the type-2 FLS
output may be determined using a defuzzifier and FIE of Type
1. In brief, the type reduction technique can be used before the
inference engine to select the best ET1MGs based on inputs.
In this case, the inference engine only keeps track of crisp
computing integers instead of sets of intervals. This means
that the computational overhead is lower, and the calculations
may be done faster than with a FLS of Type-2 used with the
KM iterative algorithm.

Even though the novel technique alters the processing
order, the type-reducer proposed should not modify fea-
tures of FLS of Type-2. Type-2 FLC must meet the below
constraints:

1. Once the uncertainty footprint is taken away, the Type-2
FLS reduces to its Type-1 equivalent. This means that
the type reducer should produce a Type-1 FLS that
is equivalent to the Type-1 FLS that was used as a
baseline.

2. ETIF alters as input changes. As a result, the type-reducer
must fit all the input variables.

3. According to research on using FLS of Type-2 for control,
the control surface of FLC is often smooth when compared
to FLC of Type-1, particularly near the origin (e = 0, e =
0). One feature that makes a FLC of Type-2 more robust
than a FLC of Type-1 is the Type-2’s smoother control
surface. As aresult, the type-reducer should result in softer
control surfaces.

Considering the above constraints, the type-reducer built
with GA to reduce the interval fuzzy set [f;, f,,] to an ETIMG,
Jfeq> can be defined as the following Equation 37:

N 2 |xil

Jeg =fu= Zi:l “p

xi2 — le-l

X (fu =10 (37

N denotes the number of inputs

«; denotes weight evolved by GA

x; denotes i™ input

Px;2 — Px;1 (is the support of a baseline Type-1 fuzzy
system while the footprint of uncertainty disappears).
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2) INFERENCE ENGINE

The inference engine is responsible for applying the inference
rules to the fuzzy input and producing the output. The infer-
ence rules, in particular, are engaged in assessing linguistic
values and mapping them to fuzzy sets, which then need
defuzzification to be transformed into crisp values. Inference
rules that give the system’s calculation functionality are one
of the primary principles of the Mamdani method [47]. These
guidelines can be founded on prior experiences, observations,
and expert knowledge. Every fuzzy inference rule comprises
two concepts: (1) If-Then statements and (2) the variables
of linguistic expression. Antecedents and consequences are
contained in the If-Then rules. When creating an inference
rule, “AND,” “OR,” and, occasionally, “NOT” operators
are utilised [49]. The combination of operators is known as
t-norms. The following defines the fuzzy “&” operator:

nA N B(x) = min[pA(x), 1B(x)] (38)

LA represents class A membership

uB represents the class B membership.

This rule obtains the least number of fuzzy set member-
ship values necessary to compute the “AND”’ operation. The
fuzzy “OR” operator is described as:

HA U B(x) = max[A(x), nB(x)] (39)

Equation 38 and Equation 39, x represent the correspond-
ing fuzzy sets’ degrees of MF. For example, A(x) denotes
fuzzy set A membership degrees. The “OR’ operation is
calculated by obtaining the most outstanding value of mem-
bership values of the fuzzy sets. We utilized the “AND”
operator to create the inference rules because the evaluation
factors are interdependent. The “OR” operator is typically
used for separate, non-closely connected components. The
rule strength allows the fuzzy outputs to be aggregated into
a distribution [48].

3) DEFUZZIFICATION

The inference engine’s fuzzy output is mapped to a crisp
value that gives the exact fuzzy set representation during
defuzzification. In this proposed fuzzy methodology, the crisp
production is generated by employing the centroid method,
which is defined below, Equation 40:

n
_ D1 File (1)
- n
Zj:l He (Z] )
The centroid approach determines a single scalar value by
using the centre of mass, denoted as z, in the distribution of

fuzzy output. The fuzzy set membership is represented by u,
while the membership value is presented by z;.

(40)

H. DATA

The SDSS DR14 data collection is used in this study. The
SDSS is one of the largest spectroscopic surveys, having
begun observations in 1998 and completing three phases.
SDSS-1V, the fourth phase, is already in progress [49]. The
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camera for the telescope was made up of 30 Charge-Coupled
Devices (CCD) chips, each with a resolution of 2048 x
2048 pixels. The chips were stacked in five rows, each with
six chips. Each row looks at the space via different optical
filters (v, g’, 1, i, z’) with different wavelengths: v’ =
354 nm, g’ =475 nm, r'= 622 nm, i’ = 763 nm, and ' =
905 nm [50]. SDSS DR14 is the SDSS-second IV’s release.
More than 2.54 million spectra have been given, comprising
928859 stellar spectra. The raw spectra contain 3850 points
within the range of wavelength specified by the device, which
is A = 3950 fo 9350A. In terms of resolution, the interval
is uniform (‘% = ﬁ). When the redshift is taken into
consideration, the range shared by all spectra is 3806 to 7371
wavelengths. The spectra were then corrected for redshift
using the Shannon criterion to preserve the form of the spec-
tral lines, as described by [51]. We increased the sample of
the spectra earlier for this purpose, resulting in 5748 points
for each spectrum. After that, each spectrum was normalized
by dividing it by its average value between 4250 and 5150A.
To minimize the dimensionality of the data array, we used
wavelet filtering accompanied by offloading by a factor of
four to create spectra with 1443 wavelengths. We save most
of the information in this procedure, including the forms of
the lines, as well as complete neutrality.

I. METHODOLOGY

1) DATA PROCESSING

To begin with, because of the enormous number of sources in
a spectroscopic catalogue, we divided the entire dataset into
2 parts, utilizing one part for the initial training set and the
other for the introductory test set. For unbiased comparison,
we divided the dataset into 25% for the test set and 75% for
the training set (30% is used for cross-validation). In training,
we employ the SMOTE preprocessing model to avoid the fit
being influenced by an imbalance between the several classes,
which is mainly produced by galaxies’ excess. We train such
models to forecast a source’s <Class Label> in stable test
datasets and analyse how the number of facts in the training
set impacts model efficiency by introducing the classification
model using escalating percentages of the whole training set.

2) IMPLEMENTATION: INTERVAL TYPE-2 FUZZY SVMS

(INT-T2-FSVM) FOR CLASSIFYING ASTRO PHYSICAL OBJECTS
The methodology of the Int-T2-FSVM classifier used in
the selected dataset is discussed. This hybrid classification
method combines Int-T2-FIS and SVM, which generates Int-
T2-FSVM and employs a standard classifier from SVM. Int-
T2-FSVM is a classifier with several inputs and a single
output. Int-T2-FIS’s capacity to manage insecurity makes it
an excellent companion to SVM in addressing challenging
non-linear situations. Fig. 9 depicts the overall architecture
of Int-T2-FSVM. The input of the feature vector is acquired
after the K-PCA component has extracted the required fea-
tures from the SMOTE+ENN balanced input data of SDSS.
Multiple Int-T2-FSVMs are required in the application in this
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FIGURE 9. General architecture of the proposed Int-T2-FSVM.

FIGURE 10. Int-T2-FSVM architecture for the astrophysical object
classification.

TABLE 1. Outline the if-then rules that were applied.

Test Output End Class Output
Case I 11 11

1 -1 -1 -1/1 1

2 1 -1/1 -1 2

3 -1/1 1 1 3

4 1 -1 1 3

5 -1 1 1 3

study, which is to differentiate between astrophysical objects
because there are three types (stars, galaxies and QSO).
Since the hyperplane can only tell the difference between two
classes, more SVMs are needed if there are more than two
classes.

AsinFig. 10, the block of Int-T2-FSVM can be reproduced
and utilised to segregate the unique objects separately. We can
recommend three Int-T2-FSVM blocks for identifying three
classes [52].

1. Int-T2-FSVM1 can tell the difference between the phases
of a star and a galaxy. A label of “—1”° means that the data
is from the star class, and a label of ““1”” means that it is
from the galaxy class.

2. Int-T2-FSVM2 can tell the difference between the Star
and Quasar classes. An input data label of “—1"" means
that the data fits the Star class, and an input data label of
“1” means that the data fits the Quasar class.

3. Int-T2-FSVM3 can tell the difference between Galaxy and
Quasar classes. A label of “—1”” means that the data fits
the Galaxy class, and a label of “1” means that the data
fits the Quasar class.

Outputs 1 through 3 show the labels of the outputs of 3 Int-T2-
FSVM blocks, which are then run through a classifier based
on rules to decide the final classification (Tab. 1).
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FIGURE 11. Training and validation accuracy.

Table 1 depicts a class determiner system based on rules
that pick the output of Int-T2-FSVM ’s final classification.
The whole number 1-3 stand for the last class. “1” means
Star class, “2”” means Galaxy class, and ““3”” means Quasar
class.

The int-T2-FSVM block comprises three fuzzy rules linked
with LMF and UMF and a defuzzification block that produces
final crisp outputs [53]. The SVM block’s final result is
created via merging SVM outputs with MF, where MG is
applied to each output to show the effect on the end output.
Some integer values may represent fuzzy rule values. How-
ever, increasing the number of rules will result in delayed
training convergence and a higher system computing cost.
Three fuzzy rules are used in this study to execute Int-T2-
FSVM. MG is derived from MFs, which a user outlines and
has a triangle shape, as illustrated in Fig. 1. The GA optimises
the point’s pl to p7 to represent the membership function
shape.

As represented in Fig. 11, there are 3 IT2 SVMs where
every IT2 SVM is regulated via the rules below:

R:If | x ||is F/ THEN yis G/,j = 1,2,3

|| x || is normalized input

FJ is IT2 triangular MF as denoted in Equation 41

G’ is a singleton by output Outj, as well as O_utjk by
definition in the below hyperplanes:

Out . = sgn (ij "2+ ij>
N
= sgn (Zi_l ajikyiK (xi, x) + ij> (41)
O_utjk = sgn (ajk -7+ Ejk)
N —
= sgn (Zi=1 wjeyiK (i, x) + bjk> (42)

j = 1to 3 refers to j'" (lower/upper) SVM
k = 1 to 3 refers to k™ Int-T2-FSVM
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TABLE 2. Features involved in SDSS dataset.

Data Columns

# Column Count Non-Null Data Type
1 Objig 30000 Non-Null Int 64
2 RA 30000 Non-Null Float 64
3 DEC 30000 Non-Null Float 64
4 U 30000 Non-Null Float 64
6 1 30000 Non-Null Float 64
7 Z 30000 Non-Null Float 64
8 Run 30000 Non-Null Int 64
9 Rerun 30000 Non-Null Int 64
10 Camcol 30000 Non-Null Int 64
11 Field 30000 Non-Null Int 64
12 Specobjia 30000 Non-Null Ulnt 64
13 Class 30000 Non-Null Object
14 Redshift 30000 Non-Null Float 64
15 Plate 30000 Non-Null Int 64
16 Mjd 30000 Non-Null Int 64
17 Fiber;y 30000 Non-Null Int 64

A defuzzification technique may then be used to obtain Int-
T2-FSVM k’s output k. A rule-based class determiner would
make the final class selection.

J. FEATURES INVOLVED IN SDSS DATASET
There are various features in the SDSS dataset (Tab. 2). The

following are the features required to make a classification in
our work [54].

« RED SHIFT: Redshift is the essential attribute that dis-
tinguishes quasars. Quasar’s distance is calculated by its
redshift, a measurement by which the universe’s expan-
sion stretches the wavelength of its light before reaching
Earth. The greater the redshift, the greater the distance;
the further back in time, astronomers view the object.

o RIGHT ASCENSION: The eastward angular distance
of a particular location is measured along the celestial
equator from the sun at the March equinox to the (hour
circle of the) place in the question above the earth. This
attribute can be derived from the image table.

« When combined with right ascension, declination is an
astronomical coordinate system that indicates the point
location on the celestial sphere in an equatorial coordi-
nate system.

Ill. PERFORMANCE METRICS
The measures we use to evaluate the performance of the
classifiers are discussed now.

A. CONFUSION MATRIX (CM)

CM holds counts of all probable model forecast results; for
each categorization, there are nearly four probable results.
If the model successfully predicts ““real” things, it is referred
to as a “True Positive (TP) (#,)”, and if it mistakenly predicts
“Not Real” objects, it is referred to as a “False Negative
(FN)”’ (f,,). If, on the other hand, the model correctly predicts
that an object is “‘not-real,” this is a True Negative (TN) (¢,).
It is, however, a ‘“False Positive (FP)” if it is classified as
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“real” when it is not In a nutshell, it contains the overall
number of TP/FP and TN/FN.

We measured a probabilistic classifier, which means that
the classification of the sources into stars/galaxies is based on
the probability that the class threshold is set. In our scenario,
all objects with <Class Label>=1 are galaxies, all objects
with <Class Label>=2 are stars, and all objects with <Class
Label>=3 are quasars. The requirements for completeness
and purity determine the class. When a <Class Label> is
provided, the classification performance may be summarised
using a CM to comprehensively compare predicted and true
values.

B. ACCURACY

The number of predictions in a given model indicates the
model’s accuracy. Our model’s accuracy is the initial measure
because the dataset’s size is similar to ours. The accuracy of
the model is computed as given below:

Number of correct predictions

— (43)
Total number of predictions

ty + ty

S (44)
I+t +fp+1n

In the above, Equation 42 and Equation 43 t, are the TP, t,,
which denotes the TN, f,, represents the FP, and f, signifies
the FN.

Sensitivity-specificity and precision-recall are two cate-
gories of metrics that may be helpful for imbalanced clas-
sification because they are class-specific.

C. SENSITIVITY-SPECIFICITY METRICS

Sensitivity is a measure of how accurately the positive class
was predicted and referred to as the True Positive Rate (TPR).
The complement to sensitivity, or True Negative Rate (TNR),
is sensitivity Specificity, which summarises how accurately
the negative class was predicted. Equation 44 provides the
following measurement for the sensitivity (Sn):

(Sn) = (TP)/((TP + FN)) (45)

D. SPECIFICITY

The sensitivity for imbalanced classification may be more
intriguing than the specificity. Equation (45) is presented as
the following:

Sp = (IN)/((FP + TN)) (46)

E. PRECISION

Precision is a metric that measures the proportion of the TP
in the given samples. The precision can be calculated using
the formula given below, Equation 6

. TP
Precision = —— 47
TP + FP
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F. RECALL
A recall is a metric that measures how many real positive
tuples are correctly classified. Equation (47)

TP

Recall = ———— (48)
TP + FN

G. F1-SCORE
It is a model that combines recall and precision, and it is
done by calculating the Harmonic Mean between precision

and recall. The following is how it was calculated: Equation
48
2PR

/F1 = PR (49)

Fi=2x 1 i

Precision + Recall

H. FALSE-POSITIVE RATE (FPR)

FPR is the number of positive values that were mistakenly
counted as negatives divided by the number of negatives that
should have been counted, Equation 49

I
fottn

The Receiver-Operating Characteristic (ROC) Curve is a sys-
tematic technique for summarising a classifier’s performance.
TPR and FPR are plotted as a function of p.,, in a parametric
plot, Equation 50.

FPR = (50)

TPR (peu) = —2. o
Iy +f fpt+t

In conjunction, “Recall” is represented as TPR, indicating
completeness. An AUC can be used to summarise the perfor-
mance of a classifier. It takes a value between 0 and 1. 1 is
the value an ideal classifier brings, and an average classifier
takes the value of 0.5.

We present the results of the unrefined proposed model in
Tab. 3. The results are compared with and without the use of
SMOTE + ENN for all the metrics; the results show that the
model performance to correctly predict the class label is get-
ting better by using SMOTE + ENN to balance the data. The
results are comparable with other existing models in terms of
all the metrics. The adoption of KPCA as the feature extrac-
tion scheme reflects greater efficiency as the adopted model
proves its credibility by effectively reducing the dimension
of the dataset. The SDSS dataset we chose proves to be a
difficult platform for our proposed classification model [55].
The proposed model’s training and validation accuracy is
displayed (Tab. 4).

It is common for many classification models to generate
poor representations of the labelled data for datasets that
provide a thinner training set than the generalisation task
requirement. But the “SMOTE + ENN” effective balancing
model proposed in this research work helps solve this prob-
lem, as shown by its ROC in Fig. 12.

Following the training and testing of the proposed model
and observing the accuracy of training and loss, we can
conclude that the model performed well since the training

FPR (pcu) =

61y
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TABLE 3. Performance of proposed model’s.

Accura Sn Sp Recal  Precisi F1-
cy 1 on Score
With  96.21% 8842  87.63 97.19 96.21 97.42
Smote % % % % %
+ ENN
Witho 84.37% 82.74  80.11 89.23  82.1%  90.33
ut % % % %
Smote
+ ENN

o
o o =

True Positive
o o ©
=

o N

0

005 01 g5 o)

0.25
03 035 g4 045
45 o5

False Positive

m0-0.2 m0.2-04 m0.4-0.6 0.6-0.8 m0.8-1

FIGURE 12. ROC curve.
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FIGURE 13. Training and validation loss.

accuracy is more than 97% after 30 epochs and the training
loss is relatively low, as shown in Fig. 13. A high gener-
alisation model prevents overfitting and gives useful results
when dividing astronomical image data into real and fake
objects [52], [53], [54], [55].

Because the two major classes in our data (real and non-
real objects) are similar in size, we considered accuracy
and recall to be the most important performance metrics in
our solution and benchmark model (Fig. 14). Accuracy is
a good measure of quality. In this case, losing true items
(FNR) is more important than contaminating our collection of
predicted objects with FP, which humans can quickly wholly
eliminate. These findings indicate that it can play a valuable
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role in future astronomical surveys. Fuzzy-based approaches
seem to be as good as, if not better than, human scanners in
this sector. However, unlike astronomers, they can categorise
thousands of transients in a single second. Unlike traditional
ML algorithms, Int-T2-FSVM does not involve the creation
of sophisticated and case-specific features. Fuzzy SVMs use
simple data augmentation during training to come up with
abstract features for categorising on their own.

DL models, particularly the proposed Int-T2-FSVM, are
critical for future astronomical sky surveys like the SDSS.
In contrast to human scanners, deep models can produce
continuous-valued classification certainty ratings that can be
tweaked for maximum recall and precision. Furthermore,
they can handle the enormous data throughput generated by
the different sky surveys.

I. COMPARISON WITH OTHER EXISTING MODELS

Most previous research work related to this paper uses stan-
dard supervised learning techniques to achieve the goal of
automatic classification. The ML categorization of SDSS
transient survey images is a baseline model for the proposed
work. The same dataset was used in this research study, but
several learning techniques were used, including (i) Random
Forest (RF), (ii) k-Nearest Neighbors (k-NN), (iii) Adaboost,
(iv) Support Vector Machine (SVM), (v) Easy Ensemble and
(vi) Naive Bayes (NB). The same dataset was used in this
research study, but several learning techniques were used,
including (1) RF, (2) KNN, (3) NB, and (4) SVM. And then
match their performance using the same measures using DL-
CNN and compare the proposed work to the past work. In the
very different image data (g, r, I, z, u), they should also use
the PCA algorithm to pull out features like shape, location,
FWHM, and objects near a local object.

Our proposed model uses KPCA as the feature extraction
model and the recommended Int-T2-FSVM classifier. The
benchmark model achieved the results shown in Fig. 15, and
it is evident that none of the other models improved more than
our proposed model.

IV. THREATS TO VALIDATE
In this section, we go over potential threats to our experi-
ment and how we mitigated them. Validity assesses whether
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experiment results adhere to the specifications provided in the
study procedure.

A. THREATS TO INTERNET VALIDITY

If an experimental condition has an effect or not, and if there
is adequate data to back the assertion, then it is said to be
having internal validity. The primary threat to internal validity
in our case is the SMOTE+ENN that we utilised, which
may be reasonable for our dataset. However, there are many
more effective models available, such as Weighted SVM and
Deep SMOTE, and using such a model might have produced
considerably better outcomes.

B. THREATS TO EXTERNAL VALIDITY

The applicability of the results of the experiment is referred
to as external validity. We used the Int-T2-FSVM to classify
astrophysical objects by using multiple Int-T2-FSVMs. This
was necessary for the application of this study, which was
to tell the difference between three types of astrophysical
objects (stars, galaxies and QSO). A significant barrier to
the experiment’s success was the lack of processing power,
which prevented the model from being trained from scratch
to more effectively learn the dataset’s astronomical labels.
It’s possible that the experiment’s findings won’t translate
accurately from experimental categories to real ones.

C. CONSTRUCT VALIDITY

If an experimental variable’s operational definition reflects
its theoretical meaning, then it is considered to have con-
struct validity. The SDSS dataset was used in our experiment
to evaluate the effectiveness of the suggested model. The
entire dataset was split into two sections, with one serving
as the first training set and the other as the initial test set.
We separated the dataset into a 25% test set and a 75%
training set in order to conduct fair comparisons (30% is used
for cross-validation). However, for the classification model
with SMOTE + ENN, we only achieved a sensitivity and
specificity performance of 88.42% and 87.63%, respectively.
Without SMOTE + ENN, the results were even worse.

V. CONCLUSION

Classifying stellar has always been challenging, given the
enormous volume of data. The existing classifiers run into
issues like class imbalance and overfitting. In this paper,
a framework to classify stellar objects such as “stars”,
“quasars”, and ‘““galaxies’ from the SDSS dataset was pre-
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sented. The model avoids the class imbalance by employ-
ing “SMOTE+ENN”. The balanced dataset is subjected to
“K-PCA” for feature extraction. The extracted features are
fed to the proposed classifier “Int-T2-FSVM™. The model
employs an enhanced type reducer and inference engine to get
better accuracy in classification. The experiment results show
that the proposed model produces better accuracy and preci-
sion for the SDSS dataset when compared to other existing
models.
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