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ABSTRACT This paper presents the cyber-physical system (CPS) of a numerical method (the widely-
used Euler-Maruyama method) and establishes a foundational theory of the CPSs of numerical methods for
stochastic differential equations (SDEs), which transforms the way we understand the relationship between
the numerical method and the underlying SDE. The CPS is a seamless integration of the SDE and the
numerical method, unlike in the literature where they are treated as separate systems linked by inequalities.
We formulate a new and general class of stochastic impulsive differential equations (SiDEs) that can serve as
a canonic form of the CPSs and establish a Lyapunov stability theory as a theoretic foundation for our class
of SiDEs. By the CPS approach, we show the equivalence and intrinsic relationship between the stability of
the SDE and the stability of the numerical method. As application of our proposed results, we develop the
CPS theory for linear systems and present the CPS Lyapunov inequality that is the necessary and sufficient
condition for mean-square stability of the CPS of the Euler-Maruyamamethod for linear SDEs. Our proposed
CPS theory initiates the study of systems numerics and provokes many open and interesting problems for
future work.
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INDEX TERMS Cyber-physical systems, exponential stability, impulsive systems, Lyapunov functions,
numerical methods, stochastic differential equations.

I. INTRODUCTION16

According to Newton’s second law of motion, we describe17

a mechanical system with differential equations. A classical18

example is the mathematical pendulum described by a pair19

of differential equations [5, pp.17-18], which also consti-20

tutes a typical Hamiltonian system derived from Lagrangian21

mechanics, see [5, p.8] and also [16, p.5]. Usually, physical22

laws are expressed by means of differential equations, and23

so are the models of dynamical systems in many disciplines,24

ranging from biology to finance. Such models play a cen-25

tral role in all scientific and engineering disciplines [10],26

[35]. A model may serve many purposes. The value of a27
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model depends on the model fidelity, where the model of a 28

dynamical system is said to have high fidelity if it accurately 29

describes the important properties of the system [10], [35]. 30

Studying the model of high fidelity gives us insight into how 31

the dynamical system will behave in the real world. Gener- 32

ally, a dynamical system, ranging from the motion of pollen 33

particles to themovement of stock price, is subject to intrinsic 34

and/or extrinsic noise in the real world [24], [26], [38]. Such 35

randomness should/must be taken into account by a model 36

of high fidelity if it matters, say, it affects some property of 37

the system that is of concern to the modelling. If we allow 38

for some noise in some coefficients of a differential equation, 39

we often obtain a more realistic model of the situation that 40

is able to describe the fluctuations observed in the physical 41

system. This leads to modelling with stochastic differential 42
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equations (SDEs). The study of SDEs can be seen to have43

started from the classical paper of Einstein that presented44

a mathematical connection between microscopic Brownian45

motion of particles and the macroscopic diffusion equation,46

and the interest in SDEs has grown enormously in the last few47

decades [1], [32], [42], [47].48

Stochastic systems described by SDEs have been inten-49

sively studied since stochastic modelling has come to play50

a significant role in science and engineering [2], [25], [27],51

[29], [30]. It is hardly possible to solve an SDE analyti-52

cally and have the exact solution of the SDE. For practical53

purposes, numerical approximations to the exact solution54

are usually obtained, which, called the numerical solutions,55

are discrete-time stochastic processes produced by numerical56

methods. Such numerical schemes, in the form of stochastic57

difference equations, are the translations of the SDE into58

discretization. Practically, computers are used to excute the59

numerical schemes and generate the numerical solutions of60

the SDE, from which one could learn and/or infer some61

dynamical properties of the underlying physical system [4],62

[20], [29], [49].63

As is well known, whenever a computer is used inmeasure-64

ment, computation, signal processing or control applications,65

the data, signals and systems involved are naturally described66

as discrete-time processes [3], [28], [29], [48]. It is worth not-67

ing that the SDE is the physical model which represents our68

knowledge of the physical system and a numerical method69

is a cyber model which is a representative of the physical70

model in computers, the cyber world. The physical model,71

namely, the SDE often refers to the phyiscal system (particu-72

larly, which is an engineered system) itself while its cyber73

couterpart, namely, the numerical method symbolizes it in74

the cyber world. In the age of networking and information75

technology, the cyber model plays a key role in understanding76

and controlling the underlying physical system, which not77

only envisions the approximate behaviour of the physical78

system [16], [20], [21], [22] but is also utilized to extract79

knowledge of the system from data [29], [48] and based on80

which control is designed and implemented [2], [3], [17],81

[28]. It is natural and imperative82

(I) to find out the relationship between the physical model83

(i.e., the SDE) and its cyber counterpart (i.e., the numer-84

ical method) of a dynamical system;85

(II) and to ensure that they both share some important86

dynamical properties such as stability, which is the con-87

cern of this study.88

The principal aim of this paper is to address the problems89

(I) and (II) of fundamental importance in the age of net-90

working and information technology. As a matter of fact, the91

fundamental importance of these problems has been recog-92

nized and they have been studied in a vast literature. Results93

that address the problems can be found in those many on94

convergence and stability of numerical methods for SDEs,95

where the SDE and the numerical method are treated as96

separate systems which are linked by inequalities in some97

moment sense on any finite time interval [21], [22], [31], 98

[33], [40], [44]. The ability of a cyber system to reproduce 99

the stability of its underlying physical system can be found 100

in a wealth of impressive results. For example, the problem 101

how to reproduce the stability of an SDE in its cyber coun- 102

terpart, which is called the test problem, has been studied 103

in [19], [22], [39], and [45]. The key question in a test problem 104

is [19] 105

(Q1) for what stepsizes 1t does the cyber system (the 106

numerical method) share the stability property of the 107

underlying physical system (the SDE)? 108

This naturally provokes the converse question [22], [39] 109

(Q2) does the stability of the cyber system (the numerical 110

method) for small stepsizes 1t imply that of the 111

underlying physical system (the SDE)? 112

These questions deal with asymptotic (t →∞) properties 113

and hence cannot be answered directly by applying tradi- 114

tional finite-time convergence results [22], [39]. Results that 115

answer questions (Q1) and (Q2) can be found in the literature. 116

For example, results for scalar linear systems were given 117

in [19] and [45]. For multi-dimensional systems with global 118

Lipschitz condition, Higham et al. [22] introduced a natural 119

finite-time strong convergence condition, which links a cyber 120

systemwith its underlying physical system by an inequality in 121

some moment sense over any finite time interval, and proved 122

that there is a sufficiently small positive 1t∗ such that, for 123

every1t ∈ (0,1t∗], the mean-square exponential stability of 124

the physical system is equivalent to that of its cyber counter- 125

part. Recently, Mao [39] developed new techniques to handle 126

the small pth moment (p ∈ (0, 1)) and showed that, under a 127

natural finite pth moment condition and a natural finite-time 128

convergence condition, the pth moment exponential stabil- 129

ity of the physical system is equivalent to that of its cyber 130

counterpart for every 1t ∈ (0,1t∗] with some sufficiently 131

small positive 1t∗. As is pointed out in [39], there are many 132

open problems in this research. For instance, although the 133

existence of the (sufficiently small) upper bound 1t∗ > 0 of 134

stepsizes has been shown [22], [39], it is severely limited by 135

the growth constant of the exponentially stable system, which 136

refers to the physical system and its cyber counterpart when 137

answering (Q1) and (Q2), respectively. Recall that, though 138

the growth and the rate constants are related, it is only the rate 139

constant that counts in the definition of exponential stability. 140

It appears that, either to reproduce or to imply the exponential 141

stability of the physical system by its cyber counterpart, the 142

condition imposed on the stepsizes which explicitly depends 143

on the growth constant could/should be relaxed [49]. This 144

could significantly improve the upper bound1t∗ of stepsizes 145

and facilitate the computation. 146

It is noted that the physical system (the SDE) and its cyber 147

counterpart (the numerical method) are bound by inequalities 148

in the literature [21], [22], [33], [40], [45], [49]. Nevertheless, 149

they remain as two systems, largely separate. This paper con- 150

structs the cyber-physical model of a dynamical system that is 151

a seamless, fully synergistic integration of the physical model 152
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(the SDE) and its cyber counterpart (the numerical method).153

Here we present a new and general class of stochastic impul-154

sive differential equations (SiDEs) which can be used to155

represent the integrated dynamics of the physical system and156

its cyber counterpart. Impulsive differential equations, also157

known as impulsive systems, have been studied for several158

decades [9], [18], [30], [43], [46], [53]. But these impulsive159

systems in the literature are just the physical subsystems in160

our general class of SiDEs, see Section II. Our proposed161

SiDEs composed of the physical and the cyber subsystems162

are formulated as a canonic form of cyber-physical systems163

(CPSs), which present a systematic framework for the study164

of CPSs [11]. The canonic form not only provides a holistic165

view but also reveals the intrinsic relationship between the166

physical and the cyber subsystems of the CPS. In the study167

of numerical analysis, we present the CPS of a numeri-168

cal method (the widely-used Euler-Maruyama method) for169

SDEs, which represents a seamless integration of the SDE170

and the numerical method in the form of our proposed SiDEs.171

The SDE and the numerical method are the physical sub-172

system and the cyber subsystem of the CPS, respectively.173

From the viewpoint of cybernetics [52], an essential prob-174

lem to study is whether and how the CPS reproduces some175

dynamical properties such as the stability of its physical or176

cyber subsystem since ‘the primary concern of cybernetics177

is on the qualitative aspects of the interrelations among the178

various components of a system and the synthetic behavior179

of the complete mechanism’ [50]. Using the terminology of180

CPSs, we rephrase the questions (Q1) and (Q2) as follows.181

(Q1) For what stepsizes 1t do the CPS and, hence, the182

cyber subsystem reproduce the stability property of183

the physical subsystem?184

(Q2) Does the stability of the cyber subsystem for small185

stepsizes1t imply that of the CPS and, hence, that of186

the physical subsystem?187

This paper aims to address the fundamental problems in188

the age of networking and information technology. In this189

contribution, we shall190

(i) propose a general class of SiDEs that is formulated191

to serve as a canonic form of the CPSs of numerical192

methods and construct a Lyapunov stability theory as a193

theoretic foundation for our proposed class of SiDEs;194

(ii) present the CPS model of a numerical method for SDEs195

that is a seamless, fully synergistic integration of the196

SDE and the numerical method;197

(iii) apply our established Lyapunov stability theory and198

prove positive results to the key questions (Q1) and199

(Q2), by which we expose the equivalence and inherent200

relationship between the stability of the SDE and the201

stability of the numerical method;202

(iv) develop, as application of our proposed results, the CPS203

theory for linear systems and present the CPS Lyapunov204

inequality that is the necessary and sufficient condition205

for mean-square exponential stability of the CPSs of the206

Euler-Maruyama method for linear SDEs.207

Our foundational theory of the CPSs for numerical meth- 208

ods transforms the way we understand the relationship 209

between a numerical method and its underlying dynamical 210

system. Moreover, we can theoretically prove that our pro- 211

posed method is essentailly better than the existing results. 212

To make the comparison, we significantly improve a key 213

result in the literature (see Section VI and Appendix A). 214

We also illustrate with numerical simulation the effectiveness 215

of our theoretic results as well as those in the literature. 216

This paper initiates the study of systems numerics and there 217

are many interesting and/or challenging problems for future 218

work. 219

II. A GENERAL CLASS OF STOCHASTIC IMPULSIVE 220

DIFFERENTIAL EQUATIONS 221

Throughout this paper, unless otherwise specified, we shall 222

employ the following notation. Let us denote by 223

(�,F , {Ft }t≥0,P) a complete probability space with a fil- 224

tration {Ft }t≥0 satisfying the usual conditions (i.e. it is right 225

continuous and F0 contains all P-null sets) and by E[·] the 226

expectation operator with respect to the probability mea- 227

sure. Let B(t) =
[
B1(t) · · · Bm(t)

]T be an m-dimensional 228

Brownian motion defined on the probability space. If x, y 229

are real numbers, then x ∨ y denotes the maximum of x 230

and y, and x ∧ y stands for the minimum of x and y. If A 231

is a vector or a matrix, its transpose is denoted by AT . If P 232

is a square matrix, P > 0 (resp. P < 0) means that P 233

is a symmetric positive (resp. negative) definite matrix of 234

appropriate dimensions while P ≥ 0 (resp. P ≤ 0) is a 235

symmetric positive (resp. negative) semidefinite matrix. Let 236

λM (·) and λm(·) be a matrix’s eigenvalues with maximum 237

and minimum real parts, respectively. Denote by | · | the 238

Euclidean norm of a vector and the trace (or Frobenius) norm 239

of a matrix. Denote by In the n × n identity matrix and by 240

0n×m the n× m zero matrix, or, simply, by 0 the zero matrix 241

of compatible dimensions. 242

Let C2,1(Rn
× R+;R+) be the family of all nonnegative 243

functions V (x, t) on Rn
× R+ that are continuously twice 244

differentiable in x and once in t . Let Mp([a, b];Rn) be the 245

family of Rn-valued adapted process {x(t) : a ≤ t ≤ b} such 246

thatE
∫ b
a |x(t)|

pdt <∞. LetN = {0, 1, 2, · · · } and4m
N be the 247

set of all independent and identically distributed sequences 248

{ξ (k) }k∈N with ξ (k) =
[
ξ1(k) · · · ξm(k)

]T and ξj(k) obeying 249

standard Gaussian distribution for j = 1, 2, · · · ,m. Sequence 250

{tk}k∈N is strictly increasing and satisfies t0 = 0, 0 < 1t := 251

infk∈N{tk+1 − tk} ≤ 1t := supk∈N{tk+1 − tk} < ∞, and, 252

hence, tk →∞ as k →∞. 253

Let us consider a stochastic impulsive system described by 254

SiDEs, which is composed of two subsystems, 255

dx(t) 256

= f (x(t), t)dt + g(x(t), t)dB(t) (1a) 257

dy(t) 258

= f̃ (x(t), y(t), t)dt + g̃(x(t), y(t), t)dB(t) 259

t ∈ [tk , tk+1) (1b) 260
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1(x(t−k+1), k + 1) := x(tk+1)− x(t
−

k+1)261

= hf (x(t
−

k+1), k + 1)+ hg(x(t
−

k+1), k + 1)ξ̄ (k + 1)262

(1c)263

1̃(x(t−k+1), y(t
−

k+1), k + 1) := y(tk+1)− y(t
−

k+1)264

= h̃f (x(t
−

k+1), y(t
−

k+1), k + 1)265

+ h̄g(x(t
−

k+1), y(t
−

k+1), k + 1)ξ̄ (k + 1)266

+ h̃g(x(t
−

k+1), y(t
−

k+1), k + 1)ξ (k + 1) k ∈ N (1d)267

with initial data x(0) ∈ Rn and y(0) ∈ Rq, where mea-268

surement noise ξ̄ ∈ 4n
N and simulation sequence ξ ∈ 4m

N269

are independent of each other; ξ̄ (k + 1) and ξ (k + 1) are270

independent of {x(t), y(t) : 0 ≤ t < tk+1}; f : Rn
× R+ →271

Rn, g : Rn
×R+→ Rn×m, hf : Rn

×N→ Rn, hg : Rn
×N→272

Rn×n, f̃ : Rn
×Rq
×R+→ Rq, g̃ : Rn

×Rq
×R+→ Rq×m,273

h̃f : Rn
× Rq

× N → Rq, h̄g : Rn
× Rq

× N → Rq×n
274

and h̃g : Rn
× Rq

× N → Rq×m are measurable functions.275

To study stability of the system, we assume that they obey276

f (0, t) = 0, g(0, t) = 0, hf (0, k) = 0, hg(0, k) = 0,277

f̃ (0, 0, t) = 0, g̃(0, 0, t) = 0, h̃f (0, 0, k) = 0, h̄g(0, 0, k) =278

0 and h̃g(0, 0, k) = 0 for all t ∈ R+ and k ∈ N and they279

satisfy the global Lipschitz conditions.280

Assumption 1: There is a constant L > 0 such that281

|f (x, t)− f (x̄, t)| ∨ |g(x, t)− g(x̄, t)| ∨ |hf (x, k)− hf (x̄, k)|282

∨|hg(x, k)− hg(x̄, k)| ≤ L|x − x̄|283

for all (x, x̄) ∈ Rn
× Rn, t ∈ R+ and k ∈ N; and there is a284

constant L̃ > 0 such that285

|f̃ (x, y, t)− f̃ (x̃, ỹ, t)| ∨ |g̃(x, y, t)− g̃(x̃, ỹ, t)|286

∨ |h̃f (x, y, k)− h̃f (x̃, ỹ, k)| ∨ |h̄g(x, y, k)− h̄g(x̃, ỹ, k)|287

∨ |h̃g(x, y, k)− h̃g(x̃, ỹ, k)| ≤ L̃(|x − x̃| ∨ |y− ỹ|)288

for all (x, y, x̃, ỹ) ∈ Rn
× Rq

× Rn
× Rq, t ∈ R+ and k ∈ N.289

It is the intersection, interaction and interrelation of the290

physical system and its cyber counterpart [3], [10], [11], [22],291

[29], [34], [48] in the age of networking and information292

technology that motivate our study of stochastic impulsive293

system (1), which is formulated as a canonic form of CPSs294

that is a seamless, fully synergistic integration of the physical295

system and its cyber counterpart. It is observed in Section IV296

that the CPS of a numerical method for SDEs is a special case297

of (1) in which there is no impulse imposed on the physical298

subsystem (1a). We delibrately include the impulse (1c) and299

use the impulsive subsystem (1a,1c) in SiDE (1) to emphasize300

that the impulsive systems in the literature [9], [18], [30],301

[43], [46], [53] are just the physical subsystems (1a,1c) in302

our general class of SiDEs. We construct a systematic inte-303

gration (1) of two impulsive subsystems in marked contrast304

to the impulsive systems in the literature, which highlights305

the distinction between our new class for the CPS models and306

those existing in the literature.307

Remark 1: It should be noticed that, usually, the impulse308

interval of the subsystem x(t) is a multiple of that of the sub-309

system y(t) since the former is actually the interval between310

two consecutive physical impulses imposed on the physical 311

system x(t) while the latter the stepsize of the numerical 312

method, see Section IV. In such a specific case of SiDE (1) 313

in which tk = k1t and 1t is the stepsize of the numerical 314

method, functions hf (·, k), hg(·, k) and h̄g(·, ·, k) could be 315

nonzero only if k is a multiple of integer k0 > 1; otherwise, 316

hf (·, k) = 0, hg(·, k) = 0 and h̄g(·, ·, k) = 0, where k01t is 317

the interval between two consecutive physical impulses. 318

Clearly, the trivial solution is the equilibrium of system (1). 319

For a function V ∈ C2,1(Rn
× R+;R+), the infinitesimal 320

generator L V : Rn
× R+ → R associated with system (1a) 321

is defined as 322

L V (x, t) = Vt (x, t)+ Vx(x, t)f (x, t) 323

+
1
2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
, (2) 324

where Vt (x, t) =
∂V (x,t)
∂t , Vx(x, t) =

[
∂V (x,t)
∂x1

· · ·
∂V (x,t)
∂xn

]
325

and Vxx(x, t) =
[
∂2V (x,t)
∂xi ∂xj

]
n×n

. Similarly, for a function Ṽ ∈ 326

C2,1(Rq
×R+;R+), the generator L̃ Ṽ : Rn

×Rq
×R+→ R 327

associated with system (1b) is defined as 328

L̃ Ṽ (x, y, t) = Ṽt (y, t)+ Ṽy(y, t)f̃ (x, y, t) 329

+
1
2
trace

[
g̃T (x, y, t)Ṽyy(y, t)g̃(x, y, t)

]
. 330

(3) 331

Let z(t) = [xT (t) yT (t)]T ∈ Rn+q, C = [In 0n×q] and 332

D = [0q×n Iq]. Then x(t) = Cz(t) and y(t) = Dz(t) for all 333

t ≥ 0. The stochastic impulsive system (1) can be written in 334

a compact form 335

dz(t) 336

= F(z(t), t)dt + G(z(t), t)dB(t) t 6= tk (4a) 337

1z(z(t
−

k ), k) 338

:= z(tk )−z(t
−

k ) = HF (z(t
−

k ), k) 339

+ H̄G(z(t
−

k ), k)ξ̄ (k)+ HG(z(t
−

k ), k)ξ (k) k ∈ N 340

(4b) 341

with initial value z(0) = [x(0)T y(0)T ]T ∈ Rn+q, where 342

functions F : Rn+q
× R+ → Rn+q, G : Rn+q

× R+ → 343

R(n+q)×m, HF : Rn+q
× N → Rn+q, H̄G : Rn+q

× N → 344

R(n+q)×n and HG : Rn+q
× N→ R(n+q)×m are given by 345

F(z, t) =
[

f (Cz, t)
f̃ (Cz,D z, t)

]
, G(z, t) =

[
g (Cz, t)

g̃ (Cz,D z, t)

]
, 346

HF (z, k) =
[

hf (Cz, k)
h̃f (Cz,Dz, k)

]
, 347

H̄G(z, k) =
[

hg (Cz, k)
h̄g (Cz,D z, k)

]
, 348

HG(z, k) =
[

0n×m
h̃g (Cz,D z, k)

]
. 349

The functions in stochastic impulsive system (4) obey 350

F(0, t) = 0, G(0, t) = 0, HF (0, k) = 0, H̄G(0, k) = 0 and 351

HG(0, k) = 0 for all t ∈ R+ and k ∈ N. And they satisfy 352
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the global Lipschitz condition Assumption 1, that is, there is353

a constant Lz > 0 such that354

|F(z, t)− F(z̃, t)| ∨ |G(z, t)− G(z̃, t)|355

∨ |HF (z, k)− HF (z̃, k)| ∨ |H̄G(z, k)− H̄G(z̃, k))|356

∨ |HG(z, k)− HG(z̃, k))| ≤ Lz|z− z̃| (5)357

for all (z, z̃) ∈ Rn+q
× Rn+q, t ∈ R+ and k ∈ N. It is easy358

to obtain the following result on existence and uniqueness of359

solutions for SiDE (4) (viz., system (1)).360

Lemma 1: Under Assumption 1, there exists a unique361

(right-continuous) solution z(t) to SiDE (4) on t ≥ 0 and the362

solution belongs to M2([0,T ];Rn+q) for all T ≥ 0.363

Proof: Since system (4) satisfies the global Lipschitz con-364

dition (5), according to [38, Theorem 3.1, p.51], there exists365

a unique solution z(t) to SiDE (4) on t ∈ [t0, t1) and the366

solution belongs to M2([t0, t1);Rn+q). Note that ξ̄ (k + 1)367

and ξ (k + 1) are independent of {z(t) : t ∈ [t0, t1)}. By virtue368

of continuity of functions HF (z, ·), H̄G(z, ·) and HG(z, ·) with369

respect to z, there exists a unique solution z(t1) to (4) at t = t1.370

Moreover, (4b) and (5) imply that the second moment of z(t1)371

is finite. And, again, according to [38, Theorem 3.1, p51], one372

has that there is a unique right-continuous solution z(t) to (4)373

on [t0, t2) and the solution belongs to M2([t0, t];Rn+q) for374

all t ∈ [t0, t2). Recall that 0 = t0 < t1 < t2 < · · · < tk < · · ·375

and tk →∞ as k →∞. By induction, one derives that there376

exists a unique (right-continuous) solution z(t) to SiDE (4)377

for all t ≥ 0 and the solution belongs to M2([0,T ];Rn+q)378

for all T ≥ 0. �379

Now that we have shown the existence and uniqueness of380

solutions to SiDE (4), we shall further study the stability of381

the solution to the SiDE. Let us introduce the definitions of382

exponential stability for SiDE (4).383

Definition 1: [38, Definition 4.1, p.127] SiDE (4) is said384

to be pth (p > 0) moment exponentially stable if there is a385

pair of positive constants K and c such that386

E|z(t)|p ≤ K |z(0)|pe−ct387

for all t ≥ 0, which leads to388

lim sup
t→∞

1
t
ln(E|z(t)|p) ≤ −c < 0389

for all z(0) ∈ Rn+q.390

Definition 2: [38, Definition 3.1, p.119] SiDE (4) is said391

to be almost surely exponentially stable if392

lim sup
t→∞

1
t
ln |z(t)| < 0393

for all z(0) ∈ Rn+q.394

III. LYAPUNOV STABILITY THEORY FOR THE GENERAL395

CLASS OF IMPULSIVE SYSTEMS396

Wededicate this section to establishing by Lyapunovmethods397

a stability theory for our proposed general class of SiDEs. The398

general class of SiDEs is formulated as a canonic form of399

CPSs and we shall develop a foundational theory for stability400

of CPSs, which will be applied to the CPS of a numerical 401

method for SDEs. In the previous section, for simplicity, the 402

compact form (4) of system (1) is employed to study the 403

existence and uniqueness of solutions to the SiDEs. Now 404

we exploit the structure of SiDE (4) which is composed of 405

subsystems (1a,1c) and (1b,1d) and show the stability of the 406

subsystems as well as that of the whole system (4). 407

Theorem 1: Suppose that Assumption 1 holds. Let V ∈ 408

C2,1(Rn
× R+;R+) and Ṽ ∈ C2,1(Rq

× R+;R+) be a pair 409

of candidate Lyapunov functions for the subsystems (1a,1c) 410

and (1b,1d), respectively, which satisfy 411

c1|x|p ≤ V (x, t) ≤ c2|x|p, (6a) 412

c̃1|y|p ≤ Ṽ (y, t) ≤ c̃2|y|p (6b) 413

for all (x, y, t) ∈ Rn
×Rq

×R+ and some positive constants 414

p, c1, c2, c̃1, c̃2. Assume that there are positive constants α, 415

α̃1, α̃2, β, β̃1, β̃2 such that 416

L V (x, t) 417

≤ −αV (x, t), (7a) 418

L̃ Ṽ (x, y, t) ≤ α̃1V (x, t)+ α̃2Ṽ (y, t), 419

t ∈ [tk , tk+1) (7b) 420

E
[
V (x +1(x, k + 1), t)

∣∣x] ≤ βV (x, t), (7c) 421

E
[
Ṽ (y+ 1̃(x, y, k + 1), t)

∣∣x, y] 422

≤ β̃1V (x, t)+ β̃2Ṽ (y, t) (7d) 423

for all (x, y, t) ∈ Rn
× Rq

× R+ and k ∈ N. The SiDE (4) 424

is pth moment exponentially stable provided that the impulse 425

time sequence {tk}k∈N satisfies 426

lnβ
α

< 1t ≤ 1t <
− ln β̃2
α̃2

. (8) 427

Proof: According to Lemma 1, that Assumption 1 holds 428

implies there exists a unique solution to SiDE (1). Let us fix, 429

for simplicity only, any z(0) = [x(0)T y(0)T ]T ∈ Rn+q
430

and show the stability of the solution. The proof is rather 431

technical so we devide it into five steps, in which we will 432

show: 1) the exponential stability of x(t); 2) some propeties 433

of y(t); 3) the exponential stability of y(t) when |x(0)| = 0; 434

4) the exponential stability of y(t) when |x(0)| > 0; 5) the 435

exponential stability of z(t). Some ideas and techniques in this 436

proof are derived from our results on input-to-state stability 437

(ISS) of SDEs [25, Theorem 3.1 and Remark 3.1], where x(t) 438

is treated as disturbance in the subsystem y(t). 439

Step 1: Note that (6a), (7a) and (7d) as well as lnβ < α1t 440

from (8) are a specific case of conditions (i), (ii) and (iii) of 441

[30, Theorem 3] with λ1 = γ1 = · · · = γm̄ = 0. This implies 442

EV (x(t), t) ≤ V ((0), 0) e−ᾱt ∀ t ≥ 0 (9) 443

where ᾱ ∈ (0, α− ā) and ā ∈ (0, α) with lnβ < ā1t < α1t . 444

By condition (6a), subsystem x(t), which is part (1a,1c) of the 445

system (1), is pthmoment exponentially stable (with Lypunov 446

exponent no larger than −ᾱ). 447
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Step 2: Let us consider the dynamics of subsystem y(t),448

which is the other part (1b,1d) of system (1). By Lemma 1449

and the Itô formula, one can derive that450

EṼ (y(t), t) = EṼ (y(t̃), t̃)451

+

∫ t

t̃
EL̃ Ṽ (x(s), y(s), s)ds (10)452

for all tk ≤ t̃ ≤ t < tk+1 and k ∈ N while condition (7b)453

produces454

EL̃ Ṽ (y(t), t) ≤ α̃1EV (x(t), t)+ α̃2EṼ (y(t), t) (11)455

on [tk , tk+1) for all k ∈ N. This means that EṼ (y(t), t)456

is right-continuous on [0,∞) and could only jump at457

impulse times {tk+1}k∈N. Notice condition (8) implies that458

β̃2eα̃21t < 1 and there is a pair of positives δ ∈ (0, 1 − β̃2)459

and δ̄ ∈ (0, ᾱ] sufficiently small for460

(β̃2 + δ)e(α̃2+δ+δ̄)1t ≤ 1. (12)461

It is easy to observe from (11) that462

EL̃ Ṽ (y(t), t) ≤ (α̃2 + δ)EṼ (y(t), t) (13)463

for such t ∈ [tk , tk+1) and k ∈ N that464

EṼ (y(t), t) ≥
α̃1

δ
EV (x(t), t).465

Similarly, one can observe from (7d) that466

EṼ (y(tk+1), tk+1) ≤ (β̃2 + δ)EṼ (y(t−k+1), t
−

k+1) (14)467

whenever468

EṼ (y(t−k+1), t
−

k+1) ≥
β̃1

δ
EV (x(t−k+1), t

−

k+1).469

Step 3: If x(0) = 0 (namely, by (6a), V (x(0), 0) = 0),470

then (9) gives EV (x(t), t) = 0 for all t ≥ 0. Using (7b), (10)471

and (11), one obtains472

EṼ (y(t), t) ≤ Ṽ (y(0), 0)+ α̃2
∫ t

0
EṼ (y(s), s)ds (15)473

for all t ∈ [0, t1). This, by the Gronwall inequality ( [33,474

Lemma 4.5.1, p129], [38, Theorem 8.1, p45]), implies475

EṼ (y(t), t) ≤ Ṽ (y(0), 0) eα̃2 t ∀ t ∈ [0, t1) (16)476

and, particularly, EṼ (y(t−1 ), t−1 ) ≤ Ṽ (y(0), 0) eα̃2 t1 . Condi-477

tions (7d) and (12) produce478

EṼ (y(t1), t1) ≤ β̃2EṼ (y(t−1 ), t−1 )479

≤ β̃2 Ṽ (y(0), 0) eα̃2 t1480

< Ṽ (y(0), 0) e−(α̃2+δ+δ̄)1t eα̃2 t1481

≤ Ṽ (y(0), 0)e−(δ+δ̄)1t . (17)482

One can repeat the derivations (15)-(17) over the interval483

between any two consecutive impulse times and obtain484

EṼ (y(t), t) ≤ Ṽ (y(0), 0)eα̃2 (t−tk )−k(δ+δ̄)1t (18)485

for all t ∈ [tk , tk+1) and k ∈ N. This implies486

EṼ (y(t), t) ≤ e(α̃2+δ+δ̄)1t Ṽ (y(0), 0) e−(δ+δ̄) t (19)487

for all t ≥ 0. By condition (6b), subsystem y(t) is pth moment 488

exponentially stable (with Lyapunov exponent no larger than 489

−(δ + δ̄)) when x(0) = 0. 490

Step 4: Let us show the exponential stability of y(t) when 491

|x(0)| > 0, namely, V (x(0), 0) ≥ c1|x(0)| > 0. Recall 492

that both EV (x(t), t) and EṼ (y(t), t) are right-continuous on 493

[0,∞), which could only jump at impulse times {tk+1}k∈N. 494

Define a function v̄ : R+→ R as 495

v̄(t) =
(α̃1 ∨ β̃1)

δ
EV (x(t), t)− EṼ (y(t), t) (20) 496

for all t ∈ [0,∞) with initial value 497

v̄(0) =
(α̃1 ∨ β̃1)

δ
V (x(0), 0)− Ṽ (y(0), 0). 498

Due to the properties of EV (x(t), t) and EṼ (y(t), t), v̄(t) is 499

right-continuous on [0,∞) and could only jump at impulse 500

times {tk+1}k∈N. Given any t ≥ 0, either v̄(t) ≥ 0 or v̄(t) < 501

0. So the interval [0,∞) is broken into a disjoint union of 502

subsets T+ ∪ T−, where 503

T+ = {t ≥ 0 : v̄(t) ≥ 0}, T− = {t ≥ 0 : v̄(t) < 0}. (21) 504

From (9), it is easy to have 505

EṼ (y(t), t) ≤
(α̃1 ∨ β̃1)

δ
EV (x(t), t) 506

≤
(α̃1 ∨ β̃1)

δ
V (x(0), 0) e−ᾱt ∀ t ∈ T+. (22) 507

Due to V (x(0), 0) > 0, one has v̄(0) > 0 if Ṽ (y(0), 0) = 0; 508

othewise, one can choose a sufficiently small δ such that 509

0 < δ < (α̃1 ∨ β̃1)
V (x(0), 0)

Ṽ (y(0), 0)
510

and, hence, v̄(0) > 0. Without loss of generality, one can 511

assume that v̄(0) > 0. Due to the right-continuity, v̄(t) > 0 on 512

[0, ε) for some ε > 0, i.e., [0, ε) ⊂ T+. If T+ = [0,∞) 513

(namely, T− = ∅), by (22), the proof is complete. Otherwise 514

(namely, T− 6= ∅), let us consider the right-continuous pro- 515

cess EṼ (y(t), t) on the subset T−. Due to the right-continuity 516

of v̄(t) on [0,∞), for any t̄ ∈ T−, there exists an ordered pair 517

τ1(t̄) < τ2(t̄) such that 518

t̄ ∈
(
τ1(t̄ ), τ2(t̄ )

)
⊂ T−, (23) 519

where τ1(t̄) = inf{τ ≤ t̄ : v̄(τ ) < 0,∀τ ∈ [ τ , t̄ ]} and 520

τ2(t̄) = sup{τ̄ > t̄ : v̄(τ ) < 0,∀τ ∈ [ t̄, τ̄ )}. For convenience, 521

we also write τ1 = τ1(t̄) and τ2 = τ2(t̄) where there is no 522

ambiguity. Given any t̄ ∈ T−, the interval [τ1, τ2) falls into 523

one of the three categories: 524

(C0) There is no impulse time on [τ1, τ2). 525

(C1) There is exactly one impulse time on [τ1, τ2). 526

(C2) There are at least two impulse times on [τ1, τ2). 527

Each of them is considered as follows. 528

(C0) There is k ∈ N such that tk < τ1 < τ2 ≤ tk+1. Since 529

v̄(t) is right-continuous and could only jump at impulse times 530
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{tk+1}k∈N, that tk < τ1 < τ2 ≤ tk+1 implies that v̄(t) is531

continuous at t = τ1 and, by (23), v̄(τ1) = 0. This means532

EṼ (y(τ1), τ1) =
(α̃1 ∨ β̃1)

δ
EV (x(τ1), τ1)533

≤
(α̃1 ∨ β̃1)

δ
V (x(0), 0) e−ᾱτ1 . (24)534

Using the Gronwall inequality, one can derive from (10), (11)535

and (13) that536

EṼ (y(t), t) ≤ e(α̃2+δ) (t−τ1)EṼ (y(τ1), τ1) (25)537

for all t ∈ [τ1, τ2). Notice that τ2 − τ1 < tk+1 − tk ≤ 1t .538

Substitution of (24) into (25) yields, for all t ∈ [τ1, τ2),539

EṼ (y(t), t) < e(α̃2+δ)1tEṼ (y(τ1), τ1)540

≤
(α̃1 ∨ β̃1)

δ
e(α̃2+δ)1t V (x(0), 0) e−ᾱτ1541

≤
(α̃1 ∨ β̃1)

δ
e(ᾱ+α̃2+δ)1t V (x(0), 0) e−ᾱt . (26)542

(C1) There is exactly one impulse time tk on [τ1, τ2), where543

k is some positive integer since [0, ε) ⊂ T+. There are two544

cases: (C1a) τ1 < tk and (C1b) τ1 = tk .545

(C1a) There is k ≥ 1 such that tk−1 < τ1 < tk < τ2 ≤546

tk+1. As above, this means that v̄(t) is continuous on t =547

τ1 and v̄(τ1) = 0. So (24) holds at t = τ1 and (26) for all548

t ∈ [τ1, tk ). But, from (14) and (12),549

EṼ (y(tk ), tk ) ≤ (β̃2 + δ)EṼ (y(t−k ), t
−

k )550

≤ (β̃2 + δ)e(α̃2+δ) (tk−τ1)EṼ (y(τ1), τ1)551

≤ (β̃2 + δ)e(α̃2+δ)1tEṼ (y(τ1), τ1)552

≤ e−δ̄ 1tEṼ (y(τ1), τ1). (27)553

Using the Gronwall inequality, one can derive from inequal-554

ities (10), (11), (13) and (27) that555

EṼ (y(t), t) ≤ e(α̃2+δ)(t−tk )EṼ (y(tk ), tk )556

≤ e(α̃2+δ)1tEṼ (y(tk ), tk )557

≤ e(α̃2+δ−δ̄)1tEṼ (y(τ1), τ1) ∀ t ∈ [tk , τ2).558

(28)559

Therefore, when τ1 < tk < τ2, combination of (24), (26)560

and (28) imply that (26) holds for all t ∈ [τ1, τ2).561

(C1b) By the definition of τ1 as well as the right-continuity562

of v̄(t), that τ1 = tk implies v̄(t−k ) ≥ 0 and hence563

EṼ (y(t−k ), t
−

k ) ≤
(α̃1 ∨ β̃1)

δ
EV (x(t−k ), t

−

k ). (29)564

Inequalities (7d), (9) and (29) produce565

EṼ (y(τ1), τ1) = EṼ (y(tk ), tk )566

≤
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
)
EV (x(t−k ), t

−

k )567

≤
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
)
V (x(0), 0) e−ᾱτ1568

(30)569

and, therefore, 570

EṼ (y(t), t) 571

≤ e(α̃2+δ) (t−τ1)EṼ (y(τ1), τ1) 572

≤
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
)
e(α̃2+δ) (t−τ1) EV (x(τ−1 ), τ−1 ) 573

≤
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
)
e(α̃2+δ)1t V (x(0), 0) e−ᾱτ1 574

≤
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
)
e(ᾱ+α̃2+δ)1t V (x(0), 0) e−ᾱt 575

for all t ∈ [τ1, τ2). This combined with (26) yields 576

EṼ (y(t), t) ≤ K V (x(0), 0) e−ᾱt ∀ t ∈ [τ1, τ2) (31) 577

when there is only one impulse time on the interval [τ1, τ2), 578

where K is a positive constant 579

K =
( (α̃1 ∨ β̃1)

δ
∨
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
))
e(ᾱ+α̃2+δ)1t . 580

(C2) There are at least two impulse times on [τ1, τ2). For 581

any two consecutive impulse times tk and tk+1 on [τ1, τ2), 582

using the reasoning as above, one can derive that 583

EṼ (y(t), t) ≤ e(α̃2+δ) (t−tk ) EṼ (y(tk ), tk ) (32) 584

for all t ∈ [tk , tk+1) and then 585

EṼ (y(tk+1), tk+1) ≤ (β̃2 + δ)EṼ (y(t−k+1), t
−

k+1) 586

≤ (β̃2 + δ) e(α̃2+δ) (tk+1−tk ) EṼ (y(tk ), tk ) 587

≤ (β̃2 + δ) e(α̃2+δ)1t EṼ (y(tk ), tk ) 588

≤ e−δ̄ 1tEṼ (y(tk ), tk ). (33) 589

Denote by tk < · · · < tk̄+1 < · · · the impulse times on 590

[τ1, τ2), where k̄ ≥ k ≥ 1. Let us consider EṼ (y(t), t) on the 591

interval [tk , τ2). Using (32) and (33), one obtains 592

EṼ (y(t), t) ≤ e(α̃2+δ) (t−tk̄ )−(k̄−k) δ̄ 1t EṼ (y(tk ), tk ) 593

for all t ∈ [tk̄ , tk̄+1 ∧ τ2) and, therefore, 594

EṼ (y(t), t) ≤ e(α̃2+δ+δ̄)1t− δ̄ (t−tk ) EṼ (y(tk ), tk ) (34) 595

for all t ∈ [tk , τ2). Recall that 0 < δ̄ ≤ ᾱ and 0 ≤ tk − τ1 ≤ 596

1t . Again, there are two cases: τ1 < tk and τ1 = tk . In the 597

case where τ1 < tk , from (24), (27) and (34), one has 598

EṼ (y(t), t) 599

≤ e(α̃2+δ+δ̄)1t− δ̄ (t−tk ) e−δ̄ 1tEṼ (y(τ1), τ1) 600

≤
(α̃1 ∨ β̃1)

δ
e(α̃2+δ+δ̄)1t V (x(0), 0) e−(ᾱτ1+δ̄ 1t−δ̄tk )−δ̄ t 601

≤
(α̃1 ∨ β̃1)

δ
e(α̃2+δ+δ̄)1t V (x(0), 0) e−δ̄ (τ1+1t−tk )−δ̄ t 602

≤
(α̃1 ∨ β̃1)

δ
e(α̃2+δ+δ̄)1t V (x(0), 0) e−δ̄ t (35) 603

for all t ∈ [tk , τ2) and then, by (26), 604

EṼ (y(t), t) 605
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≤
(α̃1 ∨ β̃1)

δ
e(α̃2+δ+δ̄)1t V (x(0), 0) e−δ̄ t (36)606

for all t ∈ [τ1, τ2). In the other case where τ1 = tk ,607

substitution of (30) into (34) gives608

EṼ (y(t), t) ≤
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
)

609

·e(α̃2+δ+δ̄)1tV (x(0), 0) e−(ᾱ−δ̄) τ1− δ̄ t610

≤
(
β̃1 +

(α̃1 ∨ β̃1)
δ

β̃2
)
e(α̃2+δ+δ̄)1t V (x(0), 0) e−δ̄ t611

(37)612

on t ∈ [τ1, τ2). Combination of (36) and (37) yields613

EṼ (y(t), t) ≤ KV (x(0), 0) e−δ̄ t (38)614

for all t ∈ [τ1, τ2) on which there are at least two impulse615

times, where K is the positive constant given by (31). From616

inequlities (26), (31) and (38), one has617

EṼ (y(t), t) ≤ KV (x(0), 0) e−δ̄ t ∀ t ∈ T−. (39)618

Combining (22) and (39), one can conclude that619

EṼ (y(t), t) ≤ KV (x(0), 0) e−δ̄ t ∀ t ≥ 0. (40)620

By condition (6b), this means that subsystem y(t) is pth621

moment exponentially stable (with Lyapunov exponent no622

larger than −δ̄) when |x(0)| > 0.623

Step 5: We have shown the pth moment exponential sta-624

bility of x(t) by (9) and that of y(t) by (19) and (40) when625

|x(0)| = 0 and |x(0)| > 0, respectively.626

Note that z(t) = [xT (t) yT (t)]T and, therefore, |z(t)|2 =627

|x(t)|2 + |y(t)|2 for all t ≥ 0. It is easy to see that628

|z(t)|p = (|z(t)|2)p/2 = (|x(t)|2 + |y(t)|2)p/2629

≤ kp(|x(t)|p + |y(t)|p), (41)630

where kp = 1 when 0 < p < 2 and kp = 2(p−2)/2 if p ≥ 2.631

In the case where |x(0)| = 0 and E|x(t)|p = 0 for all t ≥ 0,632

by (19) and (41) as well as |z(0)| = |y(0)|,633

E|z(t)|p ≤ kpE|y(t)|p634

≤
kp
c̃1
e(α̃2+δ+δ̄)1t Ṽ (y(0), 0) e−(δ+δ̄) t635

≤
kpc̃2
c̃1

e(α̃2+δ+δ̄)1t |z(0)|pe−(δ+δ̄) t (42)636

for all t ≥ 0 . In the general case where |x(0)| > 0, by (6),637

(9), (40) and (41),638

E|z(t)|p ≤
kpc2
c1
|x(0)|p

(
(1 ∨ β) e−ᾱt + K e−δ̄ t

)
639

≤ K̄p|z(0)|pe−δ̄ t (43)640

for all t ≥ 0, where K is the positive constant given by (31)641

and K̄p is a positive constant642

K̄p =
kp c2
c1

((1 ∨ β)+ K ).643

So (42) and (43) mean that system (4), or say, system (1) is 644

pth moment exponentially stable (with Lyapunov exponent 645

no larger than −δ̄). � 646

Remark 2: Notice that, in Theorem 1, the continuous 647

dynamics of subsystem x(t) stabilizes the subsystem, though 648

the discrete one could destabilize it, while the discrete dynam- 649

ics of subsystem y(t) stabilizes the subsystem, though the 650

continuous one could destabilize it, which results in the expo- 651

nential stability of the both subsystems and hence that of 652

the whole system z(t) = [xT (t) yT (t)]T . Similarly, one can 653

obtain a stability criterion for the case where the impulses sta- 654

bilize the physical subsystem x(t) as the continuous dynamics 655

could destabilize it (see [30, Theorem 2]) while the conditions 656

on the subsystem y(t) are kept the same as those in Theorem 1. 657

Furthermore, under Assumption 1, we have the following 658

result on the almost sure stability of system (1). 659

Theorem 2: If Assumption 1 holds, then the pth (p > 0) 660

moment exponential stability of SiDE (4) (i.e., system (1)) 661

implies that it is also almost surely exponentially stable. 662

The proof is similar to that of [38, Theorem 4.2, p.128] and, 663

therefore, is omitted. 664

IV. THE CYBER-PHYSICAL SYSTEMS OF NUMERICAL 665

METHODS FOR DIFFERENTIAL EQUATIONS 666

In this section, we address the problem (I) of fundamen- 667

tal importance. We compose a hybrid model in the form 668

of our proposed SiDE (1) to represent the tight integration 669

of the physical system (the SDE) and its cyber counterpart 670

(the numerical method). This systematic representation is 671

expressed by our canonic form of CPS models. 672

Let us consider a physical system described by the SDE 673

dx(t) = f (x(t))dt + g(x(t))dB(t) ∀ t ≥ 0 (44) 674

with initial value x(0) ∈ Rn, where f : Rn
→ Rn and g : 675

Rn
→ Rn×m satisfy the global Lipschitz condition 676

|f (x)− f (x̄)| ∨ |g(x)− g(x̄)| ≤ L|x − x̄| (45) 677

for all (x, x̄) ∈ Rn
×Rn as well as f (0) = 0 and g(0) = 0 for 678

study of the stability problem. Given a fixed parameter θ ∈ 679

[0, 1], the following numerical scheme for SDE (44) is called 680

the stochastic theta method [19], [21], [39], [40] 681

Xk+1 = Xk + (1− θ )f (Xk )1t + θ f (Xk+1)1t 682

+ g(Xk )
√
1t ξ (k + 1) ∀ k ∈ N (46) 683

with initial value X0 = x(0), where 1t > 0 is the constant 684

stepsize and
√
1t ξ (k + 1) is the implementation of the 685

increment 1Bk = B((k + 1)1t) − B(k1t). The stochastic 686

thetamethod for SDEs is a set of popular algorithms [20], [33] 687

employed to describe and compute the physical dynamics 688

(44) in the techniques driven by software modelling and sim- 689

ulation tools. The numerical method (46) is in essence a cyber 690

model of the physical system (44), which is a translation 691

of (44) into discretization, the language in computers, and 692

represents the physical dynamics in the cyber world. 693

When θ = 0, the numerical scheme (46) gives the widely- 694

used Euler-Maruyamamethod. The Euler-Maruyamamethod 695
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applied to SDE (44) computes approximations Xk ≈ x(tk ) by696

setting X0 = x(0) and forming697

Xk+1 = Xk + f (Xk )1t + g(Xk )
√
1t ξ (k + 1) (47)698

for all k ∈ N, where tk = k1t . Stochastic difference699

equations (47), also known as discrete-time stochastic sys-700

tems [28], have been intensively studied over the past a few701

decades in the age of computers. In practice, it is natural to702

form and use some continuous-time extension of the discrete703

approximations {Xk}k∈N such as [21], [40]704

X (t) =
∞∑
k=0

Xk1[tk ,tk+1)(t) ∀ t ≥ 0 (48)705

where 1T is the indicator function of set T . This is a simple706

step process of the equidistant Euler-Maruyama approxima-707

tions so its sample paths are continuous on (tk , tk+1) for each708

k ∈ N and right-continuous on [0,∞).709

This paper considers the widely-used Euler-Maruyama710

method (47)-(48) the cyber system, which is virtually a rep-711

resentative of the physical system (44) in the cyber world.712

Other numerical schemes, or say, other translations can also713

be employed to represent the physical system in the cyber714

world in future work. This section is to discover the inherent715

relationship between a physical system and its cyber couter-716

part. Consider the process y(t) of difference between the exact717

solution x(t) of the physical system (44) and the numerical718

solution X (t) by its cyber counterpart (47)-(48)719

y(t) = x(t)− X (t) ∀ t ≥ 0 (49)720

with initial value y(0) = x(0)− X (0) = 0. Notice that x(t) is721

a process of continuous paths and X (t) a simple step process.722

This implies that y(t) is right-continuous on [0,∞) and could723

only jump at {tk+1}k∈N. According to the scheme (47)-(48),724

the jump of y(t) at each t = tk+1 for k ∈ N gives725

y(tk+1)− y(t
−

k+1)726

= x(tk+1)− X (tk+1)−
(
x(t−k+1)− X (t

−

k+1)
)

727

= X (t−k+1)− X (tk+1) = X (tk )− X (tk+1)728

= −f (Xk )1t − g(Xk )
√
1t ξ (k + 1)729

= −f (X (t−k+1))1t − g(X (t
−

k+1))
√
1t ξ (k + 1)730

= −f (x(t−k+1)− y(t
−

k+1))1t731

− g(x(t−k+1)− y(t
−

k+1))
√
1t ξ (k + 1) (50)732

since X (t) = x(t) − y(t) = Xk for all t ∈ [tk , tk+1) and k ∈733

N. The integrative dynamics of the physical system (44) and734

the process (49) of difference is described by the following735

hybrid system in the form of SiDEs736

dx(t)737

= f (x(t))dt + g(x(t))dB(t) (51a)738

dy(t)739

= f (x(t))dt + g(x(t))dB(t) t ∈ [tk , tk+1) (51b)740

1̃(x(t−k+1), y(t
−

k+1), k + 1) := y(tk+1)− y(t
−

k+1)741

= −f (x(t−k+1)− y(t
−

k+1))1t 742

− g(x(t−k+1)− y(t
−

k+1))
√
1t ξ (k + 1) k ∈ N (51c) 743

with x(0) ∈ Rn and y(0) = x(0) − X (0) = 0. Clearly, the 744

physical system (44) has no impulse and its cyber-physical 745

model (51) of the Euler-Maruyama method is a specific case 746

of our canonic form (1) of CPSs in which q = n, f (x, t) = 747

f (x), g(x, t) = g(x), f̃ (x, y, t) = f (x), g̃(x, y, t) = g(x), 748

hf (x, k) = 0, hg(x, k) = 0, h̃f (x, y, k) = −f (x − y)1t , 749

h̄g(x, y, k) = 0, h̃g(x, y, k) = −g(x−y)
√
1t and tk = 750

k1t . Consequently, the infinitesimal generators (2) and (3) 751

associated with (51a) and (51b) are of the specific forms 752

L V (x) = Vx(x) f (x)+
1
2
trace

[
gT (x) Vxx(x) g(x)

]
, 753

L Ṽ (x, y) = Ṽy(y) f (x) 754

+
1
2
trace

[
gT (x) Ṽyy(y) g(x)

]
, (52) 755

respectively. It is easy to see that Assumption 1 holds 756

since both f and g satisfy the global Lipschitz condi- 757

tion (45). According to Lemma 1, there exists a unique (right- 758

continuous) solution to SiDE (51) on t ≥ 0 and the solution 759

belongs to M2([0,T ];R2n) for all T ≥ 0. Moreover, the 760

results of our established stability theory for the general 761

class (1) of SiDEs, say, Theorem 1 and Theorem 2 apply to 762

the CPS (51). 763

We construct the CPS (51) of the widely-used Euler- 764

Maruyama method (47)-(48) for the SDE (44), which is a 765

seamless, fully synergistic integration of the physical sys- 766

tem (44) and its cyber counterpart (47)-(48). The CPS not 767

only provides a holistic view of the physical system and its 768

cyber counterpart but also reveals their intrinsic relationship 769

that they are not two separate systems but the components 770

of an integrative system. Recall that the SDE describes our 771

knowledge of the physical dynamics while the numerical 772

method is the cyber representive, namely, the translation of 773

our knowledge in the cyber world. As a result, the CPS (51) 774

is an integration of our knowledge of the physical system and 775

the cyber representative as well as the simulation sequence 776

{ξ (k) }k∈N. Moreover, the CPS clearly shows that the numer- 777

ical solution is driven by the SDE and the numerical method 778

as well as the simulation sequence while the exact solution 779

is, of course, conducted by the SDE itself only. Usually, 780

to control the underlying physical processes, our knowledge 781

of both the physical and the cyber sides of the system is 782

utilized in the synthesis of the CPS. This leads to the resulting 783

CPS with y(t) involved in the dynamics/system equation of 784

x(t) as well. Such synthesized CPSs are considered in our 785

study of stabilization problems. 786

Remark 3: We have derived with details the CPS (51) of 787

the Euler-Maruyama method (47)-(48) for the SDE (44). It is 788

not difficult to follow the exemplary derivation and obtain the 789

CPS of the stochastic theta method (46) for the SDE (44), 790

dx(t) = f (x(t))dt + g(x(t))dB(t) (53a) 791

dy(t) = f (x(t))dt + g(x(t))dB(t) t ∈ [tk , tk+1) 792
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× y(tk+1)+ θ f (x(t
−

k+1)− y(tk+1)) (53b)793

= y(t−k+1)− (1− θ )f (x(t−k+1)− y(t
−

k+1))1t794

− g(x(t−k+1)− y(t
−

k+1))
√
1t ξ (k + 1) k ∈ N795

(53c)796

where the impulse of y(t) at t = tk+1 is generated by (53c)797

based on x(t−k+1) and y(t−k+1) as well as the simulation798
√
1t ξ (k + 1) of 1Bk = B((k + 1)1t) − B(k1t). Notice799

that (53) is also a formal expression of impulsive systems in800

the literature [18]. Similarly, one can derive the CPS of some801

other given numerical scheme for the SDE, which is among802

future work suggested in Section VII.803

V. EXPONENTIAL STABILITY OF THE CYBER-PHYSICAL804

SYSTEMS OF NUMERICAL METHODS805

The CPS (51) of the Euler-Maruyama method (47)-(48) for806

the SDE (44) consists of the physical and the cyber subsys-807

tems. The key questions (Q1) and (Q2) naturally arise. In this808

section, we address the problem (II) of fundamental impor-809

tance and prove positive results to the key questions (Q1)810

and (Q2). These fundamental results and their applicaton to811

linear systems comprise a foundational theory of the CPSs of812

numerical methods for SDEs.813

Let us begin with the test problem (Q1) of the CPS (51),814

to which Theorem 1 and Theorem 2 can be directly applied.815

Under some conditions (see [15], [32]), a seminal converse816

Lyapunov theorem [32, Theorem 5.12, p172] states that,817

if the SDE (44) is pth moment exponentially stable, there818

is a Lypunov function that proves the exponential stabil-819

ity of the dynamical system. One may postulate that the820

Lyapunov function for the physical subsystem (51a) could821

help construct a candidate Lyapunov function for the subsys-822

tem (51b,51c) due to their interrelation. The direct application823

of Theorem 1 to the CPS (51) shows that the CPS (51)824

and, hence, the cyber system (47)-(48) share the exponential825

stability with the physical system (44).826

Theorem 3: Let V ∈ C2(Rn
;R+) be a candidate Lya-827

punov function for both subsystems (51a) and (51b,51c) and828

c1|x|p ≤ V (x) ≤ c2|x|p ∀ x ∈ Rn (54)829

for some positives p, c1, c2. Assume that there are positives830

α, α̃1, α̃2, β̃1, β̃2 such that831

L V (x)832

≤ −αV (x) ∀ x ∈ Rn (55a)833

L̃ V (x, y)834

≤ α̃1V (x)+ α̃2V (y) ∀ t ∈ [tk , tk+1) (55b)835

E
[
V (y+ 1̃(x, y, k + 1))

∣∣x, y] ≤ β̃1V (x) + β̃2V (y)836

∀ (x, y) ∈ Rn
× Rn (55c)837

for all k ∈ N. If the stepsize838

1t <
− ln β̃2
α̃2

, (56)839

then the CPS (51) is pth moment exponentially stable and is 840

also almost surely exponentially stable. Moreover, the cyber 841

system (47)-(48) shares the pth moment exponential stability 842

with its underlying physical system (44) and, hence, it is also 843

almost surely exponentially stable. 844

Proof: From Theorem 1 and Theorem 2, it follows that 845

CPS (51), which is a specific case of system (1) (namely, 846

SiDE (4)), is pth moment exponentially stable and is also 847

almost surely exponentially stable. 848

Notice that the state X (t) = x(t) − y(t) of cyber sys- 849

tem (47)-(48) is the difference of the subsystems (51a) and 850

(51b,51c). Therefore, 851

|X (t)|p ≤ k̄p(|x(t)|p + |y(t)|p) ≤ 2k̄p|z(t)|p (57) 852

for all t ≥ 0, where k̄p = 1 if 0 < p < 1, and k̄p = 2p−1 if 853

p ≥ 1. This immediately implies that the cyber system (47)- 854

(48) is pth moment exponentially stable and is also almost 855

surely exponentially stable. � 856

This means that, if the underlying physical system (44) is 857

pth moment exponentially stable, the CPS (51) and, hence, 858

the numerical method (47)-(48) reproduce the pth moment 859

exponential stability of the physical dynamics when the con- 860

ditions in Theorem 3 hold. The ability of the cyber system (the 861

numerical method) to reproduce the mean-square exponential 862

stability of its underlying physical system (the SDE) has 863

been studied in [19] and [22], In our proposed framework 864

of CPS (51), let us consider the ability of the cyber system 865

(47)-(48) to reproduce the mean-square exponential stability 866

of the physical system (44). A result on mean-square expo- 867

nential stability is then derived from Theorem 3 as follows, 868

in which the Lyapunov function for mean-square exponential 869

stability of the underlying physical system (44) also proves 870

the mean-square exponential stability of its cyber counterpart 871

(47)-(48) as well as that of the CPS (51). 872

Theorem 4: Let the candidate Lyapunov function V ∈ 873

C2(Rn
;R+) for physical system (44) be a quadratic function 874

V (x) = xTPx (58) 875

for some positive definite matrix P ∈ Rn×n. Assume there 876

are positives ᾱ and 1t with ᾱ 1t < 1 such that 877

L V (x)+1t V (f (x)) ≤ −ᾱV (x) (59) 878

for all x ∈ Rn. Then the CPS (51) with 1t ∈ (0,1t ] is 879

mean-square exponentially stable and is also almost surely 880

exponentially stable. Moreover, the cyber system (47)-(48) 881

with 1t ∈ (0,1t ] shares the mean-square exponential sta- 882

bility with its underlying physical system (44) and, hence, 883

it is also almost surely exponentially stable. 884

Proof: It will follow the conclusion from Theorem 3 if one 885

shows that conditions (54)-(56) of Theorem 3 are satisfied 886

with p = 2 for the CPS (51). Since the quadratic function 887

(58) gives λm(P) |x|2 ≤ V (x) ≤ λM (P) |x|2, condition (54) 888

holds for positive constants p = 2, c1 = λm(P), c2 = 889

λM (P) . It is not difficult to observe that (55a) and (59) are 890

equivalent. Obviously, (59) implies that (55a) holds for some 891
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positive constant α ≥ ᾱ. But (55a) implies that there is892

a pair of positive numbers ᾱ and 1t such that (59) holds.893

For instance, if (55a) holds for some α > 0, the pair of894

positives, ᾱ < α ∧
λM (P) L2
αλm(P)

and 1t = (α−ᾱ)λm(P)
λM (P) L2

, yields895

ᾱ 1t < (α − ᾱ)/α < 1, 1t V (f (x)) ≤ 1t λM (P) L2|x|2 ≤896

(α − ᾱ)λm(P) |x|2 ≤ (α − ᾱ)V (x) and thus (59). According897

to [38, Theorem 4.4, p.130] and [38, Theorem 4.2, p.128],898

system (44) is mean-square exponentially stable and is also899

almost surely exponentially stable.900

By the Itô formula, [27, Lemmas 1 and 2] and global901

Lipschitz condition (45),902

L̃ V (x, y)903

= 2 yTPf (x)+ trace
[
gT (x) Pg(x)

]
904

≤ α̃2yTPy+ α̃
−1
2 f T (x) Pf (x)+ λM (P) trace

[
gT (x)g(x)

]
905

≤ α̃−12 λM (P)|f (x)|2 + λM (P) L2|x|2 + α̃2Ṽ (y)906

≤ (α̃−12 + 1)λM (P)L2 |x|2 + α̃2Ṽ (y)907

≤ α̃1xTPx + α̃2Ṽ (y) = α̃1V (x)+ α̃2Ṽ (y), (60)908

where909

α̃1 =
(1+ α̃2) λM (P)L2

α̃2 λm(P)
910

and α̃2 given as (66) below are both positive numbers. So con-911

dition (55b) of Theorem 3 is satisfied. Note that, ∀1t ∈912

(0,1t ], inequality (59) implies913

L V (x)+1t V (f (x)) ≤ −ᾱV (x), (61)914

and (51c) gives915

y+ 1̃(x, y, k + 1)916

= y− f (x−y)1t−g(x − y)
√
1t ξ (k + 1)917

= x − (x − y)− f (x−y)1t−g(x − y)
√
1t ξ (k + 1).918

Using inequality (61) and [27, Lemma 1], one obtains919

E
[
V (y+ 1̃(x, y, k + 1))

∣∣x, y]920

= xTPx − 2xTP(x − y)+ (x − y)TP(x − y)921

− 21txTPf (x − y)+1t
{
2(x − y)TPf (x − y)922

+ trace[gT (x − y)Pg(x − y)]923

+1t f T (x − y)Pf (x − y)
}

924

≤ (1+ c−1)xTPx + (1+ c)(x − y)TP(x − y)925

− 21txTPf (x − y)926

+1t
[
L V (x − y)+1t V (f (x − y))

]
927

≤ (1+ c−1)V (x)+ (1+ c)(x − y)TP(x − y)928

− 21txTPf (x − y)− ᾱ1t (x − y)TP(x − y)929

≤ (1+ c−1)V (x)+ (1+ c− ᾱ1t) (x − y)TP(x − y)930

− 21txTPf (x − y) ∀ k ∈ N (62)931

for all (x, y) ∈ Rn
× Rn, where c is a positive constant with932

c < ᾱ1t . Hence, 0 < 1+ c− ᾱ1t < 1 due to 0 < ᾱ1t < 1.933

By [27, Lemmas 1-2] and global Lipschitz condition (45), 934

(x − y)TP(x − y) ≤ xTPx − 2 xTPy+ yTPy 935

≤ (1+ b−1)xTPx + (1+ b)yTPy,(63) 936

and, therefore, 937

−2xTPf (x − y) ≤ b−1xTPx + bf (x−y)TPf (x − y) 938

≤ b−1xTPx + bλM (P) L2 (x − y)T (x − y) 939

≤
(
b−1 +

(1+ b)λM (P) L2

λm(P)

)
V (x) 940

+
b(1+ b)λM (P) L2

λm(P)
V (y), (64) 941

where b is a positive constant sufficiently small for 942

β̃2 = (1+ c− ᾱ1t)(1+ b)+1t
b(1+ b)λM (P) L2

λm(P)
< 1. 943

(65) 944

Substitution of (63) and (64) into (62) yields 945

E
[
V (y+ 1̃(x, y, k + 1))

∣∣x, y] ≤ β̃1V (x) + β̃2V (y), 946

where 947

β̃1 = (1+ c−1)+ (1+ c− ᾱ1t)(1+ b−1) 948

+1t
(
b−1 +

(1+ b)λM (P) L2

λm(P)

)
949

and β̃2 given as (65) above are both positive constants. This 950

is the condition (55c) of Theorem 3. 951

Let α̃2 be a positive number such that 952

α̃2 <
− ln β̃2
1t

. (66) 953

For instance, let 954

α̃2 =
− ln β̃2
21t

⇒ 1t ≤ 1t =
− ln β̃2
2 α̃2

<
− ln β̃2
α̃2

. 955

So the condition (56) of Theorem 3 is also satisfied. Accord- 956

ing to Theorem 3, it follows the assertions. � 957

In the literature [22] and [39], to ensure that the cyber sys- 958

tem shares the exponential stability with its underlying physi- 959

cal system, the stepsize1t is explicitly and severly limited by 960

both the growth and the rate constants of the physical system. 961

Although the both are related, it is only the rate constant that 962

plays a key role in the definitions of exponential stability. 963

It is reasonable and possible to lessen the dependence of 964

the stepsize 1t on the growth constant, which itself could 965

be very conservative due to condition (54). In Theorem 4, 966

we manage to remove the explicit dependence of the stepsize 967

1t on the growth constant λM (P) /λm(P) . Instead, we show 968

that the growth constant λM (P) /λm(P) has an influence on 969

the stepsize 1t through the rate-like constant β̃2 given by 970

(65). This could reduce much the restriction imposed by the 971

growth constant. As will be shown in Section VI, it improves 972

the upper bound1t of stepsizes and eases its computation for 973

linear systems. 974
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Recall that Theorem 3 is the direct application of Theo-975

rem 1 to the CPS (51) of the numerical method (47)-(48)976

for the SDE (44), from which Theorem 4 is derived for the977

mean-square exponential stability. Let us proceed to apply978

Theorem 4 and study the converse question (Q2) whether979

one can infer that the CPS (51) and, hence, the physical980

system (44) are mean-square exponentially stable if the cyber981

system (47)-(48) is mean-square exponentially stable for982

small stepsizes 1t > 0. Similarly, the converse Lyapunov983

theorem [32], [51] gives that, if the cyber system (47)-(48)984

is mean-square exponentially stable, there is a Lyapunov985

function that proves the exponential stability of the system.986

Due to the interrelation of the physical and cyber systems, one987

may make use of this Lyapunov function to study the stability988

of the physical system and that of the whole CPS. Applying989

Theorem 4, we find that themean-square exponential stability990

of the CPS (51) and, hence, that of the physical system (44)991

can be inferred from the mean-square exponential stability of992

the cyber system (47)-(48).993

Theorem 5: Assume that there is a candidate Lyapunov994

function V ∈ C2(Rn
;R+) of the quadratic form (58) for the995

cyber system (47)-(48) with 1t = 1t > 0 such that996

E
[
V (Xk+1)

∣∣Xk] ≤ c̄ V (Xk ) (67)997

for some positive constant c̄ < 1 and all Xk ∈ Rn. Then CPS998

(51) with 1t ∈ (0,1t] is mean-square exponentially stable999

and also almost surely exponentially stable, which implies1000

that physical system (44) is mean-square exponentially stable1001

and also almost surely exponentially stable.1002

Proof: By the Lyapunov stability theory [6], [32], condi-1003

tions (58) and (67) as well as (54) derived from (58) imme-1004

diately imply that the cyber system (47)-(48) with 1t = 1t1005

is mean-square exponentially stable. Let function V (x) given1006

by (58) also be the candidate Lyapunov function for the1007

physical system (44). But condition (67)1008

E
[
V (Xk+1)

∣∣Xk]1009

= E
[
XTk+1PX

T
k+1

∣∣Xk]1010

= E
[(
Xk + f (Xk )1t + g(Xk )

√
1t ξ (k + 1)

)TP1011

·
(
Xk + f (Xk )1t + g(Xk )

√
1t ξ (k + 1)

)∣∣Xk]1012

= V (Xk )+1t
[
XTk Pf (Xk )+ f

T (Xk )PXk1013

+ trace
[
gT (Xk )Pg(Xk )

]
+1tf T (Xk )Pf (Xk )

]
1014

≤ c̄ V (Xk )1015

produces that1016

XTk Pf (Xk )+ f
T (Xk )PXk1017

+ trace
[
gT (Xk )Pg(Xk )

]
+1tf T (Xk )Pf (Xk )1018

≤ −ᾱV (Xk )1019

for all Xk ∈ Rn, where ᾱ is a postive number such that1020

ᾱ 1t = 1− c̄. (68)1021

This means 1022

L V (x)+1t V (f (x)) 1023

= xTPf (x)+ f T (x) Px 1024

+ trace
[
gT (x)Pg(x)

]
+1tf T (x) Pf (x) 1025

≤ −ᾱV (x) 1026

for all x ∈ Rn, which is exactly the condition (59) of 1027

Theorem 4. According to Theorem 4, z(t) = [xT (t) yT (t)]T 1028

of CPS (51) with 1t ∈ (0,1t] is mean-square exponentially 1029

stable and also almost surely exponentially stable. It immedi- 1030

ately follows that, due to |x(t)|2 ≤ |z(t)|2, the physical system 1031

(44) is mean-square exponentially stable and also almost 1032

surely exponentially stable. Alternatively, conditions (58) and 1033

L V (x) ≤ L V (x)+1t V (f (x)) ≤ −ᾱV (x) for all x ∈ Rn as 1034

well as (54) derived from (58) imply that, by [38, Theorems 1035

4.2-4.4, pp128-130], the physical system (44) is mean-square 1036

exponentially stable and also almost surely exponentially 1037

stable. � 1038

Our positive results to the key questions (Q1) and 1039

(Q2) expose the equivalence and intrinsic relationship (68) 1040

between (59) and (67), which are the stability conditions for 1041

the physical system (44) and its cybercounterpart (47)-(48), 1042

respectively. For this purpose, we employ the same Lyapuov 1043

function V (x) = Ṽ (x) = xTPx for both the subsystems 1044

in Theorems 3-5, see also Section VI. Actually, this is also 1045

a sensible choice due to the structure of CPS (51) in which 1046

the physical subsystem plays a dominant role. Our proposed 1047

theory for synthetic CPSs should be developed by using var- 1048

ious techniques of Lyapunov functions/functionals to exploit 1049

the structure of the resulting controlled CPS, see [13], [30], 1050

[36], [37], [41] and also Remark 5. It is worth noting that the 1051

initial condition y(0) = x(0)−X (0) = 0 is not required in our 1052

established stability theory and its application in Section VI. 1053

But this condition couldmake a difference in the study of con- 1054

vergence as well as some control problems, see Appendix B. 1055

VI. THE CPS THEORY FOR LINEAR SYSTEMS 1056

Let us consider a linear stochastic system 1057

dx(t) = Fx(t)dt +
m∑
j=1

Gjx(t)dBj(t) ∀ t ≥ 0 (69) 1058

with initial value x(0) ∈ Rn, whereF ∈ Rn×n andGj ∈ Rn×n, 1059

j = 1, 2, · · · ,m, are constant matrices. Obviously, the linear 1060

system (69) satisfies the global Lipschitz condition and has a 1061

unique solution x(t) on [0,∞). It is well known that the linear 1062

stochastic system (69) is mean-square exponentially stable if 1063

and only if there exists a positive definite matrix P ∈ Rn×n
1064

such that [6], [12] 1065

FTP+ PF +
m∑
j=1

GTj PGj < 0. (70) 1066

This is the Lyapunov-Itô inequality [6], [12], the lin- 1067

ear matrix inequality (LMI) equivalent [14] of the classical 1068

Lyapunov-Itô equation [1], [37]. By [38, Theorem 4.2, p128], 1069
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the mean-square exponential stability of (69) implies that it is1070

also almost surely exponentially stable.1071

The Euler-Maruyama method (47)-(48) for the linear sys-1072

tem (69) computes approximations, for all k ∈ N,1073

Xk+1 = Xk + FXk1t +
m∑
j=1

GjXk
√
1t ξj(k + 1) (71)1074

with X0 = x(0), where 1t > 0 is the constant stepsize and1075
√
1t ξj(k + 1) is the implementation of 1Bj,k = Bj((k +1076

1)1t) − Bj(k1t). The cyber system (71) is mean-square1077

exponentially stable if and only if there exists a positive1078

definite matrix P ∈ Rn×n such that [6]1079

(In +1t F)TP(In +1t F)+1t
m∑
j=1

GTj PGj < P. (72)1080

Let y(t) be the difference between x(t) and X (t) as (49)1081

above. The CPS of the Euler-Maruyama method (71) for the1082

linear SDE (69) is a specific case of CPS (51)1083

dx(t)1084

= Fx(t)dt +
m∑
j=1

Gjx(t)dBj(t) (73a)1085

dy(t) = Fx(t)dt +
m∑
j=1

Gjx(t)dBj(t) t ∈ [tk , tk+1)1086

(73b)1087

1̃(x(t−k+1), y(t
−

k+1), k + 1) := y(tk+1)− y(t
−

k+1)1088

= −F
(
x(t−k+1)− y(t

−

k+1)
)
1t1089

−

m∑
j=1

Gj
(
x(t−k+1)− y(t

−

k+1)
)√
1t ξj(k + 1)1090

k ∈ N (73c)1091

with initial data x(0) ∈ Rn and y(0) = x(0) − X (0) = 0,1092

where tk = k1t for all k ∈ N. The CPS (73) is an integration1093

of the physical system (69) and the cyber system (71), which1094

is in our proposed canonic form (1) and satisfies the global1095

Lipschitz conditions Assumption 1. Our established theory1096

immediately provides positive results to the key questions1097

(Q1) and (Q2) for linear CPS (73), which also presents the1098

upper bound 1t of stepsizes for exponential stability.1099

Theorem 6: The following are equivalent.1100

(A) There exists a positive definite matrix P ∈ Rn×n such1101

that the CPS Lyapunov inequality holds for some posi-1102

tive number 1t , namely,1103

FTP+ PF +
m∑
j=1

GTj PGj +1tF
TPF < 0. (74)1104

(B) The physical system (69) is mean-square exponentially1105

stable.1106

(C) The cyber system (71) with 1t ∈ (0,1t ] is1107

mean-square exponentially stable.1108

(D) The CPS (73) with 1t ∈ (0,1t ] is mean-square expo-1109

nentially stable.1110

That is, (A)⇔ (B)⇔ (C)⇔ (D). 1111

Proof: (A)⇔ (B). We only need to show that the classical 1112

Lyapunov inequality (70) and the CPS Lyapunov inequal- 1113

ity (74) are equivalent. But this is implied by the equivalence 1114

of the inequalities (55a) and (59) which has been shown in 1115

the proof of Theorem 4. Alternatively, it can be easily proved 1116

as follows. Clearly, (74) implies (70). But inequality (70) 1117

implies that there is a sufficiently small positive number 1t 1118

such that (74) holds. So the LMI (70)⇔ the LMI (74). 1119

(A)⇒ (C) & (D). Let us consider the quadratic Lyapunov 1120

function V (x) = xTPx for the linear system (69). The 1121

LMI (74) implies that there is a positve number ᾱ < 1/1t 1122

sufficiently small for 1123

FTP+ PF +
m∑
j=1

GTj PGj +1tF
TPF ≤ −ᾱP, (75) 1124

and the condition (59) holds. It follows from Theorem 4 that 1125

the CPS (73) and, hence, the cyber system (71) with 1t ∈ 1126

(0,1t ] are mean-square exponentially stable. 1127

(D) ⇒ (B) & (C). The CPS (73) is a specific case of 1128

system (4), where z(t) = [xT (t) yT (t)]T in the compact 1129

form. Notice that |x(t)|2 ≤ |z(t)|2 and |X (t)|2 ≤ 2(|x(t)|2 + 1130

|y(t)|2) ≤ 4|z(t)|2 for all t ≥ 0. If z(t) of the CPS (73) 1131

is mean-square exponentially stable, then both x(t) of its 1132

physical subsystem (69) and X (t) of its cyber subsystem (71) 1133

are mean-square exponentially stable. 1134

(C) ⇒ (B) & (D). Let 1t = 1t . Since the cyber 1135

system (71) is mean-square exponentially stable, there is a 1136

positive definite matrix P ∈ Rn×n such that the Lyapunov 1137

inequality (72) holds for 1t = 1t > 0. This implies that 1138

there is a positive number c̄ ∈ (0, 1) sufficiently close to 1 for 1139

(In +1t F)TP(In +1t F)+1t
m∑
j=1

GTj PGj ≤ c̄ P. (76) 1140

Let the quadratic function V (x) = xTPx be the candidate 1141

Lyapunov function for the cyber system (71) with 1t = 1142

1t . Observe that, for the linear system, (76) is exactly the 1143

condition (67) of Theorem 5. It follows from Theorem 5 1144

that the CPS (51) with 1t ∈ (0,1t] and, hence, the physical 1145

system (44) are mean-square exponentially stable. � 1146

Note that the mean-square exponential stability of the 1147

physical system (69), the cyber system (71) and the CPS 1148

(73) imply that they are also almost surely exponentially 1149

stable, respectively. It is easy to obtain the upper bound1t of 1150

stepsizes for the ability of the cyber system to reproduce the 1151

exponential stability of the underlying linear physical system 1152

by solving the CPS Lyapunov inequality (74), which can also 1153

be called the numerical Lyapunov inequality in the study 1154

of numerical methods for differential equations. Notice that 1155

the LMI (74) is a linear function with respect to 1t and it 1156

can be formulated as a generalized eigenvalue minimization 1157

problem. So we immediately obtain the upper bound 1t = 1158

−λ by solving 1159

min λ s.t. P > 0, FTPF > 0, 1160
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FTP+ PF +
m∑
j=1

GTj PGj < λFTPF (77)1161

with some toolboxes such as [14], which is one of the advan-1162

tages of our proposed method.1163

Remark 4: The prestigious Black-Scholes model is a spe-1164

cial case of the linear SDE (69) with n = m = 1,1165

dx(t) = µx(t)dt + σx(t)dB(t), t ≥ 0, x(0) 6= 01166

(78)1167

where µ and σ are both real constants. Thus the CPS of1168

the Euler-Maruyama method (47)-(48) for the Black-Scholes1169

model (78) is a specific case of (73) with n = m = 11170

dx(t)1171

= µx(t)dt + σx(t)dB(t) (79a)1172

dy(t)1173

= µx(t)dt + σx(t)dB(t) t ∈ [tk , tk+1) (79b)1174

y(tk+1)− y(t
−

k+1)1175

= −µ
(
x(t−k+1)− y(t

−

k+1)
)
1t1176

− σ
(
x(t−k+1)− y(t

−

k+1)
)√
1t ξ (k + 1) k ∈ N.1177

(79c)1178

The CPS Lyapunov inequality (74) immediately gives1179

2µ+ σ 2
+ µ21t < 0 ⇔ 1t <

−(2µ+ σ 2)
µ2 . (80)1180

According to Theorem 6, this is the necessary and sufficent1181

condition for mean-square exponential stability of the linear1182

scalar physical system (78), the cyber counterpart of the1183

Euler-Maruyama method and its CPS (79). Notice that (80)1184

is exactly the inequality (4.3) in [19] with θ = 0 for the1185

Euler-Maruyama method. Obviously, condition (80) is the1186

very scalar case of our CPS Lyapunov inequality (74) that is1187

applicable to general multi-dimensional linear systems. It is1188

an important and interesting problem among future work to1189

study the almost sure stability [19], [28], [38] of the CPS (73)1190

and its application, say, to the CPS (79) for the Black-Scholes1191

model (78).1192

Recently, based on the reformulation of some well-known1193

results, [7] developed an approach to mean-square stability1194

analysis of numerical methods (including the widely-used1195

Euler-Maruyama scheme) for multi-dimensional linear SDEs1196

(viz. system (69) with n ≥ 2), which was applied in [8]1197

to study the mean-square numerical stability for a linear1198

SDE of non-normal drift and skew-symmetic diffusion struc-1199

tures [23]. Specifically, on one hand, some well-known result1200

( [1, Theorem 8.5.5, p142], [32, Remark 6.4, p183]) expressed1201

in the vectorization of matrices and Kronecker product gives1202

[7, Lemma 3.3]1203

ReM (S) < 0 (81)1204

if and only if linear SDE (69) is mean-square exponentially1205

stable, where ReM (S) is the real part of the eigenvalue λM (S)1206

of n2 × n2 matrix 1207

S := In ⊗ F + F ⊗ In +
m∑
j=1

Gj ⊗ Gj. 1208

On the other hand, a stability result for discrete-time stochas- 1209

tic systems (see, e.g., [32, p197]) is applied to study 1210

mean-square stability of some numerical schemes for the 1211

SDE (69). For example, by [7, Lemma 3.4, Theorem 3.7], the 1212

Euler-Maruyama method (71) is mean-square exponentially 1213

stable if and only if 1214

ρ(S0(1t)) < 1, (82) 1215

where ρ(S0(1t)) is the spectral radius of n2 × n2 matrix 1216

S0(1t) :=
(
Ā(1t)⊗ Ā(1t)

)
+

m∑
j=1

(
B̄j(1t)⊗ B̄j(1t)

)
1217

with Ā(1t) = In + 1tF and B̄j(1t) =
√
1t Gj for j = 1218

1, · · · ,m. 1219

In [7], S is called the mean-square stability matrix of 1220

the SDE (69) and S0(1t) that of the Euler-Maruyama 1221

method (71). Notice that S0(1t) is a function of stepsize 1222

1t while, obviously, S is not. The results in [7] and [8] 1223

provided the explicit structure of stability matrices S and 1224

S0(1t), and showed the comparative stability regions [8, 1225

Fig.2] for the SDE and the numerical method with a few 1226

numerical examples of nonnormal SDEs [23]. However, the 1227

relationship between the stability conditions (81) and (82) 1228

(for the SDE and the Euler-Maruyama method, respectively) 1229

has not been figured out. Here we prove their equivalence 1230

and reformulate the stability conditions (81) and (82) in the 1231

form of LMIs, which is relegated to Appendix A. So it is easy 1232

to handle the problems with some computing techniques and 1233

toolboxes [6], [12], [14]. 1234

It is easy to obtain the upper bound 1t of stepsizes for 1235

the test problem (Q1) by solving the n× n-dimensional LMI 1236

(74) of our proposed method. Clearly, LMI (74) holds for 1237

all 1t ∈ (0,1t] provided it is satisfied for some 1t > 0. 1238

But, to calculate the upper bound 1̃t by the approach of 1239

mean-square stability matrix [7], one has to deal with the 1240

spectral radius (82) of n2 × n2 matrix S0(1t) that involves a 1241

polynomial of the stepsize1t whose order is some exponen- 1242

tial function of n. Alternatively, one can solve the following 1243

LMI with respect to positive definite matrix P̄ ∈ Rn2×n2 , 1244

which we show is equivalent to (82) in Appendix A, 1245

ST P̄+ P̄S +1t
(
ST P̄S + F̄T P̄+ P̄F̄

)
1246

+ (1t)2
(
ST P̄F̄ + F̄T P̄S

)
+ (1t)3F̄T P̄F̄ 1247

=
(
S +1tF̄

)T P̄+ P̄(S +1tF̄) 1248

+1t
(
S +1tF̄

)T P̄(S +1tF̄) < 0, (83) 1249

where F̄ = F ⊗ F . This involves a cubic function of the 1250

prescribed parameter 1t > 0 for all n. So, unlike the CPS 1251

Lyapunov inequality (74), the LMI (83) may not be reformu- 1252

lated as a generalized eigenvalue minimization problem. 1253
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Note that, for a multi-dimensional SDE (n ≥ 2), the1254

spectral radius (82) of n2 × n2 matrix S0(1t) involves a1255

polynomial of 1t of up to (very) high order. For example,1256

in the case n = 2 of non-normal SDE [8, Eq.(9)] (see1257

also [23]), the characteristic equation ofmean-square stability1258

matrix S0(1t) of 4 × 4 dimensions for the Euler-Maruyama1259

scheme ( [8, Eq.(15)] with θ = 0) involves a polynomial1260

of 1t of up to order 8. The conditions of this approach are1261

quite cumbersome [32]. It is easy to tackle the equivalent1262

LMI (83) using some toolboxes such as [6], [14], which is1263

a cubic function of the prescribed 1t > 0 for all n.1264

However, one should be aware that, unlike the linear1265

inequality (74), that the inequality (82) or its equivalent1266

LMI (83) is satisfied for some 1t > 0 may not necessarily1267

mean that it holds for all 1t ∈ (0,1t]. Thus the results1268

such as the upper bound 1t obtained by approach of (82)1269

from [7] or its equivalent (83) could be restrictive due to1270

the highly nonlinearity of 1t involved in the computation,1271

see Appendix A.1272

We can further show that our proposed method (74) gives1273

better bound 1t of stepsizes than (82) from [7] or its LMI1274

equivalent (83). This is: if (82) and (83) hold for all 1t ∈1275

(0, 1̃t] for some 1̃t > 0, then the CPS Lyapunov inequality1276

(74) holds for some 1t ≥ 1̃t , namely, either 1t = 1̃t or1277

1t > 1̃t . In short, we shall show either 1̂t = 1̃t or 1̂t >1278

1̃t , where1279

1̃t := sup{1t > 0 : (83) holds for all 1t ∈ (0,1t ]}1280

× and 1̂t := sup{1t > 0 : (74) holds}. (84)1281

It is observed that, due to the continuity of (83) with respect1282

to1t , the strict inequality (83) does not hold at1t = 1̃t and,1283

similarly, the strict inequality (74) does not hold at1t = 1̂t .1284

To show 1̂t ≥ 1̃t (viz either 1̂t = 1̃t or 1̂t > 1̃t),1285

we consider a linear SDEwith1t ∈ (0,1t ] for some1t > 01286

dx(t) = Fx(t)dt +
m∑
j=1

Gjx(t)dBj(t)1287

+
√
1t F x(t)dBm+1(t) ∀ t ≥ 0 (85)1288

where Bm+1(t) is a scalar Brownian motion. Notice that (85)1289

is exctly (69) if 1t = 0 and, according to [7, Lemma 3.3],1290

the SDE (85) is mean-square exponentially stable if and only1291

if (87) holds. In fact, by the well-known results [1], [6], [7],1292

[14], [32], the following are equivalent.1293

(a) The CPS Lyapunov LMI (74) holds.1294

(b) There is a positive definite matrix P̄ ∈ Rn2×n2 such that,1295

∀1t ∈ (0,1t ],1296 (
S +1tF̄

)T P̄+ P̄(S +1tF̄)1297

= ST P̄+ P̄S +1t
(
F̄T P̄+ P̄F̄

)
< 0. (86)1298

(c) The following inequality holds for each 1t ∈ (0,1t ]1299

ReM (S +1tF̄) < 0. (87)1300

(d) The SDE (85) is mean-square exponentially stable.1301

That is, (a) ⇔ (b) ⇔ (c) ⇔ (d) and they all give the same 1302

supremum 1̂t defined as (84). Similarly, one may formulate 1303

the LMI (86) as a generalized eigenvalue minimization prob- 1304

lem like (77) above. By [27, Lemma 1], 1305

ST P̄S +1t
(
ST P̄F̄ + F̄T P̄S

)
+ (1t)2F̄T P̄F̄ ≥ 0 1306

and, therefore, 1307

ST P̄+ P̄S +1t
(
ST P̄S + F̄T P̄+ P̄F̄

)
1308

+ (1t)2
(
ST P̄F̄ + F̄T P̄S

)
+ (1t)3F̄T P̄F̄ 1309

= ST P̄+ P̄S +1t
(
F̄T P̄+ P̄F̄

)
1310

+1t
[
ST P̄S +1t

(
ST P̄F̄ + F̄T P̄S

)
+ (1t)2F̄T P̄F̄

]
1311

≥ ST P̄+ P̄S +1t
(
F̄T P̄+ P̄F̄

)
. 1312

Thus (83) implies (86) but not vice versa. This means 1313

that (74), (86) and (87) hold for all 1t ∈ (0, 1̃t), and, 1314

therefore, 1̂t ≥ 1̃t . Notice that (83), (86) and (87) are all 1315

continuous with respect to 1t . Due to the continuity of (83) 1316

at 1t = 1̃t , 1317(
S + 1̃tF̄

)T P̄+ P̄(S + 1̃tF̄) 1318

+ 1̃t
(
S + 1̃tF̄

)T P̄(S + 1̃tF̄) ≤ 0 1319

⇔
(
S + 1̃tF̄

)T P̄+ P̄(S + 1̃tF̄) 1320

≤ −1̃t
(
S + 1̃tF̄

)T P̄(S + 1̃tF̄). 1321

Unless matrix S + 1̃tF̄ is singular, the LMIs (86) and its 1322

equivalent (74) hold at 1t = 1̃t and, due to their continuity 1323

at 1t = 1̃t , the LMIs (86) and (74) hold for some 1t > 1324

1̃t , which gives 1̂t > 1̃t . So we have 1̂t = 1̃t if matrix 1325

S+1̃tF̄ is singular; otherwise, 1̂t > 1̃t . The latter, namely, 1326

1̂t > 1̃t could often be the case. This clearly shows that our 1327

proposed CPS Lyapunov LMI (74) gives a better bound 1t 1328

of stepsizes than (82) from [7], or, its LMI equivalent (83). 1329

It is observed that the CPS LMI (74) holds for all 1t ∈ 1330

(0,1t] if it holds with some 1t > 0. Recall that such 1331

a desired property has not been observed/shown in the 1332

mean-square stability matrix method (82). Instead, one finds 1333

that ρ(S0(1t)) → 1 as 1t → 0 in the method (82). 1334

This could be a restriction in some applications. As shown 1335

above, our proposed method (74) has a number of impressive 1336

advantages, which include: the upper bound 1t > 0 can 1337

be easily obtained by solving the generalized eigenvalue 1338

minimization problem (77); the LMI (74) holds for all 1t ∈ 1339

(0,1t]; and a better bound 1̂t ≥ 1̃t has been theoretically 1340

proved. 1341

Let us apply the CPS Lyapunov LMI (74) to an interesting 1342

example from [23]. A particular case of SDE (69) has been 1343

studied in [23] to show the impact of noise on a highly 1344

nonnormal system, in which n = 2, m = 1, 1345

F =
[
−1 b
0 −1

]
, G1 =

[
0 b−

1
4

−b−
1
4 0

]
(88) 1346

with b > 0. Thus the CPS of the Euler-Maruyama 1347

method (71) for the nonnormal SDE (88) is a specific case 1348
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TABLE 1. Upper bounds 1t for the nonnormal SDE (88) with various b.

FIGURE 1. A trajectory sample (above) and the mean squares of samples
(below) of the Euler-Maruyama method for the SDE (88) with b = 2.8.

of (73) with n = 2 and m = 1,1349

dx(t)1350

= Fx(t)dt + G1x(t)dB(t) (89a)1351

dy(t)1352

= Fx(t)dt + G1x(t)dB(t) t ∈ [tk , tk+1) (89b)1353

y(tk+1)− y(t
−

k+1)1354

= −F
(
x(t−k+1)− y(t

−

k+1)
)
1t1355

−G1
(
x(t−k+1)− y(t

−

k+1)
)√
1t ξ (k + 1) k ∈ N.1356

(89c)1357

According to the condition (81) as well as [8, Theorem1358

2.2], the SDE (88) is mean-square exponentially stable if and1359

only if b < 2.8181. It is interesting to note that the noise1360

term of the SDE (88) becomes smaller as b increases while,1361

due to the nonnormality, the system is destablized (in mean-1362

square sense) by smaller noise, see [23] as well as [8] formore1363

details. It is also noticed that the mean-square stability matrix1364

S0(1t) of the Euler-Maruyama method for the SDE (88)1365

given in [8] clearly demonstrates that S0(1t) → I2 ⊗ I2 =1366

I4 and thus ρ(S0(1t)) → 1 as 1t → 0. Our CPS LMI (74)1367

has the desired property for small stepsizes1t . Given any b ∈1368

(0, 2.8181), we immediately obtain the upper bound 1t of1369

stepsizes by solving the generalized eigenvalue minimization1370

problem (77), some of which are listed in Table 1.1371

As an example of numerical simulation, Figure 1 dis-1372

plays not only a trajectory sample but also the mean square1373

of 105 samples as well as that of 103 samples of the1374

Euler-Maruyama method for the nonnormal SDE (88) with1375

b = 2.8, where the stepsize 1t = 0.0124 is the upper1376

bound in Table 1 and the initial value x(0) = [−1.5 0.6]T is1377

from [23]. The numerical simulation verifies the effectiveness1378

of our proposed method (74) and (77) as well as the mean- 1379

square exponential stability of the CPS (89) with b = 2.8 and 1380

1t = 0.0124. Actually, the set of realizations shown in 1381

Figure 1 illustrates well our theoretic results and those in the 1382

literature [8], [23]. As it has been proved that the nonnor- 1383

mal SDE (88) with b = 2.8 is mean-square exponentially 1384

stable [8], a trajectory sample could depart far away before 1385

it eventually converges to the origin [23]. The trajectory 1386

samples with large departure may have a big effect on the 1387

mean square of 103 samples but a much smaller one on that 1388

of 105 samples while both the mean squares of samples decay 1389

towards zero. This attests the effectiveness of our proposed 1390

results. 1391

Remark 5: The upper bound 1t of stepsizes in the CPS 1392

Lyapunov inequality (74) is obtained by employing the same 1393

Lyapunov function V (x) = Ṽ (x) = xTPx for both the 1394

subsystems, which is a special application of Theorem 3. This 1395

is reasonable since the physical subsystem plays a dominant 1396

role in the CPS (73). But the results on synthesized CPSs, 1397

in which the state y(t) of cyber subsystem is utilized in some 1398

feedback mechanism to steer the physical subsystem, can be 1399

further developed by using various techniques of Lypunov 1400

functions/functionals [13], [30], [36] such as using a couple 1401

of Lyapunov functions for the subsystems and constructing 1402

a Lyapunov function/funcational for the whole CPS [36], 1403

[37], [41] to exploit the structure of the composition of the 1404

subsystems [36]. 1405

VII. CONCLUSION 1406

In this paper, we have formulated a new and general class (1) 1407

of SiDEs that can be used to represent a seamless integration 1408

of the physical system (the SDE) and its cyber counterpart 1409

(the numerical method), which is a novel framework for 1410

numerical study of dynamical systems. Our proposed CPS of 1411

the Euler-Maruyama method for SDEs not only provides a 1412

holistic view of the physical system (the SDE) and its cyber 1413

counterpart (the numerical method) but also reveals their 1414

intrinsic relationship: they are not two separate systems but 1415

the subsystems of the CPS. By our CPS approach, we have 1416

proved positive results to the key questions (Q1) and (Q2) 1417

using the Lyapunov stability theory we establish for our 1418

general class of SiDEs. These fundamental results and their 1419

applications construct a theoretic foundation for the CPSs 1420

of numerical methods for SDEs. This foundational theory 1421

may be further developedwith various techniques of Lypunov 1422

functions and functionals [13], [30], [36], [41]. 1423

In the classical numerical analysis of initial-value prob- 1424

lems, the convergence and the stability of a numerical method 1425

are two main concerns [49]. The proposed CPS also provides 1426

a novel approach to convergence analysis of the numerical 1427

method for SDEs. As an example, we show by our CPS 1428

approach the classical finite-time convergence result 1429

E
[

sup
0≤t≤T

|y(t)|2
]
= O(1t) 1430

for the widely-used Euler-Maruyama method. The novel 1431

proof is relegated to Appendix B, which utilizes the dyanimcs 1432
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of the discretization error and is different from those in the1433

literature [21], [33], [38], [49].1434

Our proposed CPS theory of numerical methods for1435

differential equations has initiated the study of systems1436

numerics, where there are a lot of open and interesting prob-1437

lems. For example, it is among future work to extend our1438

established theory not only to many other (explicit, semi-1439

implicit/symplectic and implicit) numerical methods [16],1440

[19], [21], [31], [33], [40], [44], [49] but also to various1441

dynamical systems such as SDEs with time delay [25], [30],1442

singular SDEs with switching and stochastic partial differen-1443

tial equations [8], [33], [49]. It is of theoretic and practical1444

importance as well to study a CPS that involves multi-scale1445

processes [29] and/or stochastic stabilization [19], [28], [38],1446

which could be one of the many challenging problems in the1447

future development of the proposed CPS theory.1448

APPENDIX A. THE EQUIVALENCE OF THE STABILITY1449

CONDITIONS (81) AND (82)1450

Proof: It is observed that S0(0) = In2 , Ṡ0(0) = S, S̈0(1t) =1451

2 (F ⊗ F) =: 2F̄ , where Ṡ0(1t) and S̈0(1t) are the first and1452

the second derivatives of S0 with respect to 1t , respectively.1453

For 1t > 0, Taylor expansion produces1454

S0(1t) = In2 +1t S + (1t)2F̄ . (90)1455

(81) ⇒ (82). Stability condition (81) for the linear SDE1456

equivalently means that there is a positive definite matrix P̄ ∈1457

Rn2×n2 such that [6], [32]1458

ST P̄+ P̄S < 0. (91)1459

The Taylor series (90) gives1460

ST0 (1t)P̄S0(1t)1461

= P̄+1t
[
ST P̄+ P̄S +1t

(
ST P̄S + F̄T P̄+ P̄F̄

)
1462

+ (1t)2
(
ST P̄F̄ + F̄T P̄S

)
+ (1t)3F̄T P̄F̄

]
. (92)1463

Owing to (91), there is a pair of (sufficiently small) positive1464

numbers 1t and ā = ā(1t) such that, ∀1t ∈ (0,1t ],1465

ST0 (1t)P̄S0(1t) ≤ P̄+ ā1t
(
ST P̄+ P̄S

)
< P̄.1466

This implies that stability condition (82) is satisfied for all1467

1t ∈ (0,1t ].1468

(82)⇒ (81). Notice that (92) can be rewritten as1469

ST0 (1t)P̄S0(1t)1470

= P̄+1t
[
ST P̄+ P̄S1471

+1t
(
ST P̄S + F̄T P̄+ P̄F̄

)
1472

+ (1t)2
(
ST P̄F̄ + F̄T P̄S

)
+ (1t)3F̄T P̄F̄

]
1473

= P̄+1t
[(
S +1tF̄

)T P̄+ P̄(S +1tF̄)1474

+1t
(
S +1tF̄

)T P̄(S +1tF̄)]. (93)1475

Suppose that condition (82) holds for all 1t ∈ (0,1t],1476

where 1t is some positive number. Then, equivalently, there1477

is a positive definite matrix P̄ = P̄(1t) ∈ Rn2×n2 such 1478

that [6], [32] 1479

ST0 (1t)P̄S0(1t) < P̄ ∀1t ∈ (0,1t ]. (94) 1480

Substitution of (93) into (94) produces (83) for all 1t ∈ 1481

(0,1t ], or, by Schur complement, 1482[(
S +1tF̄

)T P̄+ P̄(S +1tF̄) √1t (S +1tF̄)T P̄
√
1t
(
S +1tF̄

)T P̄ −P̄

]
1483

< 0 (95) 1484

for all 1t ∈ (0,1t ]. 1485

So (82) ⇔ (83) ⇔ (94) ⇔ (95). But (83) implies the 1486

LMI (86). This equivalently means that matrix S + 1tF̄ 1487

is Hurwitz, namely, inequality (87) holds for each 1t ∈ 1488

(0,1t ]. Recall that F̄ = F ⊗ F . Letting 1t → 0 in (86) 1489

and thus (87) gives stability condition (81) for the SDE (69). 1490

The proof is complete. � 1491

We remark that, by approach of mean-square stability 1492

matrices [7], the upper bound1t can be calculated by solving 1493

either the spectral radius problem (82) or the LMI equiva- 1494

lent (83). The former involves a polynomial of the stepsize1t 1495

whose order is some exponential function of nwhile the latter 1496

remains as a cubic function of 1t for all n. The highly non- 1497

linearity would introduce not only computational complexity 1498

but also conservativeness to the results. We have reformulted 1499

the highly nonlinear problem (82) into the LMI (83). This has 1500

significantly simplified the approach of mean-square stability 1501

matrices S and S0(1t). Moreover, the LMI (83) discloses the 1502

inherent relationship between the stability conditions for the 1503

Euler-Maruyama method and the SDE, 1504

LMI (83) → LMI (91) as 1t → 0 1505

while S0(1t) → In ⊗ In = In2 and hence ρ(S0(1t)) → 1506

1 as 1t → 0. It is also worth noting that, for a linear 1507

n-dimensional SDE, our proposed numerical Lyapunov LMI 1508

(74) of n × n dimensions is always a linear inequality of the 1509

stepsize 1t while the LMI problem (83) involves not only a 1510

cubic function of1t but also matrices of n2×n2 dimensions. 1511

APPENDIX B. A NOVEL PROOF OF THE CONVERGENCE OF 1512

THE EULER-MARUYAMA METHOD 1513

Proof: For the convergence problem of the numerical method, 1514

the implimentation
√
1t ξ (k + 1) should be replaced by the 1515

increment1Bk = B((k+1)1t)−B(k1t) itself in SiDE (51), 1516

that is, 1517

dx(t) 1518

= f (x(t))dt + g(x(t))dB(t) (96a) 1519

dy(t) 1520

= f (x(t))dt + g(x(t))dB(t) t ∈ [tk , tk+1) (96b) 1521

1̃(x(t−k+1), y(t
−

k+1), k + 1) := y(tk+1)− y(t
−

k+1) 1522

= −f
(
x(t−k+1)− y(t

−

k+1)
)
1t 1523

− g
(
x(t−k+1)− y(t

−

k+1)
)
1Bk k ∈ N (96c) 1524

with x(0) ∈ Rn and y(0) = 0, where tk = k1t for all 1525

k ∈ N. According to the existing results ( [33], [38] as well as 1526
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Lemma 1, SiDE (96) has a unique (right-continuous) solution1527

z(t) = [xT (t) yT (t)]T , which belongs to M2([0,T ];Rn+q)1528

for all T ≥ 0. In particular, [38, Lemma 3.2, p51] gives1529

E
[

sup
0≤t≤T

|x(t) |2
]
≤ (1+ 3|x(0)|2)e3LT (T+4) =: CT . (97)1530

On the interval [tk , tk+1] for every k ∈ N,1531

y(tk+1)− y(tk )1532

=

∫ t−k+1

tk
f (x(t))dt +

∫ t−k+1

tk
g(x(t))dB(t)1533

−f (x(t−k+1)− y(t
−

k+1))1t−g(x(t
−

k+1)− y(t
−

k+1))1Bk1534

=

∫ t−k+1

tk

[
f (x(t))− f (x(tk )− y(tk ))

]
dt1535

+

∫ t−k+1

tk

[
g(x(t))− g(x(tk )− y(tk ))

]
dB(t)1536

and, due to y(0) = 0,1537

y(tk+1) =
k∑
j=0

∫ t−j+1

tj

[
f (x(t))− f (x(tj)− y(tj))

]
dt1538

+

k∑
j=0

∫ t−j+1

tj

[
g(x(t))− g(x(tj)− y(tj))

]
dB(t)1539

=

∫ tk+1

0

[
f (x(t))− f (x(t∗)− y(t∗))

]
dt1540

+

∫ tk+1

0

[
g(x(t))− g(x(t∗)− y(t∗))

]
dB(t), (98)1541

where t∗ := sup{tj : tj ≤ t, j ∈ N} for all t ≥ 0. By Cauchy-1542

Schwaz inequality, (98) produces1543

|y(tk+1)|21544

=

∣∣∣∣∫ tk+1

0

[
f (x(t))− f (x(t∗)− y(t∗))

]
dt1545

+

∫ tk+1

0

[
g(x(t))− g(x(t∗)− y(t∗))

]
dB(t)

∣∣∣∣21546

≤ 2
[
tk+1

∫ tk+1

0

∣∣f (x(t))− f (x(t∗)− y(t∗))∣∣2dt1547

+

∣∣∣∣∫ tk+1

0

[
g(x(t))− g(x(t∗)− y(t∗))

]
dB(t)

∣∣∣∣2
]
.1548

By the Itô isometry and the global Lipschitz condition (45),1549

E |y(tk+1)|21550

≤ 2tk+1 E
∫ tk+1

0

∣∣f (x(t))− f (x(t∗)− y(t∗))∣∣2dt1551

+ 2tk+1 E
∫ tk+1

0

∣∣g(x(t))− g(x(t∗)− y(t∗))∣∣2dt1552

≤ 2L2(tk+1 + 1) E
∫ tk+1

0

∣∣x(t)− x(t∗)+ y(t∗)∣∣2dt.1553

Since (96a) and (96b) give x(t)− x(t∗) = y(t)− y(t∗) for all1554

t ≥ 0, this implies1555

E |y(tk+1)|2 ≤ 2L2(tk+1 + 1) E
∫ tk+1

0
|y(t)|2dt. (99)1556

For any T ≥ 0, using the Itô formula, (45), (52) and (99), one 1557

obtains 1558

E |y(T )|2 1559

= E |y(T∗)|2 + E
∫ T

T∗

[
2 yT (s)f (x(s))+ |g(x(s)|2

]
ds 1560

≤ 2L2(T∗ + 1) E
∫ T∗

0
|y(s)|2ds+ E

∫ T

T∗
|y(s)|2ds 1561

+E
∫ T

T∗

[
|f (x(s))|2 + |g(x(s)|2

]
ds 1562

≤ KT E
∫ T∗

0
|y(s)|2ds+ 2 L2 E

∫ T

T∗
|x(s)|2ds, 1563

where constant KT = 2L2(T∗ + 1) ∨ 1. This implies 1564

E
[

sup
0≤t≤T

|y(t)|2
]
≤ 2 L2

∫ 1t

0
E
[

sup
0≤tj≤T∗

|x(tj + s)|2
]
ds 1565

+KT

∫ T

0
E
[
sup
0≤s≤t

|y(s)|2
]
dt 1566

≤ 2CTL21t + KT

∫ T

0
E
[
sup
0≤s≤t

|y(s)|2
]
dt, 1567

where CT is given by (97) above. In view of the Gronwall 1568

inequality (see, e.g., [33, Lemma 4.5.1, p.129] and [38, The- 1569

orem 8.1, p.45]), this yields 1570

E

[
sup

0≤t≤T
|y(t)|2

]
≤ 2CTL2eKT T1t, 1571

which completes the proof. � 1572

ACKNOWLEDGMENT 1573

The author gratefully acknowledges Prof. X. Mao (the 1574

author’s Ph.D. Supervisor at the University of Strathclyde, 1575

U.K.) for his helpful comments, which improve the quality 1576

of this work. The author would like to thank the reviewers 1577

for their comments, which help improve this work. Some of 1578

this work was done during the author’s visit to The Centre 1579

for Stochastic & Scientific Computations, Harbin Institute 1580

of Technology, and the author would like to thank Prof. M. 1581

Song, Prof. M. Liu, and their group for the helpful discus- 1582

sions. The author is also thankful to Prof. K. C. Sou for the 1583

communications in the past a few years. This paper is also 1584

dedicated to the memory of J. Long, the author’s mathematics 1585

teacher at Guangzhou No.95 Senior Middle School where the 1586

author enjoyed very much his inspiring style of teaching and 1587

the beauty of mathematics in his lectures. 1588

REFERENCES 1589

[1] L. Arnold, Stochastic Differential Equations: Theory and Applications. 1590

New York, NY, USA: Wiley, 1974. 1591

[2] K. J. Åström, Introduction to Stochastic Control Theory. New York, NY, 1592

USA: Academic, 1970. 1593

[3] K. J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory 1594

and Design, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1997. 1595

99496 VOLUME 10, 2022



L. Huang: Stability of CPSs of Numerical Methods for Stochastic Differential Equations

[4] K. J. Åström and P. R. Kumar, ‘‘Control: A perspective,’’ Automatica,1596

vol. 50, no. 1, pp. 3–43, 2014.1597

[5] S. Blanes and F. Cacas, A Concise Introduction to Geometric Numerical1598

Integration. Boca Raton, FL, USA: CRC Press, 2016.1599

[6] S. Boyed, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix1600

Inequalities in System and Control Theory. Philadelphia, PA, USA: Society1601

for Industrial and Applied Mathematics, 1994.1602

[7] E. Buckwar and C. Kelly, ‘‘Non-normal drift structures and linear stability1603

analysis of numerical methods for systems of stochastic differential equa-1604

tions,’’ Comput. Math. Appl., vol. 64, no. 7, pp. 2282–2293, 2012.1605

[8] E. Buckwar and T. Sickenberger, ‘‘A structural analysis of asymptotic1606

mean-square stability for multi-dimensional linear stochastic differential1607

systems,’’ Appl. Numer. Math., vol. 62, no. 7, pp. 842–859, 2012.1608

[9] T. Caraballo, M. A. Hammami, and L. Mchiri, ‘‘Practical exponential1609

stability of impulsive stochastic functional differential equations,’’ Syst.1610

Control Lett., vol. 109, pp. 43–48, Nov. 2017.1611

[10] Control Panel Members. Control in an Information Rich World: Report1612

of the Panel on Future Directions in Control, Dynamics, and Sys-1613

tems. Accessed: Apr. 11, 2022. [Online]. Available: http://www.cds.1614

caltech.edu/~murray/cdspanel/report/latest.pdf1615

[11] CPS Summit Report members. Report: Cyber-Physical Systems Sum-1616

mit. Accessed: Apr. 11, 2022. [Online]. Available: http://iccps2012.cse.1617

wustl.edu/_doc/CPS_Summit_Report.pdf1618

[12] L. El Ghaouii, ‘‘State-feedback control of systems with multiplica-1619

tive noise via linear matrix inequalities,’’ Syst. Control Lett., vol. 24,1620

pp. 223–228, Feb. 1995.1621

[13] E. Fridman, ‘‘Tutorial on Lyapunov-based methods for time-delay sys-1622

tems,’’ Eur. J. Control, vol. 20, no. 6, pp. 271–283, 2014.1623

[14] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control1624

Toolbox. Natick, MA, USA: MathWorks, 1995.1625

[15] I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random1626

Processes. Philadelphia, PA, USA: Dover, 1996.1627

[16] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integra-1628

tion: Structure-Preserving Algorithms forOrdinaryDifferential Equations,1629

2nd ed. Berlin, Germany: Springer-Verlag, 2006.1630

[17] T. A. N. Heirung, J. A. Paulson, J. O’Leary, and A. Mesbah, ‘‘Stochastic1631

model predictive control—How does it work?’’ Comput. Chem. Eng.,1632

vol. 114, pp. 158–170, Jun. 2018.1633

[18] J. P. Hespanha, D. Liberzon, and A. R. Teel, ‘‘Lyapunov conditions for1634

input-to-state stability of impulsive systems,’’ Automatica, vol. 44, no. 11,1635

pp. 2735–2744, Nov. 2008.1636

[19] D. J. Higham, ‘‘Mean-square and asymptotic stability of the stochastic1637

theta method,’’ SIAM J. Numer. Anal., vol. 38, no. 3, pp. 753–769, 2000.1638

[20] D. J. Higham, ‘‘An algorithmic introduction to numerical simulation of1639

stochastic differential equations,’’ SIAM Rev., vol. 43, no. 3, pp. 525–546,1640

Mar. 2001.1641

[21] D. J. Higham, X. Mao, and A. M. Stuart, ‘‘Strong convergence of Euler-1642

type methods for nonlinear stochastic differential equations,’’ SIAM J.1643

Numer. Anal., vol. 40, no. 3, pp. 1041–1063, 2002.1644

[22] D. J. Higham, X. Mao, and A. M. Stuart, ‘‘Exponential mean-square1645

stability of numerical solutions to stochastic differential equations,’’ LMS1646

J. Comput. Math., vol. 6, no. 6, pp. 297–313, Jan. 2003.1647

[23] D. J. Higham and X. Mao, ‘‘Nonnormality and stochastic differential1648

equations,’’ BIT Numer. Math., vol. 46, no. 3, pp. 525–532, Sep. 2006.1649

[24] D. J. Higham, ‘‘Modeling and simulating chemical reactions,’’ SIAM Rev.,1650

vol. 50, no. 2, pp. 347–368, 2008.1651

[25] L. Huang and X. Mao, ‘‘On input-to-state stability of stochastic retarded1652

systems with Markovian switching,’’ IEEE Trans. Autom. Control, vol. 54,1653

no. 8, pp. 1898–1902, Aug. 2009.1654

[26] L. Huang, ‘‘Stability and stabilisation of stochastic delay systems,’’1655

Ph.D. thesis, Dept. Math. Statist., Univ. Strathclyde, Glasgow, U.K., 2010.1656

[27] L. Huang and X. Mao, ‘‘SMC design for robust H∞ control of uncertain1657

stochastic delay systems,’’ Automatica, vol. 46, pp. 405–412, Feb. 2010.1658

[28] L. Huang, H. Hjalmarsson, and H. Koeppl, ‘‘Almost sure stability and sta-1659

bilization of discrete-time stochastic systems,’’ Syst. Control Lett., vol. 82,1660

pp. 26–32, Aug. 2015.1661

[29] L. Huang, L. Pauleve, C. Zechner, M. Unger, A. S. Hansen, and H. Koeppl,1662

‘‘Reconstructing dynamic molecular states from single-cell time series,’’1663

J. Roy. Soc. Interface, vol. 13, no. 122, Sep. 2016, Art. no. 20160533.1664

[30] L. Huang and S. Xu, ‘‘Impulsive stabilization of systems with control1665

delay,’’ IEEE Trans. Autom. Control, early access, Mar. 3, 2022, doi:1666

10.1109/TAC.2022.3155666.1667

[31] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden, ‘‘Strong convergence of an 1668

explicit numerical method for SDEswith nonglobally Lipschitz continuous 1669

coefficients,’’ Ann. Appl. Probab., vol. 22, no. 4, pp. 1611–1641, 2012. 1670

[32] R. Khasminskii, Stochastic Stability of Differential Equations, 2nd ed. 1671

Berlin, Germany: Springer-Verlag, 2012. 1672

[33] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential 1673

Equations. Berlin, Germany: Springer-Verlag, 1992. 1674

[34] E. A. Lee, ‘‘CPS foundations,’’ in Proc. 47th IEEE/ACM Design Autom. 1675

Conf. (DAC), Chicago, IL, USA, 2010, pp. 737–742. 1676

[35] E. A. Lee, ‘‘The past, present and future of cyber-physical systems: A focus 1677

on models,’’ Sensors, vol. 15, no. 3, pp. 4837–4869, 2015. 1678

[36] Y. Liu and Z. Song, Theory and Application of Large-Scale Dynamic Sys- 1679

tems: Decomposition, Stability and Structure, vol. 1. Guangzhou, China: 1680

South China Univ. of Technology, 1988. 1681

[37] Y. Liu and Z. Feng, Theory and Application of Large-Scale Dynamic 1682

Systems: Stochastic Stability and Control, vol. 4. Guangzhou, China: South 1683

China Univ. of Technology, 1992. 1684

[38] X. Mao, Stochastic Differential Equations and Applications, 2nd ed. 1685

Chichester, U.K.: Horwood Publishing, 2007. 1686

[39] X. Mao, ‘‘Almost sure exponential stability in the numerical simulation 1687

of stochastic differential equations,’’ SIAM J. Numer. Anal., vol. 53, no. 1, 1688

pp. 370–389, 2015. 1689

[40] X. Mao, ‘‘The truncated Euler–Maruyama method for stochastic differen- 1690

tial equations,’’ J. Comput. Appl. Math., vol. 290, pp. 370–384, Dec. 2015. 1691

[41] P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, ‘‘Exponential stability of 1692

impulsive systems with application to uncertain sampled-data systems,’’ 1693

Syst. Control Lett., vol. 57, no. 5, pp. 378–385, May 2008. 1694

[42] B. Øksendal, Stochastic Differential Equations: An Introduction With 1695

Applications, 5th ed. New York, NY, USA: Springer, 2000. 1696

[43] S. Peng and Y. Zhang, ‘‘Razumikhin-type theorems on pth moment expo- 1697

nential stability of impulsive stochastic delay differential equations,’’ IEEE 1698

Trans. Autom. Control, vol. 55, no. 8, pp. 1917–1922, Aug. 2010. 1699

[44] S. Sabanis, ‘‘A note on tamed Euler approximations,’’ Electron. Commun. 1700

Probab., vol. 47, pp. 1–10, Jan. 2013. 1701

[45] Y. Saito and T. Mitsui, ‘‘Stability analysis of numerical schemes for 1702

stochastic differential equations,’’ SIAM J. Numer. Anal., vol. 33, no. 6, 1703

pp. 2254–2267, Dec. 1996. 1704

[46] A. M. Samoilenko and N. A. Perestyuk, Theory of Impulsive Differential 1705

Equations. Singapore: Word Scientific, 1995. 1706

[47] S. Särkkä and A. Solin, Applied Stochastic Differential Equations. 1707

Cambridge, U.K.: Cambridge Univ. Press, 2019. 1708

[48] F. Scotton, L. Huang, S. A. Ahmadi, and B. Wahlberg, ‘‘Physics-based 1709

modeling and identification for HVAC systems?’’ in Proc. Eur. Control 1710

Conf., Zurich, Switzerland, 2013, pp. 1404–1409. 1711

[49] A. M. Stuart and P. Humphries, Dynamical Systems and Numerical Anal- 1712

ysis. Cambridge, U.K.: Cambridge Univ. Press, 1996. 1713

[50] H. S. Tsien, Engineering Cybernetics. Shanghai, China: Shanghai Jiaotong 1714

Univ. Press, 2015. 1715

[51] U. Vaidya, ‘‘Stochastic stability analysis of discrete-time system using 1716

Lyapunov measure,’’ in Proc. Amer. Control Conf., Chicago, IL, USA, 1717

2015, pp. 4646–4651. 1718

[52] N.Wiener,Cybernetics: Or Control and Communication in the Animal and 1719

the Machine, 2nd ed. Cambridge, MA, USA: MIT Press, 1961. 1720

[53] T. Yang, Impulsive Control Theory. Berlin, Germany: Springer-Verlag, 1721

2001. 1722

LIRONG HUANG was born in Guangzhou, 1723

Guangdong, China. He received the B.Eng. and 1724

M.Eng. degrees from the South China University 1725

of Technology, Guangzhou, theM.Sc. degree from 1726

King’s College London, and the Ph.D. degree from 1727

the University of Strathclyde, Glasgow, U.K. 1728

FromNovember 2010 to October 2012, he was a 1729

Postdoctoral Researcher with the Automatic Con- 1730

trol Laboratory, KTH Royal Institute of Technol- 1731

ogy, Stockholm, Sweden. FromNovember 2012 to 1732

October 2015, he was with the Automatic Control Laboratory and then the 1733

Institute of Molecular Systems Biology, ETH Zürich, Switzerland. From 1734

May 2018 to February 2021, he worked under a fix-term contract with the 1735

Guangdong University of Technology, Guangzhou. 1736

1737

VOLUME 10, 2022 99497

http://dx.doi.org/10.1109/TAC.2022.3155666

