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ABSTRACT Military vehicle object detection technology in complex environments is the basis for
the implementation of reconnaissance and tracking tasks for weapons and equipment, and is of great
significance for information and intelligent combat. In response to the poor performance of traditional
detection algorithms in military vehicle detection, we propose a military vehicle detection method based
on hierarchical feature representation and reinforcement learning refinement localization, referred to as
MVODM. First, for the military vehicle detection task, we construct a reliable dataset MVD. Second,
we design two strategies, hierarchical feature representation and reinforcement learning-based refinement
localization, to improve the detector. The hierarchical feature representation strategy can help the detector
select the feature representation layer suitable for the object scale, and the reinforcement learning-based
refinement localization strategy can improve the accuracy of the object localization boxes. The combination
of these two strategies can effectively improve the performance of the detector. Finally, the experimental
results on the homemade dataset show that our proposed MVODM has excellent detection performance and
can better accomplish the detection task of military vehicles.

INDEX TERMS Military vehicle objects, object detection, reinforcement learning, hierarchical feature

representation.
NOMENCLATURE ri(ss, s;+1) Reward for agent transfer from state s; selec-
.. . tion action a; to state ;1.
MVD Military vehicle dataset. :
: . : . r(T) The sequence reward that the agent receives
B, Bounding box information for time step 7.

at the end of the action sequence.

0: (i) Vector of feature representations of military
vehicle instance i at time step 7.
ks The final concise description of instance i at . INTRODUCTION
time step 7. With the development and progress of technology, modern
St The state representation of the agent at time warfare is gradually moving into the era of informationiza-
step . tion and intelligence. In the future information-based war-
ar The action performed by the agent at time fare, efficient battlefield situational awareness capability is
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undoubtedly the key to guarantee the victory of war, and the
military powers are now actively strengthening the research
of related technology in this aspect [1]. Battlefield situa-
tional awareness includes several tasks such as reconnais-
sance, surveillance, intelligence, damage assessment, beacon
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indication, and information resource management and con-
trol. Among these tasks, the identification and localization of
military targets is a basic and critical technology [2]. There-
fore, research on automatic detection technology for military
targets in complex battlefield environments is of great signif-
icance to improve battlefield situational awareness.

In recent years, with the boom of deep learning, deep learn-
ing has been widely used in medical diagnosis [3], smart cities
[4] and intelligent robots [5]. In object detection, the intro-
duction of deep learning has greatly improved the detection
performance, and deep learning-based object detection tech-
niques have gradually replaced the traditional manual feature-
based methods. After continuous research and improvement
by scholars, the current mainstream object detection methods
have made significant progress in the detection of common
targets. However, for military targets, due to their secrecy
and environmental complexity, there are often greater dif-
ficulties for the detection of military targets [6]. In order
to further improve the battlefield situational awareness, this
paper addresses the detection of vehicle targets in military tar-
gets, aiming to improve the detection performance of military
vehicle targets.

The following difficulties exist in military vehicle object
detection: first, military vehicle targets lack corresponding
datasets for detection model training due to their secrecy, sec-
ond, military vehicles are located in complex environments
and detection is susceptible to background interference, and
finally, military vehicle targets have a wide scale distribution
and large scale variation, especially some of them present
extremely small sizes due to the long acquisition distance.
In recent years, the combination of reinforcement learning
and deep learning has yielded significant results in solving
intelligent decision-making and optimization problems. [7]
proposed a game-based deep reinforcement learning method,
which is effective in optimizing the energy consumption
problem of MEC systems. [8] proposed a recurrent deep
reinforcement learning method for solving the control prob-
lem of spectrum access in wireless networks. Based on the
inspiration from the above studies, we consider introduc-
ing reinforcement learning into our research. Specifically,
in order to solve the difficulties in military vehicle object
detection, we propose a military vehicle object detection
method based on hierarchical feature representation and rein-
forcement learning refinement localization. Our main efforts
are summarized as follows.

(1) To address the lack of military vehicle target datasets,
we downloaded images and videos from the Internet and
performed a series of processing on them to finally constructa
military vehicle dataset (MVD) that meets our research needs;

(2) To address the multi-scale problem in military vehicle
detection, we propose a hierarchical feature representation
strategy, which can help objects of different scales to select
the most appropriate representation feature layer and thus
improve the detection performance;

(3) To address the problem of inaccurate object localization
in the original detection method, we design a refined local-
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ization strategy based on reinforcement learning, which can
effectively improve the localization accuracy of the predic-
tion frame and enhance the detector performance;

(4) The experimental results on the self-built dataset show
that our proposed MVODM has excellent detection perfor-
mance and is able to perform the detection task of military
vehicles better.

The remainder of this paper is organized as follows: we
briefly review related work on military target detection in
Section 2. Section 3 presents the military vehicle dataset we
constructed. In Section 4, we present our MVODM in detail.
In Section 5, we conduct extensive experiments and analyze
and discuss the experimental results. Finally, Section 6 sum-
marizes the full work.

Il. RELATED WORK

A. GENERAL OBJECT DETECTION

The task of object detection is to automatically identify and
locate the object to be detected from an image or video. It has
been a hot research topic in the field of computer vision. Tra-
ditional object detection methods mainly use hand-designed
features to train classifiers, which include HOG [9], Haar
[10], CSS [11], LBP [12], and ICF [13]. However, in recent
years, with the development of convolutional neural networks
(CNNs) [14], object detection methods based on deep learn-
ing [15] have gradually attracted the attention and research
of a wide range of scholars. The current mainstream deep
learning-based object detection models can be divided into
two main categories: proposal-based two-stage detectors and
proposal-free one-stage detectors. The R-CNN series [16],
[17], [18] is representative of two-stage detectors. This class
of detectors first generates several proposals of regions of
interest that may contain targets in the first stage, and then
uses classifiers and border regression to detect targets on the
proposed regions in the second stage. In contrast, one-stage
detectors, such as the YOLO series [19], [20], [21], [22] and
SSD [23], do not need to generate region of interest proposals
and can directly classify and localize targets. In general, one-
stage target detectors are much faster than two-stage target
detectors, but the detection accuracy is relatively poor, which
is determined by their structure.

B. MILITARY OBJECT DETECTION

The introduction of deep learning-based object detection
methods into the military field can effectively improve bat-
tlefield situational awareness. In recent years, scholars in
related fields have also gradually carried out research on
military object detection based on deep learning methods.
In the framework of Faster R-CNN, [24] designed a top-down
agglomerative network to detect military armored targets.
Reference [25] used Faster R-CNN and image pyramids to
solve the armor target detection problem. Reference [26]
proposed a military object detection framework based on
Gabor convolutional kernel and deep feature pyramid net-
work, which achieved better detection results. By using
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FIGURE 1. Example of a partial sample of the military vehicle dataset.

three-channel images fusing temporal, spatial and thermal
information to detect military targets and fine-tuning them
using transfer learning methods, [27] was able to perform the
military target detection task better. Reference [28] proposed
a deep transfer learning technique in order to solve the prob-
lem of military target recognition under few-shot conditions.
Reference [29] proposed a multi-level capsule network to
improve military target detection accuracy. Reference [30]
studied the work related to the deployment of mainstream
algorithms on UAVs for military target detection, and laid the
foundation for the application of the algorithms.

Ill. HOMEMADE MILITARY VEHICLE DATASET

Datasets are one of the most important parts of object detec-
tion work. Currently, publicly available datasets for generic
and vehicle target detection tasks, such as COCO [31] and
KITTI [32], are relatively well established and can meet the
needs of detection tasks. However, none of these datasets
involve military vehicle targets in complex battlefield envi-
ronments and cannot be directly used for the detection of mil-
itary vehicles. In previous research work on military object
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detection, scholars have constructed their own datasets in
response to the lack of military target datasets [26], [29], [30].
However, these datasets also generally have some problems:
(1) firstly, scholars’ homemade datasets are seldom publicly
available and cannot be directly used, (2) secondly, these
datasets usually do not consider the scale of military targets
and are not well targeted for realistic military target detection
tasks, (3) finally, these datasets contain a wide range of
military targets that are usually different from the military
vehicle detection task of this paper. Therefore, a new military
vehicle dataset (MVD) was constructed to better carry out the
research work in this paper.

A. CAPACITY OF MVD

We obtain images containing military vehicles by two means:
(1) downloading the desired military vehicle images directly
from the Internet and filtering them, discarding unreasonable
images, and (2) sampling frames of publicly available mil-
itary video materials (e.g., military exercises and training)
to obtain military vehicle images, again making a reason-
able selection of the images obtained. A total of five typical
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FIGURE 2. Proportional distribution of military vehicle targets for
different scenarios.
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FIGURE 3. Statistics on the number of different military targets in the
dataset, including the number of images and the number of labeled
boxes.

military vehicle targets are included in the MVD constructed
in this paper: tank, rocket artillery, infantry fighting vehi-
cles, military trucks, and military command vehicle. These
military vehicles come from a variety of complex battlefield
environments, such as desert, grassland, snow, and cities.
In Figure 1, we show some sample examples from our MVD,
column 1 shows a single small-scale target example, columns
2 and 3 show multiple target examples in different environ-
ments, and column 4 shows a large-scale target example.
As can be seen from the Figure 1, our MVD contains various
possible scenarios for military vehicle targets, such as city
in row 1, column 2, grassland in row 2, column 1 and snow
in row 3, column 2, and in Figure 2, we count the number
of military vehicle targets contained in different scenes. Our
MVD contains a total of 12,148 military vehicle images, and
we uniformly convert the collected images to.JPG format of
1200 x 875 size and number all images uniformly. Then we
used Labellmg software to label the military vehicle targets in
the images and obtained a total of 25586 valid labeled boxes.
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FIGURE 5. Location distribution of military vehicle targets.

We randomly selected 70% of the images from different types
of military vehicle targets as the training set samples and
the remaining 30% as the test set samples. Figure 3 shows
the image and annotation frame statistics of various types of
military vehicle targets.

B. SCALE AND POSITION OF MVD

We also performed statistics on the scale information and
location information of the military vehicle targets in our
MVD. The statistical results are shown in Figure 4 and Fig-
ure 5, respectively. We calculate the ratio of the width of the
military vehicle target to the width of the image, m, and the
ratio of the height of the military vehicle target to the height
of the image, n, and take the larger of m and n to count and
evaluate the scale distribution of the MVD. It is clear from
Figure 4 that our MVD contains more small-scale targets,
which is consistent with the situation in real reconnaissance
missions, i.e., small-scale targets are more common. The
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FIGURE 6. The overall framework of Our proposed military vehicle object detection method.

location statistics in Figure 5 show that the military vehicle
targets in our dataset are uniformly distributed throughout the
image, and this distribution is beneficial for enhancing the
robustness of the object detector to location.

IV. OUR APPROACH

In this section, we describe the specific implementation
of our proposed military vehicle object detection method
(MVODM). MVODM is divided into two main phases: the
first phase is mainly used to generate a hierarchical feature
representation of the region of interest and the original bound-
ing box, and the second phase uses reinforcement learning
strategies to select the most appropriate feature representation
layer and refine the localization of the target to be detected.
The overall framework of our proposed method is shown
in Figure 6. First, the input image is fed into the backbone
network to perform feature extraction, and in this paper,
we use ResNet50 as the feature extraction network. Then,
the extracted features perform a hierarchical feature repre-
sentation strategy and are fed into the subsequent network
to generate the initial bounding box. Finally, the hierarchical
features and the initial bounding box are fed together into the
reinforcement learning-based refinement localization module
to obtain the final detection results.

A. HIERARCHICAL FEATURE REPRESENTATION STRATEGY
Generally speaking, the high level feature extraction layer
tends to capture the global overall information of the image
and the semantic information of the target, which can pro-
vide robustness support for appearance changes. However,
due to the reduced spatial resolution, the high level feature
extraction layer has limitations in target localization accu-
racy, especially when facing small scale targets. However,
low level feature extraction layers are able to capture more
accurate localization information, but lack robustness to tar-
get changes. Meanwhile, previous studies [33] have shown
that high level feature maps have better activation for large

VOLUME 10, 2022

scale objects, while small scale objects respond strongly in
low level feature maps. Therefore, to address the multi-scale
problem in our military vehicle detection task, we consider
using a hierarchical feature representation strategy to gen-
erate different levels of feature representations of the object
to be detected and select the best feature representation by
a subsequent reinforcement learning strategy to improve the
detection performance. Specifically, as shown in the green
box in Figure 6, we selected C3, C4 and Cs from ResNet50
to serve as the workspace for the layered feature represen-
tation. We perform a 1 x 1 convolution operation on the
output of these three feature layers and feed RPN and ROI
Align to obtain the feature vectors of military vehicle target
proposals for each layer, which are fed into a fully connected
layer for generating initial military vehicle bounding box pre-
dictions, including softmax classification and bounding box
regression.

B. REFINED LOCALIZATION STRATEGY BASED ON
REINFORCEMENT LEARNING

To more accurately localize military vehicle targets in images,
we consider introducing reinforcement learning to further
refine the target bounding box. Meanwhile, inspired by pre-
vious work [34], we use a recurrent neural network-based
framework to design our refinement localization strategy.
Figure 7 illustrates part of the recurrent process of our refine-
ment localization strategy.

As shown in Figure 7, at each time step t, B;_| represents
the bounding box information of the previous time step (when
t=1, By is the original bounding box information), and 6, (i)
represents the feature representation vector of military vehi-
cle instance i at time step t. It should be noted that the size of
6;(i) varies depending on the selected feature layer because
we use a hierarchical feature representation strategy. In this
paper, the number of output feature map channels for C3, Cy4
and Cs are 512, 1024, and 2048, respectively. By implement-
ing ROI Align (divided into 2 x 2) for the region of interest
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FIGURE 7. The specific implementation process of the reinforcement
learning-based refinement localization strategy.

in the corresponding layer, the final dimension of the feature
representation vectors for the three different feature layers are
2048 (2 x 2 x 512), 4096 and 8192, respectively. The final
concise description of instance i at layer j is then obtained
by a fully connected layer and the ReL.U activation function
[34]:

ke = f1Gits Bi—1) = o (W, 6,(0)) (1)

where o (-) represents the ReLU activation function, j denotes
the feature layer selected at time t, j € {3, 4, 5},and w’1
represents the weight parameter of the fully connected layer.
Empirically, we set the dimension of k; to 1024. Meanwhile,
we combine the past state information s;_; to generate the
new state s;:

st = folke, Si—1) = YW ke + W3 51_1) 2

where ¥ (-) denotes the Tanh activation function, and Wé and
w% represent the weight parameters of k; and s,_1, respec-
tively. In this paper, the dimension of s; is set to 64. Finally,
we perform the coordinate transformation of the bounding
box by randomly selecting the execution action a; conditional

on the current state as follows

a; = f3(s1) = e(w3 81) 3

where £(-) denotes the Softmax function and w3 represents the
weight parameter. a; is a 10-dimensional vector correspond-
ing to the 10 different transformation actions in our action
set.

Next, we instantiate each element of the Markov Deci-
sion Process (MDP) [35] in reinforcement learning. These
elements include state S, action A, and reward function R.
At each time step t,agent observes the environment state s; €
S, selects an action a; € A based on the given policy, and
then moves to the next state 5,41, in which the agent will
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Triggers

receive a reward r; € R from the environment feedback.
It is important to note that agent receives rewards for each
decision (i.e., selected action) only during training, while in
testing, we follow the trained model strategy and agent does
not receive rewards.

(1) State: As previously described, the state s; at time step
t is a 64-dimensional vector containing the historical
state information, the current bounding box informa-
tion, and the selected corresponding layer feature rep-
resentation. s; is calculated by Equation (2).

(2) Action: As shown in Figure 8, we designed a total
of 10 different types of actions in action set A. These
actions include 8 actions for coordinate transformation
and 2 actions for triggering. These actions include
8 actions for coordinate transformation and 2 trig-
ger actions. Considering all possible situations during
the coordinate conversion, the coordinate conversion
actions are subdivided into four types: left-right move-
ment, up-down movement, aspect ratio change, and
zoom-in/out. The trigger action is mainly used to select
the best feature representation layer at the beginning
of the action sequence and to terminate the coordi-
nate transformation at the end of the action sequence.
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In this paper, we define the bounding box information
as B, = (b7, bf by, bﬁ’), where (by, bf ) represents the
coordinates of the upper left corner of the bounding
box, and b} and b} represent the width and height of
the bounding box, respectively. For the four types of
transformation actions, the specific coordinate trans-
formation is calculated as:

1) shifts left and right: be = b} +c,c € R, to the
right when c is positive and to the left when c is
negative.

2) shifting up and down: b, = b} +c.c € R,
shifting down when c is positive and up when c
is negative.

3) aspect ratio change: b?+1 = bf +c¢,c € Risused
to change the height and b}’ | = b} + ¢, c € Ris
used to change the width.

4) Zoom in and out: bf+l = b x b, =

b} x c,when ce(0,1) is zoomed out, when c>1
is zoomed in.

(3) Reward function The reward function consists of two
parts: action reward and sequence reward. For the
action reward, we design the reward function by cal-
culating the difference between the Intersection-over-
Union (IoU) of the bounding box (B) and the ground
truth box (G) before and after the coordinate transfor-
mation [36]. Specifically, the reward for transferring
from state s, to state 5,41 by selecting action a; is:

1, IoU(Bt+1, Gi+1) — 1oU(B;, G¢) > 0
rl(st’st+1) = O? IOU(BZ-I—lv Gl+l)_IOU(Blv Gl) =0
-1, IoU(Bi+1, Gr+1) — IoU(B;, Gr) < 0O

4

At the end of the action sequence, we designed an additional
sequence reward to evaluate this sequence:

4, if IoU(Br, Gr) = 0.8
n(T) =12, if 0.6 <IoU(Br, Gr)<0.8 5)

—5, otherwise

For the action reward function, since the difference between
the IoU of the bounding box (B) and the ground truth box
(G) before and after the coordinate transformation is small,
using the difference as the reward directly would not provide
the agent with enough clear guidance information. Therefore,
we quantified the reward as three real numbers {1, 0, —1},
which can help the agent to better select the action to improve
the bounding box. The sequential reward function is designed
mainly to encourage the agent to learn a high-performance
object localization strategy.

V. EXPERIMENTS

In this section, the experimental results are presented and
analyzed and discussed. Section 5.1 describes the specific
experimental setup. Section 5.2 shows the results of the abla-
tion study. Section 5.3 shows the detailed assay results.
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A. EXPERIMENTAL SETUP

1) IMPLEMENTATION DETAILS

Our experiments were all performed on a GeForce
RTX 3090 GPU. For the hierarchical representation of fea-
tures, we initialize ResNet50 using the pre-trained weights on
ImageNet [37]. For the training of the original bounding box
proposal network, we used Adam [38] as the optimizer with
an initial learning rate set to 10~ and a 10-fold reduction
in the learning rate per 7000 iterations, for a total of 25k
iterations. The mini-batch consists of 120 object proposals
randomly sampled from one image, where the ratio of positive
to negative proposals is 1:3. We mark a proposal as positive
if its IoU with one ground truth frame is greater than 0.5,
and consider it negative if the IoU of the proposal with
any ground truth frame is less than 0.3. Considering our
refined localization strategy, we set the initial number of
proposals per image to 250 rather than more (e.g., 2000), and
previous studies [18], [39] have shown that a larger number
of proposals has little benefit for detection. For reinforcement
learning training, the initial learning rate was set to 103 and
gradually linearly annealed to 0.

2) EVALUATION METRICS

In this paper, we use a total of four evaluation metrics to
evaluate the performance of our proposed MVODM, which
are precision (P), recall (R), average precision (AP), and
mean average precision (mAP). Let P be the number of cor-
rectly predicted positive samples, Pr be the number of incor-
rectly predicted positive samples, Nr be the number of
incorrectly predicted negative samples, and N7 be the number
of correctly predicted negative samples. Then the expression
of precision rate is calculated as:

Pr

P=—— 6
Pr + Pr ©

Similarly, the recall rate can be calculated by the following
equation

Pr

R=—— 7
Pr + NFr (0

Average precision is an evaluation metric that synthesizes
precision and recall, which reflects the performance of the
detection model on each class target, and its value can be
obtained by calculating the area under the precision-recall
(PR) curve. Mean average precision is the mean of the aver-
age precision of all classes of targets, which reflects the
performance of the detection model over the entire dataset.
Meanwhile, to further evaluate the detection performance
of our algorithm for small-scale military vehicle objects,
we divide the test set into small-scale (S) subsets, large-scale
(L) subsets, and all (A) subsets, and report the performance
on these subsets separately. The subsets are divided based
on S: 0 <max (m,n) <0.3,L: 0.3 <max (m,n) < 1,A: 0 <
max (m, n) < 1.
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TABLE 1. Effectiveness evaluation results of the reinforcement
learning-based refinement localization strategy. OPB represents the use
of the original proposal box, RLS represents the use of the refinement
localization strategy, and the evaluation metric is AP (%).

Method L S A

C3+OPB | 704 54.1 63.7
C4+0OPB | 77.6 52.7 70.9
C5+OPB | 749 51.6 66.2
C3+RLS | 781 652 715
C4+RLS | 854 634 782
CS5+RLS | 824 623 758

B. ABLATION STUDIES

We perform ablation experiments to evaluate the effective-
ness of two strategies in our MVODM. First, we remove
the reinforcement learning-based refinement localization
strategy and evaluate the performance of using only the
hierarchical feature representation strategy and the origi-
nal proposal boxes. Then, we evaluate the performance of
using the reinforcement learning-based refinement local-
ization strategy directly on different feature layers without
the hierarchical feature representation and the original pro-
posal boxes. Finally, we also conduct extended experiments
using the reinforcement learning-based refinement localiza-
tion strategy on the original proposal boxes generated on
different feature representation spaces. For all ablation exper-
iments, we report the performance of the method using only
the tank target as an example, if not specifically noted.

1) EFFECTIVENESS OF HIERARCHICAL FEATURE
REPRESENTATION STRATEGY

We evaluate the effectiveness of our layered feature rep-
resentation strategy by using different layers of ResNet50
(C1-C5) alone to generate original proposals as the final
output and by using the layered representation strategy (C3,
C4, C5) to generate original proposals as the final output.
In this experiment, we evaluate the performance based on the
recall of different IoUs, which are tested on three subsets,
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and the experimental results are shown in Figure 9. From
Figure 9, it is clear that, firstly, C1 and C2 perform less well
on all subsets, mainly because the shallower feature layer
cannot extract enough feature information and the feature
representation is weak. Comparatively, C3 is a good starting
point for feature representation. Secondly, we observe that
C4 performs best on the large scale subset compared to other
individual layers, while C3 shows better performance on the
small scale subset, which indicates that the higher feature
layer (C4) has better activation for large scale objects, while
the lower feature layer (C3) is more suitable for representing
small scale objects. Finally, our hierarchical representation
strategy achieves optimal performance for either subset. At an
IoU threshold of 0.5, our hierarchical representation strategy
can achieve 96.7% (L), 67.5% (S), and 84.2% (A) recall,
respectively, which is a more significant improvement in
detection performance compared to the previous best results
for single-layer features by 2.5% (L), 7.3% (S), and 6.3% (A),
respectively.

2) EFFECTIVENESS OF REINFORCEMENT LEARNING-BASED
REFINEMENT LOCALIZATION STRATEGY

To verify the effectiveness of the reinforcement learning-
based refinement localization strategy, we conducted the fol-
lowing experiments: using the refinement localization strat-
egy directly on different feature layers and using the original
proposal boxes as the final output on different feature layers.
In this experiment, we only evaluate the results on C3-C5 and
use the average precision (AP) as the evaluation metric, again,
on each of the three subsets. The experimental results are
shown in Table 1. Relative to the original proposed box, our
refined localization strategy improves the localization results
with a larger improvement in AP on all three subsets L, S,
and A. Taking C5 as an example, our refined localization
strategy is 7.5% (L), 10.7% (S), and 9.6% (A) higher than
the original proposal boxes, respectively. Similarly, we note
that C4 performs best on the large-size subset, while C3 is
superior on the small-scale subset.
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FIGURE 10. Experimental results using the refined localization strategy on the original proposal boxes.

O O O

FIGURE 11. Example of the process of refinement localization based on reinforcement learning. (Some images have been resized for aesthetic purposes.)

3) REFINEMENT LOCALIZATION RESULTS ON DIFFERENT
FEATURE REPRESENTATION SPACES

To further validate the effectiveness of the combination of
our proposed hierarchical feature representation strategy and
the refined localization strategy, we conducted extended
experiments on different feature representation spaces. Fig-
ure 10 shows the PR curves on the three tested subsets. As can
be seen from the figure, the performance of combining the
two strategies is the best regardless of the subset. On the sub-
sets L, S and A, our proposed method achieves 91.8%, 73.4%
and 86.7% AP, respectively. On the one hand, our combined
strategy has a clear advantage over other feature represen-
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tation layers using the original proposal boxes and refine-
ment localization strategies. On the other hand, our combined
strategy also achieves significant performance improvement
compared to the previous hierarchical representation strategy
or refined localization strategy alone.

C. DETECTION RESULTS

1) QUANTITATIVE RESULTS

To validate the effectiveness of our proposed MVODM for
detecting military vehicle targets, we compared MVODM
with several mainstream object detection algorithms: R-FCN
[39], SSD [23], YOLOvV3 [21], YOLOv4 [22], and Faster
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MVODM

Faster R-CNN

FIGURE 12. Visual comparison of the detection results of our MVODM and Faster R-CNN. Where green boxes represent correct targets detected, red solid
boxes represent false detections, and red dashed boxes represent missed detections.

R-CNN [18]. We trained and tested all the algorithms using
our homemade dataset and reported the AP and overall mAP
for each class of targets separately, and the experimental
results are shown in Table 2. From the data in Table 2, we can
see that our proposed MVODM shows excellent performance
in detecting military vehicle targets. Specifically, first, for
the all subset, our MVODM showed optimal performance for
each class of military vehicles, obtaining detection accuracies
of 86.7%, 83.2%, 78.4%, 80.9%, and 76.5% for tank, rocket
artillery, infantry fighting vehicles, military trucks, and mili-
tary command vehicle, respectively, exceeding the subopti-
mal methods by 4.4%, 6.4%, 8.9%, 9.3%, and 8.7%. Sec-
ond, for the overall object detection performance on different
subsets, our MVODM also achieves optimal performance
for all of them, achieving 85.6% (L), 66.3% (S) and 81.1%
(A) of mAP, respectively. Finally, compared to the baseline
detector Faster R-CNN, our MVODM improves the mAP by
7.4% (L), 8.1% (S) and 9.9% (A) on three different subsets,
respectively, which strongly validates the effectiveness of our
improved strategy.
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2) QUALITATIVE RESULTS

First, we show a partial example of action sequences for our
proposed reinforcement learning-based refinement localiza-
tion process in Figure 11. As can be seen, only a limited
number of action transformations are required for us to obtain
a more appropriate bounding box. Such a bounding box
is a further directed (facilitated by rewards) refinement of
the original proposed box, which can improve the detection
performance to some extent. According to the experimental
statistics, about 74% of the objects need less than 10 actions
to complete the coordinate transformation from the begin-
ning to the completion, which shows that our strategy is
efficient.

We show a visual comparison of the detection results of
our proposed MVODM with Faster R-CNN in Figure 12. The
first and second rows show the detection success cases, which
include single and multiple targets, large and small scales,
and different battlefield environments. From these two rows,
we can see that our MVODM has excellent detection perfor-
mance and is able to locate and detect the target better. While
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TABLE 2. Comparison of the detection effectiveness of our MVODM with several other mainstream object detection algorithms. T: Tank, RA: Rocket
artillery, IFV: Infantry fighting vehicles, MT: Military trucks, MCV: Military command vehicle vehicle.

AP(%)

Test Subsets Methods T RA IFV MT MCV mAP(%)
R-FCN 83.5 808 724 748 71.8 76.7
SSD 82.8 796 726 743 713 76.1
L YOLOv3 82.7 784 70.6 73.6 694 74.9
YOLOv4 89.3 906 835 796 75.6 83.7
Faster R-CNN 853 81.7 747 765 72.8 78.2
MVODM(Ours) | 91.8 894 823 84.6 80.1 85.6
R-FCN 66.3 606 542 592 513 58.3
SSD 64.7 593 538 573 507 57.2
S YOLOv3 59.6 584 51.6 554 493 54.9
YOLOv4 674 68.5 56.1 589 548 61.1
Faster R-CNN 65.1 612 544 58.1 522 58.2
MVODM(Ours) | 73.4 704 61.7 653 60.6 66.3
R-FCN 78.5 728 663 679 62.7 69.6
SSD 764 723 657 672 624 68.8
A YOLOv3 758 71.1 624 653 60.4 67.0
YOLOv4 823 768 69.5 716 678 73.6
Faster R-CNN 79.8 744 672 70.1 643 71.2
MVODM(Ours) | 86.7 832 784 809 76.5 81.1

Faster R-CNN is able to detect some of the targets, there is a
missed detection on smaller scale targets, such as the tank in
the fourth column of the first row. Also false detection occurs
on confusable targets, such as the infantry fighting vehicle
in the second row and third column is mistakenly detected
as a tank. Moreover, the localization box of Faster R-CNN
is rougher compared to our MVODM. The third and fourth
rows show some of the failures that occur in the detection,
which mainly originate from occlusion (first column) and
interference from the environment (second column). Such
failures are also present and occur more frequently in the
Faster R-CNN. This also reveals that solving the problems of
occlusion and environmental interference is the key to further
improve the performance of the detector, and is the focus of
future research work.

VI. CONCLUSION

Military vehicle object detection technology in complex envi-
ronments is of great value to information and intelligent
warfare. For the problem that the performance of traditional
detection algorithms cannot meet the demand of military
vehicle detection in complex battlefield environments, this
paper proposes an improved detection algorithm MVODM.
First, to address the lack of military vehicle target datasets,
we construct a reliable dataset MVD by collecting images and
videos from the Internet. The MVD contains multi-scale mil-
itary vehicle targets in multiple operational environments and
can help detect models for better training. Then, we propose
two improved strategies: a hierarchical feature representation
strategy and a reinforcement learning-based refinement local-
ization strategy. The combination of these two strategies can
help the detector to get the best refined localization boxes
and thus improve the detection performance. In particular,
we note that our scheme has good results in solving the
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multi-scale problem that exists in object detection. Finally,
experimental results on homemade dataset show that our
proposed MVODM has excellent detection performance and
is able to perform the detection task of military vehicles well.
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