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ABSTRACT The Sloan Digital Sky Survey (SDSS) comprises about one billion objects classified spectro-
metrically. Because astronomical datasets are so enormous, manually classifying them is nearly impossible—
a huge dataset results in class imbalance and overfitting. We recommend a framework in this research study
that overcomes these constraints. The framework uses a hybrid Synthetic Minority Oversampling Technique
+ Edited Nearest Neighbor (SMOTE+ ENN) balancer. The balanced dataset is then used to extract features
via a non-linear algorithm using Kernel Principal Component Analysis (KPCA). The features are then passed
into the proposed Int-T2-Fuzzy Support Vector Machine classifier, which uses a modified type reducer and
inference engine to achieve more precise categorization. Using the Sloan Digital Sky Survey dataset and a
number of evaluation metrics, the SMOTE+ENN model’s performance is measured. The research shows
that the model does a good job.
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INDEX TERMS Sloan digital sky, fuzzy logic, fuzzy control, support vector machine, nearest neighbor,
machine learning, astronomical, kernel principal component analysis.

I. INTRODUCTION13

Astronomy has recently seen significant advances in detec-14

tors, instruments, telescopes, and even probes launched into15

outer space and distant planets to collect data for sky surveys16

to map our universe. Data-oriented astronomy refers to the17

organization of acquired data into very large datasets. These18

astronomical datasets are in distinct forms, including light19

curves, optical and infrared spectra, image data, and pho-20

tometric redshifts, representing a wide range of astronomi-21

cal data and objects. Astronomers begin the categorization22

process by carefully scanning the dataset and categorising23
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them into likely quasars, stars, and galaxies. Transients like 24

asteroids, gamma rays, and supernovae that appear for a 25

concise volume of time in space can also be found in imaging 26

data. Many challenges arise when processing these data with 27

a large number of bands, including image calibration noises, 28

spatial distortion, and restricted or unbalanced labelled train- 29

ing samples, i.e., Hughes phenomenon and dimensionality 30

reduction-related artefacts such as overfitting, redundancy, 31

spectral variability, loss of significant features between the 32

channels, and so on. 33

Significant efforts are invested in investigating the idea of 34

applying Machine Learning (ML) techniques that automate 35

the knowledge discovery process and astronomical informa- 36

tion extraction within these massive unprocessed datasets, 37

101276 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4606-7222
https://orcid.org/0000-0003-4901-1432
https://orcid.org/0000-0002-0945-512X
https://orcid.org/0000-0001-7796-2898
https://orcid.org/0000-0002-8138-8494
https://orcid.org/0000-0001-8290-6743


A. L. Karn et al.: Fuzzy and SVM Based Classification Model to Classify Spectral Objects in Sloan Digital Sky

which could probably be a definite solution to the chal-38

lenges mentioned earlier. Astro-informatics, a new study39

in astronomical data science, helps determine the astro-40

nomical knowledge and information from these vast raw41

databases. These tools help automate astronomical data’s42

scanning process using cutting-edge data mining techniques,43

data science tools [1], and statistical methods. Initial efforts44

were made in 2010 by the National Research Council-45

USA. It laid the groundwork for future scientific contri-46

butions [2], [3], [4] to the field in which it was centered.47

It enriched it by leveraging vast, globally dispersed digital48

astronomy database collections such as the United States49

Naval Observatory Astrometric (USNO-A2), Digitized Palo-50

mar Observatory Sky Survey (DPOSS), Square Kilome-51

ter Array Observatory (SKAO), Sloan Digital Sky Survey52

(SDSS) and new initiatives such as Large Synoptic Survey53

Telescope (LSST) and Visible and Infrared Survey Tele-54

scope (VISTA). However, the area is immobile in its early55

phases. More case studies are needed to develop new accurate56

methodologies, particularly in ML and, in particular, Deep57

Learning (DL), in addition to the availability of large datasets58

from astronomy that are now freely accessible to the public.59

The classification problemmust be solved in order to map our60

universe, better understand it correctly, and support existing61

and emerging cosmological theories. DL is the ideal candi-62

date technique, as it has demonstrated its ability to work with63

large image databases like the one in our domain.64

When certain classes have considerably more examples65

than others, the problem of class imbalance arises. Classifiers66

perform poorly on unbalanced datasets because they extrap-67

olate from sample data and produce an essential hypothesis68

that best matches the facts [5]. By practice, in a binary clas-69

sification problem, the minority examples’ <Class Label>70

is positive, and the majority <Class Label> is negative. Yet,71

when dealing with unbalanced data sets, the most straight-72

forward theory frequently categorizes nearly all occurrences73

as negative. Hence, biased classifiers have a high level of pre-74

dictability for the negative class, but their prediction accuracy75

is weak for the positive class. Minority case classification76

is usually a challenge in various disciplines, including fraud77

detection, the discovery of network intrusion, web-based78

research, medical evaluation, text classification, and the cat-79

egorization of astronomical objects. Various methods have80

been offered to address the problem of class imbalance. Such81

methods are grouped as internal [6], [7] and external [8], [9].82

In the internal approach, the imbalance problem is addressed83

by changing/developing new algorithms for learning. In an84

external system, resample the original data collection by85

over-sampling or under-sampling the minority or majority86

class, respectively, to create a balanced set of data that allows87

those classifiers to work better on the minority class.88

Oversampling techniques are preferred over undersam-89

pling methods in most circumstances. It is because, dur-90

ing undersampling, we likely exclude occurrences that may91

contain crucial information. Researchers in recent years92

have suggestedmany different classification approaches. Two93

methods for automatic classification of star spectra, such as 94

χ2-minimization and Artificial Neural Network (ANN), are 95

proposed [10]. Singh et al. [11] describes a rapid and reliable 96

method for identifying an optical stellar spectrum library 97

ranging from O-to M-type stars. To automate the classifi- 98

cation process, the technique uses two tools: (a) Principle 99

Component Analysis (PCA) to reduce the data dimensional- 100

ity; and (b) a Multilayer Back Propagation Network (MBPN) 101

that relies on ANN for automation of the classification 102

process. 103

The ANN method using a backpropagation based super- 104

vised learning algorithm was used to categorise Calgary’s 105

Infrared Astronomical Satellite (IRAS) spectra in the area 106

of 8 µm to 23 µm, which contains 2000 bright sources [12]. 107

Bora et al. [13] uses an ANN for star classification. The 108

training set used is synthetic spectra in the ultraviolet (UV) 109

area range of 1250–3220Å and the International Ultraviolet 110

Explorer (IUE) of the low-resolution test set. Bazarghan and 111

Gupta [14] proposed a Probabilistic Neural Network (PNN), 112

which automatically classified approximately 5000 SDSS 113

spectrum into nearly 158 reference library spectral types 114

ranging from O- to M-type stars. 115

The Support Vector Machine (SVM) is the most common 116

classification method used in ML and data mining. Scien- 117

tists focus more attention on SVM and suggest several new 118

improvements. For multitask learning, the proximal SVM is 119

used [15]. Datta and Das [16] presents the Near-Bayesian 120

Support Vector Machine (NBSVM) to handle the problem of 121

unbalanced classification. Liu et al. [17] proposed Ramploss 122

Non-Parallel SVM (RNPSVM), a nonparallel hyperplane that 123

is sparse and resilient [18]. Nonparallel SVM [NPSVM], 124

a new non-parallel classifier, is proposed. SVM can also be 125

widely used in astronomical research, particularly in the field 126

of automatic spectral categorization. SVM is employed to 127

categorise spectra using the dimension reduction approach 128

PCA [19]. In another method, ISOMAP was used to reduce 129

the number of dimensions, and SVMwas used to classify star 130

spectra [20], [21]. 131

ML is used extensively in cosmology and also in astro- 132

physics [22]. A non-exhaustive list of applications includes 133

(i) supernova photometric classification [23], [24], (ii) gravi- 134

tational wave research [25], (iii) photometrical redshift [26], 135

(iv) galaxy morphology [27], and (v) atmospheric param- 136

eter determination for stellar sources [28]. Many surveys 137

have successfully used ML applications to separate stars 138

and galaxies. For instance, they classified the Sloan Digital 139

Sky Survey’s SDSS sources using multiple tree approaches. 140

Whitten et al. [29] used data from the Canada-France-Hawaii 141

Telescope Lensing Survey (CFHTLenS) to train classifiers 142

that combined supervised and unsupervised ML methods. 143

Convolutional Neural Networks (CNN) have recently been 144

used with images as input to attain an Area Under the Curve 145

(AUC) > 0.99 for Canada-France-Hawaii Telescope Lens- 146

ing Survey data and SDSS [30]. And others have published 147

numerous ML methods in the context of star and Galaxy 148

categorization [31], [32]. 149
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At the close of the past decade, a Type-2 Fuzzy Logic Sys-150

tem (T2FLS) was suggested that employs nearly two fuzzy151

Membership Functions (MFs), which increases the capabil-152

ity to handle language uncertainty representation [33], [34].153

T2FS and T2FLS are used in the following applications:154

(i) control and system modelling [35], [36], (ii) robots155

and motion control [37], [38], and (iii) image process-156

ing [39], [40]. When the systems are subjected to various157

uncertainties, T2FLS outperforms standard Type-1 fuzzy sys-158

tems. Later, an interval T2FLS was developed to reduce159

computational complexity, and the notion of an Interval Type-160

2 Fuzzy Kernel, known as IT2FK, was not employed during161

the prior SVM approach. Such things make it more likely that162

IT2FK-SVMwill be used in this research to put astronomical163

objects into groups.164

Int-type-2 fuzzy sets, a subset of type-2 fuzzy sets, are165

widely used in practice due to their low computing cost and166

ease of implementation. The researchers demonstrated that167

Int-type-2 fuzzy ideas handle uncertainties better than type-1168

fuzzy techniques. When determining the exact membership169

functions of the fuzzy sets utilised, interval type-2 fuzzy sets170

are beneficial since they provide more robust generalisations.171

This is why we used the Interval type-2 fuzzy model for our172

study.173

In this research paper, Int-T2-FSVM, an interval type174

2 Fuzzy SVM model, is proposed to classify astronomi-175

cal objects such as stars, quasars, and galaxies. The work176

employs the SDSS dataset to study the model’s efficacy.177

To avoid the class imbalance issue in the dataset, the model178

employs a SMOTE + ENN hybrid balancer. Then the fea-179

tures are extracted from the balanced dataset using Kernel180

Principal Component Analysis (KPCA) non-linear feature181

extraction. The parts are then fed into the proposed Int-T2-182

FSVM classifier, and the model employs a modified type183

reducer and inference engine to generate a more accurate184

classification. The performance of the model is tested using185

the SDSS dataset and different evaluation metrics. The results186

show that the performance of the model is good.187

The paper is structured in such a way that Section 2 dis-188

cusses fundamental technologies utilised to build the cat-189

egorization framework suggested throughout this work,190

Section 3 discusses the methods involved, Section 4 dis-191

cusses the proposed model’s performance evaluation, and192

Section 5 ends the work.193

II. PRELIMINARIES194

A. SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE195

(SMOTE)196

SMOTE is an oversampling method that generates synthetic197

samples on behalf of the minority class. The approach aids198

in overcoming the ‘‘overfit’’ issue caused by random over-199

sampling. The method focuses on all of the features to make200

examples by combining positive and closer examples (see201

Fig. 1).202

FIGURE 1. Synthetic minority oversampling technique.

1) PROCEDURE OF SMOTE 203

First, the total number of observations for oversampling N 204

is determined. In general, it is selected so that the distri- 205

bution of binary classes is 1:1; however, it can scale back. 206

Iteration starts by choosing a random class instance that is 207

positive. Then, the k-Nearest Neighbor (KNN)’s value (by 208

default 5) is obtained for such cases. Lastly, N of those K 209

occurrences were selected to create synthetic models through 210

interpolation. The difference between the feature vector and 211

its neighbours is calculated using a distance metric. Such 212

variation is then multiplied by any number in the range (0, 213

1), and summed up with an earlier feature vector. It can be 214

depicted graphically as below: 215

Although the abovemethod is beneficial, it does have a few 216

limitations. 217

a) The generated synthetic instances point in a similar direc- 218

tion and are linked with artificial lines connecting diago- 219

nal models. As a result, the generated decision surface by 220

some classifier algorithms becomes more complicated. 221

b) SMOTE generates a massive number of noisy data points 222

in feature space. 223

B. HYBRIDIZED SMOTE 224

Undersampling, as well as oversampling techniques, are com- 225

bined in hybridization approaches. This was done to improve 226

the performance of the classifier model for samples made 227

with these techniques. 228

C. SMOTE+ENN 229

The alternative hybrid approach employed in this work is 230

SMOTE+ENN, which eliminates many observations from 231

the test space. In this case, Edited Nearest Neighbor (ENN) 232

is an alternative under-sampling approach that estimates the 233

nearest neighbours of the majority class. It is eliminated if the 234

nearest neighbours incorrectly label a specific majority class 235

instance. 236
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1) EDITED NEAREST NEIGHBOR237

The deployed ENN approach operates by defining each238

observation’s KNN and then determining if the observation’s239

KNN’s majority class is matched with a class of observation.240

In ENN, the number of nearest neighbours is K= 3 by default.241

The following explains the ENN algorithm:242

• It provided a dataset of N observations and calculated243

K, the number of nearest neighbours. If K cannot be244

calculated, assume it is 3.245

• Use the rest of the observations in the dataset to figure246

out KNN for the class of the observation, and then use247

KNN to find the majority class.248

• If a class of observation and the majority class KNN dif-249

fer, the observation and KNN are forbidden in a dataset.250

• Step 2 and step 3 are iterated until the necessary parts of251

every class are matched.252

This approach has much potential compared to Tomek253

Links [41] because ENN eliminates the observation and its254

KNNwhen the observation’s class and K-NN’smajority class255

differ, rather than simply removing the statement and its256

nearest neighbour with different classes. So, it is expected that257

ENN will clean up more data related to Tomek Links.258

Incorporating the above approachwith SMOTE’s oversam-259

pled data substantially cleans the data. NN’s samples’ mis-260

classifications are deleted in the above two classes. Hence,261

the separation of the classes is more evident and briefer.262

The following explains the SMOTE-ENN process:263

Step 1: From the minority, the class selects random data.264

Step 2: Find the distance between the randomly generated265

data and also its KNN.266

Step 3: The difference is multiplied by the random values267

0 and 1, and the result is added to the synthetic268

sample of the minority class.269

Step 4: Repeat until the appropriate proportion of the minor-270

ity class is reached (Step 2– Step 3).271

Step 5: The nearest neighbours are determined as K.272

Assume K as Step 3 if K cannot be estimated.273

Step 6: Calculate KNN for the class of observation from274

the remaining dataset observations, and then, from275

KNN, return the majority class.276

Step 7: If a class of observation and the majority class KNN277

differ, the statement and KNN are eliminated in a278

dataset.279

Step 8: It is repeated until the necessary proportion of every280

class is met (Step 2 and Step 3).281

D. FEATURE EXTRACTION MODE282

1) KPCA-THEORY OF NON-LINEAR FEATURE EXTRACTION283

After the dataset is balanced, the next step is to extract fea-284

tures from the dataset. PCA is feature extraction and linear285

dimensional reduction technique for High-Dimensional (HD)286

data. It converts the primary HD space’s input data to the287

typical subspace, extracts the input data’s primary feature288

vector, and achieves the goal of exploring the data. Most of289

the time, PCA can be done quickly and effectively on a set290

FIGURE 2. Kernel principal component analysis framework.

of data represented by 2nd -order correlations that change 291

linearly or come from a Gaussian distribution. The variations 292

of the accurate data, on the other hand, are widely known to 293

be non-linear as well as highly non-Gaussian; correlations 294

of 2nd-order could not represent the majority of the data. 295

As a result, if PCA is used, it would give a bad performance. 296

Here, for our work, we propose ‘‘KPCA’’, a modified PCA 297

approach that is non-linear and depends on functions of the 298

kernel by inherently constructing a mapping from input space 299

to feature space F, which is non-linear via non-linear transfor- 300

mation (8) as well as achieves PCA that is linear in feature 301

space F. Among the two input samples, say (x, y), that is in the 302

primary universe, it is possible to avoid non-linear mappings, 303

and by using the Kernel Function (KF) given below, we can 304

calculate the dot products in feature space: 305

k(x, y) = 8(x) ·8(y) (1) 306

The KPCA approach conceptual structure is depicted 307

schematically in Fig. 2. There are numerous KF forms in 308

Equation 1. If KF is a positive integral operator’s continuous 309

kernel, a mapping exists (8) into a dot product space (F), 310

so that method holds, according to Mercer’s functional anal- 311

ysis theorem. It can reduce dimensionality more effectively if 312

the KF requirement meets Mercer’s theorem [42] and a good 313

KF is chosen. 314

Few examples of KFs, EQU (2), EQU (3) and EQU (4): 315

Polynomial kernel, k(x, y) = 〈x, y〉d (2) 316

Sigmoid kernel, k(x, y) = tanh (β0〈x, y〉 + β1) (3) 317

Radial basis kernel, k(xy) = exp
(
‖ x − y ‖2

c

)
(4) 318

where d, β0, β1, and c are prior defined by the user 319

Mercer’s theorem constantly satisfies the polynomial and 320

the radial-based kernels, but the sigmoid kernel only helps 321

it for specific β0, β1 values (Equation 2). For its better per- 322

formance, the radial basis function is frequently used as a 323

KF in KPCA; hence, the radial-based kernel is used as the 324

KPCA-KF in this research (Equation 3). The radial basis 325

function is often used as a KF in KPCA because it works 326
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better. Because of this, the radial-based kernel is used as the327

KPCA-KF in this research (Equation 4).328

Providing an input data set (with a ‘0’ mean X (x1, . . . , xN )329

∈ Rm where N is the number of samples and m is the330

measurement variables dimension) and the covariance matrix331

calculated by the PCA andKPCA algorithms, such as (i) PCA332

covariance and (ii) KPCA covariance, Equation 5 within a333

linear feature space F rather than a non-linear input space:334

C =
1
N
xixTi =

1
N
XXT (5)335

and Equation 6336

CF
=

1
N

∑N

j=1
8j(x)8j(x)T (6)337

where it is assumed that Equation 7338 ∑N

k=1
8(xk) = 0, (7)339

8(·) is a non-linear mapping function that maps input vectors340

from input space to F.341

It is noted that the feature space’s dimension can be342

immense, probably infinite. For the covariance matrix to343

be calculated, the eigenvalue problem in feature space must344

be fixed: Equation 8345

λv = CFv (8)346

Here,347

Eigenvalues ≥ 0;348

Eigenvector v ∈ F ,349

Equation 9 linearly expresses eigenvector ‘v′ for any8(xi):350

v =
∑N

i=1
a(i)8(xi) (9)351

Equation 10 can be rewritten as the kernel eigenvalue352

problem:353

Nλa = Ka, (10)354

where a N ∗ N matrix ‘K ’ is a kernel matrix, K = kij =355 (
8(xi) ·8

(
xj
))
= k

(
xi, xj

)
and ‘α’ is the feature vector356

of the kernel matrix. When reconstructing input data from357

feature space, we use Equation 11.358

yk = 〈vk ,8(x)〉 =
∑N

i
aki 〈8(xi) ,8(x) 〉 (11)359

E. SUPPORT VECTOR MACHINES360

This section discusses SVM theory, the theoretical founda-361

tion for the proposed Int-T2-FSVM framework. The SVM362

algorithm is a type of supervised learning algorithm. This363

indicates that for the training phase, data that is already364

labelled is used. Thus, it is feasible to develop a classifier that365

is used on a sample of items with an unknown assignment366

(this part is referred to as generalization). It is challenging367

to differentiate classes in the input space, even with labelled368

data. The SVM algorithm’s primary principle is mapping data369

into HD feature space, where hyperplanes can be separated.370

The location of categorised items within the separated hyper-371

planes determines the output of a classifier.372

FIGURE 3. Linearly non-separable hyperplane and margin.

We provided a dataset S with labelled training points, 373

Equation 12 374

(y1, x1) , . . . , (yN , xN ) i = 1, 2, . . . ,N (12) 375

where the training point is denoted by a vector xi, the label 376

is also denoted by a vector yi, and the number of samples is 377

denoted by ‘N’. 378

Vector xi is allotted to any of the two classes, which are 379

denoted with <Class Label> yi ∈ {−1, 1}. A hyperplane 380

can be optimally positioned in the middle, separating the two 381

classes. Data points closest to the margin serve as the foun- 382

dation for such a definition and are referred to as ‘‘Support 383

Vectors’’ (SV). 384

Fig. 3 shows a linearly non-separable case. Slack variables 385

ξi refer to violations of strict separation. 386

Misclassification penalization, ξi ≥ 0, is proportional 387

to the distance between the misclassified point of xi and 388

canonical hyperplane restricting its class. Objective functions 389

associated with margin maximization are denoted by Equa- 390

tion 13 and Equation 14: 391

1
2
‖ w‖2 + C

∑2

j=1
ξi (13) 392

subject to: yi
(
xTi w+ b

)
≥ 1− ξi 393

ξi ≥ 0 i = 1, 2, . . . ,N (14) 394

C is weighted to account for classification errors. During 395

classification errors that are unavoidable due to the linearity 396

of the separating hyperplane, minimization of the objective 397

function (1) with constraint (2) offers the maximum possible 398

margin. By arranging the Lagrange function, the optimal 399

hyperplane is initiated. The Lagrange function for the primary 400

problem is as follows: Equation 15: 401

Lp(w, b, ξ ) =
1
2
‖ w ‖2+C

∑n

i=1
ξi 402

−

∑n

i=1
αi

{
yi
(
xTi w+b

)
− 1+ ξi

}
403
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−

∑n

i=1
µiξi (15)404

where αi ≥ 0 and µi ≥ 0 are Lagrange multipliers. The405

primaeval problem is expressed as Equation 16:406

minv,b.ξLp(w,b, ξ ) (16)407

In this situation, first-order conditions are revealed in408

Equation 17409

∂Lp
∂w
= 0 : w−

∑n

i=1
αiyixi = 0410

∂Lp
∂b
= 0 :

∑n

i=1
αiyi = 0411

∂Lp
∂ξi
= 0 : C−αi − µi = 0 (17)412

With particular reference to the Lagrange multipliers’ sce-413

narios, Equation 18:414

αi ≥ 0415

µi ≥ 0416

αi

{
yi
(
xTi w+ b

)
−1+ξi

}
= 0417

418

µ1ξi = 0 (18)419

Therefore
∑n

i=1 αiyib = 0, the primal problem translates into420

Equation 19:421

LD(α) =
1
2

∑n

i=1

∑n

j=1
αiαjyiyjxTi xj422

−

∑n

i=1
αiyixTi

∑n

j=1
αiyixj + C

∑n

i=1
ξi423

+

∑n

j=1
αi −

∑n

j=1
αiξi −

∑n

j=1
µiξi424

=

∑n

j=1
αi −

1
2

∑n

i=1

∑n

j=1
αiαjyiyjxTi xj425

+

∑n

i=1
ξi (C − αi − µi) (19)426

As the last term is 0, the first level dual problem results in427

Equation 20:428

LD(α) =
∑n

i=1
αi −

1
2

∑n

i=1

∑n

j=1
αiαjyiyjxTi xj (20)429

The following is the initial decision function: Equation 21:430

D (x) =
∑

i∈S
αiyixTi x + b (21)431

S is a collection of SV indices. Since αi It is non-zero for432

SV sum-up in Equation 22; it is applied only for SV. Forever433

and ever αi,434

b = yi − wT xi (22)435

is fulfilled. To assure the value of precision, an average of b436

computed for unbounded SV is assumed; equation 23:437

b =
1
|U |

∑
i=U

(
yi − wT xi

)
(23)438

where U denotes a collection of unbounded SV indices.439

SVM solves the classification problem by mapping the440

inputs ‘x ′ into a HD space by mapping non-linear features441

φ(x) separated by complicated decision boundaries in the 442

input space. Because of this, the problem becomes a situation 443

in the feature space that can be separated in a linear way. 444

xTi xj substituting just a scalar product by KF, K (xi, xj)φT 445

(xj)φ(xj) supposed to be symmetric and positive-definite, 446

subject to constraints, the dual problem is reformulated as 447

follows: Equation 24 and Equation 25 448

Q(α)=−
1
2

∑n

i=1

∑n

j=1
yiyjαiαjK

(
xi, xj

)
+

∑n

i=1
αi (24) 449

Subject to
∑n

j=1
yiαi = 0, 0 ≤ αi ≤ C 450

i = 1, 2, . . . ,N (25) 451

K (x, xi) = xT xi in (8) is a linear kernel. 452

The Gaussian kernel is the most common, and its most 453

common definition is Equation 26 454

K (x, xi) = exp
(
−
‖x − xi‖2

2σ 2

)
(26) 455

1) INFLUENCE OF KARUSH-KUHN-TUCKER THEOREM 456

(KKTT) 457

KKTT is significant to the SVM’s development. Accord- 458

ing to the theorem, the answer must meet the following 459

requirements: 460

αi (yi (ω · zi + b)−1+ξi) = 0, i = 1, 2, . . . ,N (27) 461

(C − αi) ξi = 0, i = 1, 2, . . . ,N (28) 462

Equation 27 and Equation 28 imply that only non-zero 463

values ‘αi’, meet the requirements. SVs are the values ‘xi’ that 464

corresponds to the solution ‘αi’. When ‘xi’, it corresponds to 465

αi = 0 and a sufficient distance from the decision margin, the 466

instance is appropriately classified. 467

In order to build the best possible hyperplane ω · z + b, 468

we would require that Equation 29 469

ω =
∑N

i=1
αiyizi (29) 470

The scalar bias b should be calculated using the KKTT con- 471

ditions. The decision function can hence be obtained from 472

Equation 30 and Equation 31 as follows: 473

f(x) = sgn(ω · z+ b) = sgn
(∑N

i=1
αiyizi · z+ b

)
(30) 474

where sgn(·) is the sign function that determines the sign 475

(+/−) of a real value. Since we lack data for feature space 476

of higher dimension ϕ(·), the calculations in EQU (31) are 477

impractical because of their complexity. A beneficial feature 478

of the SVM is that it does not require determining’ϕ(·). 479

Complexity is resolved using a KF that can compute data 480

points as dot products in the ‘z’ feature space. Before these 481

functions can be used to figure out the dot products, theymust 482

prove Mercer’s theorem. 483

zi · zj = ϕ (xi) · ϕ
(
xj
)
= K

(
xi, xj

)
(31) 484

Here, K
(
xi, xj

)
= ϕ (xi) · ϕ

(
xj
)
KF is used for mapping 485

onto a feature space of a higher dimension. KFs can be either 486
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FIGURE 4. Membership function of type-2.

linear or non-linear. Solving the following Equation 32 and487

EQU (33) yields the non-linear separating hyperplane:488

minQ(α) =
1
2

∑N

i=1

∑N

j=1
yiyjαiαjK

(
xi, xj

)
−

∑N

i=1
αi489

(32)490

subject to Equation 33491 ∑N

i=1
yiαi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . ,N (33)492

The Decision function can finally be illustrated as Equation493

34:494

f (x)=sgn(ω · z+b)=sgn
(∑N

i=1
αiyiK (x, xi)+b

)
(34)495

F. FUZZY SETS OF TYPE-2 AND INTERVAL TYPE-2 FLS496

In various scientific and technical implementations, espe-497

cially in control systems, Fuzzy Logic (FL) is vital. In 1965,498

Zadeh developed fuzzy sets to analyse unprobabilistic uncer-499

tainty in information. In the Fuzzy Logic System (FLS), the500

information utilised to generate the rules is uncertain [43].501

Uncertainty about the antecedent and consequent regenerates502

into uncertainty about the antecedent and consequent Mem-503

bership Functions (MF). Antecedent and consequent MFs504

in Type-2 FLSs are Type-2 fuzzy sets that simply manage505

rule uncertainty. So an expansion of the standard fuzzy set506

concept, i.e., a Type-2 fuzzy set, into the concept of Type-1507

fuzzy sets was commenced. In type-2 fuzzy, the grades of508

MF are also fuzzy. Membership of the Type-2 grade is any509

subset of (0, 1), which is known as primary membership510

[44]. A secondary membership (0,1) corresponds to each511

primary membership and describes the primary membership512

probability. Type-2 fuzzy defines a subset of Type-1 fuzzy,513

which is represented by aMF, as shown in Fig. 4, by a triangle514

MF [45].515

The output processor, which contains a de-fuzzifier and516

a type reducer, produces a Type-1 output of a fuzzy set or517

FIGURE 5. Membership function showing grading.

a definite number. If Type-2 logic MF is expressed as an 518

interval, FL Type-2 is transformed into an interval of Type-2 519

FL. Even though If-Then rules were commonly active for FL 520

Type-2 characterization, antecedent/consequential sets are 521

Type-2 now. 522

type-2 fuzzy set, represented by Ã, classified by type-2 MF 523

µÃ (x, u), x ∈ X and u ∈ jx ⊆ [0, 1], denoted by Equation 524

35: 525

Ã =
∫
x∈X

∫
u∈Jx

µÃ (x, u)

x, u
, Jx ⊆ [0, 1] (35) 526

where ∫ ∫ implies the union’s overall maximum allowable x, 527

u, and Jx ⊆ [0, 1], J, which is termed as x’s basic member- 528

ship. 529

A secondary membership value for each primary member- 530

ship value describes the possibility of a primary membership 531

value. However, secondary MF has values in the [0, 1] range 532

illustrated in Fig. 5. The most critical task in the Type-2 533

FLS design is the MF’s specification. The choice of MF 534

style (Gaussian, Triangular) and thus selecting their specific 535

parameters directly impacts performance. IT2FLSs are being 536

studied for a variety of mitigation techniques. Most of the 537

time, these strategies are built on the knowledge of experts, 538

Genetic Algorithms (GA), Neural Networks (NN), and other 539

similar methods. 540

Nonetheless, there is a need to simplify and optimise the 541

classification of unambiguous MFs in this space. IT2FLS 542

practices are used in a wide range of science and engineering 543

fields due to the increased practicability within the compu- 544

tations. If the MF position cannot be determined precisely, 545

the degree of membership cannot be taken as a fixed range 546

of (0, 1), and Type-2 fuzzy sets are the best option. If all 547

A are assigned to their distribution, the Type-2 3-D FL-MF 548

specifies the formation of Type-2 fuzzy set features. The 549

Footprint Of Uncertainty (FOU) is defined as a union of pri- 550

mary memberships bounded by the upper and lower Type-1 551

MF, referred to as upper MF µ̄Ã (x) and lower MF µ
Ã
(x). 552
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FIGURE 6. IT2 MFs examples; dashed line: LMF; dotted line: UMF; blue
area: FOU.

When the unknowns in the MFs are taken out, type-2 fuzzy553

sets are reduced to type-1 fuzzy sets that can be identified554

exactly.555

FLS of Type-2, like FLS of Type-1, has 4 general mod-556

ules: (1) Fuzzifier; (2) Fuzzy rule base; (3) Fuzzy Inference557

Engine (FIE); and (4) Output processor. A notable distinction558

between FLS of Type-1 and FLS of Type-2 is that Type-2 FLS559

processor output requires an added step: This type-reducer560

directly before the defuzzifier is needed to lower the fuzzy561

output sets of Type-2 to fuzzy output sets of Type-1. After562

type reduction, the defuzzifier takes the fuzzy output sets of563

Type-1 and turns them into clear values.564

G. INTERVAL TYPE-2 FUZZY INFERENCE SYSTEM565

(INT-T2-FIS)566

Int-T2-FIS is being employed as an alternative to T2FIS since567

the arithmetic needed for Int-T2- FIS is significantly more568

accessible than the arithmetic needed for T2FIS.569

Different types of MF can be used for the research being570

directed. Fig. 6 shows the triangular Int-T2-FIS MF. The571

dashed lines denote the lower MF named LMF, while the572

dotted line denotes the upper MF called UMF. Yet, due to its573

ease of implementation, the triangle MF was utilized. In the574

perception that every non-linear process can be imprecise575

to an arbitrary level of precision in a confined domain, FL576

Type-1 is a global approximator. This trait is prolonged to577

the Type-2 scenario; thus, we can assume a comparable level578

of competence. Keeping this point in mind, Int-T2-FIS must579

perform well regardless of the MF shape, as other factors580

influence performance, such as the number of fuzzy rules581

used. Users can predefine the MF or design it using optimiza-582

tion approaches like the GA. The GA can optimise MF for583

each input, denoted by nearly seven points: p1, p2, p3, p7.584

FOU is defined as the space between UMF and LMF,585

which is seen in Fig. 7 as a blue area. A FOU is a union of586

the entire Type-2 FS fuzzy membership grades, representing587

FIGURE 7. Int-T2-FIS block diagram.

FIGURE 8. Type-2 FLS with reducer.

uncertainties in a fuzzy system. Because a type-2 FS’s FOU 588

adds a dimension of mathematics, type-2 FSs are likely to 589

outdo their counterparts of type-1. Contradict to the Type-1 590

example, in which the grade of membership is a single value, 591

the membership grade of Int-T2-FIS is a range. Int-T2-FIS is 592

limited at the two extremities of the period to yield LMF and 593

UMF, both of which are fuzzy sets of Type-1. 594

The construction of the Int-T2-FIS details the relationship 595

between input and output. The Int-T2-FIS is made up of 596

five primary modules: (1) Fuzzifier; (2) Fuzzy Rules; (3) 597

Inference Engine; (4) Type Reducer; and (5) Defuzzifier. The 598

output unit of an Int-T2-FIS is made up of 2 blocks: (a) type- 599

reducer and (b) defuzzifier. Because fuzzy settings activate 600

the rule basis, rather than numbers, in the fuzzifier block, 601

crisp inputs are initially converted to FS. Once measurements 602

are excellent, input is preserved as a crisp data set in the 603

fuzzification step; once the measurements are chaotic but 604

stable, input is represented as a Type-2 fuzzy interval set. 605

A set of fuzzy inputs is mapped onto fuzzy outputs with the 606

help of a fuzzy inference engine after the input has been 607

fuzzified. This is accomplished by quantifying every rule 608

using the fuzzy set theory and then applying the mathematics 609

underlying the theory of the fuzzy set to produce an output 610

favouring every rule. The fuzzy inference block’s result now 611

has one of many sets from fuzzy production. With the help 612

of output processing units, the fuzzy output collections are 613

turned into crisp output. 614

Provided an Int-T2- FIS with n inputs xi ∈ Xi, . . . , xn ∈ Xn 615

to produce a single output ∈ Y . This Int-T2- FIS ’s rule base 616

is made up of K IT2 fuzzy rules, written as follows: Equation 617

36 618

Rk : If x1 is F̃k1 and · · · and xn is F̃kn THEN y is G̃k (36) 619

k = 1, . . . ,K , F̃kn and G̃
k , epitomizes Type-2 fuzzy sets. 620
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1) COMPUTATIONALLY EFFICIENT TYPE-REDUCER621

The Karnik-Mendel (KM) iterative approach using the center622

of sets is a prominent type-reducer. Unfortunately, such a623

type-reduction approach is mathematically demanding, espe-624

cially when many MFs have a considerable rule base. Fig. 8,625

the schematic construction of a Type-2 FIS, demonstrates that626

type-reduction is conducted on the FIE’s output. As a result,627

the inference engine and the type-reducer must deal with628

intermission firing strength. These raise the mathematical629

load and make Type-2 FLSs inappropriate for some real-time630

functions. Equivalent Type-1 fuzzy systems, termed ET1FSs,631

allow Type-2 fuzzy systems, which are considered Type-1632

fuzzy systems collections [46]. This notion can reduce type-633

reduction to identify an equivalent Type-1 fuzzy system cor-634

responding to a specific input. The type-reducer must identify635

the equivalent type-1 membership grade (ET1MG) for every636

interval fuzzy set. When the ET1MG is determined, the type-637

2 fuzzy set FS is reduced to a crisp value, and the type-2 FLS638

output may be determined using a defuzzifier and FIE of Type639

1. In brief, the type reduction technique can be used before the640

inference engine to select the best ET1MGs based on inputs.641

In this case, the inference engine only keeps track of crisp642

computing integers instead of sets of intervals. This means643

that the computational overhead is lower, and the calculations644

may be done faster than with a FLS of Type-2 used with the645

KM iterative algorithm.646

Even though the novel technique alters the processing647

order, the type-reducer proposed should not modify fea-648

tures of FLS of Type-2. Type-2 FLC must meet the below649

constraints:650

1. Once the uncertainty footprint is taken away, the Type-2651

FLS reduces to its Type-1 equivalent. This means that652

the type reducer should produce a Type-1 FLS that653

is equivalent to the Type-1 FLS that was used as a654

baseline.655

2. ET1F alters as input changes. As a result, the type-reducer656

must fit all the input variables.657

3. According to research on using FLS of Type-2 for control,658

the control surface of FLC is often smooth when compared659

to FLC of Type-1, particularly near the origin (e = 0, ė =660

0). One feature that makes a FLC of Type-2 more robust661

than a FLC of Type-1 is the Type-2’s smoother control662

surface. As a result, the type-reducer should result in softer663

control surfaces.664

Considering the above constraints, the type-reducer built665

with GA to reduce the interval fuzzy set [fl, fu] to an ET1MG,666

feq, can be defined as the following Equation 37:667

feq = fu −
∑N

i=1
αi

2 |xi|
Pxi2 − Pxi1

× (fu − fl) (37)668

N denotes the number of inputs669

αi denotes weight evolved by GA670

xi denotes ith input671

Pxi2 − Pxi1 (is the support of a baseline Type-1 fuzzy672

system while the footprint of uncertainty disappears).673

2) INFERENCE ENGINE 674

The inference engine is responsible for applying the inference 675

rules to the fuzzy input and producing the output. The infer- 676

ence rules, in particular, are engaged in assessing linguistic 677

values and mapping them to fuzzy sets, which then need 678

defuzzification to be transformed into crisp values. Inference 679

rules that give the system’s calculation functionality are one 680

of the primary principles of the Mamdani method [47]. These 681

guidelines can be founded on prior experiences, observations, 682

and expert knowledge. Every fuzzy inference rule comprises 683

two concepts: (1) If-Then statements and (2) the variables 684

of linguistic expression. Antecedents and consequences are 685

contained in the If-Then rules. When creating an inference 686

rule, ‘‘AND,’’ ‘‘OR,’’ and, occasionally, ‘‘NOT’’ operators 687

are utilised [49]. The combination of operators is known as 688

t-norms. The following defines the fuzzy ‘‘&’’ operator: 689

µA ∩ B(x) = min[µA(x), µB(x)] (38) 690

µA represents class A membership 691

µB represents the class B membership. 692

This rule obtains the least number of fuzzy set member- 693

ship values necessary to compute the ‘‘AND’’ operation. The 694

fuzzy ‘‘OR’’ operator is described as: 695

µA ∪ B(x) = max[µA(x), µB(x)] (39) 696

Equation 38 and Equation 39, x represent the correspond- 697

ing fuzzy sets’ degrees of MF. For example, A(x) denotes 698

fuzzy set A membership degrees. The ‘‘OR’’ operation is 699

calculated by obtaining the most outstanding value of mem- 700

bership values of the fuzzy sets. We utilized the ‘‘AND’’ 701

operator to create the inference rules because the evaluation 702

factors are interdependent. The ‘‘OR’’ operator is typically 703

used for separate, non-closely connected components. The 704

rule strength allows the fuzzy outputs to be aggregated into 705

a distribution [48]. 706

3) DEFUZZIFICATION 707

The inference engine’s fuzzy output is mapped to a crisp 708

value that gives the exact fuzzy set representation during 709

defuzzification. In this proposed fuzzymethodology, the crisp 710

production is generated by employing the centroid method, 711

which is defined below, Equation 40: 712

z =

∑n
j=1 zjµc

(
zj
)∑n

j=1 µc
(
zj
) (40) 713

The centroid approach determines a single scalar value by 714

using the centre of mass, denoted as z, in the distribution of 715

fuzzy output. The fuzzy set membership is represented by uc, 716

while the membership value is presented by zj. 717

H. DATA 718

The SDSS DR14 data collection is used in this study. The 719

SDSS is one of the largest spectroscopic surveys, having 720

begun observations in 1998 and completing three phases. 721

SDSS-IV, the fourth phase, is already in progress [49]. The 722
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camera for the telescope was made up of 30 Charge-Coupled723

Devices (CCD) chips, each with a resolution of 2048 x724

2048 pixels. The chips were stacked in five rows, each with725

six chips. Each row looks at the space via different optical726

filters (u’, g’, r’, i, z’) with different wavelengths: u’ =727

354 nm, g’ = 475 nm, r’= 622 nm, i’ = 763 nm, and z’ =728

905 nm [50]. SDSS DR14 is the SDSS-second IV’s release.729

More than 2.54 million spectra have been given, comprising730

928859 stellar spectra. The raw spectra contain 3850 points731

within the range of wavelength specified by the device, which732

is λ = 3950 to 9350Å. In terms of resolution, the interval733

is uniform ( δλ
λ
=

1
4342 ). When the redshift is taken into734

consideration, the range shared by all spectra is 3806 to 7371735

wavelengths. The spectra were then corrected for redshift736

using the Shannon criterion to preserve the form of the spec-737

tral lines, as described by [51]. We increased the sample of738

the spectra earlier for this purpose, resulting in 5748 points739

for each spectrum. After that, each spectrum was normalized740

by dividing it by its average value between 4250 and 5150Å.741

To minimize the dimensionality of the data array, we used742

wavelet filtering accompanied by offloading by a factor of743

four to create spectra with 1443 wavelengths. We save most744

of the information in this procedure, including the forms of745

the lines, as well as complete neutrality.746

I. METHODOLOGY747

1) DATA PROCESSING748

To begin with, because of the enormous number of sources in749

a spectroscopic catalogue, we divided the entire dataset into750

2 parts, utilizing one part for the initial training set and the751

other for the introductory test set. For unbiased comparison,752

we divided the dataset into 25% for the test set and 75% for753

the training set (30% is used for cross-validation). In training,754

we employ the SMOTE preprocessing model to avoid the fit755

being influenced by an imbalance between the several classes,756

which is mainly produced by galaxies’ excess. We train such757

models to forecast a source’s <Class Label> in stable test758

datasets and analyse how the number of facts in the training759

set impacts model efficiency by introducing the classification760

model using escalating percentages of the whole training set.761

2) IMPLEMENTATION: INTERVAL TYPE-2 FUZZY SVMS762

(INT-T2-FSVM) FOR CLASSIFYING ASTRO PHYSICAL OBJECTS763

The methodology of the Int-T2-FSVM classifier used in764

the selected dataset is discussed. This hybrid classification765

method combines Int-T2-FIS and SVM, which generates Int-766

T2-FSVM and employs a standard classifier from SVM. Int-767

T2-FSVM is a classifier with several inputs and a single768

output. Int-T2-FIS’s capacity to manage insecurity makes it769

an excellent companion to SVM in addressing challenging770

non-linear situations. Fig. 9 depicts the overall architecture771

of Int-T2-FSVM. The input of the feature vector is acquired772

after the K-PCA component has extracted the required fea-773

tures from the SMOTE+ENN balanced input data of SDSS.774

Multiple Int-T2-FSVMs are required in the application in this775

FIGURE 9. General architecture of the proposed Int-T2-FSVM.

FIGURE 10. Int-T2-FSVM architecture for the astrophysical object
classification.

TABLE 1. Outline the if-then rules that were applied.

study, which is to differentiate between astrophysical objects 776

because there are three types (stars, galaxies and QSO). 777

Since the hyperplane can only tell the difference between two 778

classes, more SVMs are needed if there are more than two 779

classes. 780

As in Fig. 10, the block of Int-T2-FSVMcan be reproduced 781

and utilised to segregate the unique objects separately.We can 782

recommend three Int-T2-FSVM blocks for identifying three 783

classes [52]. 784

1. Int-T2-FSVM1 can tell the difference between the phases 785

of a star and a galaxy. A label of ‘‘−1’’ means that the data 786

is from the star class, and a label of ‘‘1’’ means that it is 787

from the galaxy class. 788

2. Int-T2-FSVM2 can tell the difference between the Star 789

and Quasar classes. An input data label of ‘‘−1’’ means 790

that the data fits the Star class, and an input data label of 791

‘‘1’’ means that the data fits the Quasar class. 792

3. Int-T2-FSVM3 can tell the difference between Galaxy and 793

Quasar classes. A label of ‘‘−1’’ means that the data fits 794

the Galaxy class, and a label of ‘‘1’’ means that the data 795

fits the Quasar class. 796

Outputs 1 through 3 show the labels of the outputs of 3 Int-T2- 797

FSVM blocks, which are then run through a classifier based 798

on rules to decide the final classification (Tab. 1). 799
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FIGURE 11. Training and validation accuracy.

Table 1 depicts a class determiner system based on rules800

that pick the output of Int-T2-FSVM ’s final classification.801

The whole number 1-3 stand for the last class. ‘‘1’’ means802

Star class, ‘‘2’’ means Galaxy class, and ‘‘3’’ means Quasar803

class.804

The int-T2-FSVMblock comprises three fuzzy rules linked805

with LMF andUMF and a defuzzification block that produces806

final crisp outputs [53]. The SVM block’s final result is807

created via merging SVM outputs with MF, where MG is808

applied to each output to show the effect on the end output.809

Some integer values may represent fuzzy rule values. How-810

ever, increasing the number of rules will result in delayed811

training convergence and a higher system computing cost.812

Three fuzzy rules are used in this study to execute Int-T2-813

FSVM. MG is derived from MFs, which a user outlines and814

has a triangle shape, as illustrated in Fig. 1. The GA optimises815

the point’s p1 to p7 to represent the membership function816

shape.817

As represented in Fig. 11, there are 3 IT2 SVMs where818

every IT2 SVM is regulated via the rules below:819

Rj: If ‖ x ‖ is F̃ j THEN y is G̃j, j = 1, 2, 3820

‖ x ‖ is normalized input821

F̃ j is IT2 triangular MF as denoted in Equation 41822

G̃j is a singleton by output Out jk as well as ¯Out jk by823

definition in the below hyperplanes:824

Out jk = sgn
(
ωjk · z+ bjk

)
825

= sgn
(∑N

i=1
αijkyiK (xi, x)+ bjk

)
(41)826

827

¯Out jk = sgn
(
ωjk · z+ bjk

)
828

= sgn
(∑N

i=1
αijkyiK (xi, x)+ bjk

)
(42)829

j = 1 to 3 refers to jth (lower/upper) SVM830

k = 1 to 3 refers to kth Int-T2-FSVM831

TABLE 2. Features involved in SDSS dataset.

A defuzzification techniquemay then be used to obtain Int- 832

T2-FSVM k’s output k. A rule-based class determiner would 833

make the final class selection. 834

J. FEATURES INVOLVED IN SDSS DATASET 835

There are various features in the SDSS dataset (Tab. 2). The 836

following are the features required to make a classification in 837

our work [54]. 838

• RED SHIFT: Redshift is the essential attribute that dis- 839

tinguishes quasars. Quasar’s distance is calculated by its 840

redshift, a measurement by which the universe’s expan- 841

sion stretches the wavelength of its light before reaching 842

Earth. The greater the redshift, the greater the distance; 843

the further back in time, astronomers view the object. 844

• RIGHT ASCENSION: The eastward angular distance 845

of a particular location is measured along the celestial 846

equator from the sun at the March equinox to the (hour 847

circle of the) place in the question above the earth. This 848

attribute can be derived from the image table. 849

• When combined with right ascension, declination is an 850

astronomical coordinate system that indicates the point 851

location on the celestial sphere in an equatorial coordi- 852

nate system. 853

III. PERFORMANCE METRICS 854

The measures we use to evaluate the performance of the 855

classifiers are discussed now. 856

A. CONFUSION MATRIX (CM) 857

CM holds counts of all probable model forecast results; for 858

each categorization, there are nearly four probable results. 859

If the model successfully predicts ‘‘real’’ things, it is referred 860

to as a ‘‘True Positive (TP) (tp)’’, and if it mistakenly predicts 861

‘‘Not Real’’ objects, it is referred to as a ‘‘False Negative 862

(FN)’’ (fn). If, on the other hand, the model correctly predicts 863

that an object is ‘‘not-real,’’ this is a True Negative (TN) (tn). 864

It is, however, a ‘‘False Positive (FP)’’ if it is classified as 865
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‘‘real’’ when it is not In a nutshell, it contains the overall866

number of TP/FP and TN/FN.867

We measured a probabilistic classifier, which means that868

the classification of the sources into stars/galaxies is based on869

the probability that the class threshold is set. In our scenario,870

all objects with <Class Label>=1 are galaxies, all objects871

with<Class Label>=2 are stars, and all objects with<Class872

Label>=3 are quasars. The requirements for completeness873

and purity determine the class. When a <Class Label> is874

provided, the classification performance may be summarised875

using a CM to comprehensively compare predicted and true876

values.877

B. ACCURACY878

The number of predictions in a given model indicates the879

model’s accuracy. Our model’s accuracy is the initial measure880

because the dataset’s size is similar to ours. The accuracy of881

the model is computed as given below:882

A =
Number of correct predictions
Total number of predictions

(43)883

A =
tp + tn

tp + tn + fp + fn
(44)884

In the above, Equation 42 and Equation 43 tp are the TP, tn885

which denotes the TN, fp represents the FP, and fn signifies886

the FN.887

Sensitivity-specificity and precision-recall are two cate-888

gories of metrics that may be helpful for imbalanced clas-889

sification because they are class-specific.890

C. SENSITIVITY-SPECIFICITY METRICS891

Sensitivity is a measure of how accurately the positive class892

was predicted and referred to as the True Positive Rate (TPR).893

The complement to sensitivity, or True Negative Rate (TNR),894

is sensitivity Specificity, which summarises how accurately895

the negative class was predicted. Equation 44 provides the896

following measurement for the sensitivity (Sn):897

(Sn) = (TP)/((TP+ FN )) (45)898

D. SPECIFICITY899

The sensitivity for imbalanced classification may be more900

intriguing than the specificity. Equation (45) is presented as901

the following:902

Sp = (TN )/((FP+ TN )) (46)903

E. PRECISION904

Precision is a metric that measures the proportion of the TP905

in the given samples. The precision can be calculated using906

the formula given below, Equation 6907

Precision =
TP

TP+ FP
(47)908

F. RECALL 909

A recall is a metric that measures how many real positive 910

tuples are correctly classified. Equation (47) 911

Recall =
TP

TP+ FN
(48) 912

G. F1-SCORE 913

It is a model that combines recall and precision, and it is 914

done by calculating the Harmonic Mean between precision 915

and recall. The following is how it was calculated: Equation 916

48 917

F1 = 2 ∗
1

1
Precision +

1
Recall

/F1 =
2PR
P+ R

(49) 918

H. FALSE-POSITIVE RATE (FPR) 919

FPR is the number of positive values that were mistakenly 920

counted as negatives divided by the number of negatives that 921

should have been counted, Equation 49 922

FPR =
fp

fp + tn
(50) 923

The Receiver-Operating Characteristic (ROC) Curve is a sys- 924

tematic technique for summarising a classifier’s performance. 925

TPR and FPR are plotted as a function of pcut in a parametric 926

plot, Equation 50. 927

TPR (pcut) =
tp

tp + fn
FPR (pcut) =

fp
fp + tn

(51) 928

In conjunction, ‘‘Recall’’ is represented as TPR, indicating 929

completeness. An AUC can be used to summarise the perfor- 930

mance of a classifier. It takes a value between 0 and 1. 1 is 931

the value an ideal classifier brings, and an average classifier 932

takes the value of 0.5. 933

We present the results of the unrefined proposed model in 934

Tab. 3. The results are compared with and without the use of 935

SMOTE + ENN for all the metrics; the results show that the 936

model performance to correctly predict the class label is get- 937

ting better by using SMOTE+ ENN to balance the data. The 938

results are comparable with other existing models in terms of 939

all the metrics. The adoption of KPCA as the feature extrac- 940

tion scheme reflects greater efficiency as the adopted model 941

proves its credibility by effectively reducing the dimension 942

of the dataset. The SDSS dataset we chose proves to be a 943

difficult platform for our proposed classification model [55]. 944

The proposed model’s training and validation accuracy is 945

displayed (Tab. 4). 946

It is common for many classification models to generate 947

poor representations of the labelled data for datasets that 948

provide a thinner training set than the generalisation task 949

requirement. But the ‘‘SMOTE + ENN’’ effective balancing 950

model proposed in this research work helps solve this prob- 951

lem, as shown by its ROC in Fig. 12. 952

Following the training and testing of the proposed model 953

and observing the accuracy of training and loss, we can 954

conclude that the model performed well since the training 955
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TABLE 3. Performance of proposed model’s.

FIGURE 12. ROC curve.

FIGURE 13. Training and validation loss.

accuracy is more than 97% after 30 epochs and the training956

loss is relatively low, as shown in Fig. 13. A high gener-957

alisation model prevents overfitting and gives useful results958

when dividing astronomical image data into real and fake959

objects [52], [53], [54], [55].960

Because the two major classes in our data (real and non-961

real objects) are similar in size, we considered accuracy962

and recall to be the most important performance metrics in963

our solution and benchmark model (Fig. 14). Accuracy is964

a good measure of quality. In this case, losing true items965

(FNR) is more important than contaminating our collection of966

predicted objects with FP, which humans can quickly wholly967

eliminate. These findings indicate that it can play a valuable968

FIGURE 14. Confusion matrix.

role in future astronomical surveys. Fuzzy-based approaches 969

seem to be as good as, if not better than, human scanners in 970

this sector. However, unlike astronomers, they can categorise 971

thousands of transients in a single second. Unlike traditional 972

ML algorithms, Int-T2-FSVM does not involve the creation 973

of sophisticated and case-specific features. Fuzzy SVMs use 974

simple data augmentation during training to come up with 975

abstract features for categorising on their own. 976

DL models, particularly the proposed Int-T2-FSVM, are 977

critical for future astronomical sky surveys like the SDSS. 978

In contrast to human scanners, deep models can produce 979

continuous-valued classification certainty ratings that can be 980

tweaked for maximum recall and precision. Furthermore, 981

they can handle the enormous data throughput generated by 982

the different sky surveys. 983

I. COMPARISON WITH OTHER EXISTING MODELS 984

Most previous research work related to this paper uses stan- 985

dard supervised learning techniques to achieve the goal of 986

automatic classification. The ML categorization of SDSS 987

transient survey images is a baseline model for the proposed 988

work. The same dataset was used in this research study, but 989

several learning techniques were used, including (i) Random 990

Forest (RF), (ii) k-Nearest Neighbors (k-NN), (iii) Adaboost, 991

(iv) Support Vector Machine (SVM), (v) Easy Ensemble and 992

(vi) Naïve Bayes (NB). The same dataset was used in this 993

research study, but several learning techniques were used, 994

including (1) RF, (2) KNN, (3) NB, and (4) SVM. And then 995

match their performance using the same measures using DL- 996

CNN and compare the proposed work to the past work. In the 997

very different image data (g, r, I, z, u), they should also use 998

the PCA algorithm to pull out features like shape, location, 999

FWHM, and objects near a local object. 1000

Our proposed model uses KPCA as the feature extraction 1001

model and the recommended Int-T2-FSVM classifier. The 1002

benchmark model achieved the results shown in Fig. 15, and 1003

it is evident that none of the other models improvedmore than 1004

our proposed model. 1005

IV. THREATS TO VALIDATE 1006

In this section, we go over potential threats to our experi- 1007

ment and how we mitigated them. Validity assesses whether 1008

101288 VOLUME 10, 2022



A. L. Karn et al.: Fuzzy and SVM Based Classification Model to Classify Spectral Objects in Sloan Digital Sky

FIGURE 15. Comparison with existing models.

experiment results adhere to the specifications provided in the1009

study procedure.1010

A. THREATS TO INTERNET VALIDITY1011

If an experimental condition has an effect or not, and if there1012

is adequate data to back the assertion, then it is said to be1013

having internal validity. The primary threat to internal validity1014

in our case is the SMOTE+ENN that we utilised, which1015

may be reasonable for our dataset. However, there are many1016

more effective models available, such as Weighted SVM and1017

Deep SMOTE, and using such a model might have produced1018

considerably better outcomes.1019

B. THREATS TO EXTERNAL VALIDITY1020

The applicability of the results of the experiment is referred1021

to as external validity. We used the Int-T2-FSVM to classify1022

astrophysical objects by using multiple Int-T2-FSVMs. This1023

was necessary for the application of this study, which was1024

to tell the difference between three types of astrophysical1025

objects (stars, galaxies and QSO). A significant barrier to1026

the experiment’s success was the lack of processing power,1027

which prevented the model from being trained from scratch1028

to more effectively learn the dataset’s astronomical labels.1029

It’s possible that the experiment’s findings won’t translate1030

accurately from experimental categories to real ones.1031

C. CONSTRUCT VALIDITY1032

If an experimental variable’s operational definition reflects1033

its theoretical meaning, then it is considered to have con-1034

struct validity. The SDSS dataset was used in our experiment1035

to evaluate the effectiveness of the suggested model. The1036

entire dataset was split into two sections, with one serving1037

as the first training set and the other as the initial test set.1038

We separated the dataset into a 25% test set and a 75%1039

training set in order to conduct fair comparisons (30% is used1040

for cross-validation). However, for the classification model1041

with SMOTE + ENN, we only achieved a sensitivity and1042

specificity performance of 88.42% and 87.63%, respectively.1043

Without SMOTE + ENN, the results were even worse.1044

V. CONCLUSION1045

Classifying stellar has always been challenging, given the1046

enormous volume of data. The existing classifiers run into1047

issues like class imbalance and overfitting. In this paper,1048

a framework to classify stellar objects such as ‘‘stars’’,1049

‘‘quasars’’, and ‘‘galaxies’’ from the SDSS dataset was pre-1050

sented. The model avoids the class imbalance by employ- 1051

ing ‘‘SMOTE+ENN’’. The balanced dataset is subjected to 1052

‘‘K-PCA’’ for feature extraction. The extracted features are 1053

fed to the proposed classifier ‘‘Int-T2-FSVM’’. The model 1054

employs an enhanced type reducer and inference engine to get 1055

better accuracy in classification. The experiment results show 1056

that the proposed model produces better accuracy and preci- 1057

sion for the SDSS dataset when compared to other existing 1058

models. 1059
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