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ABSTRACT Military vehicle object detection technology in complex environments is the basis for
the implementation of reconnaissance and tracking tasks for weapons and equipment, and is of great
significance for information and intelligent combat. In response to the poor performance of traditional
detection algorithms in military vehicle detection, we propose a military vehicle detection method based
on hierarchical feature representation and reinforcement learning refinement localization, referred to as
MVODM. First, for the military vehicle detection task, we construct a reliable dataset MVD. Second,
we design two strategies, hierarchical feature representation and reinforcement learning-based refinement
localization, to improve the detector. The hierarchical feature representation strategy can help the detector
select the feature representation layer suitable for the object scale, and the reinforcement learning-based
refinement localization strategy can improve the accuracy of the object localization boxes. The combination
of these two strategies can effectively improve the performance of the detector. Finally, the experimental
results on the homemade dataset show that our proposed MVODM has excellent detection performance and
can better accomplish the detection task of military vehicles.
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INDEX TERMS Military vehicle objects, object detection, reinforcement learning, hierarchical feature
representation.

NOMENCLATURE16

MVD Military vehicle dataset.
Bt Bounding box information for time step t .
θt (i) Vector of feature representations of military

vehicle instance i at time step t .
kt The final concise description of instance i at

time step t .
st The state representation of the agent at time

step t .
at The action performed by the agent at time

step t .
17
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r1(st , st+1) Reward for agent transfer from state st selec-
tion action at to state st+1.

r2(T ) The sequence reward that the agent receives
at the end of the action sequence.
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I. INTRODUCTION 19

With the development and progress of technology, modern 20

warfare is gradually moving into the era of informationiza- 21

tion and intelligence. In the future information-based war- 22

fare, efficient battlefield situational awareness capability is 23

undoubtedly the key to guarantee the victory of war, and the 24

military powers are now actively strengthening the research 25

of related technology in this aspect [1]. Battlefield situa- 26

tional awareness includes several tasks such as reconnais- 27

sance, surveillance, intelligence, damage assessment, beacon 28
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indication, and information resource management and con-29

trol. Among these tasks, the identification and localization of30

military targets is a basic and critical technology [2]. There-31

fore, research on automatic detection technology for military32

targets in complex battlefield environments is of great signif-33

icance to improve battlefield situational awareness.34

In recent years, with the boom of deep learning, deep learn-35

ing has beenwidely used inmedical diagnosis [3], smart cities36

[4] and intelligent robots [5]. In object detection, the intro-37

duction of deep learning has greatly improved the detection38

performance, and deep learning-based object detection tech-39

niques have gradually replaced the traditionalmanual feature-40

based methods. After continuous research and improvement41

by scholars, the current mainstream object detection methods42

have made significant progress in the detection of common43

targets. However, for military targets, due to their secrecy44

and environmental complexity, there are often greater dif-45

ficulties for the detection of military targets [6]. In order46

to further improve the battlefield situational awareness, this47

paper addresses the detection of vehicle targets inmilitary tar-48

gets, aiming to improve the detection performance of military49

vehicle targets.50

The following difficulties exist in military vehicle object51

detection: first, military vehicle targets lack corresponding52

datasets for detection model training due to their secrecy, sec-53

ond, military vehicles are located in complex environments54

and detection is susceptible to background interference, and55

finally, military vehicle targets have a wide scale distribution56

and large scale variation, especially some of them present57

extremely small sizes due to the long acquisition distance.58

In recent years, the combination of reinforcement learning59

and deep learning has yielded significant results in solving60

intelligent decision-making and optimization problems. [7]61

proposed a game-based deep reinforcement learning method,62

which is effective in optimizing the energy consumption63

problem of MEC systems. [8] proposed a recurrent deep64

reinforcement learning method for solving the control prob-65

lem of spectrum access in wireless networks. Based on the66

inspiration from the above studies, we consider introduc-67

ing reinforcement learning into our research. Specifically,68

in order to solve the difficulties in military vehicle object69

detection, we propose a military vehicle object detection70

method based on hierarchical feature representation and rein-71

forcement learning refinement localization. Our main efforts72

are summarized as follows.73

(1) To address the lack of military vehicle target datasets,74

we downloaded images and videos from the Internet and75

performed a series of processing on them to finally construct a76

military vehicle dataset (MVD) thatmeets our research needs;77

(2) To address the multi-scale problem in military vehicle78

detection, we propose a hierarchical feature representation79

strategy, which can help objects of different scales to select80

the most appropriate representation feature layer and thus81

improve the detection performance;82

(3) To address the problem of inaccurate object localization83

in the original detection method, we design a refined local-84

ization strategy based on reinforcement learning, which can 85

effectively improve the localization accuracy of the predic- 86

tion frame and enhance the detector performance; 87

(4) The experimental results on the self-built dataset show 88

that our proposed MVODM has excellent detection perfor- 89

mance and is able to perform the detection task of military 90

vehicles better. 91

The remainder of this paper is organized as follows: we 92

briefly review related work on military target detection in 93

Section 2. Section 3 presents the military vehicle dataset we 94

constructed. In Section 4, we present our MVODM in detail. 95

In Section 5, we conduct extensive experiments and analyze 96

and discuss the experimental results. Finally, Section 6 sum- 97

marizes the full work. 98

II. RELATED WORK 99

A. GENERAL OBJECT DETECTION 100

The task of object detection is to automatically identify and 101

locate the object to be detected from an image or video. It has 102

been a hot research topic in the field of computer vision. Tra- 103

ditional object detection methods mainly use hand-designed 104

features to train classifiers, which include HOG [9], Haar 105

[10], CSS [11], LBP [12], and ICF [13]. However, in recent 106

years, with the development of convolutional neural networks 107

(CNNs) [14], object detection methods based on deep learn- 108

ing [15] have gradually attracted the attention and research 109

of a wide range of scholars. The current mainstream deep 110

learning-based object detection models can be divided into 111

two main categories: proposal-based two-stage detectors and 112

proposal-free one-stage detectors. The R-CNN series [16], 113

[17], [18] is representative of two-stage detectors. This class 114

of detectors first generates several proposals of regions of 115

interest that may contain targets in the first stage, and then 116

uses classifiers and border regression to detect targets on the 117

proposed regions in the second stage. In contrast, one-stage 118

detectors, such as the YOLO series [19], [20], [21], [22] and 119

SSD [23], do not need to generate region of interest proposals 120

and can directly classify and localize targets. In general, one- 121

stage target detectors are much faster than two-stage target 122

detectors, but the detection accuracy is relatively poor, which 123

is determined by their structure. 124

B. MILITARY OBJECT DETECTION 125

The introduction of deep learning-based object detection 126

methods into the military field can effectively improve bat- 127

tlefield situational awareness. In recent years, scholars in 128

related fields have also gradually carried out research on 129

military object detection based on deep learning methods. 130

In the framework of Faster R-CNN, [24] designed a top-down 131

agglomerative network to detect military armored targets. 132

Reference [25] used Faster R-CNN and image pyramids to 133

solve the armor target detection problem. Reference [26] 134

proposed a military object detection framework based on 135

Gabor convolutional kernel and deep feature pyramid net- 136

work, which achieved better detection results. By using 137
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FIGURE 1. Example of a partial sample of the military vehicle dataset.

three-channel images fusing temporal, spatial and thermal138

information to detect military targets and fine-tuning them139

using transfer learning methods, [27] was able to perform the140

military target detection task better. Reference [28] proposed141

a deep transfer learning technique in order to solve the prob-142

lem of military target recognition under few-shot conditions.143

Reference [29] proposed a multi-level capsule network to144

improve military target detection accuracy. Reference [30]145

studied the work related to the deployment of mainstream146

algorithms on UAVs for military target detection, and laid the147

foundation for the application of the algorithms.148

III. HOMEMADE MILITARY VEHICLE DATASET149

Datasets are one of the most important parts of object detec-150

tion work. Currently, publicly available datasets for generic151

and vehicle target detection tasks, such as COCO [31] and152

KITTI [32], are relatively well established and can meet the153

needs of detection tasks. However, none of these datasets154

involve military vehicle targets in complex battlefield envi-155

ronments and cannot be directly used for the detection of mil-156

itary vehicles. In previous research work on military object157

detection, scholars have constructed their own datasets in 158

response to the lack of military target datasets [26], [29], [30]. 159

However, these datasets also generally have some problems: 160

(1) firstly, scholars’ homemade datasets are seldom publicly 161

available and cannot be directly used, (2) secondly, these 162

datasets usually do not consider the scale of military targets 163

and are not well targeted for realistic military target detection 164

tasks, (3) finally, these datasets contain a wide range of 165

military targets that are usually different from the military 166

vehicle detection task of this paper. Therefore, a new military 167

vehicle dataset (MVD) was constructed to better carry out the 168

research work in this paper. 169

A. CAPACITY OF MVD 170

We obtain images containing military vehicles by two means: 171

(1) downloading the desired military vehicle images directly 172

from the Internet and filtering them, discarding unreasonable 173

images, and (2) sampling frames of publicly available mil- 174

itary video materials (e.g., military exercises and training) 175

to obtain military vehicle images, again making a reason- 176

able selection of the images obtained. A total of five typical 177
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FIGURE 2. Proportional distribution of military vehicle targets for
different scenarios.

FIGURE 3. Statistics on the number of different military targets in the
dataset, including the number of images and the number of labeled
boxes.

military vehicle targets are included in the MVD constructed178

in this paper: tank, rocket artillery, infantry fighting vehi-179

cles, military trucks, and military command vehicle. These180

military vehicles come from a variety of complex battlefield181

environments, such as desert, grassland, snow, and cities.182

In Figure 1, we show some sample examples from our MVD,183

column 1 shows a single small-scale target example, columns184

2 and 3 show multiple target examples in different environ-185

ments, and column 4 shows a large-scale target example.186

As can be seen from the Figure 1, our MVD contains various187

possible scenarios for military vehicle targets, such as city188

in row 1, column 2, grassland in row 2, column 1 and snow189

in row 3, column 2, and in Figure 2, we count the number190

of military vehicle targets contained in different scenes. Our191

MVD contains a total of 12,148 military vehicle images, and192

we uniformly convert the collected images to.JPG format of193

1200 × 875 size and number all images uniformly. Then we194

used LabelImg software to label the military vehicle targets in195

the images and obtained a total of 25586 valid labeled boxes.196

FIGURE 4. Scale distribution of military vehicle targets, with m and n
representing the ratio of the width and height of the target to the width
and height of the image, respectively.

FIGURE 5. Location distribution of military vehicle targets.

We randomly selected 70% of the images from different types 197

of military vehicle targets as the training set samples and 198

the remaining 30% as the test set samples. Figure 3 shows 199

the image and annotation frame statistics of various types of 200

military vehicle targets. 201

B. SCALE AND POSITION OF MVD 202

We also performed statistics on the scale information and 203

location information of the military vehicle targets in our 204

MVD. The statistical results are shown in Figure 4 and Fig- 205

ure 5, respectively. We calculate the ratio of the width of the 206

military vehicle target to the width of the image, m, and the 207

ratio of the height of the military vehicle target to the height 208

of the image, n, and take the larger of m and n to count and 209

evaluate the scale distribution of the MVD. It is clear from 210

Figure 4 that our MVD contains more small-scale targets, 211

which is consistent with the situation in real reconnaissance 212

missions, i.e., small-scale targets are more common. The 213

99900 VOLUME 10, 2022



Y. Ouyang et al.: Military Vehicle Object Detection

FIGURE 6. The overall framework of Our proposed military vehicle object detection method.

location statistics in Figure 5 show that the military vehicle214

targets in our dataset are uniformly distributed throughout the215

image, and this distribution is beneficial for enhancing the216

robustness of the object detector to location.217

IV. OUR APPROACH218

In this section, we describe the specific implementation219

of our proposed military vehicle object detection method220

(MVODM). MVODM is divided into two main phases: the221

first phase is mainly used to generate a hierarchical feature222

representation of the region of interest and the original bound-223

ing box, and the second phase uses reinforcement learning224

strategies to select themost appropriate feature representation225

layer and refine the localization of the target to be detected.226

The overall framework of our proposed method is shown227

in Figure 6. First, the input image is fed into the backbone228

network to perform feature extraction, and in this paper,229

we use ResNet50 as the feature extraction network. Then,230

the extracted features perform a hierarchical feature repre-231

sentation strategy and are fed into the subsequent network232

to generate the initial bounding box. Finally, the hierarchical233

features and the initial bounding box are fed together into the234

reinforcement learning-based refinement localizationmodule235

to obtain the final detection results.236

A. HIERARCHICAL FEATURE REPRESENTATION STRATEGY237

Generally speaking, the high level feature extraction layer238

tends to capture the global overall information of the image239

and the semantic information of the target, which can pro-240

vide robustness support for appearance changes. However,241

due to the reduced spatial resolution, the high level feature242

extraction layer has limitations in target localization accu-243

racy, especially when facing small scale targets. However,244

low level feature extraction layers are able to capture more245

accurate localization information, but lack robustness to tar-246

get changes. Meanwhile, previous studies [33] have shown247

that high level feature maps have better activation for large248

scale objects, while small scale objects respond strongly in 249

low level feature maps. Therefore, to address the multi-scale 250

problem in our military vehicle detection task, we consider 251

using a hierarchical feature representation strategy to gen- 252

erate different levels of feature representations of the object 253

to be detected and select the best feature representation by 254

a subsequent reinforcement learning strategy to improve the 255

detection performance. Specifically, as shown in the green 256

box in Figure 6, we selected C3, C4 and C5 from ResNet50 257

to serve as the workspace for the layered feature represen- 258

tation. We perform a 1 × 1 convolution operation on the 259

output of these three feature layers and feed RPN and ROI 260

Align to obtain the feature vectors of military vehicle target 261

proposals for each layer, which are fed into a fully connected 262

layer for generating initial military vehicle bounding box pre- 263

dictions, including softmax classification and bounding box 264

regression. 265

B. REFINED LOCALIZATION STRATEGY BASED ON 266

REINFORCEMENT LEARNING 267

Tomore accurately localizemilitary vehicle targets in images, 268

we consider introducing reinforcement learning to further 269

refine the target bounding box. Meanwhile, inspired by pre- 270

vious work [34], we use a recurrent neural network-based 271

framework to design our refinement localization strategy. 272

Figure 7 illustrates part of the recurrent process of our refine- 273

ment localization strategy. 274

As shown in Figure 7, at each time step t, Bt−1 represents 275

the bounding box information of the previous time step (when 276

t=1, B0 is the original bounding box information), and θt (i) 277

represents the feature representation vector of military vehi- 278

cle instance i at time step t. It should be noted that the size of 279

θt (i) varies depending on the selected feature layer because 280

we use a hierarchical feature representation strategy. In this 281

paper, the number of output feature map channels for C3, C4 282

and C5 are 512, 1024, and 2048, respectively. By implement- 283

ing ROI Align (divided into 2 × 2) for the region of interest 284
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FIGURE 7. The specific implementation process of the reinforcement
learning-based refinement localization strategy.

in the corresponding layer, the final dimension of the feature285

representation vectors for the three different feature layers are286

2048 (2 × 2 × 512), 4096 and 8192, respectively. The final287

concise description of instance i at layer j is then obtained288

by a fully connected layer and the ReLU activation function289

[34]:290

kt = f1(it ,Bt−1) = σ (w
j
1 θt (i)) (1)291

where σ (·) represents the ReLU activation function, j denotes292

the feature layer selected at time t, j ∈ {3, 4, 5},and wj1293

represents the weight parameter of the fully connected layer.294

Empirically, we set the dimension of kt to 1024. Meanwhile,295

we combine the past state information st−1 to generate the296

new state st :297

st = f2(kt , st−1) = ψ(w
1
2 kt +w

2
2 st−1) (2)298

where ψ(·) denotes the Tanh activation function, and w1
2 and299

w2
2 represent the weight parameters of kt and st−1, respec-300

tively. In this paper, the dimension of st is set to 64. Finally,301

we perform the coordinate transformation of the bounding302

box by randomly selecting the execution action at conditional303

on the current state as follows304

at = f3(st ) = ε(w3 st ) (3)305

where ε(·) denotes the Softmax function andw3 represents the306

weight parameter. at is a 10-dimensional vector correspond-307

ing to the 10 different transformation actions in our action308

set.309

Next, we instantiate each element of the Markov Deci-310

sion Process (MDP) [35] in reinforcement learning. These311

elements include state S, action A, and reward function R.312

At each time step t,agent observes the environment state st ∈313

S, selects an action at ∈ A based on the given policy, and314

then moves to the next state st+1, in which the agent will315

FIGURE 8. Action ensemble A used in the reinforcement learning-based
refinement localization strategy.

receive a reward rt ∈ R from the environment feedback. 316

It is important to note that agent receives rewards for each 317

decision (i.e., selected action) only during training, while in 318

testing, we follow the trained model strategy and agent does 319

not receive rewards. 320

(1) State: As previously described, the state st at time step 321

t is a 64-dimensional vector containing the historical 322

state information, the current bounding box informa- 323

tion, and the selected corresponding layer feature rep- 324

resentation. st is calculated by Equation (2). 325

(2) Action: As shown in Figure 8, we designed a total 326

of 10 different types of actions in action set A. These 327

actions include 8 actions for coordinate transformation 328

and 2 actions for triggering. These actions include 329

8 actions for coordinate transformation and 2 trig- 330

ger actions. Considering all possible situations during 331

the coordinate conversion, the coordinate conversion 332

actions are subdivided into four types: left-right move- 333

ment, up-down movement, aspect ratio change, and 334

zoom-in/out. The trigger action is mainly used to select 335

the best feature representation layer at the beginning 336

of the action sequence and to terminate the coordi- 337

nate transformation at the end of the action sequence. 338

99902 VOLUME 10, 2022



Y. Ouyang et al.: Military Vehicle Object Detection

In this paper, we define the bounding box information339

as Bt = (bxt , b
y
t , b

w
t , b

h
t ), where (b

x
t , b

y
t ) represents the340

coordinates of the upper left corner of the bounding341

box, and bwt and bht represent the width and height of342

the bounding box, respectively. For the four types of343

transformation actions, the specific coordinate trans-344

formation is calculated as:345

1) shifts left and right: bxt+1 = bxt + c, c ∈ R, to the346

right when c is positive and to the left when c is347

negative.348

2) shifting up and down: byt+1 = byt + c, c ∈ R,349

shifting down when c is positive and up when c350

is negative.351

3) aspect ratio change: bht+1 = bht + c, c ∈ R is used352

to change the height and bwt+1 = bwt + c, c ∈ R is353

used to change the width.354

4) Zoom in and out: bht+1 = bht × c, bwt+1 =355

bwt × c,when c∈(0,1) is zoomed out, when c>1356

is zoomed in.357

(3) Reward function The reward function consists of two358

parts: action reward and sequence reward. For the359

action reward, we design the reward function by cal-360

culating the difference between the Intersection-over-361

Union (IoU) of the bounding box (B) and the ground362

truth box (G) before and after the coordinate transfor-363

mation [36]. Specifically, the reward for transferring364

from state st to state st+1 by selecting action at is:365

r1(st , st+1) =


1, IoU(Bt+1,Gt+1)− IoU(Bt ,Gt ) > 0
0, IoU(Bt+1,Gt+1)− IoU(Bt ,Gt ) = 0
−1, IoU(Bt+1,Gt+1)− IoU(Bt ,Gt ) < 0

366

(4)367

At the end of the action sequence, we designed an additional368

sequence reward to evaluate this sequence:369

r2(T ) =


4, if IoU(BT ,GT ) ≥ 0.8
2, if 0.6 ≤ IoU(BT ,GT )<0.8
−5, otherwise

(5)370

For the action reward function, since the difference between371

the IoU of the bounding box (B) and the ground truth box372

(G) before and after the coordinate transformation is small,373

using the difference as the reward directly would not provide374

the agent with enough clear guidance information. Therefore,375

we quantified the reward as three real numbers {1, 0,−1},376

which can help the agent to better select the action to improve377

the bounding box. The sequential reward function is designed378

mainly to encourage the agent to learn a high-performance379

object localization strategy.380

V. EXPERIMENTS381

In this section, the experimental results are presented and382

analyzed and discussed. Section 5.1 describes the specific383

experimental setup. Section 5.2 shows the results of the abla-384

tion study. Section 5.3 shows the detailed assay results.385

A. EXPERIMENTAL SETUP 386

1) IMPLEMENTATION DETAILS 387

Our experiments were all performed on a GeForce 388

RTX 3090 GPU. For the hierarchical representation of fea- 389

tures, we initialize ResNet50 using the pre-trained weights on 390

ImageNet [37]. For the training of the original bounding box 391

proposal network, we used Adam [38] as the optimizer with 392

an initial learning rate set to 10−3 and a 10-fold reduction 393

in the learning rate per 7000 iterations, for a total of 25k 394

iterations. The mini-batch consists of 120 object proposals 395

randomly sampled from one image, where the ratio of positive 396

to negative proposals is 1:3. We mark a proposal as positive 397

if its IoU with one ground truth frame is greater than 0.5, 398

and consider it negative if the IoU of the proposal with 399

any ground truth frame is less than 0.3. Considering our 400

refined localization strategy, we set the initial number of 401

proposals per image to 250 rather than more (e.g., 2000), and 402

previous studies [18], [39] have shown that a larger number 403

of proposals has little benefit for detection. For reinforcement 404

learning training, the initial learning rate was set to 10−3 and 405

gradually linearly annealed to 0. 406

2) EVALUATION METRICS 407

In this paper, we use a total of four evaluation metrics to 408

evaluate the performance of our proposed MVODM, which 409

are precision (P), recall (R), average precision (AP), and 410

mean average precision (mAP). Let PT be the number of cor- 411

rectly predicted positive samples, PF be the number of incor- 412

rectly predicted positive samples, NF be the number of 413

incorrectly predicted negative samples, andNT be the number 414

of correctly predicted negative samples. Then the expression 415

of precision rate is calculated as: 416

P =
PT

PT +PF
(6) 417

Similarly, the recall rate can be calculated by the following 418

equation 419

R =
PT

PT +NF
(7) 420

Average precision is an evaluation metric that synthesizes 421

precision and recall, which reflects the performance of the 422

detection model on each class target, and its value can be 423

obtained by calculating the area under the precision-recall 424

(PR) curve. Mean average precision is the mean of the aver- 425

age precision of all classes of targets, which reflects the 426

performance of the detection model over the entire dataset. 427

Meanwhile, to further evaluate the detection performance 428

of our algorithm for small-scale military vehicle objects, 429

we divide the test set into small-scale (S) subsets, large-scale 430

(L) subsets, and all (A) subsets, and report the performance 431

on these subsets separately. The subsets are divided based 432

on S: 0 <max (m, n)≤ 0.3,L: 0.3 <max (m, n)< 1,A: 0 < 433

max (m, n)< 1. 434
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FIGURE 9. Recall-IoU curves on ResNet50 using different feature representation layers alone (C1-C5) and using our layered representation strategy (C3,
C4, C5).

TABLE 1. Effectiveness evaluation results of the reinforcement
learning-based refinement localization strategy. OPB represents the use
of the original proposal box, RLS represents the use of the refinement
localization strategy, and the evaluation metric is AP (%).

B. ABLATION STUDIES435

We perform ablation experiments to evaluate the effective-436

ness of two strategies in our MVODM. First, we remove437

the reinforcement learning-based refinement localization438

strategy and evaluate the performance of using only the439

hierarchical feature representation strategy and the origi-440

nal proposal boxes. Then, we evaluate the performance of441

using the reinforcement learning-based refinement local-442

ization strategy directly on different feature layers without443

the hierarchical feature representation and the original pro-444

posal boxes. Finally, we also conduct extended experiments445

using the reinforcement learning-based refinement localiza-446

tion strategy on the original proposal boxes generated on447

different feature representation spaces. For all ablation exper-448

iments, we report the performance of the method using only449

the tank target as an example, if not specifically noted.450

1) EFFECTIVENESS OF HIERARCHICAL FEATURE451

REPRESENTATION STRATEGY452

We evaluate the effectiveness of our layered feature rep-453

resentation strategy by using different layers of ResNet50454

(C1-C5) alone to generate original proposals as the final455

output and by using the layered representation strategy (C3,456

C4, C5) to generate original proposals as the final output.457

In this experiment, we evaluate the performance based on the458

recall of different IoUs, which are tested on three subsets,459

and the experimental results are shown in Figure 9. From 460

Figure 9, it is clear that, firstly, C1 and C2 perform less well 461

on all subsets, mainly because the shallower feature layer 462

cannot extract enough feature information and the feature 463

representation is weak. Comparatively, C3 is a good starting 464

point for feature representation. Secondly, we observe that 465

C4 performs best on the large scale subset compared to other 466

individual layers, while C3 shows better performance on the 467

small scale subset, which indicates that the higher feature 468

layer (C4) has better activation for large scale objects, while 469

the lower feature layer (C3) is more suitable for representing 470

small scale objects. Finally, our hierarchical representation 471

strategy achieves optimal performance for either subset. At an 472

IoU threshold of 0.5, our hierarchical representation strategy 473

can achieve 96.7% (L), 67.5% (S), and 84.2% (A) recall, 474

respectively, which is a more significant improvement in 475

detection performance compared to the previous best results 476

for single-layer features by 2.5% (L), 7.3% (S), and 6.3% (A), 477

respectively. 478

2) EFFECTIVENESS OF REINFORCEMENT LEARNING-BASED 479

REFINEMENT LOCALIZATION STRATEGY 480

To verify the effectiveness of the reinforcement learning- 481

based refinement localization strategy, we conducted the fol- 482

lowing experiments: using the refinement localization strat- 483

egy directly on different feature layers and using the original 484

proposal boxes as the final output on different feature layers. 485

In this experiment, we only evaluate the results on C3-C5 and 486

use the average precision (AP) as the evaluationmetric, again, 487

on each of the three subsets. The experimental results are 488

shown in Table 1. Relative to the original proposed box, our 489

refined localization strategy improves the localization results 490

with a larger improvement in AP on all three subsets L, S, 491

and A. Taking C5 as an example, our refined localization 492

strategy is 7.5% (L), 10.7% (S), and 9.6% (A) higher than 493

the original proposal boxes, respectively. Similarly, we note 494

that C4 performs best on the large-size subset, while C3 is 495

superior on the small-scale subset. 496
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FIGURE 10. Experimental results using the refined localization strategy on the original proposal boxes.

FIGURE 11. Example of the process of refinement localization based on reinforcement learning. (Some images have been resized for aesthetic purposes.)

3) REFINEMENT LOCALIZATION RESULTS ON DIFFERENT497

FEATURE REPRESENTATION SPACES498

To further validate the effectiveness of the combination of499

our proposed hierarchical feature representation strategy and500

the refined localization strategy, we conducted extended501

experiments on different feature representation spaces. Fig-502

ure 10 shows the PR curves on the three tested subsets. As can503

be seen from the figure, the performance of combining the504

two strategies is the best regardless of the subset. On the sub-505

sets L, S and A, our proposed method achieves 91.8%, 73.4%506

and 86.7% AP, respectively. On the one hand, our combined507

strategy has a clear advantage over other feature represen-508

tation layers using the original proposal boxes and refine- 509

ment localization strategies. On the other hand, our combined 510

strategy also achieves significant performance improvement 511

compared to the previous hierarchical representation strategy 512

or refined localization strategy alone. 513

C. DETECTION RESULTS 514

1) QUANTITATIVE RESULTS 515

To validate the effectiveness of our proposed MVODM for 516

detecting military vehicle targets, we compared MVODM 517

with several mainstream object detection algorithms: R-FCN 518

[39], SSD [23], YOLOv3 [21], YOLOv4 [22], and Faster 519
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FIGURE 12. Visual comparison of the detection results of our MVODM and Faster R-CNN. Where green boxes represent correct targets detected, red solid
boxes represent false detections, and red dashed boxes represent missed detections.

R-CNN [18]. We trained and tested all the algorithms using520

our homemade dataset and reported the AP and overall mAP521

for each class of targets separately, and the experimental522

results are shown in Table 2. From the data in Table 2, we can523

see that our proposedMVODM shows excellent performance524

in detecting military vehicle targets. Specifically, first, for525

the all subset, our MVODM showed optimal performance for526

each class of military vehicles, obtaining detection accuracies527

of 86.7%, 83.2%, 78.4%, 80.9%, and 76.5% for tank, rocket528

artillery, infantry fighting vehicles, military trucks, and mili-529

tary command vehicle, respectively, exceeding the subopti-530

mal methods by 4.4%, 6.4%, 8.9%, 9.3%, and 8.7%. Sec-531

ond, for the overall object detection performance on different532

subsets, our MVODM also achieves optimal performance533

for all of them, achieving 85.6% (L), 66.3% (S) and 81.1%534

(A) of mAP, respectively. Finally, compared to the baseline535

detector Faster R-CNN, our MVODM improves the mAP by536

7.4% (L), 8.1% (S) and 9.9% (A) on three different subsets,537

respectively, which strongly validates the effectiveness of our538

improved strategy.539

2) QUALITATIVE RESULTS 540

First, we show a partial example of action sequences for our 541

proposed reinforcement learning-based refinement localiza- 542

tion process in Figure 11. As can be seen, only a limited 543

number of action transformations are required for us to obtain 544

a more appropriate bounding box. Such a bounding box 545

is a further directed (facilitated by rewards) refinement of 546

the original proposed box, which can improve the detection 547

performance to some extent. According to the experimental 548

statistics, about 74% of the objects need less than 10 actions 549

to complete the coordinate transformation from the begin- 550

ning to the completion, which shows that our strategy is 551

efficient. 552

We show a visual comparison of the detection results of 553

our proposedMVODMwith Faster R-CNN in Figure 12. The 554

first and second rows show the detection success cases, which 555

include single and multiple targets, large and small scales, 556

and different battlefield environments. From these two rows, 557

we can see that our MVODM has excellent detection perfor- 558

mance and is able to locate and detect the target better. While 559
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TABLE 2. Comparison of the detection effectiveness of our MVODM with several other mainstream object detection algorithms. T: Tank, RA: Rocket
artillery, IFV: Infantry fighting vehicles, MT: Military trucks, MCV: Military command vehicle vehicle.

Faster R-CNN is able to detect some of the targets, there is a560

missed detection on smaller scale targets, such as the tank in561

the fourth column of the first row. Also false detection occurs562

on confusable targets, such as the infantry fighting vehicle563

in the second row and third column is mistakenly detected564

as a tank. Moreover, the localization box of Faster R-CNN565

is rougher compared to our MVODM. The third and fourth566

rows show some of the failures that occur in the detection,567

which mainly originate from occlusion (first column) and568

interference from the environment (second column). Such569

failures are also present and occur more frequently in the570

Faster R-CNN. This also reveals that solving the problems of571

occlusion and environmental interference is the key to further572

improve the performance of the detector, and is the focus of573

future research work.574

VI. CONCLUSION575

Military vehicle object detection technology in complex envi-576

ronments is of great value to information and intelligent577

warfare. For the problem that the performance of traditional578

detection algorithms cannot meet the demand of military579

vehicle detection in complex battlefield environments, this580

paper proposes an improved detection algorithm MVODM.581

First, to address the lack of military vehicle target datasets,582

we construct a reliable datasetMVDby collecting images and583

videos from the Internet. The MVD contains multi-scale mil-584

itary vehicle targets in multiple operational environments and585

can help detect models for better training. Then, we propose586

two improved strategies: a hierarchical feature representation587

strategy and a reinforcement learning-based refinement local-588

ization strategy. The combination of these two strategies can589

help the detector to get the best refined localization boxes590

and thus improve the detection performance. In particular,591

we note that our scheme has good results in solving the592

multi-scale problem that exists in object detection. Finally, 593

experimental results on homemade dataset show that our 594

proposed MVODM has excellent detection performance and 595

is able to perform the detection task of military vehicles well. 596
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