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ABSTRACT This paper presents the cyber-physical system (CPS) of a numerical method (the widely-
used Euler-Maruyama method) and establishes a foundational theory of the CPSs of numerical methods for
stochastic differential equations (SDEs), which transforms the way we understand the relationship between
the numerical method and the underlying SDE. The CPS is a seamless integration of the SDE and the
numerical method, unlike in the literature where they are treated as separate systems linked by inequalities.
We formulate a new and general class of stochastic impulsive differential equations (SiDEs) that can serve as
a canonic form of the CPSs and establish a Lyapunov stability theory as a theoretic foundation for our class
of SiDEs. By the CPS approach, we show the equivalence and intrinsic relationship between the stability of
the SDE and the stability of the numerical method. As application of our proposed results, we develop the
CPS theory for linear systems and present the CPS Lyapunov inequality that is the necessary and sufficient
condition for mean-square stability of the CPS of the Euler-Maruyama method for linear SDEs. Our proposed
CPS theory initiates the study of systems numerics and provokes many open and interesting problems for
future work.

INDEX TERMS Cyber-physical systems, exponential stability, impulsive systems, Lyapunov functions,
numerical methods, stochastic differential equations.

I. INTRODUCTION

According to Newton’s second law of motion, we describe
a mechanical system with differential equations. A classical
example is the mathematical pendulum described by a pair
of differential equations [5, pp.17-18], which also consti-
tutes a typical Hamiltonian system derived from Lagrangian
mechanics, see [5, p.8] and also [16, p.5]. Usually, physical
laws are expressed by means of differential equations, and
so are the models of dynamical systems in many disciplines,
ranging from biology to finance. Such models play a cen-
tral role in all scientific and engineering disciplines [10],
[35]. A model may serve many purposes. The value of a
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model depends on the model fidelity, where the model of a
dynamical system is said to have high fidelity if it accurately
describes the important properties of the system [10], [35].
Studying the model of high fidelity gives us insight into how
the dynamical system will behave in the real world. Gener-
ally, a dynamical system, ranging from the motion of pollen
particles to the movement of stock price, is subject to intrinsic
and/or extrinsic noise in the real world [24], [26], [38]. Such
randomness should/must be taken into account by a model
of high fidelity if it matters, say, it affects some property of
the system that is of concern to the modelling. If we allow
for some noise in some coefficients of a differential equation,
we often obtain a more realistic model of the situation that
is able to describe the fluctuations observed in the physical
system. This leads to modelling with stochastic differential
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equations (SDEs). The study of SDEs can be seen to have
started from the classical paper of Einstein that presented
a mathematical connection between microscopic Brownian
motion of particles and the macroscopic diffusion equation,
and the interest in SDEs has grown enormously in the last few
decades [1], [32], [42], [47].

Stochastic systems described by SDEs have been inten-
sively studied since stochastic modelling has come to play
a significant role in science and engineering [2], [25], [27],
[29], [30]. It is hardly possible to solve an SDE analyti-
cally and have the exact solution of the SDE. For practical
purposes, numerical approximations to the exact solution
are usually obtained, which, called the numerical solutions,
are discrete-time stochastic processes produced by numerical
methods. Such numerical schemes, in the form of stochastic
difference equations, are the translations of the SDE into
discretization. Practically, computers are used to excute the
numerical schemes and generate the numerical solutions of
the SDE, from which one could learn and/or infer some
dynamical properties of the underlying physical system [4],
[20], [29], [49].

As is well known, whenever a computer is used in measure-
ment, computation, signal processing or control applications,
the data, signals and systems involved are naturally described
as discrete-time processes [3], [28], [29], [48]. It is worth not-
ing that the SDE is the physical model which represents our
knowledge of the physical system and a numerical method
is a cyber model which is a representative of the physical
model in computers, the cyber world. The physical model,
namely, the SDE often refers to the phyiscal system (particu-
larly, which is an engineered system) itself while its cyber
couterpart, namely, the numerical method symbolizes it in
the cyber world. In the age of networking and information
technology, the cyber model plays a key role in understanding
and controlling the underlying physical system, which not
only envisions the approximate behaviour of the physical
system [16], [20], [21], [22] but is also utilized to extract
knowledge of the system from data [29], [48] and based on
which control is designed and implemented [2], [3], [17],
[28]. It is natural and imperative

(D to find out the relationship between the physical model
(i.e., the SDE) and its cyber counterpart (i.e., the numer-
ical method) of a dynamical system;

(IT) and to ensure that they both share some important
dynamical properties such as stability, which is the con-
cern of this study.

The principal aim of this paper is to address the problems
(D and (I) of fundamental importance in the age of net-
working and information technology. As a matter of fact, the
fundamental importance of these problems has been recog-
nized and they have been studied in a vast literature. Results
that address the problems can be found in those many on
convergence and stability of numerical methods for SDEs,
where the SDE and the numerical method are treated as
separate systems which are linked by inequalities in some
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moment sense on any finite time interval [21], [22], [31],
[33], [40], [44]. The ability of a cyber system to reproduce
the stability of its underlying physical system can be found
in a wealth of impressive results. For example, the problem
how to reproduce the stability of an SDE in its cyber coun-
terpart, which is called the test problem, has been studied
in [19], [22], [39], and [45]. The key question in a test problem
is [19]
(Q1) for what stepsizes Ar does the cyber system (the
numerical method) share the stability property of the
underlying physical system (the SDE)?

This naturally provokes the converse question [22], [39]

(Q2) does the stability of the cyber system (the numerical
method) for small stepsizes At imply that of the
underlying physical system (the SDE)?

These questions deal with asymptotic ( — 00) properties
and hence cannot be answered directly by applying tradi-
tional finite-time convergence results [22], [39]. Results that
answer questions (Q1) and (Q2) can be found in the literature.
For example, results for scalar linear systems were given
in [19] and [45]. For multi-dimensional systems with global
Lipschitz condition, Higham et al. [22] introduced a natural
finite-time strong convergence condition, which links a cyber
system with its underlying physical system by an inequality in
some moment sense over any finite time interval, and proved
that there is a sufficiently small positive Ar* such that, for
every At € (0, Ar*], the mean-square exponential stability of
the physical system is equivalent to that of its cyber counter-
part. Recently, Mao [39] developed new techniques to handle
the small pth moment (p € (0, 1)) and showed that, under a
natural finite pth moment condition and a natural finite-time
convergence condition, the pth moment exponential stabil-
ity of the physical system is equivalent to that of its cyber
counterpart for every Ar € (0, Ar*] with some sufficiently
small positive Ar*. As is pointed out in [39], there are many
open problems in this research. For instance, although the
existence of the (sufficiently small) upper bound A¢* > 0 of
stepsizes has been shown [22], [39], it is severely limited by
the growth constant of the exponentially stable system, which
refers to the physical system and its cyber counterpart when
answering (Q1) and (Q2), respectively. Recall that, though
the growth and the rate constants are related, it is only the rate
constant that counts in the definition of exponential stability.
It appears that, either to reproduce or to imply the exponential
stability of the physical system by its cyber counterpart, the
condition imposed on the stepsizes which explicitly depends
on the growth constant could/should be relaxed [49]. This
could significantly improve the upper bound At* of stepsizes
and facilitate the computation.

It is noted that the physical system (the SDE) and its cyber
counterpart (the numerical method) are bound by inequalities
in the literature [21], [22], [33], [40], [45], [49]. Nevertheless,
they remain as two systems, largely separate. This paper con-
structs the cyber-physical model of a dynamical system that is
a seamless, fully synergistic integration of the physical model
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(the SDE) and its cyber counterpart (the numerical method).
Here we present a new and general class of stochastic impul-
sive differential equations (SiDEs) which can be used to
represent the integrated dynamics of the physical system and
its cyber counterpart. Impulsive differential equations, also
known as impulsive systems, have been studied for several
decades [9], [18], [30], [43], [46], [53]. But these impulsive
systems in the literature are just the physical subsystems in
our general class of SiDEs, see Section II. Our proposed
SiDEs composed of the physical and the cyber subsystems
are formulated as a canonic form of cyber-physical systems
(CPSs), which present a systematic framework for the study
of CPSs [11]. The canonic form not only provides a holistic
view but also reveals the intrinsic relationship between the
physical and the cyber subsystems of the CPS. In the study
of numerical analysis, we present the CPS of a numeri-
cal method (the widely-used Euler-Maruyama method) for
SDEs, which represents a seamless integration of the SDE
and the numerical method in the form of our proposed SiDEs.
The SDE and the numerical method are the physical sub-
system and the cyber subsystem of the CPS, respectively.
From the viewpoint of cybernetics [52], an essential prob-
lem to study is whether and how the CPS reproduces some
dynamical properties such as the stability of its physical or
cyber subsystem since ‘the primary concern of cybernetics
is on the qualitative aspects of the interrelations among the
various components of a system and the synthetic behavior
of the complete mechanism’ [50]. Using the terminology of
CPSs, we rephrase the questions (Q1) and (Q2) as follows.

(Q1) For what stepsizes At do the CPS and, hence, the
cyber subsystem reproduce the stability property of
the physical subsystem?

(Q2) Does the stability of the cyber subsystem for small
stepsizes At imply that of the CPS and, hence, that of
the physical subsystem?

This paper aims to address the fundamental problems in
the age of networking and information technology. In this
contribution, we shall

(i) propose a general class of SiDEs that is formulated
to serve as a canonic form of the CPSs of numerical
methods and construct a Lyapunov stability theory as a
theoretic foundation for our proposed class of SiDEs;

(i) present the CPS model of a numerical method for SDEs
that is a seamless, fully synergistic integration of the
SDE and the numerical method;

(iii) apply our established Lyapunov stability theory and
prove positive results to the key questions (Q1) and
(Q2), by which we expose the equivalence and inherent
relationship between the stability of the SDE and the
stability of the numerical method;

(iv) develop, as application of our proposed results, the CPS
theory for linear systems and present the CPS Lyapunov
inequality that is the necessary and sufficient condition
for mean-square exponential stability of the CPSs of the
Euler-Maruyama method for linear SDEs.
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Our foundational theory of the CPSs for numerical meth-
ods transforms the way we understand the relationship
between a numerical method and its underlying dynamical
system. Moreover, we can theoretically prove that our pro-
posed method is essentailly better than the existing results.
To make the comparison, we significantly improve a key
result in the literature (see Section VI and Appendix A).
We also illustrate with numerical simulation the effectiveness
of our theoretic results as well as those in the literature.
This paper initiates the study of systems numerics and there
are many interesting and/or challenging problems for future
work.

Il. A GENERAL CLASS OF STOCHASTIC IMPULSIVE
DIFFERENTIAL EQUATIONS

Throughout this paper, unless otherwise specified, we shall
employ the following notation. Let us denote by
(2, F, {Ft}t>0, P) a complete probability space with a fil-
tration {F;},;>¢ satisfying the usual conditions (i.e. it is right
continuous and Fp contains all P-null sets) and by E[-] the
expectation operator with respect to the probability mea-
sure. Let B(1) = [Bi(1) --- Bu(t)]" be an m-dimensional
Brownian motion defined on the probability space. If x,y
are real numbers, then x Vv y denotes the maximum of x
and y, and x A y stands for the minimum of x and y. If A
is a vector or a matrix, its transpose is denoted by AT. If P
is a square matrix, P > 0 (resp. P < 0) means that P
is a symmetric positive (resp. negative) definite matrix of
appropriate dimensions while P > 0 (resp. P < 0) is a
symmetric positive (resp. negative) semidefinite matrix. Let
Apm(:) and A,(-) be a matrix’s eigenvalues with maximum
and minimum real parts, respectively. Denote by | - | the
Euclidean norm of a vector and the trace (or Frobenius) norm
of a matrix. Denote by I,, the n x n identity matrix and by
0,xm the n x m zero matrix, or, simply, by O the zero matrix
of compatible dimensions.

Let C>!(R" x Ry;R,) be the family of all nonnegative
functions V(x, ) on R" x R, that are continuously twice
differentiable in x and once in ¢. Let MP([a, b]; R") be the
family of R"-valued adapted process {x(¢) : a < t < b} such
thatEfab [x()[Pdt < co.LetN = {0, 1,2, - - - } and E] be the
set of all independent and identically distributed sequences
{E(K) Jxen with E(K) = [£1(K) - - &n(K)] and (k) obeying
standard Gaussian distribution forj = 1, 2, - - - , m. Sequence
{tx }xen is strictly increasing and satisfies ro = 0, 0 < At :=
infyen{te+1 — i} < Ar 1= supgenite+1 — %} < 00, and,
hence, t; — oo as k — oo.

Let us consider a stochastic impulsive system described by
SiDEs, which is composed of two subsystems,

dx(2)
= f(x(2), )dt + g(x(1), t)dB(t) (1a)
dy(r)
= f(x(2), y(t), H)dr + 3(x(1), ¥(t), 1)dB(r)
t € [t, try1) (1b)
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At ), k+ 1) = x(ti1) — x(5 )
= h(x(t 1) k4 1) + he(x(t 1), k + DEk 4 1)

)
At ) Yt b+ 1) = Yt ) — ¥t )
= I (e ) (@) ke + D
+ hg (et ) Yty s k + DEk + 1)
Fhy (et )yt ) k+ DEG+1) keN  (1d)

with initial data x(0) € R” and y(0) € R, where mea-
surement noise & € EY and simulation sequence § € Ef
are independent of each other; £(k 4+ 1) and &(k + 1) are
independent of {x(¢),y(#) : 0 <t < tr1};f : R" xRy —
R" g :R"xRy — R™" ke : R"XN — R", by : R"XN —
R™" f:R*xRIx Ry — RY, 5 : R" x RY x R — RI*™,
ﬁf R"XRIx N — Rq,ﬁg:R”quxNa RI*"
and I~1g :R" x R? x N — R?™ are measurable functions.
To study stability of the system, we assume that they obey
fO,t) = 0, g0,71) = 0, he(0,k) = 0, he(0,k) = 0,
£(0,0,1) = 0,30,0,1) = 0, hr(0,0,k) = 0, hy(0,0, k) =
0 and /,(0,0,k) = O forall + € Ry and k € N and they
satisfy the global Lipschitz conditions.
Assumption 1: There is a constant L > 0 such that

[f (e, 1) = f(x, DV [glx, 1) — g(x, )| V hy(x, k) — he(x, k)
VIhg(x, k) — ho(%, k)| < LIx — X|

for all (x, %) € R" x R", t € R4 and k € N; and there is a
constant L > 0 such that

lf(x’ Vs t) _f(i’j)9 t)l Vv |§(.X, Y, t) - g(;év 5)’ t)|
\% |hf(xv Y, k) - hf('%v 5)7 k)' \% |hg(xv ) k) - hg(-iv 5)7 k)'
Vv |hg(x,y,k)_hg()~€75’7k)|fL(|x_)~C|V|y_5’|)

forall (x,y,X,y)) e R" xR xR" xR?,r ¢ Ry and k € N.

It is the intersection, interaction and interrelation of the
physical system and its cyber counterpart [3], [10], [11], [22],
[29], [34], [48] in the age of networking and information
technology that motivate our study of stochastic impulsive
system (1), which is formulated as a canonic form of CPSs
that is a seamless, fully synergistic integration of the physical
system and its cyber counterpart. It is observed in Section IV
that the CPS of a numerical method for SDEs is a special case
of (1) in which there is no impulse imposed on the physical
subsystem (la). We delibrately include the impulse (1c) and
use the impulsive subsystem (1a,1c) in SiDE (1) to emphasize
that the impulsive systems in the literature [9], [18], [30],
[43], [46], [53] are just the physical subsystems (la,lc) in
our general class of SiDEs. We construct a systematic inte-
gration (1) of two impulsive subsystems in marked contrast
to the impulsive systems in the literature, which highlights
the distinction between our new class for the CPS models and
those existing in the literature.

Remark 1: Tt should be noticed that, usually, the impulse
interval of the subsystem x(#) is a multiple of that of the sub-
system y(¢) since the former is actually the interval between
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two consecutive physical impulses imposed on the physical
system x(¢) while the latter the stepsize of the numerical
method, see Section IV. In such a specific case of SiDE (1)
in which #; = kAt and At is the stepsize of the numerical
method, functions Ar(-, k), hg(-, k) and l_1g(-, -, k) could be
nonzero only if k is a multiple of integer kg > 1; otherwise,
he(-, k) = 0, hg(-, k) = 0 and i_zg(-, -, k) = 0, where koAt is
the interval between two consecutive physical impulses.

Clearly, the trivial solution is the equilibrium of system (1).
For a function V € C2’1(R" x R4; Ry), the infinitesimal
generator £V : R" x Ry — R associated with system (1a)
is defined as

LVx,t) = Vilx, 1) + Velx, 0)f (x, 1)

1 T
+ 5trace [g (x,t)Vxx(x,t)g(x,t)], )

where V;(x,1) = 2D yi(x, 1) = [ngcxl,t) a\g(;;,z)]

and Vi (x, 1) = [32)‘(/,(;;)] . Similarly, for a function V €
LT dnxn e

C>(R?xR,;R,), the generator £V : R" xRIxR; — R

associated with system (1b) is defined as

LV(x,y,0) = Vi(y, 1) + Vy(y, OF (x, 3, 1)

1 T ~ .
+ Etrace [g (x, y, HVy(y, DE(x, y, t)] .
3)
Let z(t) = [xT(t) yT()]T € R"™49, C = [I, 0,x4] and
D = [Ogxn 1]. Then x(¢) = Cz(¢) and y(¢) = Dz(t) for all

t > 0. The stochastic impulsive system (1) can be written in
a compact form

dz()
= F(z(t), H)dt + G(z(t), t)dB(7)
Aty k)
= 2(t)—z(ty ) = Hp(2(ty), k)
+ Hg(z(ty), KE(k) + Ho(z(t;), bEK) k € N
(4b)

I # b (4a)

with initial value z(0) = [x(0)" y(0)T]T e R"*9, where
functions F : R x R, — R4, G : R" x R, —
RO+D*m g - R4 x N — R, Hg : R x N —
RHDX" and Hg : R*T4 x N — R™HDX™ gre given by

ren= 5 0] ae0=[pE50,)
Hp(z,k) = hfh{c(zc zi)k)} ’
Aot = |5 G |
How b = | (Cozn,Xsz, k>]

The functions in stochastic impulsive system (4) obey
F,1) = 0,G(0,t) = 0, Hr(0,k) = 0, Hz(0, k) = 0 and
Hg(0,k) = Oforallt € Ry and k € N. And they satisfy
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the global Lipschitz condition Assumption 1, that is, there is
a constant L, > 0 such that

|F(z,t) — F(Z, )| V|G(z,t) — G, 1)
V |Hp(z, k) — Hp G, k)| V |Hg(z, k) — HG(E, k)|
V |Hg(z, k) — HGGE, k)| < L;|z — 2| 5

for all (z,z) € R*"4 x R"9, ¢t ¢ R, and k € N. It is easy
to obtain the following result on existence and uniqueness of
solutions for SiDE (4) (viz., system (1)).

Lemma 1: Under Assumption 1, there exists a unique
(right-continuous) solution z(¢) to SiDE (4) on ¢ > 0 and the
solution belongs to M?([0, T]; R"9) for all T > 0.

Proof: Since system (4) satisfies the global Lipschitz con-
dition (5), according to [38, Theorem 3.1, p.51], there exists
a unique solution z(¢) to SiDE (4) on ¢t € [tg, t1) and the
solution belongs to M3([to, 11); R"t9). Note that E(k + 1)
and £(k + 1) are independent of {z(¢) : ¢ € [tg, t1)}. By virtue
of continuity of functions Hr(z, -), Hg(z, ) and Hg(z, -) with
respect to z, there exists a unique solution z(¢1) to (4) at¢t = 1.
Moreover, (4b) and (5) imply that the second moment of z(#1)
is finite. And, again, according to [38, Theorem 3.1, p51], one
has that there is a unique right-continuous solution z(z) to (4)
on [fg, t2) and the solution belongs to Mz([to, t]; R**9) for
allt € [tg,1r). Recallthat 0 =#p <t <th < -+~ < < -+
and 7, — oo as k — oo. By induction, one derives that there
exists a unique (right-continuous) solution z(¢) to SiDE (4)
for all + > 0 and the solution belongs to ./\/12([0, T]; R™*9)
forall T > 0. OJ

Now that we have shown the existence and uniqueness of
solutions to SiDE (4), we shall further study the stability of
the solution to the SiDE. Let us introduce the definitions of
exponential stability for SiDE (4).

Definition 1: [38, Definition 4.1, p.127] SiDE (4) is said
to be pth (p > 0) moment exponentially stable if there is a
pair of positive constants K and ¢ such that

Elz()P < K|z(0)[Pe™

for all + > 0, which leads to

1
limsup — In(E|z(1)|’) < —c <0
t—oo I
for all z(0) € R"*4,
Definition 2: [38, Definition 3.1, p.119] SiDE (4) is said
to be almost surely exponentially stable if

1
lim sup " In|z(r)| < O

—>00

for all z(0) € R"*4,

IIl. LYAPUNOV STABILITY THEORY FOR THE GENERAL
CLASS OF IMPULSIVE SYSTEMS

We dedicate this section to establishing by Lyapunov methods
a stability theory for our proposed general class of SiDEs. The
general class of SiDEs is formulated as a canonic form of
CPSs and we shall develop a foundational theory for stability
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of CPSs, which will be applied to the CPS of a numerical
method for SDEs. In the previous section, for simplicity, the
compact form (4) of system (1) is employed to study the
existence and uniqueness of solutions to the SiDEs. Now
we exploit the structure of SiDE (4) which is composed of
subsystems (1a,1c) and (1b,1d) and show the stability of the
subsystems as well as that of the whole system (4).

Theorem 1: Suppose that Assumption 1 holds. Let V ¢
C>'(R" x Ry;Ry) and V e CI(RY x Ry ; R,) be a pair
of candidate Lyapunov functions for the subsystems (la,1c)
and (1b,1d), respectively, which satisfy

cilxlP = V(x, 1) < calxl?, (6a)
abl = Vo, n <yl (6b)
for all (x, y, 1) € R" x R? x R, and some positive constants

p,c1,C2,C1, C2. Assume that there are positive constants «,
aj, a2, B, B1, P2 such that

LV(x, 1)
< —aV(x,t), (7a)
LV(x,y. ) <@Vix, 1)+ @V, o,
t € [, tkv1) (7b)
E[Vx+ A@, k+ 1), 0)|x] < BV(x, 1), (7o)
E[V(y + A,y k+ 1), 0)lx, y]
< BIVE, 0D+ BV, 1) (7d)
for all (x,y,7) € R* x R? x R4 and k € N. The SiDE (4)

is pth moment exponentially stable provided that the impulse
time sequence {#; }xeN satisfies

1 — -8
nf _at<ar< 2P ®)
o an

Proof: According to Lemma 1, that Assumption 1 holds
implies there exists a unique solution to SiDE (1). Let us fix,
for simplicity only, any z(0) = [x(0)" y(0)"]T e R"t4
and show the stability of the solution. The proof is rather
technical so we devide it into five steps, in which we will
show: 1) the exponential stability of x(¢); 2) some propeties
of y(t); 3) the exponential stability of y(¢) when |x(0)| = 0;
4) the exponential stability of y(zr) when |x(0)| > 0; 5) the
exponential stability of z(¢). Some ideas and techniques in this
proof are derived from our results on input-to-state stability
(ISS) of SDEs [25, Theorem 3.1 and Remark 3.1], where x(¢)
is treated as disturbance in the subsystem y(z).

Step 1: Note that (6a), (7a) and (7d) as well asIn 8 < a At
from (8) are a specific case of conditions (i), (ii) and (iii) of
[30, Theorem 3] with A1 = y1 = - -+ = 45 = 0. This implies

EV(x(t), 1) < V((©0),0) e * V>0 ©)

where @ € (0, —a)anda € (0, o) withIn 8 < aAt < aAt.
By condition (6a), subsystem x(¢), which is part (1a,1c) of the
system (1), is pth moment exponentially stable (with Lypunov
exponent no larger than —a).
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Step 2: Let us consider the dynamics of subsystem y(z),
which is the other part (1b,1d) of system (1). By Lemma 1
and the It6 formula, one can derive that

EV((1), 1) = EV(y(©),T)
t ~ o~
+ / EZV(x(s). y(s). )ds  (10)
t
forallty <7 <t < ty1 and k € N while condition (7b)
produces
EZLV((1), 1) < @EV(x(t), 1) + REV(y(1), 1) (11)

on [, tx4+1) for all k € N. This means that ]EV(y(t), t)
is right-continuous on [0, 00) and could only jump at
1mpulse times {fx+1}xen. Notice condition (8) implies that
;626"‘2 At < 1 and there is a pair of positives 8 € (0,1 — f2)
and § € (0, o] sufficiently small for

(Br + 8)e @5 < (12)
It is easy to observe from (11) that
ELV(y(t), ) < (@ + OHEV((1), 1) (13)
for such ¢ € [tx, tx4+1) and k € N that
EV(y(1), 1) > %EV(X(I), ).
Similarly, one can observe from (7d) that

EV(tiin). tiy1) < B2+ OEVO(, )ty ) (14)

whenever

- 1 o
EVO@ ) ) = F]EV(X(tkH)’ fet1)-

Step 3: If x(0) = 0 (namely, by (6a), V(x(0),0) = 0),
then (9) gives EV (x(t), t) = 0 for all # > 0. Using (7b), (10)
and (11), one obtains

t
EV(y(t), ) < V(3(0), 0) + @, / EV(y(s),s)ds  (15)
0

for all + € [0, #1). This, by the Gronwall inequality ( [33,
Lemma 4.5.1, p129], [38, Theorem 8.1, p45]), implies

EV(y(1), 1) < V(3(0),0)e®" Yre[0,11)  (16)
and, particularly, EV(y(r;), ;) < V(¥(0), 0)e% 1. Condi-
tions (7d) and (12) produce

EV(y(t1), t1) < BEV(y(t), 1)

B2 V(3(0), 0) €21
< f/(y(o)’ 0) e—(&2+6+3)E e n
< V((0), 0)e~ D A7, (17)

IA

One can repeat the derivations (15)-(17) over the interval
between any two consecutive impulse times and obtain

EV()(1), 1) < V(y(0), 0)ef2 (—0—KEHH AL ()
for all ¢ € [t, tx+1) and k € N. This implies

EV()(1), 1) < @D (30), 0) 0D (19)
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for all # > 0. By condition (6b), subsystem y(#) is pth moment
exponentially stable (with Lyapunov exponent no larger than
—(8 + 8)) when x(0) =

Step 4: Let us show the exponential stability of y(¢) when
|x(0)] > O, namely, V(x(0),0) > c1]|x(0)] > 0. Recall
that both EV (x(¢), ) and EV(y(t), t) are right-continuous on
[0, 0o), which could only jump at impulse times {fxt1}reN.
Define a function v : Ry — R as

W(t) = MEV@(:‘), H—EVGa). 0 (20)
for all ¢ € [0, oo) with initial value
50) = & ; vE Y POy 0), 0) - 7(3(0). 0).

Due to the properties of EV (x(f), t) and EV(y(t), 1), v(t) is
right-continuous on [0, co) and could only jump at impulse
times {fx+1}ken. Given any ¢ > 0, either v(r) > 0 or v(¢) <
0. So the interval [0, c0) is broken into a disjoint union of
subsets T U T_, where

T ={t=0:v(1) >0}, T_={r=0:v() <0}. (21)
From (9), it is easy to have

- &1V B

EV(y(0), 1) = (O“(Sﬂ

_ vy
- 8

EV(x(t), t)

V(x(0),0)e ¥ VieT,. (22)
Due to V(x(0), 0) > 0, one has #(0) > 0 if V(y(0), 0) = 0;
othewise, one can choose a sufficiently small § such that
V(x(0),0
0<5<@ v Q0
V((0), 0)
and, hence, v(0) > 0. Without loss of generality, one can
assume that v(0) > 0. Due to the right-continuity, v(f) > 0on
[0, €) for some € > 0, ie., [0,€¢) C T4+. If T = [0, 00)
(namely, T— = ), by (22), the proof is complete. Otherwise
(namely, 7 # ), let us consider the right-continuous pro-
cess EV(y(¢), 1) on the subset 7_. Due to the right-continuity
of ¥(¢) on [0, 00), for any 7 € T_, there exists an ordered pair
71(f) < 12(7) such that

te(ul)n@)cT-, (23)

where 71(f) = inf{z < 7 : ¥(r) < 0,Vt € [z,7]} and
72(f) = sup{T > 7 : v(t) < 0, VT € [, T)}. For convenience,
we also write 11 = 71(f) and 1, = T1,(¥) where there is no
ambiguity. Given any 7 € T, the interval [z}, 72) falls into
one of the three categories:
(CO) There is no impulse time on [, 12).
(C1) There is exactly one impulse time on [7], 12).
(C2) There are at least two impulse times on [, 72).

Each of them is considered as follows.

(CO) There is k € N such that #y < 71 < 72 < fx4+1. Since
v(t) is right-continuous and could only jump at impulse times
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{trs1}ken, that t < 71 < T2 < tx41 implies that v(z) is
continuous at t = 11 and, by (23), ¥(t1) = 0. This means

EV((z), 71) = 2 ; i Y PRy ay), 1)

< (‘“zﬂ V(x(0),0)e~ . (24)

Using the Gronwall inequality, one can derive from (10), (11)
and (13) that

EV((1), 1) < @R (y(1)), 71) (25)

for all # € [11, 7). Notice that 1) — 7] < fr11 — tx < Aft.
Substitution of (24) into (25) yields, for all ¢ € [11, 12),

EV((t), 1) < e@HIVEV (y(r)), 1)

- (a1 :S/ B1) S+ AT V(x(0), 0) ¢~

< (‘x‘zﬂ AT DLy (1(0), 0)e . (26)

(C1) There is exactly one impulse time #; on [11, T2), where
k is some positive integer since [0, €) C Ty. There are two
cases: (Cla) 11 < t; and (C1b) 71 = 1.

(Cla) Thereis k > 1lsuchthatf;_| <11 <ty < 17 <
tx+1. As above, this means that v(¢) is continuous on ¢ =
71 and v(t1) = 0. So (24) holds at + = 11 and (26) for all
t € [11, t). But, from (14) and (12),

EV((t). k) < (B + HEV (1), 1)
< (B + 8)e VTRV (y(1)), 1)
< (B + )T NEV (1)), 71)
< e PMEV (1), 7). @7
Using the Gronwall inequality, one can derive from inequal-
ities (10), (11), (13) and (27) that
EV(y(t), ) < &RV (1), 1)
< @R (1), 1)
EHDMET(y(1)), 11) Vi € [t, 1)
(28)

IA

Therefore, when 71 < t; < 71, combination of (24), (26)
and (28) imply that (26) holds for all ¢ € [7q, 12).

(C1b) By the definition of t; as well as the right-continuity
of ¥(t), that 7| = # implies v(#, ) > 0 and hence

- (@VpD)

EV( ). ) < —

Inequalities (7d), (9) and (29) produce

EV((t1), 71) = EV (1), t)
(,3 n (a1 ;//31)

< B+ (a1 ;//31)

EV((t)), 7). (29)

B2) EV(x(t), 1)

B2) V(x(0), 0) e~
(30)
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At. Again, there are two cases: 7] < # and 1)

and, therefore,

EV(y(t), t)

< fRTO IR (y(7)), 71)

@ VB 5
=B+—— 5

,3 ) (&2+3)(t_r')EV(x('L’1—), 7:1—)

<A+ Ba) @D Ay (x(0), 0) e~

(@1 ,31)
< (pr+ O

for all t € [11, 12). This combined with (26) yields

IB ) (@+ar+8) At V()C(O), 0) e—ﬁtt

EV(y(t), 1) < K V(x(0),0e™* Vielr,n) (Bl

when there is only one impulse time on the interval [t1, 12),
where K is a positive constant

a VA
K — (( 1V B1)
)
(C2) There are at least two impulse times on [17, 72). For
any two consecutive impulse times #; and fx41 on [t1, T2),
using the reasoning as above, one can derive that

v (,él n (o :S/,Bl) /§2)> e(&+&2+8)Kt'

EV((t), t) < @D EY (y(r), 1) (32)
for all ¢ € [tx, tx+1) and then
EV (y(ti11), 1) < (B + O EVOEL ), fiyy)
< (B + 8) 2D U1 = Y (y(1y.), 1)

(Ba + 8) @M EV (1), 1)
e MEV (), 1) (33)

IA

A

Denote by # < -+ < f, < --- the impulse times on
[t1, 72), where k > k > 1. Let us consider EV(y(¢), t) on the
interval [#x, 72). Using (32) and (33), one obtains

EVG(t), 1) < @t (—D—-ERSA R (yp ) 1)
forallt € 1, 1 LIAT2) and, therefore,
EV(y(t), t) < e@ DA RT(y1) 1) (34)

forall # € [t, 72). Recall that0 < § <@and 0 < — 17 <
= 1. In the
case where 11 < f, from (24), (27) and (34), one has

EV((t), 1)

< (@S BI=5-1) =S AR (1)), 7))

(&1 M ﬂl) e(&2+3+3)A7[ V(X(O), O) e—(ﬁl‘[] +8 At—bt )-8t

< 5 ]
< (al ;/ ﬂl) e(é‘t2+6+g)ﬂ V(.X(O), O) 678 (T1+Eftk)7(§l
< P et D8y 3(0), 00 (35)
for all ¢ € [#, 12) and then, by (26),
EV (@), 1)

99485



IEEE Access

L. Huang: Stability of CPSs of Numerical Methods for Stochastic Differential Equations

- M (@D ALy () 0) e (36)

- 8
for all + € [t1, 12). In the other case where 77 = 1,
substitution of (30) into (34) gives
@ v A 5

EVG@0).0) < (B + —— F)

'e(&2+5+(§)EV(X(0), 0) e—(&—g) ‘L']—gt

< (B + (“‘z—ﬁ‘) Ba) @By (x(0), 0) !
37)
ont € [11, 72). Combination of (36) and (37) yields
EV(y(t), ) < KV(x(0), 0) e (38)

for all t+ € [11, 720) on which there are at least two impulse
times, where K is the positive constant given by (31). From
inequlities (26), (31) and (38), one has

EV(y(t), 1) < KV(x(0),00e™*" VreT_.  (39)
Combining (22) and (39), one can conclude that
EV(y(t), t) < KV (x(0), 0) et vy > 0. (40)

By condition (6b), this means that subsystem y(#) is pth
moment exponentially stable (with Lyapunov exponent no
larger than —8) when [x(0)| > 0.

Step 5: We have shown the pth moment exponential sta-
bility of x(#) by (9) and that of y(¢) by (19) and (40) when
|x(0)] = 0 and |x(0)| > 0, respectively.

Note that z(r) = [x7(r) T (1)]T and, therefore, |z(1)|> =
Ix(0)|> + [y(t)|? for all r > 0. It is easy to see that

1z = (zO)1PY* = (x(O) + [y)* Y/
< ky(Ix(OF + 1y®F),  (41)

where k, = 1 when 0 < p < 2 and k, = 2°P~2/2if p > 2.
In the case where |x(0)] = 0 and E|x(¢)|P = O for all > 0,
by (19) and (41) as well as |z(0)| = |y(0)|,

Elz@0)P < kpEly@®)”

S lf_pe(&2+5+(§)E V(y(o)’ O) e—((S-‘rS)l
1

S kljcz e(&2+5+5)E|Z(0)|pe—(5+(§)l (42)
€1

for all + > 0. In the general case where |x(0)] > 0, by (6),
(9), (40) and (41),

Elz(n)l < ]C’;—Q|x(0)|f’((1 VB e 4 Ke )
1
< K,lz(0)Pe" (43)

for all # > 0, where K is the positive constant given by (31)
and K, is a positive constant

_ k
Ky ="2vB)+K).
cl
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So (42) and (43) mean that system (4), or say, system (1) is
pth moment exponentially stable (with Lyapunov exponent
no larger than —3§). g

Remark 2: Notice that, in Theorem 1, the continuous
dynamics of subsystem x(¢) stabilizes the subsystem, though
the discrete one could destabilize it, while the discrete dynam-
ics of subsystem y(¢) stabilizes the subsystem, though the
continuous one could destabilize it, which results in the expo-
nential stability of the both subsystems and hence that of
the whole system z(¢) = [x”(t) y”(¢)]”. Similarly, one can
obtain a stability criterion for the case where the impulses sta-
bilize the physical subsystem x(¢) as the continuous dynamics
could destabilize it (see [30, Theorem 2]) while the conditions
on the subsystem y(¢) are kept the same as those in Theorem 1.

Furthermore, under Assumption 1, we have the following
result on the almost sure stability of system (1).

Theorem 2: If Assumption 1 holds, then the pth (p > 0)
moment exponential stability of SiDE (4) (i.e., system (1))
implies that it is also almost surely exponentially stable.

The proof is similar to that of [38, Theorem 4.2, p.128] and,
therefore, is omitted.

IV. THE CYBER-PHYSICAL SYSTEMS OF NUMERICAL
METHODS FOR DIFFERENTIAL EQUATIONS
In this section, we address the problem (I) of fundamen-
tal importance. We compose a hybrid model in the form
of our proposed SiDE (1) to represent the tight integration
of the physical system (the SDE) and its cyber counterpart
(the numerical method). This systematic representation is
expressed by our canonic form of CPS models.

Let us consider a physical system described by the SDE

dx(t) = f(x(¢))dt + g(x(¢))dB(t) V>0 (44)

with initial value x(0) € R”, where f : R" — R" and g :
R" — R satisfy the global Lipschitz condition

If () = fO Vv [g(x) — g(¥)| < Lix — x| (45)

for all (x, x) € R" x R" as well as f(0) = 0 and g(0) = O for
study of the stability problem. Given a fixed parameter 6 €
[0, 1], the following numerical scheme for SDE (44) is called
the stochastic theta method [19], [21], [39], [40]

Xi41 = X + (1 = 0)f (Xp) At + 0f (Xpey1) At
+eX)VALE(k+1) VkeN  (46)

with initial value Xy = x(0), where At > 0 is the constant
stepsize and «/Ar&(k + 1) is the implementation of the
increment ABr = B((k + 1)At) — B(kAt). The stochastic
theta method for SDEs is a set of popular algorithms [20], [33]
employed to describe and compute the physical dynamics
(44) in the techniques driven by software modelling and sim-
ulation tools. The numerical method (46) is in essence a cyber
model of the physical system (44), which is a translation
of (44) into discretization, the language in computers, and
represents the physical dynamics in the cyber world.

When 6 = 0, the numerical scheme (46) gives the widely-
used Euler-Maruyama method. The Euler-Maruyama method

VOLUME 10, 2022



L. Huang: Stability of CPSs of Numerical Methods for Stochastic Differential Equations

IEEE Access

applied to SDE (44) computes approximations X ~ x(;) by
setting Xo = x(0) and forming

Xir1 = Xe +f XA + gXOVALEk + 1) (47)

for all k € N, where 1, = kAt. Stochastic difference
equations (47), also known as discrete-time stochastic sys-
tems [28], have been intensively studied over the past a few
decades in the age of computers. In practice, it is natural to
form and use some continuous-time extension of the discrete
approximations {Xj }ren such as [21], [40]

oo
X0 = Xl ) Yt=0 (48)
k=0

where 17 is the indicator function of set 7. This is a simple
step process of the equidistant Euler-Maruyama approxima-
tions so its sample paths are continuous on (%, fx+1) for each
k € N and right-continuous on [0, 00).

This paper considers the widely-used Euler-Maruyama
method (47)-(48) the cyber system, which is virtually a rep-
resentative of the physical system (44) in the cyber world.
Other numerical schemes, or say, other translations can also
be employed to represent the physical system in the cyber
world in future work. This section is to discover the inherent
relationship between a physical system and its cyber couter-
part. Consider the process y(¢) of difference between the exact
solution x(¢) of the physical system (44) and the numerical
solution X (¢) by its cyber counterpart (47)-(48)

y(t) = x(t) — X(1)

with initial value y(0) = x(0) — X(0) = 0. Notice that x(t) is
a process of continuous paths and X () a simple step process.
This implies that y(¢) is right-continuous on [0, co) and could
only jump at {#x41}xen. According to the scheme (47)-(48),
the jump of y(¢) at each t = ;41 for k € N gives

V>0 (49)

Wts1) = Ytg, )
= x(tk41) — X(trr1) — (x(t ) — X1, )
=Xt ) — X(tk41) = X (1) — X (tk+1)
= —f(X)AL — gXOV AT E(k + 1)
= —f(X(t, DAL — Xt IV ALE( + 1)
= —f(x(t ) — ()AL
— gty ) — Yt VAL Ek + 1) (50)
since X(t) = x(t) — y(t) = Xy for all t € [#, tx+1) and k €
N. The integrative dynamics of the physical system (44) and
the process (49) of difference is described by the following
hybrid system in the form of SiDEs
dx(1)
= f(x(@)dt + g(x(2))dB(7)
dy(r)
= fx()dt + g(x(0)dB(t) 1 € [, tks1)
AGe(t ) Yt )k + 1) = y(te1) — Yt )

(51a)

(51b)
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= —f(x(t ) — ()AL
—gx(ty, ) — Yt OVALE( +1) keN (5l

with x(0) € R" and y(0) = x(0) — X(0) = 0. Clearly, the
physical system (44) has no impulse and its cyber-physical
model (51) of the Euler-Maruyama method is a specific case
of our canonic form (1~) of CPSs in which ¢ = n, f(x,1) =
J&x), g, 1) = gx), f(x,y. 1) = f(x), gx,y, 1) = gx),
he(x, k) = 0, he(x, k) = 0, he(x,y,k) = —f(x — y)AL,
f_zg(x,y, k) = 0, ilg(x, y, k) = —glx—y)v/At and t =
k At. Consequently, the infinitesimal generators (2) and (3)
associated with (51a) and (51b) are of the specific forms

1
LV@) = Vi@ f @)+ Strace 87 () Vi) g0
LV, y) = V0 ()
1 N
+ Strace [gT(x) Vi () g(X)] , (52)

respectively. It is easy to see that Assumption 1 holds
since both f and g satisfy the global Lipschitz condi-
tion (45). According to Lemma 1, there exists a unique (right-
continuous) solution to SiDE (51) on ¢ > 0 and the solution
belongs to MZ([O, T1; R?) for all T > 0. Moreover, the
results of our established stability theory for the general
class (1) of SiDEs, say, Theorem 1 and Theorem 2 apply to
the CPS (51).

We construct the CPS (51) of the widely-used Euler-
Maruyama method (47)-(48) for the SDE (44), which is a
seamless, fully synergistic integration of the physical sys-
tem (44) and its cyber counterpart (47)-(48). The CPS not
only provides a holistic view of the physical system and its
cyber counterpart but also reveals their intrinsic relationship
that they are not two separate systems but the components
of an integrative system. Recall that the SDE describes our
knowledge of the physical dynamics while the numerical
method is the cyber representive, namely, the translation of
our knowledge in the cyber world. As a result, the CPS (51)
is an integration of our knowledge of the physical system and
the cyber representative as well as the simulation sequence
{€(k) }ken. Moreover, the CPS clearly shows that the numer-
ical solution is driven by the SDE and the numerical method
as well as the simulation sequence while the exact solution
is, of course, conducted by the SDE itself only. Usually,
to control the underlying physical processes, our knowledge
of both the physical and the cyber sides of the system is
utilized in the synthesis of the CPS. This leads to the resulting
CPS with y(¢) involved in the dynamics/system equation of
x(t) as well. Such synthesized CPSs are considered in our
study of stabilization problems.

Remark 3: We have derived with details the CPS (51) of
the Euler-Maruyama method (47)-(48) for the SDE (44). It is
not difficult to follow the exemplary derivation and obtain the
CPS of the stochastic theta method (46) for the SDE (44),

dx(#) = f(x(t))dt + g(x(1))dB(z)
dy(r) = f(x()dr + g(x(1))dB(r)

(53a)
t € [t, k1)
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X Y1) + 0 (1) — (k1)) (53b)

— gt ) — Yt OVALE+1) keN
(53¢)

where the impulse of y(¢) at t = #; is generated by (53c)
based on x(f,_ +1) and y(z,_ +1) as well as the simulation
VAt&(k + 1) of ABy = B((k + 1)At) — B(kArt). Notice
that (53) is also a formal expression of impulsive systems in
the literature [18]. Similarly, one can derive the CPS of some
other given numerical scheme for the SDE, which is among
future work suggested in Section VII.

V. EXPONENTIAL STABILITY OF THE CYBER-PHYSICAL
SYSTEMS OF NUMERICAL METHODS

The CPS (51) of the Euler-Maruyama method (47)-(48) for
the SDE (44) consists of the physical and the cyber subsys-
tems. The key questions (Q1) and (Q2) naturally arise. In this
section, we address the problem (II) of fundamental impor-
tance and prove positive results to the key questions (Q1)
and (Q2). These fundamental results and their applicaton to
linear systems comprise a foundational theory of the CPSs of
numerical methods for SDEs.

Let us begin with the test problem (Q1) of the CPS (51),
to which Theorem 1 and Theorem 2 can be directly applied.
Under some conditions (see [15], [32]), a seminal converse
Lyapunov theorem [32, Theorem 5.12, pl72] states that,
if the SDE (44) is pth moment exponentially stable, there
is a Lypunov function that proves the exponential stabil-
ity of the dynamical system. One may postulate that the
Lyapunov function for the physical subsystem (51a) could
help construct a candidate Lyapunov function for the subsys-
tem (51b,51c) due to their interrelation. The direct application
of Theorem 1 to the CPS (51) shows that the CPS (51)
and, hence, the cyber system (47)-(48) share the exponential
stability with the physical system (44).

Theorem 3: Let V. € C*(R";R,) be a candidate Lya-

punov function for both subsystems (51a) and (51b,51c) and
cilxlP V@) <okl VxeR" (54)

for some positives p, c1, c2. Assume that there are positives
o, o1, a2, B1, B2 such that

LV (x)

< —aV@x) VxeR” (55a)
LV, y)

<V +aV(y) Vielk, k1) (55b)

E[V( + AGx, y, k + 1))

xy] < BIVE) + V)

V(x,y) € R" x R" (55¢)
for all k € N. If the stepsize
At < 2P (56)
o
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then the CPS (51) is pth moment exponentially stable and is
also almost surely exponentially stable. Moreover, the cyber
system (47)-(48) shares the pth moment exponential stability
with its underlying physical system (44) and, hence, it is also
almost surely exponentially stable.

Proof: From Theorem 1 and Theorem 2, it follows that
CPS (51), which is a specific case of system (1) (namely,
SiDE (4)), is pth moment exponentially stable and is also
almost surely exponentially stable.

Notice that the state X(t) = x(#) — y(¢) of cyber sys-
tem (47)-(48) is the difference of the subsystems (51a) and
(51b,51c¢). Therefore,

X < kp(xOF + y(OI) < 2kylz(n)l (57)

forallt > 0, where k, = 1if0 < p < 1,and k, = 2771 if
p > 1. This immediately implies that the cyber system (47)-
(48) is pth moment exponentially stable and is also almost
surely exponentially stable. g

This means that, if the underlying physical system (44) is
pth moment exponentially stable, the CPS (51) and, hence,
the numerical method (47)-(48) reproduce the pth moment
exponential stability of the physical dynamics when the con-
ditions in Theorem 3 hold. The ability of the cyber system (the
numerical method) to reproduce the mean-square exponential
stability of its underlying physical system (the SDE) has
been studied in [19] and [22], In our proposed framework
of CPS (51), let us consider the ability of the cyber system
(47)-(48) to reproduce the mean-square exponential stability
of the physical system (44). A result on mean-square expo-
nential stability is then derived from Theorem 3 as follows,
in which the Lyapunov function for mean-square exponential
stability of the underlying physical system (44) also proves
the mean-square exponential stability of its cyber counterpart
(47)-(48) as well as that of the CPS (51).

Theorem 4: Let the candidate Lyapunov function V €
C?(R"; Ry.) for physical system (44) be a quadratic function

V(x) =x'Px (58)

for some positive definite matrix P € R™*". Assume there
are positives @ and A¢ with &« At < 1 such that

LV + At V(f(x)) < —aV(x) (59)

for all x € R". Then the CPS (51) with At € (0, Ar] is
mean-square exponentially stable and is also almost surely
exponentially stable. Moreover, the cyber system (47)-(48)
with Az € (0, At ] shares the mean-square exponential sta-
bility with its underlying physical system (44) and, hence,
it is also almost surely exponentially stable.

Proof: Tt will follow the conclusion from Theorem 3 if one
shows that conditions (54)-(56) of Theorem 3 are satisfied
with p = 2 for the CPS (51). Since the quadratic function
(58) gives A, (P) |x|> < V(x) < Ap(P) |x|?, condition (54)
holds for positive constants p = 2, c; = Ayu(P), c2 =
Ay (P) . It is not difficult to observe that (55a) and (59) are
equivalent. Obviously, (59) implies that (55a) holds for some
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positive constant « > «&. But (55_21) implies that there is
a pair of positive numbers & and At such that (59) holds.

For instance, if (55a) holds for some o > O, the pair of

Am(P) L? -~ —&@)A(P .
oﬁ(m&’) and Ar = (O‘M:‘()TL(Z), yields

aAr < (@—a)a <1, AtV(f(x)) < At iy(P) L*x|*> <
(¢ — @)y (P) |)c|2 < (¢ — @)V (x) and thus (59). According
to [38, Theorem 4.4, p.130] and [38, Theorem 4.2, p.128],
system (44) is mean-square exponentially stable and is also
almost surely exponentially stable.

By the Itd6 formula, [27, Lemmas 1 and 2] and global
Lipschitz condition (45),

positives, ¥ < o A

LV(x,y)
=2 yTPf(x) + trace[gT(x) Pg(x)]
&y Py + &5 T (x) PF(x) + Am(P) trace[g” (x)g(x)]
& ' (P)F I + A (P) LP1x* + 62V (y)
@'+ DAn(P)L? |x|* + @V (y)
ax Px + @ V(y) = @1 V(x) + @ V(y), (60)

IA

A

IA

IA

where

_ (L +@)iuP)L?

oy .
a2 Ap(P)

and &, given as (66) below are both positive numbers. So con-
ditiﬂ (55b) of Theorem 3 is satisfied. Note that, V Ar €
(0, At ], inequality (59) implies

LV (x)+ At V(f(x)) < —aV(x), (61)
and (51c) gives

y+AQ,y, k4 1)
=y—fx—y) Ar—glx =)V Ar &k + 1)
=x—(x—y—fa—y) Ar—glx —y) VAt &k + 1).
Using inequality (61) and [27, Lemma 1], one obtains

E[V(+ Ax, y, k + 1)]x, y]
=xTPx —2xTP(x —y) + (x — ) P(x — )
—2AnTPf(x — y) + At{Z(x —)TPf(x —y)

+ trace[g” (x — y)Pg(x — y)]

+ ArfT = VPf =)

A+ xTPx 4+ +)x —y) Pix —y)

—2AxT Pf(x —y)

+ At[LV(x —y) + AtV (F(x — y))]

1+ HVE) + 1+ o) =) Plx —y)
—2AxTPf(x —y) —aAr (x — ) P(x —y)
A+cHYV +A+c—annx—yPx—y)
—2AtxTPf(x —y) VkeN (62)

A

A

IA

for all (x,y) € R" x R”, where c is a positive constant with
c <aAt.Hence,0 < 14+c—aAr < 1dueto0 < aAr < 1.
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By [27, Lemmas 1-2] and global Lipschitz condition (45),
x—y'Px—y) <x"Px—2x"Py+y"Py
< (14 b~ HxTPx 4 (1 + b)y" Py,(63)
and, therefore,
—2x"Pf(x —y) < b7'x" Py + bf =) Pf(x — y)

< b 'XTPx+bay(P)L> (x — ) (x — y)
(1 + b)ay(P) L2

-1
<@ '+ l®) )V (x)
b(1 + b)ay(P) L?
P V), (64)

where b is a positive constant sufficiently small for

- _ b(1 + b)hy (P) L
Bo=(+c—aAt)(l +b)+ At o (P)

(65)
Substitution of (63) and (64) into (62) yields
E[V(y+ A,y k+ D)|x, y] < BiVx) + BV (),

where
Bi=0+cH+A+c—arn1+bh

+At<b + o (P)

and f, given as (65) above are both positive constants. This
is the condition (55¢) of Theorem 3.
Let & be a positive number such that

- —1In ,32
a < ~ (66)
For instance, let
a = —_ln_ﬁz = Ar<Af= _hiﬁz < —l~n/§2'
2 At 20 an
So the condition (56) of Theorem 3 is also satisfied. Accord-
ing to Theorem 3, it follows the assertions. |

In the literature [22] and [39], to ensure that the cyber sys-
tem shares the exponential stability with its underlying physi-
cal system, the stepsize At is explicitly and severly limited by
both the growth and the rate constants of the physical system.
Although the both are related, it is only the rate constant that
plays a key role in the definitions of exponential stability.
It is reasonable and possible to lessen the dependence of
the stepsize At on the growth constant, which itself could
be very conservative due to condition (54). In Theorem 4,
we manage to remove the explicit dependence of the stepsize
At on the growth constant Ay (P) /A, (P) . Instead, we show
that the growth constant Ay (P) /A, (P) has an influence on
the stepsize At through the rate-like constant B, given by
(65). This could reduce much the restriction imposed by the
growth constant. As will be shown in Section VI, it improves
the upper bound A7 of stepsizes and eases its computation for
linear systems.
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Recall that Theorem 3 is the direct application of Theo-
rem 1 to the CPS (51) of the numerical method (47)-(48)
for the SDE (44), from which Theorem 4 is derived for the
mean-square exponential stability. Let us proceed to apply
Theorem 4 and study the converse question (Q2) whether
one can infer that the CPS (51) and, hence, the physical
system (44) are mean-square exponentially stable if the cyber
system (47)-(48) is mean-square exponentially stable for
small stepsizes At > 0. Similarly, the converse Lyapunov
theorem [32], [51] gives that, if the cyber system (47)-(48)
is mean-square exponentially stable, there is a Lyapunov
function that proves the exponential stability of the system.
Due to the interrelation of the physical and cyber systems, one
may make use of this Lyapunov function to study the stability
of the physical system and that of the whole CPS. Applying
Theorem 4, we find that the mean-square exponential stability
of the CPS (51) and, hence, that of the physical system (44)
can be inferred from the mean-square exponential stability of
the cyber system (47)-(48).

Theorem 5: Assume that there is a candidate Lyapunov
function V € C2(R"; R,) of the quadratic form (58) for the
cyber system (47)-(48) with At = At > 0 such that

E[VXi+1)|Xk] < €V (Xp) (67)

for some positive constant ¢ < 1 and all Xz € R". Then CPS
(51) with At € (0, At] is mean-square exponentially stable
and also almost surely exponentially stable, which implies
that physical system (44) is mean-square exponentially stable
and also almost surely exponentially stable.

Proof: By the Lyapunov stability theory [6], [32], condi-
tions (58) and (67) as well as (54) derived from (58) imme-
diately imply that the cyber system (47)-(48) with At = Af
is mean-square exponentially stable. Let function V(x) given
by (58) also be the candidate Lyapunov function for the
physical system (44). But condition (67)

E[VXk+1)|Xk]
= E[X{ 1 PX{ 1 [Xi]
- E[(Xk +FXODT + g(XOV AT E( + 1) P
(Xe + £ XOBT + gXV AT £k + 1) X |

V(Xe) + B[ XTPFXO +f T (XoOPXi

+ trace[g" (Xo)Pg(Xi)] + Af T (XOPf (X0
EV(Xp)

IA

produces that

X! PF(Xi) + T (X )PXi
+ trace[g" (X )Pg(Xi)] + Atf T (Xi)Pf (Xk)
< —aV(X)

for all X € R", where & is a postive number such that
aAt=1-c. (68)
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This means

LVx) 4+ At V(F(x)
=xTPf(x)+fT(x) Px
+ trace[g" (x)Pg(x)] + Atf T (x) Pf (x)
< —aV(x)

for all x € R”, which is exactly the condition (59) of
Theorem 4. According to Theorem 4, z(t) = xT () yT(t)]T
of CPS (51) with At € (0, At] is mean-square exponentially
stable and also almost surely exponentially stable. It immedi-
ately follows that, due to [x(1)]? < |2(1)|%, the physical system
(44) is mean-square exponentially stable and also almost
surely exponentially stable. Alternatively, conditions (58) and
LV(x) < LVx)+ At V(f(x)) < —aV(x) forall x € R" as
well as (54) derived from (58) imply that, by [38, Theorems
4.2-4.4, pp128-130], the physical system (44) is mean-square
exponentially stable and also almost surely exponentially
stable. O

Our positive results to the key questions (Q1) and
(Q2) expose the equivalence and intrinsic relationship (68)
between (59) and (67), which are the stability conditions for
the physical system (44) and its cybercounterpart (47)-(48),
respectively. For this purpose, we employ the same Lyapuov
function V(x) = V(x) = xTPx for both the subsystems
in Theorems 3-5, see also Section VI. Actually, this is also
a sensible choice due to the structure of CPS (51) in which
the physical subsystem plays a dominant role. Our proposed
theory for synthetic CPSs should be developed by using var-
ious techniques of Lyapunov functions/functionals to exploit
the structure of the resulting controlled CPS, see [13], [30],
[36], [37], [41] and also Remark 5. It is worth noting that the
initial condition y(0) = x(0) — X (0) = 0 is not required in our
established stability theory and its application in Section VI.
But this condition could make a difference in the study of con-
vergence as well as some control problems, see Appendix B.

VI. THE CPS THEORY FOR LINEAR SYSTEMS
Let us consider a linear stochastic system

dx(t) = Fx(t)dt + Y G()dBi(t) V1 =0  (69)
j=1

with initial value x(0) € R", where F € R"*" and G; € R"™*",
j=1,2,---,m, are constant matrices. Obviously, the linear
system (69) satisfies the global Lipschitz condition and has a
unique solution x(¢) on [0, 0o). It is well known that the linear
stochastic system (69) is mean-square exponentially stable if
and only if there exists a positive definite matrix P € R™"
such that [6], [12]

m
FTP+PF+Y G/ PG; <0. (70)

j=1
This is the Lyapunov-Itd inequality [6], [12], the lin-
ear matrix inequality (LMI) equivalent [14] of the classical
Lyapunov-It6 equation [1], [37]. By [38, Theorem 4.2, p128],
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the mean-square exponential stability of (69) implies that it is
also almost surely exponentially stable.

The Euler-Maruyama method (47)-(48) for the linear sys-
tem (69) computes approximations, for all k € N,

m
Xip1 = Xk + FXi At + ) GiX/Atgitk +1) (71

j=1
with Xo = x(0), where At > 0 is the constant stepsize and
VAt &k + 1) is the implementation of ABjx = Bj((k +
1)At) — Bj(kAt). The cyber system (71) is mean-square
exponentially stable if and only if there exists a positive

definite matrix P € R™" such that [6]

m
(In+ AtF)' P, + AtF) + At Y G/ PG; < P. (72)
j=1
Let y(z) be the difference between x(¢) and X(¢) as (49)
above. The CPS of the Euler-Maruyama method (71) for the
linear SDE (69) is a specific case of CPS (51)

dx(r)
= Fx(t)dt + ) Gyx(t)dB(t) (73a)
j=1

dy(t) = Fx(¢)dtr + ZGj.x(l)dBj(l) t € [tg, tkt1)
j=1
(73b)

A )y Y  k + 1) = i) — ¥t
= —F(x(t ;) = y(ty)) At

— > Gilxti ) — Yt D)V AL &k + 1)
j=1
keN (73c)

with initial data x(0) € R" and y(0) = x(0) — X(0) = 0,
where t; = kAt for all k € N. The CPS (73) is an integration
of the physical system (69) and the cyber system (71), which
is in our proposed canonic form (1) and satisfies the global
Lipschitz conditions Assumption 1. Our established theory
immediately provides positive results to the key questions
(Q1) and (Q2) for linear CPS (73), which also presents the
upper bound At of stepsizes for exponential stability.
Theorem 6: The following are equivalent.
(A) There exists a positive definite matrix P € R™" such
that the CPS Lyapunov inequality holds for some posi-
tive number A7, namely,

m
FT'P+PF + Z G/ PGj+ AtFTPF <0. (74)
j=1
(B) The physical system (69) is mean-square exponentially
stable.
(C) The cyber system (71) with Ar €
mean-square exponentially stable.
(D) The CPS (73) with At € (0, Af]is mean-square expo-
nentially stable.

(0, Ar] is
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That is, (A) < (B) < (C) & (D).

Proof: (A) < (B). We only need to show that the classical
Lyapunov inequality (70) and the CPS Lyapunov inequal-
ity (74) are equivalent. But this is implied by the equivalence
of the inequalities (55a) and (59) which has been shown in
the proof of Theorem 4. Alternatively, it can be easily proved
as follows. Clearly, (74) implies (70). But inequality (70)
implies that there is a sufficiently small positive number A
such that (74) holds. So the LMI (70) < the LMI (74).

(A) = (C) & (D). Let us consider the quadratic Lyapunov
function V(x) = xTPx for the linear system (69). The
LMI (74) implies that there is a positve number @ < 1/ At
sufficiently small for

m
FTP+PF 4+ Gl PGj+ AtF"PF < —aP,  (75)
j=1
and the condition (59) holds. It follows from Theorem 4 that
the CPS (73) and, hence, the cyber system (71) with At €
(0, At ] are mean-square exponentially stable.

(D) = (B) & (C). The CPS (73) is a specific case of
system (4), where z(t) = [xT(t) y' ()] in the compact
form. Notice that |x(7)|? < |z(r)|? and |X()|* < 2(]x(1)|> +
y()?) < 4)z(t)|* for all t > 0. If z(r) of the CPS (73)
is mean-square exponentially stable, then both x(¢) of its
physical subsystem (69) and X (¢) of its cyber subsystem (71)
are mean-square exponentially stable.

(C) = (B) & (D). Let At = At. Since the cyber
system (71) is mean-square exponentially stable, there is a
positive definite matrix P € R™*" such that the Lyapunov
inequality (72) holds for At = At > 0. This implies that
there is a positive number ¢ € (0, 1) sufficiently close to 1 for

m
I+ At F)' P, + At F) + At Y G/ PG; <¢P. (76
j=1

Let the quadratic function V(x) = x! Px be the candidate
Lyapunov function for the cyber system (71) with Ar =
‘At. Observe that, for the linear system, (76) is exactly the
condition (67) of Theorem 5. It follows from Theorem 5
that the CPS (51) with At € (0, Ar] and, hence, the physical
system (44) are mean-square exponentially stable. ]
Note that the mean-square exponential stability of the
physical system (69), the cyber system (71) and the CPS
(73) imply that they are also almost surely exponentially
stable, respectively. It is easy to obtain the upper bound At of
stepsizes for the ability of the cyber system to reproduce the
exponential stability of the underlying linear physical system
by solving the CPS Lyapunov inequality (74), which can also
be called the numerical Lyapunov inequality in the study
of numerical methods for differential equations. Notice that
the LMI (74) is a linear function with respect to At and it
can be formulated as a generalized eigenvalue minimization
problem. So we immediately obtain the upper bound At =

—A by solving
min A st. P>0, FIPF >0,
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m
FTP+PF + ) Gl PG; < \F"PF (77)
j=1
with some toolboxes such as [14], which is one of the advan-
tages of our proposed method.

Remark 4: The prestigious Black-Scholes model is a spe-
cial case of the linear SDE (69) withn =m = 1,

dx(t) = ux()dt + ox()dB(t), t >0, x(0)#0

(78)
where u and o are both real constants. Thus the CPS of
the Euler-Maruyama method (47)-(48) for the Black-Scholes
model (78) is a specific case of (73) withn =m =1

dx(¢)

= pux(t)dt 4+ ox(¢)dB(z)
dy(®)

= pux(t)dt 4+ ox(t)dB(¢)
Y(te+1) — ¥ )

= —ux(ty ) — M)At

—o (Xt ) — Yt D)VArE(k+1) keN.
(79¢)

(79a)

1€ [tk tks1) (79b)

The CPS Lyapunov inequality (74) immediately gives

2u+o’+utAi<0 & Af< (80)

—Q2u+0o?)

5 .
According to Theorem 6, this is the necessary and sufficent
condition for mean-square exponential stability of the linear
scalar physical system (78), the cyber counterpart of the
Euler-Maruyama method and its CPS (79). Notice that (80)
is exactly the inequality (4.3) in [19] with 6 = 0 for the
Euler-Maruyama method. Obviously, condition (80) is the
very scalar case of our CPS Lyapunov inequality (74) that is
applicable to general multi-dimensional linear systems. It is
an important and interesting problem among future work to
study the almost sure stability [19], [28], [38] of the CPS (73)
and its application, say, to the CPS (79) for the Black-Scholes
model (78).

Recently, based on the reformulation of some well-known
results, [7] developed an approach to mean-square stability
analysis of numerical methods (including the widely-used
Euler-Maruyama scheme) for multi-dimensional linear SDEs
(viz. system (69) with n > 2), which was applied in [8]
to study the mean-square numerical stability for a linear
SDE of non-normal drift and skew-symmetic diffusion struc-
tures [23]. Specifically, on one hand, some well-known result
([1, Theorem 8.5.5,p142], [32, Remark 6.4, p183]) expressed
in the vectorization of matrices and Kronecker product gives
[7, Lemma 3.3]

Rey(S) <0 81)

if and only if linear SDE (69) is mean-square exponentially
stable, where Reys(S) is the real part of the eigenvalue Ay (S)
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of n% x n? matrix

m
S::In®F+F®In+ZGj®Gj-
=1

On the other hand, a stability result for discrete-time stochas-
tic systems (see, e.g., [32, p197]) is applied to study
mean-square stability of some numerical schemes for the
SDE (69). For example, by [7, Lemma 3.4, Theorem 3.7], the
Euler-Maruyama method (71) is mean-square exponentially
stable if and only if

p(So(An) < 1, (82)

where p(So(At)) is the spectral radius of n? x n? matrix

So(A1) == (A(A1) ® A(AD)) +

J

with A(At) = I, + AtF and Bj(At) = J/AtG; forj =
1L, m

In [7], S is called the mean-square stability matrix of
the SDE (69) and Sp(At) that of the Euler-Maruyama
method (71). Notice that Sp(At) is a function of stepsize
At while, obviously, S is not. The results in [7] and [8]
provided the explicit structure of stability matrices S and
So(At), and showed the comparative stability regions [8,
Fig.2] for the SDE and the numerical method with a few
numerical examples of nonnormal SDEs [23]. However, the
relationship between the stability conditions (81) and (82)
(for the SDE and the Euler-Maruyama method, respectively)
has not been figured out. Here we prove their equivalence
and reformulate the stability conditions (81) and (82) in the
form of LMIs, which is relegated to Appendix A. So it is easy
to handle the problems with some computing techniques and
toolboxes [6], [12], [14].

It is easy to obtain the upper bound Ar of stepsizes for
the test problem (Q1) by solving the n x n-dimensional LMI
(74) of our proposed method. Clearly, LMI (74) holds for
all At € (0, Ar] provided it is satisfied for some Az > 0.
But, to calculate the upper bound Ar by the approach of
mean-square stability matrix [7], one has to deal with the
spectral radius (82) of n? x n? matrix So(Ar) that involves a
polynomial of the stepsize At whose order is some exponen-
tial function of n. Alternatively, one can solve the following
LMI with respect to positive definite matrix P & R”ZX”Z,
which we show is equivalent to (82) in Appendix A,

(Bj(At) ® Bj(A1))
1

m

S"P+ PS + At(S"PS + FTP + PF)
+ (A (STPF + FTPS) + (A’ FTPF
= (S+ A1F) P+ P(S + AtF)
+ At (S + AtF) P(S + AtF) <0, (83)

where F = F ® F. This involves a cubic function of the
prescribed parameter At > 0 for all n. So, unlike the CPS
Lyapunov inequality (74), the LMI (83) may not be reformu-
lated as a generalized eigenvalue minimization problem.
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Note that, for a multi-dimensional SDE (n > 2), the
spectral radius (82) of n? x n? matrix Sp(Ar) involves a
polynomial of Ar of up to (very) high order. For example,
in the case n = 2 of non-normal SDE [8, Eq.(9)] (see
also [23]), the characteristic equation of mean-square stability
matrix So(At) of 4 x 4 dimensions for the Euler-Maruyama
scheme ( [8, Eq.(15)] with & = 0) involves a polynomial
of At of up to order 8. The conditions of this approach are
quite cumbersome [32]. It is easy to tackle the equivalent
LMI (83) using some toolboxes such as [6], [14], which is
a cubic function of the prescribed At > 0 for all n.

However, one should be aware that, unlike the linear
inequality (74), that the inequality (82) or its equivalent
LMI (83) is satisfied for some Az > 0 may not necessarily
mean that it holds for all At € (O, ‘Atf]. Thus the results
such as the upper bound At obtained by approach of (82)
from [7] or its equivalent (83) could be restrictive due to
the highly nonlinearity of At involved in the computation,
see Appendix A.

We can further show that our proposed method (74) gives
better bound At of stepsizes than (82) from [7] or its LMI
equivalent (83). This is: if (82) and (83) hold for all Az €
(0, At] for some At > 0, then the CPS Lyapunov inequality
(74) holds for some At > At namely, elther At = At or
At > At. In short, we shall show either A7 = A7 or At >

~

At, where

At := sup{At > 0 : (83) holds for all At € (0, At ]}
xand At :=sup{At > 0: (74) holds}.  (84)

It is observed that, due to the continuity of (83) with respect
to At, the strict inequality (83) does not hold at At = At and,
similarly, the strict inequality (74) does not hold at At = At

To show At > At (viz either At = Ator At > At)
we consider a linear SDE with Az € (0, Az ] for some At > 0

dx(r) = Fx(dt + Y Gjx(t)dBj(1)
j=1

+VALF x(t)dByyi(t) Vt=0  (85)

where By,41(¢) is a scalar Brownian motion. Notice that (85)
is exctly (69) if At = 0 and, according to [7, Lemma 3.3],
the SDE (85) is mean-square exponentially stable if and only
if (87) holds. In fact, by the well-known results [1], [6], [7],
[14], [32], the following are equivalent.

(a) The CPS Lyapunov LMI (74) holds.
(b) There is a positive definite matrix P € R™*" such that,
VAt € (0, At ],

(S + AtF) P+ P(S + AtF)
=S"P+PS+ At(FTP+PF) <0.  (86)
(c) The following inequality holds for each At € (0, Ar ]
Rey (S + AtF) < 0. (87)
(d) The SDE (85) is mean-square exponentially stable.
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That is, (a) < (b) < (c) < (d) and they all give the same
supremum At defined as (84). Similarly, one may formulate
the LMI (86) as a generalized eigenvalue minimization prob-
lem like (77) above. By [27, Lemma 1],

STPS + At(STPF + FTPS) + (At)*FTPF > 0
and, therefore,
S"P + PS + At(S"PS + F'P + PF)
+(AD*(STPF + FTPS) + (At)’FT PF
= STP+PS + At(FTP + PF)
+ A STPS + At(STPF + FTPS) + (An*F" PF]
> S"P+ PS + At(F"P + PF).

Thus (83) implies (86) but not vice versa. This means
that (74), (86) and (87) hold for all Ar € (O, Kt), and,
therefore, At > At. Notice that (83), (86) and (87) are all
continuous with respect to Az. Due to the continuity of (83)
at At = At,

(S + AtF)" P+ P(S + AtF)
+ At (S+ A1F) P(S + AtF) <0
& (S+AF) P+ P(S + AF)
— A1 (S + AtF)" (S + ALF).

Unless matrix S + AfF is smgular the LMIs (86) and its
equlvalent (74) hold at At = At and, due to their contlnulty
at At = At the LMIs (86) and (74) hold for some At >
At, which gives At > At. So we have At = At if matrix
S+ AtF is singular; otherwise, At > At.The latter, namely,
At > At could often be the case. This clearly shows that our
proposed CPS Lyapunov LMI (74) gives a better bound At
of stepsizes than (82) from [7], or, its LMI equivalent (83).

It is observed that the CPS LMI (74) holds for all At €
(0, Ar] if it holds with some Ar > 0. Recall that such
a desired property has not been observed/shown in the
mean-square stability matrix method (82). Instead, one finds
that p(Sp(At)) — 1 as Ar — 0 in the method (82).
This could be a restriction in some applications. As shown
above, our proposed method (74) has a number of impressive
advantages, which include: the upper bound A7 > 0 can
be easily obtained by solving the generalized eigenvalue
minimization problem (77); the LMI (74) holds for all At €
(0, Ar]; and a better bound At > At has been theoretically
proved.

Let us apply the CPS Lyapunov LMI (74) to an interesting
example from [23]. A particular case of SDE (69) has been
studied in [23] to show the impact of noise on a highly
nonnormal system, in whichn =2, m =1,

1
-1 b 0 b+
=[] Gl—[_b—: o} 9

with b > 0. Thus the CPS of the Euler-Maruyama
method (71) for the nonnormal SDE (88) is a specific case
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TABLE 1. Upper bounds At for the nonnormal SDE (88) with various b.

b 0.3 0.8 1.3 1.8 2.3 2.8
At | 0.1498 | 0.6614 | 0.6278 | 0.4842 | 0.2875 | 0.0124
10} ] W 1
Y *’\{j/\"%“ | .L {bm\\ [Py AP — ]

M‘t N ]

ol * \\\/ r‘,‘v'.‘*‘.’ i
b

0 5 10 15 20 25 30 35 40 45 50

3 T T T T T T T T T

= - =+ Mean square of 10° samples
Mean square of 10° samples

L L
35 40 45 50

FIGURE 1. A trajectory sample (above) and the mean squares of samples
(below) of the Euler-Maruyama method for the SDE (88) with b = 2.8.

of (73) withn =2 andm =1,

dx(7)

= Fx(¢)dt 4+ G1x(t)dB(t)
dy(?)

= Fx(1)dt 4+ G1x(r)dB(t)
(k1) — ¥ )

= —F(x(tg, ) — (1) At

— Gy (x(tg,y) — Yt D)VALE(K +1) keN.
(89¢)

(89a)

1€ [k, tks1) (89b)

According to the condition (81) as well as [8, Theorem
2.2], the SDE (88) is mean-square exponentially stable if and
only if b < 2.8181. It is interesting to note that the noise
term of the SDE (88) becomes smaller as b increases while,
due to the nonnormality, the system is destablized (in mean-
square sense) by smaller noise, see [23] as well as [8] for more
details. It is also noticed that the mean-square stability matrix
So(At) of the Euler-Maruyama method for the SDE (88)
given in [8] clearly demonstrates that So(At) — L @ I, =
14 and thus p(Sp(At)) — 1 as At — 0. Our CPS LMI (74)
has the desired property for small stepsizes At. Givenany b €
(0,2.8181), we immediately obtain the upper bound Ar of
stepsizes by solving the generalized eigenvalue minimization
problem (77), some of which are listed in Table 1.

As an example of numerical simulation, Figure 1 dis-
plays not only a trajectory sample but also the mean square
of 10° samples as well as that of 10° samples of the
Euler-Maruyama method for the nonnormal SDE (88) with
b = 2.8, where the stepsize At = 0.0124 is the upper
bound in Table 1 and the initial value x(0) = [—1.5 0.6]7 is
from [23]. The numerical simulation verifies the effectiveness
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of our proposed method (74) and (77) as well as the mean-
square exponential stability of the CPS (89) with b = 2.8 and
At = 0.0124. Actually, the set of realizations shown in
Figure 1 illustrates well our theoretic results and those in the
literature [8], [23]. As it has been proved that the nonnor-
mal SDE (88) with b = 2.8 is mean-square exponentially
stable [8], a trajectory sample could depart far away before
it eventually converges to the origin [23]. The trajectory
samples with large departure may have a big effect on the
mean square of 10° samples but a much smaller one on that
of 10° samples while both the mean squares of samples decay
towards zero. This attests the effectiveness of our proposed
results.

Remark 5: The upper bound At of stepsizes in the CPS
Lyapunov inequality (74) is obtained by employing the same
Lyapunov function V(x) = V(x) = x!Px for both the
subsystems, which is a special application of Theorem 3. This
is reasonable since the physical subsystem plays a dominant
role in the CPS (73). But the results on synthesized CPSs,
in which the state y(¢) of cyber subsystem is utilized in some
feedback mechanism to steer the physical subsystem, can be
further developed by using various techniques of Lypunov
functions/functionals [13], [30], [36] such as using a couple
of Lyapunov functions for the subsystems and constructing
a Lyapunov function/funcational for the whole CPS [36],
[37], [41] to exploit the structure of the composition of the
subsystems [36].

VII. CONCLUSION

In this paper, we have formulated a new and general class (1)
of SiDEs that can be used to represent a seamless integration
of the physical system (the SDE) and its cyber counterpart
(the numerical method), which is a novel framework for
numerical study of dynamical systems. Our proposed CPS of
the Euler-Maruyama method for SDEs not only provides a
holistic view of the physical system (the SDE) and its cyber
counterpart (the numerical method) but also reveals their
intrinsic relationship: they are not two separate systems but
the subsystems of the CPS. By our CPS approach, we have
proved positive results to the key questions (Q1) and (Q2)
using the Lyapunov stability theory we establish for our
general class of SiDEs. These fundamental results and their
applications construct a theoretic foundation for the CPSs
of numerical methods for SDEs. This foundational theory
may be further developed with various techniques of Lypunov
functions and functionals [13], [30], [36], [41].

In the classical numerical analysis of initial-value prob-
lems, the convergence and the stability of a numerical method
are two main concerns [49]. The proposed CPS also provides
a novel approach to convergence analysis of the numerical
method for SDEs. As an example, we show by our CPS
approach the classical finite-time convergence result

E[ sup o] = ocan
0<t<T
for the widely-used Euler-Maruyama method. The novel
proofis relegated to Appendix B, which utilizes the dyanimcs
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of the discretization error and is different from those in the
literature [21], [33], [38], [49].

Our proposed CPS theory of numerical methods for
differential equations has initiated the study of systems
numerics, where there are a lot of open and interesting prob-
lems. For example, it is among future work to extend our
established theory not only to many other (explicit, semi-
implicit/symplectic and implicit) numerical methods [16],
[19], [21], [31], [33], [40], [44], [49] but also to various
dynamical systems such as SDEs with time delay [25], [30],
singular SDEs with switching and stochastic partial differen-
tial equations [8], [33], [49]. It is of theoretic and practical
importance as well to study a CPS that involves multi-scale
processes [29] and/or stochastic stabilization [19], [28], [38],
which could be one of the many challenging problems in the
future development of the proposed CPS theory.

APPENDIX A. THE EQUIVALENCE OF THE STABILITY
CONDITIONS (81) AND (82)

Proof: It is observed that So(0) = 1,2, Sp(0) = S, Sp(Ar) =
2(F @ F) =: 2F, where So(At) and Sy(Ar) are the first and
the second derivatives of Sp with respect to A, respectively.
For At > 0, Taylor expansion produces

So(At) =12 + At S + (A1)°F. (90)

(81) = (82). Stability condition (81) for the linear SDE
eq%ivazlently means that there is a positive definite matrix P €
R™ > such that [6], [32]

STP+PS <. 1)
The Taylor series (90) gives
ST(ADPSy(AD)
= P+ At[STP+PS + At(S"PS + F" P + PF)
+ (A (STPF + FTPS) + (A’ FT PF]. (92)

Owing to (91), there is a pair of (sufficiently small) positive
numbers At and a = a(At) such that, V At € (0, Ar],

S (ADPSy(A1) < P+a At(STP+PS) < P.
This implies that stability condition (82) is satisfied for all
At € (0, At ].
(82) = (81). Notice that (92) can be rewritten as
ST (ADPS)(AL)
=P+ At[STP+PS
+ At(STPS + F'P + PF)
+(AD*(STPF + FTPS) + (A FT PF]
= P+ At[(S + AF) P+ P(S + ArF)
+ A (S + AtF) P(S + ArF) | 93)

Suppose_ that condition (82) holds for all At € (0, Ar],
where At is some positive number. Then, equivalently, there
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is a positive definite matrix P = P(Ar) € R xn? such
that [6], [32]
SE(ANPSy(AL) < P Y At € (0, A7]. (94)

Subs_titution of (93) into (94) produces (83) for all Ar €
(0, At ], or, by Schur complement,

(S + AF) P+ P(S + AtF) VAL (S + AtF)' P
VAL (S + AtF)' P —P
<0 95)

for all At € (0, At].

So (82) & (83) & (94) & (95). But (83) implies the
LMI (86). This equivalently means that matrix S + ArF
is Hurwitz, namely, inequality (87) holds for each At €
(0, Ar]. Recall that F = F ® F. Letting At — 0 in (86)
and thus (87) gives stability condition (81) for the SDE (69).
The proof is complete. ]

We remark that, by approach of mean-square stability
matrices [7], the upper bound At can be calculated by solving
either the spectral radius problem (82) or the LMI equiva-
lent (83). The former involves a polynomial of the stepsize At
whose order is some exponential function of n while the latter
remains as a cubic function of At for all n. The highly non-
linearity would introduce not only computational complexity
but also conservativeness to the results. We have reformulted
the highly nonlinear problem (82) into the LMI (83). This has
significantly simplified the approach of mean-square stability
matrices S and So(At). Moreover, the LMI (83) discloses the
inherent relationship between the stability conditions for the
Euler-Maruyama method and the SDE,

LMI (83) — LMI(91) as Ar— 0
while So(At) — I, ® I, = I and hence p(Sp(At)) —
1 as At — 0. It is also worth noting that, for a linear
n-dimensional SDE, our proposed numerical Lyapunov LMI
(74) of n x n dimensions is always a linear inequality of the
stepsize At while the LMI problem (83) involves not only a
cubic function of Az but also matrices of n% x n*> dimensions.

APPENDIX B. A NOVEL PROOF OF THE CONVERGENCE OF
THE EULER-MARUYAMA METHOD

Proof: For the convergence problem of the numerical method,
the implimentation ~/Ar £(k + 1) should be replaced by the
increment ABy = B((k 4+ 1)At) — B(k At) itself in SiDE (51),
that is,

dx (1)
= f(x(1)dr 4 g(x())dB(r) (96a)
dy(?)
= f(x(0)dt 4 g(x(t))dB(t) 1 € [t fr1)  (96b)
ACe(t, ) (D k + 1) = y(teg1) — Yt )
= —f (x4 ) — ¥ ) A
—g(x(t ) — ¥t ))ABy k€N (96¢)

with x(0) € R” and y(0) = 0, where t;y = kAt for all
k € N. According to the existing results ( [33], [38] as well as
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Lemma 1, SiDE (96) has a unique (right-continuous) solution
2t) = [T () y'())T, which belongs to M?([0, T]; R"9)
forall T > 0. In particular, [38, Lemma 3.2, p51] gives

E[ sup [x(®) ] < (1 +3x(0)P)TTH = ¢r. (97)

0<t<T

On the interval [#, tx+1] for every k € N,

Y(tkt1) — y(te)
et fi1
= / Fl(@))dr + / gx(1))dB(t)
1k 1k
—f (Xt ) = Yty D ALT—g(x(t, ) — y(t, ) ABy

f +
= / ) — et = v
I

et
+ / [g(x(1) — g(x(tx) — y(1x))]dB(t)
173
and, due to y(0) = 0,

L tj:—l
Y(tk+1) = Z/ [f @) = fxe(ty) — y(t)]de
j=0 "1
ko e
+ Z / - [8x(0) — gx (1) — y(1;))]dB(1)
j=0 "1

= /0 " [f () — f(x(ts) — y(22)) ] dt

Tk+1
+ /0 [g(x(1) — g(x(ts) — y(t:))]dB(), (98)

where t, ;= sup{tj : t; < t,j € N} forall+ > 0. By Cauchy-
Schwaz inequality, (98) produces

(DI

k1
/0 [f Ce()) — f(x(t:) — y(22))]dr

2

Tk+1
+ /O [g(x(1)) — g(x(t:) — y(1:))|dB(1)

Ti+1 2
< 2[lk+1/0 f (x(0)) = f (x(t) — y(2:))|“de

2:|
By the It6 isometry and the global Lipschitz condition (45),

E [y(tx+1)I*
Tk+1 2
<2 E /O [f Ce(1)) — £ (x(t,) — ()| "dt

Tk41
+ /0 [g(x(1)) — g(x(tx) — y(1:))]dB(1)

Tk+1
+241 E /0 |g(x (1)) — gx(ty) — y(t*))|2dt

Tkt1
<2200+ DE [ ) = x(0) 50
0
Since (96a) and (96b) give x(¢) — x(t,) = y(¢) — y(t,) for all
t > 0, this implies
2 2 flest 2
E |y(tk+0DI” < 2L (tk+1 + I)Ef ly(@)[~dz.  (99)
0
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For any T > 0, using the Itd formula, (45), (52) and (99), one
obtains

E |y(T)[?

T
=EyT)* +E / [2 Y7 ($)f (x(s)) + |g(x(s)[*]ds

T

T
|y(s)*ds + E f ly(s)|*ds

<2LX (T, +1) E/
0 Ty

T
+E /T [If () + g(x(s)]*]ds

T T
<Kr E / ly(s)[Pds + 2 L* E / Ix(s)|*ds,
0

Ty

where constant K7 = 2L2(T, + 1) v 1. This implies

IE[ sup |y(t)|2] §2L2/(;At]E[ sup Ix(tj+s)|2]ds

0<t<T 0<tj<T,

T
LKy / E[ sup o) |ar
0

0<s<t

T
< 2CrL2Af + KT/ ]E[ sup |y(s)|2] dt,
0 0<s<t
where C7 is given by (97) above. In view of the Gronwall
inequality (see, e.g., [33, Lemma 4.5.1, p.129] and [38, The-
orem 8.1, p.45]), this yields

0<t<T

E [ sup |y(t)|2:| <2CrL?*5 T A,

which completes the proof. g
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