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ABSTRACT The popularity of immersive multimedia content is prevalent and the consumption of 360°
videos is increasing rapidly in varied domains. The broadcast of such content in cellular networks will be
challenging in terms of dynamic content adaptation and efficient resource allocation to serve heterogeneous
consumers. In this work, we propose an intelligent immersive new radio multimedia broadcast multicast
system (NR-MBMS), [2MB, for next-generation cellular networks. I2MB intelligently forecasts the users’
viewing angle and the 360° video tiles to be broadcast beforehand using long short-term memory network.
We define broadcast areas by using modified K-means clustering. The complex multivariable optimization
problem that integrates efficient adaptive 360-degree video encoding and tiled broadcast using optimized
transmission parameters is defined as as a Markov decision process (MDP). In a dense urban scenario with
a large MBSFN (multimedia broadcast multicast service single frequency network) synchronization area,
the state and action space dimensionality is very high, in which the solution is obtained by using deep
deterministic policy gradient (DDPG) algorithm. I2MB incorporates deep reinforcement learning based
radio resource allocation (modulation-coding scheme and frequency-time resource blocks) and tiled video
encoding to maximize the viewport video quality experienced by the broadcast mobile users. I2MB provides
improved immersive video broadcast streaming quality while serving a higher number of mobile users.
Adaptive encoding of 360° video tiles and radio resource allocation are performed based on users’ forecasted
viewing angle, spatial distribution, channel conditions, and service request. The performance evaluation of
our proposed scheme, I2MB, shows considerable gains in viewport quality ( 46.83%) and number of users
served ( 30.52%), over a recent state-of-the-art method VRCAST.

INDEX TERMS Multimedia broadcast and multicast services (MBMS), new radio MBMS (NR-MBMS),
360° video, viewing angle prediction, immersive tiled video.

I. INTRODUCTION

Immersive 360° video streaming is increasingly used in
diverse applications such as virtual reality, gaming, and enter-
tainment [1]. In the immersive environment, when a viewer
changes their viewing direction, the content is accordingly
rendered. However, streaming such content requires very
high bandwidth and is challenging [1]. A 360° immersive
video can be divided into small portions spatially known
as ’tiles’ that can be encoded at different quality levels.
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This has enabled tiling-based viewport-adaptive 360° video
streaming, where tiles are delivered to clients based on their
viewing direction and network conditions. Concretely, the
tiles within the user’s viewport can be transmitted at a higher
quality, while the rest of the tiles can be delivered at a lower
quality [2].

Digital television (TV) broadcast is a popular service in
wireless networks comprising on-demand content streaming
and multimedia broadcast to heterogeneous customers on
their smart devices like TVs, phones, and car-infotainment
systems [3]. Streaming on-demand multimedia data to mobile
users using unicast transmission requires considerably higher
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amounts of network resources and it is difficult to scale
up to a urban dense network scenario. Multicast/broadcast
instead offer a more scalable solution, but face certain dif-
ficulties like, user-centric adaptation, responsiveness to user
interactivity, and providing seamless quality. This motivates
the investigation of resource efficient 360° video broadcast
solutions for future large/dense cellular networks.

The further evolved multimedia broadcast multicast ser-
vices (FeMBMS) standard, defined in 3GPP Release 14, pro-
vides for multimedia streaming over cellular network [4].
With the advent of next generation communication standards,
efforts are being made to define NR-MBMS (5G New Radio
MBMS) and advance FeMBMS [5]. Herein, synchronization
area, is an important definition, within which the associ-
ated 3GPP 5G Next Generation base stations (gNBs) need
to be time synchronized. According to the standard, the mul-
timedia broadcast multicast service single frequency network
(MBSFEN) consists of a group of gNBs that broadcast the
same content using the same set of radio resources, simultane-
ously, within a synchronization area. Thereby, at the receiver
a better quality can be ensured by combining the signal
received from various gNBs. The broadcast along with the
unicast transmission can be simultaneously facilitated within
each cell of an MBSFN area, and cell capacity can be shared
for both.

MBSFN synchronization area

2)
2 2 NRcell (gNB)
1 ~ 2_~n MBSFN area 3

5G Broadcast
Transmitter Core
(MBMS user/

Immersive (360°)
video server

5G Broadcast
Transmitter

= (RAN)
2 User 360° head movement

FIGURE 1. 12MB Scenario in 5G NR networks.

We have developed an intelligent immersive (360° ) mul-
timedia broadcast solution, I2MB, that can be deployed in
future cellular networks and is suitable for large and dense
network scenarios. Fig. 1 shows a sample scenario of I2MB in
5G-NR cellular networks. The heterogeneous users will have
diverse user equipment, program requests, viewing direc-
tions, and gNodeB (gNB) association. The broadcast trans-
mitter (gNB) in the radio access network fetches the broadcast
content from the video server through the broadcast transmit-
ter core element and broadcasts the tiles subject to viewport
of associated users. The tiles of an immersive video are sent
from the multimedia server to gNB using the backhaul link.
The MBMS user and bearer services are managed by the
broadcast transmitter element in the core that also maintains
the MBSFN area formation and resource allocation. Each
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MBSEN comprises of several gNBs that broadcast same set
of programs in a synchronized manner using the same set
of radio resources. A gNB can be a part of more than one
MBSEFN area. In the given example, a cell is shown to be a
member of two MBSFN areas: {1, 2}. The users u; — ug are
accessing the 360° multimedia program at different viewing
angles and are receiving the corresponding tiles in their view-
port.

The trend in viewing and popularity of TV content (i.e.
programs and TV channels) is found to be dependent on
demography, social, economical, age, and region specific fac-
tors of the viewers [6], [7], [8]. Ratings of TV channels, pro-
grams, and audience can help in deciding content production
and schedules [9]. Multiple channel TV service has another
alternative over-the-top (OTT) streaming that has behavioral
advertising based monetization [10]. Overall, it motivates us
to group users using multi-criteria clustering to form MBSFN
areas. We perform NR-MBMS resource allocation based on
multiple parameters: user content interest (request), viewing
direction angles, gNB association, and program popularity,
in a given MBSFN synchronization area. In our proposed
scheme, I2MB, we form MBSFN area by grouping cells
while considering user content request, location, experienced
channel conditions, and user head navigation direction.

Given a set of MBSFNs, we aim to maximize the immer-
sive quality delivered to the users by adaptively encoding
360° video tile and efficiently allocating radio resource.
We have formulated an algorithm based on deep reinforce-
ment learning (DRL) that executes at the broadcast transmit-
ter (BTx) to efficiently allocate radio resources and adaptively
encode the 360° video tiles that have to be broadcast. The
aim is to minimize the sum-distortion and churn rate expe-
rienced by the users in the system. The users’ program
requests, viewing directions, and channel conditions are con-
sidered to be unknown to the users and the BTx beforehand.
We demonstrate using performance evaluation results consid-
erable gains in viewport peak signal to noise ratio (PSNR) and
number of served users, over a recent state-of-the-art method
VRCAST.

The rest of the paper is organized as follows. Section II
discusses related works. Section III presents the [2MB system
architecture and components. Section IV describes the I2MB
framework consisting of User head navigation direction fore-
casting, MBSFN formation using multi-criteria clustering,
and deep reinforcement learning based tile quality adaptation
and resource allocation. Section V provides details on the
simulation scenario and presents the key performance results.
Finally, Section VI draws our conclusions.

Il. RELATED WORK AND KEY CONTRIBUTIONS

Adaptive 360° video streaming based on users’ viewport
has been studied in [1] and [2] via the design of efficient
360° video representations and resource allocation methods.
Live scalable 360° video network multicast has been investi-
gated in [11] via rate-distortion optimization and user view-
port prediction. The reference method we consider in our
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experiments is known as VRCAST and has been studied
in [12] for streaming of live 360° videos to mobile users.
It considers grouping of users, adaptive resource allocation,
and tile-quality selection. However, it focuses on live multi-
cast and does not address multiple parallel broadcast sessions
for larger and denser cellular networks, where a unilateral
channel condition based grouping for a limited number of
users fails. Our approach aims to fill this gap.

LTE eMBMS resource allocation for multimedia streaming
to heterogeneous users with diverse channel conditions is
discussed in [13]. However, adaptive encoding of immersive
multimedia content, user heterogeneity, and quality assurance
are also important factors that need due consideration. Sim-
ilarly, multicast transmission can be optimized by dynam-
ically defining the MBSFN areas and has been discussed
in [14]. However, multi-criteria heterogeneous user clustering
to efficiently define MBSFN areas, efficient encoding of 360°
immersive multimedia tiles, and NR-MBMS resource allo-
cation optimization, as considered in this paper, represents a
novel topic that has not been studied before.

Time series forecasting using long short-term memory
(LSTM) deep learning model has been used for C-reactive
protein used in cancer immunotherapy clinical decision mak-
ing [15]. LSTM deep learning model with with adaptive
moment estimation (Adam) has been used for multi-step
ahead time series prediction [16]. Deep learning LSTM
model has been used to forecast short-term electricity supply
load [17]. Traffic demand forecasts is essential for transporta-
tion network companies to properly allocate resources and
avoid delays in services provisioning. This involves long-,
medium, and short-term forecasting that can be implemented
using deep neural networks [18]. The cellular metrics (con-
nections, throughput) can be forecast in social events using
LSTM deep learning model that is applied to the social infor-
mation and data from past events [19].

Reinforcement learning has self-learning ability and good
generality [20]. The channel dynamics and user requests are
governed by the stochastic processes that are unknown a
priori in the real-world networks. In such scenarios where
system dynamics are unknown, reinforcement learning (RL)
method such as Q-learning can be used [21]. Q-learning
based content caching algorithm can assist the network to
efficiently utilize the resource of the BSs [22]. Deep RL
(DRL) can be used to optimize the wireless network oper-
ation. Deep deterministic policy gradient (DDPG) algorithm
combines the architectures of deep Q-learning, deterministic
policy gradient and Actor-Critic. It is suitable for continuous
action space. DDPG can automate wireless network opti-
mization [21]. It can also be used for optimal path planning
of mobile robots [20]. Live streaming services for vehicu-
lar infotainment systems in the Internet of Vehicles (IoV)
requires high quality, low latency, and low bitrate variance.
Due to the dynamic properties of wireless channels, the live
video transcoding and streaming scheme in vehicular fog-
computing (VFC)-enabled IoV is achieved by using a soft
actor-critic DRL DDPG algorithm [23].
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The following are a few key contributions of this work:

o User head navigation direction prediction using deep
learning LSTM model.

« Efficient Multi-criteria clustering based MBSFN area
formation with optimal number of clusters.

o The DDPG algorithm based optimal radio resource allo-
cation and adaptive 360° tiles encoding that minimizes
the users’ sum-distortion and system churn rate.

« Extensive simulation based evaluation shows the effec-
tiveness of the proposed I2MB technique that outper-
forms state-of-the-art VRCAST algorithm in terms of
churn rate and video quality.

lIl. 12MB SYSTEM ARCHITECTURE AND COMPONENTS
The architecture of our proposed I2MB system is illustrated
in Figure 2. Heterogeneous user equipments (UEs) send the
head navigation information to their serving gNB (RAN
broadcast Transmitter). This is then used to refine the LSTM
users’ viewport forecast. The gNB forward this information to
the broadcast transmitter core element consisting of multicast
(multi-cell) coordination entity (MCE) and NR-MBMS gate-
way. These elements define the MBSFN area (based on multi-
criteria clustering) in order to efficiently broadcast 360°
immersive digital TV content to heterogeneous UEs. There-
after, these also adaptively allocate radio resources (resource
blocks, modulation and coding scheme). The content server
adaptively encodes 360° video tiles using quantization level
selection based on user requests, viewport (based on head
movement navigation data), rate-distortion (R-D) character-
istics of the immersive media content, and radio resource
constraints.
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FIGURE 2. 12MB system architecture.

A. USER HEAD MOVEMENT NAVIGATION DATA AND TILE
MAPPING

The user head-movement data corresponding to user naviga-
tion of a 360° video over time is monitored by the UE. At the
UE, the immersive extended/ virtual reality (XR/VR) device
records the viewpoint direction, V;, of the user i, on the 360°
viewing sphere. The user is considered to be positioned at
the center of this sphere. This is shown in Fig. 3(b). In par-
ticular, the spherical coordinates azimuth and polar angles,
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Pitch

FIGURE 3. User head movement navigation: (a) Rotation angles (yaw,
pitch, and roll) in three coordinate axis (b) Azimuthal and polar angles
(¢, 0) in spherical coordinates (c) mapping to panoramic area with

8 x 8 spatial tiling.

¢ € [0°,360°] and 8 € [0°, 360°] describe the surface that
is normal of V; on the 360° sphere, as shown in Fig. 3(b).
These two angles are correspondingly referred to as yaw and
pitch and are the rotation angles around the axes, as shown in
Fig. 3(a).

The 360° video is partitioned into a set of 8 x 8 spatial tiles,
as shown in Fig. 3(c). The tiles can be separately encoded
and streamed to the user. Tiling the video at the HEVC (high
efficiency video coding) encoder is possible using its tiling
feature. Each tile is indexed in a raster fashion, top-to-bottom
and left-to-right. The surface corresponding to viewport V; on
the sphere (c.f. Fig. 3(b)) can be mapped to the spatial tiles
in the panoramic visualization of the 360° video as shown in
Fig. 3(c).

B. NR-MBMS RESOURCE ALLOCATION

The channel quality indicator (CQI) is a measure of chan-
nel quality being experienced by a user. The gNB selects
suitable modulation and coding scheme (MCS) to broadcast
tiles to users based on CQI. In 5G-NR, grouping of radio
resources into resource blocks (RBs) is used in downlink
communication. Each RB consists of 12 consecutive subcar-
riers in frequency domain and depending on the bandwidth
each lasts for 0.0625-1 ms. In practice, the resource allocation
can be performed periodically every subframe. According to
NR-MBMS, all subframes, i.e., 100% of the available radio
resources, can be allocated for broadcasting services [4], [5].
In broadcasting, the UE experiencing the worst CQI in the
group (receiving the broadcast content in an MBSEN area)
governs the radio resource allocation parameters. Therefore,
in order to broadcast tile T of 360° program p using a fraction
(J{7 ,0<of < 1) of total subframes, with channel bandwidth
B MHz, and allocation of MCS %, with spectral efficiency
e, the capacity is given by Cl,m}y=B-oF. e,» . Hence,
the MBSFN area capacity depends on the allocated MCS and
the fraction of total subframes that are used to broadcast the
360° video tiles.

IV. I2MB: MBSFN FORMATION, TILE QUALITY
ADAPTATION, AND RESOURCE ALLOCATION

We discuss our proposed framework, I2MB, that consists
of MBSFN formation (Sec. IV-B) (based on user viewport
forecasting and efficient clustering) and adaptive immersive
tile-based multimedia encoding with corresponding network
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resource allocation (Sec. IV-C) to broadcast a set of immer-
sive content to heterogeneous users in large-dense next-
generation cellular networks.

A. USER HEAD NAVIGATION FORECASTING AND TILE
MAPPING

We perform user head navigation direction (rotation angle)
time series forecasting using LSTM regression network,
a deep learning technique, with the LSTM layer specified
to have > 150 hidden units. The pattern of head navigation
of a user helps in forecasting the viewing direction in the
immediate future (for the next GOP transmission). We train
a time-series forecasting LSTM model to predict the future
time step values of user viewport. We train the sequence-to-
sequence regression LSTM network, where the responses are
the training sequence of values that are shifted by a few time
step. This means that in each time step of the input sequence,
the LSTM network learns to predict the next few set of values
in subsequent time steps. We forecast the values of multiple
time steps in the future and predict time steps one at a time
and update the network state at each prediction. We train
an LSTM network to forecast the head navigation direction
(rotation angle) of each user given the previous time-step
direction information. The predictor is trained by ADAM
optimizer [24], [25] for the non-stationary head navigation
data of immersive multimedia users.

Since, the monitored head navigation information is sent
to the broadcast transmitter (gNB), the actual values of time
steps are accessible between predictions. Hence, the observed
values are used to update the network state instead of the
predicted values. We begin by initializing the network state
and proceed thereafter by resetting it to prevent previous
predictions from affecting the predictions in subsequent time
steps. For each prediction in each time step, prediction in sub-
sequent time step uses the observed value (at the users’ head
navigation monitoring module) of the previous time step. The
prediction accuracy is enhanced when the network state is
updated with the observed values instead of the predicted
values [16]. The prediction model performance is evaluated
using root mean squared error (RMSE), defined as:

1 v
RMSE = | =Y (A — F)?, ey
Vot
where, A; is the actual value and F; is the predicted value

during forecasting and v is the total number of time steps over
which the prediction has been performed.

B. MBSFN AREA FORMATION: MULTI-CRITERIA
CLUSTERING

The heterogeneous users within the MBSFN synchronization
area have diverse program requests, gNB association, and
user location. The heterogeneous users report their CQI, head
navigation direction (i.e. viewing angle), and the requested
360° video program to their gNB. Based on this informa-
tion, the broadcast core transmitter core MCE element forms
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the MBSFN areas and assigns the programs to be broadcast
in each area. We perform multi-criteria clustering based on
information pertaining to each user i € [1, N], requesting
for program p;, associated with BS with position ¥;, and is
experiencing Signal to Interference-Noise Ratio (SINR) to
the the associated BS as y;. The clusters group UEs with sim-
ilar video program requests and nearby locations. MBSFN
areas are thereafter defined as group of gNBs to which user
clusters are mapped. This ensures the MBSFNs suitably adapt
to heterogeneous requests and distribution of UEs in a broad-
cast service area. We assign a set of programs, Py C P, to be
broadcast in each MBSFN k based on user requests in the
corresponding cluster, the availability of radio resources, and
quantization parameter selection for video-tiles.

Multi-dimensional clustering is an NP hard problem [26].
K-Means, K-medoid, and Fuzzy C-means are well known and
a popular algorithms for multi-criteria clustering. We have
analyzed these clustering methods to perform the MBSFN
area formation. These multi-criteria clustering methods can
be validated using indices like the global silhouette index, and
Dunn index [27]. The distance metric for user i to the centroid
ci of a cluster k is defined as:

d*(ui, cx) = O — Ve)* + (Vi — Ve )* + Tigy »

pi € Py

1
e =1 . 2
i [O, otherwise @

We evaluate the efficacy of the multi-criteria clustering meth-
ods in our cellular 360° multimedia broadcast framework
using the following metrics:

1) Euclidean distance (D,):

D, = |y dek),
Vk

Aty = - Y ) )
Viek
User i belongs to cluster k. There are total of Ny users in
cluster k. We can find the nearest neighbors using D,.
2) Mahalanobis distance (D,,):
Dw=X".C"".X, @)
V(1)

Vde(k) |,

e
I

Vd.(K)

C matrix contains covariance withing each cluster as
the diagonal elements. D,, accounts for correlatedness
between the clustering variables. While considering
covariance between the cluster points redundancy is
removed in the distance calculation.

3) Silhouette coefficient (S): This measure validates con-
sistency in clusters and similarity of an object with its
cluster
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(cohesion) compared to other clusters (separation). It is
used to evaluate the distance of separation between the
clusters resulting from the used method [28]. The silhou-
ette plot visually shows closeness of points in a cluster
than to those in neighboring clusters.

| K
Szgg Sk,
k=1
Ni
1 b —a;
S = — s | — 5
k Nk ZS' S max (a;, b;) )

where, 5; (—1 < s; < 1) is the Silhoutte width, a con-
fidence indicator on the membership of i in cluster k.
When s; is close to 1, it indicates that i is well clustered
(i.e., assigned to appropriate cluster). When s; is close to
zero, indicates that i can also be assigned to the closest
neighboring cluster [27]. The average distance between
i and all other users included in k is denoted as a; and
minimum of the average distance between i and all of
the samples clustered in k' (k # k/,1 < k < K) is
denoted as b;.
The partition that results in the maximum value of S
is the optimal corresponding to the most appropriate
number of Clusters, i.e. optimal K [29].

4) Dunn’s index (DI): This validity index aims to identify
clusters with a high inter-cluster and low intra-cluster

distance.
d(ck, cpr
DI = min min M s
1<k<K | 1<k'<K.k#k' | max {Acg}
1<k<K
A(cg) = max{d(i, ))} . (6)
i,jek

Al(cy) represents the complete diameter intracluster dis-
tance of cluster k. This measure maximizes the inter-
cluster while minimizing intracluster distances. A large
value of DI corresponds to good clusters [27]. The num-
ber of clusters that maximizes DI could be taken as the
optimal number of clusters and a higher value represents
a better cluster quality.

The Dunn [30] and Silhouette [28] coefficient result from
nonlinear combination of compactness and separation.

We begin by setting K, i.e. number of clusters, as 1. There-
after in each iteration, we increase K by 1. When the perfor-
mance metric obtained is better that the previous iteration, the
algorithm continues till a drop in performance is observed.
This gives us the optimal size of cluster, K*. According to
the 3GPP standard, a gNB can belong to at most 8 MBSFN
areas, we ensure that this limitation is enforced i.e. a gNB
can be associated with maximum 8 clusters at a time. These
clusters would have the highest proportion of UEs asso-
ciated with the gNB. The proposed I2MB MBSFN area
formation multi-criteria clustering framework is given in
Algorithm 1, Function I. This function in the algorithm gives
the K MBSFN areas, the set of 360° programs to be broadcast
in K (i.e. Px), and the video tiles to be broadcast.
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C. DEEP REINFORCEMENT LEARNING BASED ADAPTIVE
IMMERSIVE TILE ENCODING AND RESOURCE ALLOCATION

Program 1 =4 Program 1
]
]

Immersive

) 360°
Multimedia

Server

Opy2)

6m 4 3
5 NR-MBMS
{ ‘ , . Broadcast

Program P1 d
@ [ Resource Allocation  1™M€ |

FIGURE 4. 12MB: DRL system model.

Tile1 (m,, 0,,)
Tile2 (my,0,,)
Tile T, (Myy7,057)
Tile 1 (mp, ; Op, 4)

Tile 2 (mj,

Multicriteria clustering gives us a set of MBSFN areas with
the list of associated gNB and users as well as the set of
360° video programs and tiles to be broadcast. We model
the loglcal resource allocation (MCS, m p .- and proportion of
SFs, o ) and efficient tile encoding using the MDP shown
in Fig. 4 The immersive video tiles (1 <t < T)) of the 360°
TV programs (1 < p < Py) are being broadcast in MBSFN
areak (1 <k <K).

The broadcasting decisions include the following: (i) pro-
gram and tile set to be broadcast given the radio resource con-
straints, (ii) quantization level selection for tiles encoding of
the 360° TV program, and (iii) resource block proportion and
MCS level to broadcasting the required tiles of each program
in the set. The radio resource (i.e. broadcast spectrum) is dis-
tributed between the 360° broadcast content tiles, each being
transmitted in a time interval (TTI), i.e. the smallest time
unit that can be allocated. The resource allocation module is
deployed in BTx that coordinates with the gNBs (in MBSFN
areas) and the granularity scale is one subframe and a RB
in the time-frequency domain, respectively. The allocation of
radio resources to tiled broadcast happens in every decision
interval, where the proportion of RBs allocated to a particular
program p and tile 7 is indicated by the metric o) ;.

The gNB allocates resources to a tile of program being
broadcast in every TTIL. Our intelligent immersive tile-based
multimedia encoding and radio resource allocation scheme
minimizes the users’ 360° video distortion and system churn
rate, accounting for different UE requests, viewing angles,
and channel conditions. Corresponding to the MBSFN area 1,
as shown in Fig. 4, the video tiles data of programs p € [1, P1]
are arriving at the broadcast transmitter (group of gNBS) from
the immersive 360° video server at a rate Ap.

5 x10% (@ 2 (®) 40 L]
—x-Tile 10 B ||-x-Tile 10 = E
R -©-Tile 15 E sl|©-Tie 15 .
SR [OTiedo 5 °[]-0-Tile 40 Z 30
5 G\ |[ErTieso 5, || ETiee [ s 3
@ —~+R(q): a=57500, b=-0.2| 7 “[|==D(q): c=11.2, d=-12| By, |-oTiets =%
g1 e, | 2204+ Tile 40 ‘:g
= u L5 |=Tiee
Q
'E e - 8 10 —+Q()
10 20 30 10 20 30 10 20 30
QP QP QP

FIGURE 5. (a) Rate, (b) Y-MSE, and (b) Quality, with analytical model and
variation with QP level for a 360-degree video.
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In the following discussions, we consider that each UE at
any given point of time is requesting at most 1 360° program.
We denotes the maximum number of tiles of a 360° program
p as T,. We define the 360° immersive multimedia broadcast
service distortion for heterogeneous UEs as follows:

Definition 1: Immersive video distortion is governed by
the rate-distortion (R-D) characteristics of the video. The
video bitrate varies with the variation of quantization param-
eter (QP) at the encoder. In particular, QP is a video encod-
ing parameter that regulates the extent of spatial detail in
encoded video. As QP is increased, the bit rate drops in
exchange for increased distortion. It is related to quantization
step size q as: q = 2CP=9/6_ Effectively, the user i viewport
distortion is given as:

Di= Y

vV, 1=t<T),

ar,iDr(Rr),

1, if T is in viewport V;
i = , , ©
0, otherwise.

o ; is an indicator of tile T appearing in user i’s viewport V;
for the requested program p.

Correspondingly, the video quality, Y-PSNR, is given as:
Qi = 10-10go(Imax / Di), Inax is the peak luminance intensity,
given that D; is the luminance mean square error (Y-MSE).
We define system (network) churn rate for [2MB as follows.

Definition 1: System (network) churn rate is the ratio of
the unserved and the total users in the system. A user i is
served if it successfully receives the tiles in its viewport V;
and is given as:

oo S (- pe)
N
if vi > SINR_thr(n%,), Q(qp.z;) = Omin,
Br,i= and o j = 1 8)

0, otherwise.

SINR _ thr denotes the SINR threshold corresponding to the
MCS mp 1, selected for transmission of corresponding tile.
Br,i is an indicator of tile T being successfully received
by user i. The condition Q(qp;) > OQOmin and y; >
SINR_thr(m’T’l.) ensures that the served user gets an accept-
able minimum quality level. A lower value of churn rate is
desired in the system, which would signify an increased num-
ber of users are getting serviced in the network.

We assume that channel characteristics remain stationary,
i.e. SINR experienced by users remains constant, during the
broadcast of all tiles (7)) for a group of picture (GOP) of the
requested 360° program. We also assume that the number
of users in the system remains constant for the time dura-
tion of GOP broadcast of the requested program. Therefore,
a UE can successfully receive immersive video tile z; (in its
viewport) if its experienced SINR is greater than the thresh-
old corresponding to the MCS mp that is being used to
broadcast tile 7; of p in MBSFN k. Only when the 360°
multimedia service quality experienced by user i is above
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minimum acceptable level corresponding to rate supported by
the MCS allocated for its transmission, i.e. mf,’,[, we consider
the corresponding quality. It is assumed to be zero other wise.

The SINR pertaining to the worst channel condition user
amongst those requesting tile t of program p at time ¢ is
denoted as V;ﬁ,r The corresponding set containing the SINR
value for all tiles of program p is y; ={¥p,1,.--» y;’Tp}. The
combined state of all 360° programs and their tiles is given
by the matrix I'’.

The 360° program p’s stream status at time ¢ is represented
by R;,. The combined state of all 360° program streams at
time 7 is given by the vector R’ = {R ... Rp,}. We assume
that new set of data is arriving from the immersive 360°
multimedia server with independent and identical distribution
(i.i.d.). The average arrival rate of the p-th program data is
denoted by A, (bits/s). The program data (i.e. tiles) arriving
in time slot ¢ is denoted by l[’j. The 360° program p’s stream
state in the next time slot, i.e. f + 1, is given by the following
Lindley recursion,

R;Jrl = max(O0, 7'\’,; - a;)('R.t, I")) +1, ©)

where, a;)(’R,’ , T") denotes the amount of data of program p
for transmission based on resource allocation action. Given
the arrival distribution Pf, and the resource allocation action
ap, the probability that program p stream transitions from
state R, to R;, is,

R
Py (R} | Ry, ap) = Eillizs —max(0, Ry —at R Ty 5y} (10)

where I} is an indicator function that takes a value 1 when
{-} is true, and O otherwise. The state of a program p stream to
be broadcast in an MBSFN area k is defined as s, £ (R, y p)
and the system state is s = {s1 ...sp,}.

The mapping of states to resource allocation actions is a
policy thatis denoted as [T : S — A. The objective is to mini-
mize the average sum of 360° program distortion experienced
by users and the system churn rate by selecting the optimal
(best) policy IT* and thereby performing the resource allo-
cation and efficient encoding. Since the resource allocation
decisions at the current time affect the present and the future
distortion-churn rate experienced by the UEs, we formulate
the broadcast resource and encoding parameter allocation
problem as MDP.

We define a program stream cost that applies penalty to
higher distortion and churn rate in the system. Given stream
state s;, and the resource allocation action a’,, we program p’s
stream cost in time slot ¢ as the change in state from time ¢ to
t + 1 is defined as:

cp(sp, ap) = [max (0, R, —a)) + )] =R, (1)
where the term in square brackets is equal to RI’,“ from (9).
Minimizing the long-term average of (11) minimizes the sys-
tem churn rate. The total cost incurred in time slot # is defined
as the sum of costs incurred by each program stream: i.e.,
P
(s’ d) = Z c(sh. al). (12)

p=1
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where s' = {s}...sp,} and @' = {a}...ap,} are joint state
and actions, respectively.

The value of each state when following the policy IT is
defined using Value function, Vn(s), given as:

vis) = E[ Z(w)’ct(st, I(s"))|s = so], (13)
=0

where w € [0, 1]; (w)’ is the ¢-th power of the discount factor.
We take the expectation over a sequence of states that is gov-
erned by the controlled Markov chain with transition prob-

Pk P
abilities P(s'|s,a) = ][] PR(R;,YRP, ap) ] Py(Vé,er,r)
=1 =1

])_
We can represent expected future cost using the recursive
expression of the value function based on the transition prob-
ability as: V1(s) = (s, TI(s)) + @ 3 P(s'|s, TI(s)V(s).

/

=N
Then, the objective of the resource allocation strategy is
to determine the resource allocation and tile encoding policy
that solves the following optimization:

in V1(s), 14
min V7 (s) (14)
where II is the set of all the possible policies. The optimal

solution to (14) satisfies the Bellman equation, Vs € S:

V*(s) = 131612 {c(s, a) + a)ZP(s’|s, a)V*(s/)} , (15)

s'eS

mi/gl (s, a), (16)

where V*(s) is the optimal value function. ¥*(s, a) is the opti-
mal action-value function that evaluates the value of taking an
action a in state s and thereafter following the optimal policy.
The optimal policy IT*(s) can be determined by taking the
action that minimizes the right-hand side of (16) and thereby
gives us the optimal action to take in each state.

Since the possibilities for quantization parameter selec-
tion and resource allocation are nearly infinite, there is a
large number of discrete states and actions. Furthermore, the
dynamics of the underlying system (user channel quality,
user requests, video data rate adaptation, gNB radio resource
allocation) is predominant and the complexity would be very
high if the broadcast resource and encoding parameter allo-
cation problem has to be entirely solved for each video GOP
from scratch. For a scenario with P programs and M RBs,
and each 360° program stream has T), tiles and there are
|q] = @max — Gmin POssible program stream data values and M
possible MCS levels that can be allocated to the tiles of each
program, then there are a total of Py x M x T, x |gq| x M
possible states and M x M x |q| possible resource allocation
actions. Hence, we use DRL to solve this problem.

We use a deep neural network deterministic policy gradient
method, DDPG algorithm. It is suitable for high dimensional,
continuous or discrete, large action state space problems.
The underlying principle is Actor-Critic framework consist-
ing of an actor and a critic function. The former chooses
the actions and latter evaluates the corresponding selection.
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We employ DRL-based DDPG method that reduces the time
complexity by maintaining a cache (i.e., replay buffer) with
state-action transitions and by performing an iterative update
of the networks (critic, actor, and target) on-the-go instead
of exploring the state-action mapping each time from the
beginning. The current policy is specified by mapping states
to an action in the DNN (parameters n**) by means of an actor
function, u(s|n*). The critic function, ¥ (s, a|n¥), is imple-
mented using DNN (parameter: ¥) that learns using Bellman
equation and provides feedback based on selected action.
We update the actor DNN using gradient of the expectation
of return J in terms of n*, similar to (13).

Voud % Ego s [Vp ¥ (s, aln?) st ampistign] - (17)

We update the critic network by minimizing the MSE:

L) = By pp s cimp [w(s’, a'ln?) — y’)2] , (18)
¥ =i, d) + oy uesthHin?), (19)

where, E is the stochastic environment that has been modeled
as MDP, § is the stochastic behavior policy, p denotes the
discounted state visitation distribution, and y' is the target
value.

DDPG architectural modifications consisting of DNN
function approximations are used to learn in large state-action
spaces. The transition tuples (s, a’, ¢!, s'*!) are stored in a
replay buffer (finite-size cache) to prevent sample correlation.
We update the actor-critic in each time step by sampling the
stored transitions in the replay buffer, thereby learning from
uncorrelated transitions. The divergence and stability due to
the update in network and y’ using the same Q-network is
addressed by considering copies and slow updates in these
copies of the actor-critic networks. We add samples from a
noisy process to the actor policy, u'(s') = u(s'|y!) + N,
where A is environment specific.

The storing of transition tuples in the replay buffer also
enables an instantaneous update in action based on system
state, preventing action computation each time. This reduces
the time complexity to O(1) [31] by mapping the system state
to an action from the cache that stores the Py x M x T, x
|g| x M states. The agent in DRL-based method can instantly
determine the action given the dynamic system information
(user requests, SINR, channel characteristics, MBSFN group)
while populating the replay memory cache on-the-go and
simultaneously updating the deep neural network represent-
ing the action policy. Overall, the state, action, and networks
(critic, actor, and target) are initialized (i.e. Steps 4 and 5 in
Algorithm I-Function II) only once at the beginning. There-
after, the long term cost (given by (11), Step 6 in Algorithm
I-Function II)) is minimized by executing it each time the
system state gets updated.

I2MB selects the efficient 360° video encoding parameters
(quantization level qlﬁ’r, 1 < t© < T,) and performs opti-
mal radio resource allocation for each program p in P and
MBSFEN & (1 < k < K). We formulate two dual objectives:
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(i) I2MB(Dnpin) minimizes the immersive multimedia broad-
cast service distortion for the served users in the system, and
(ii) I2MB(Crpin) minimizes the churn rate, i.e. maximizes the
number of served users N in the system with a guaranteed
minimum acceptable video quality, subject to multiple system
constraints. Particularly, the following needs to be ensured:

(a) the gNB capacity provides the upper bound to the total
rate that can be broadcast to the heterogeneous UEs;

(b) the sum of proportional time-frequency resource block
allocation to broadcast the various 360° immersive video
content is upper bound to 1 at each gNB;

(c) all gNB in an MBSFN area need to use the same quan-
tization level ¢4 for tiles of program p, allocate the same
set of radio resource Gf to each videotile 7,1 <t < T),
and use the same MCS »?) to broadcast it;

(d) the MCS selected to broadcast the immersive video tiles
can belong to the set of allowed MCS levels in accordance
with the 3GPP standard.

We formulate the respective optimization problems below,

where the constraints (20a)-(20d) capture the above
conditions.

IZMB(Dmm) min_ ZD,, (20)
X1 =1
[Pl Tp
sti Y Y 1,R(e))
p=11=1
[Pl Tp
<Y 1,,Cr.m),  (20a)
p=1r1=1
[P Tp
> > 1,407 <1, VeNBj,
p=11=I
(20b)
k .k . ok
qp,r qurj’ Gp,r =O-Tp’ mp,r Zml;’
(20c¢)
V 7, p broadcastin k,
1<m L <15, V1,k. (20d)
I12MB(Crypin) : min Cr
lg"rnq¥]
t.: (20a) — (20d), (1)
where the indicator function 1,; = 1 if gNB j broadcasts

the program p. The vector of quantization levels used for
encoding the tiles of video programs being broadcasted in
MBSFN k (p € Pk, 1 <k = K) is denoted as ¢¢ =
[q1 1,...,q1 1 ..,qu 1,...,qu T, ].

If gNB j is a part of MBSFN &k and p € Py then it
broadcasts p, provided atleast one or more users experience
acceptable program quality Q; > 0. Thus, constraints (20c)
and (20d) is subject to broadcast of program p by gNB j.
Additionally, since gNB can belong to more than one MBSFN
area, (20b)-(20c) applies to each gNB instead of an MBSFN
area. Given program p and its tile 7, ¢%, o and m appearing
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Algorithm 1: 2MB: MBSFN Formation, Tile Encoding,
and Resource Allocation
Input: 4;, 1 <i <N,K
Function I: MBSFN_Formation (u;, K) :
1) Select centroids from u;: ¢ randomly, ¢k, 2 < k<K,
2) based on clustering policy.
2) K-cluster formation: Assign user i to cluster k*,
k* = min d?(uj, cx)

3) Cluster update: Reassign centroid ¢ to decrease

N
1) average measure: | > dz(u,-, ck) | /N
i=1
4) Reiterate step 2-3 until cluster assignments
1) are unchanged
5) gNB with UEs in cluster k, belongs to MBSFN area k
6) TV programs set broadcast in MBSFEN k, Py, are those
requested by users in cluster k
| return K MBSEN areas, {Py }x
Function II: Resource_alloc_Tile_encoding_ DDPG ({P }i,
uj, i € clusterk):
1) Proportion of resource allocation to program tiles
for each program p € Py
for each tile T = 1 to 7),
#users in k: Ny, #requesting 7 of p: 12
of =
2) MCS allockation to program tiles
for each program p € Py
for each tile t = 110 7},
I12MB(D,,;,):y=least SINR, user subset
I12MB(Cr i) y=least SINR, all users set
Select mh; = mﬂiln(SINR,h,(m) >7)
3) Quantization parameter selection for video tiles
for each program p € Py
for each tile T = 1 t0 7),
Select ¢ff = max(C(or, m?) > R(g))
Rp = R(q)
4) State s' = (R, y} and action a! = {n%, o7, ¢7}
5) Initialize critic (¥), actor (u) and target (v, ')
1) networks
6) Minimize the long-term average of (11):
for iteration= 1, 7 do
Initialize random process A for action exploration
fort=1,T do
Select action @’ = u(s'|n*) + N*
Execute a', observe ¢’ and s'*!
Store transition (s', a’, ¢!, s't1) in replay buffer
Sample transitions (replay buffer): (s, al, cl, s
Set y* using ¢/, s+, 7, 1/ in (19)
Update critic by minimizing the loss in (18)
Update actor policy: sample-policy-gradient in (17)
Upda}e target network: )
nY < on’ +(1-om”
nt < ont + (1 —omt
end for

end for
| return mI; of, qIZ

Output: K MBSEN areas, {Py }x, n, oF, &%

in (3b), (3c) The data rate R(¢%) required for transmission of
tile T of program p is set by the encoder. The DDPG based
resource allocation (MCS and resource block) and efficient
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tile encoding in the proposed I2MB framework using Algo-
rithm 1 Function II.

The optimization problem 12MB(D,,;,) is solved based
on the following proposition that enables formulating a
low-complexity solution to the problem described below:

Proposition 1: The objective (20) is a strictly increasing
function of the quantization levels [q, . .., ¢¥].

Proof: Itis evident from Fig. 5 that both quality and rate
are strictly decreasing functions of quantization parameter q.
The distortion is a strictly increasing function of g. Analyt-
ically, we model R(q) = a - ¢?9 and D(q) = ¢ - ¢4, and
0(q) =10- loglo(g"(‘;;). It is shown in Fig. 5(a) that this video
rate model for Tile 40 of a 360-degree video corresponds to
a = 57500 and b = —0.2 with RMSE = 0.00097. The
video distortion (Y-MSE) model is shown in Fig. 5(b) for
Tile 40 and it corresponds to ¢ = 11.2 and b = —0.12 with
RMSE = 0.00852. The video quality (V-PSNR) model for
Tile 40 is shown in Fig. 5(c) and it has RMSE=0.00361.

The non-negative weighted linear sum of strictly increas-
ing functions is increasing [32], [33]. Hence, we prove that
our objective function is strictly increasing with the quan-
tization level value by proving it for generic D;. The first
derivative of D; with respect to qllﬁ (i.e., the quantization level
of the program requested by u; in the MBSFN(s) to which the
UE belongs) is of the form ¢ - g (¢ > 0 and a constant). This
is positive thus proving the assertion. ]

The objective function (20) with constraints (20a)-(20d)
selects the highest possible quantization parameter level for
the group of users requesting tiles of a program such that the
resource constraint in the network are met.

The optimization problem for I2MB(Crpin) is solved by
selecting the lowest possible 77; and the highest possible
qp,: Y7, p such that Q(gp,:) > Qmin. This ensures that the
maximum number of users in the system have ¢g= 1 which is
in accordance with objective (21).

V. PERFORMANCE EVALUATION

FIGURE 6. Panoramic snapshots of 360° video.

To assess the performance of our scheme, we have used
360° videos with diverse content types (for example: Office,
City, Sports, Jungle, and Sunrise). Sample snapshots of three
videos from the set that has bee used is shown in Fig. 6. They
have 4K spatial resolution, 1800 frames, and 30fps frame
rate. Each video is divided into M = 64 tiles (8 x 8 tiling)
that are compressed using HEVC [34] into 9 quality versions
corresponding to 9 QP values of 16, 20, 24, 28, 32, 36, 40,
44, and 48. We use the 5G NR frequency range 1 (FR1) [5]
network scenario for performance evaluation. The overall
simulation parameters are listed in Table 1.
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TABLE 1. Simulation parameters.

Parameter Value
#epochs 50-100
learning rate 10—3
Update parameter, o 0.001
#hidden units (LSTM) 50
#hidden layers (DNN) 2
#neurons 300-400
Update rule Adam
Steps per epoch 10000
Tests per epoch 10
Steps per test 2000
Batch size 16, 32
Replay memory size 1000 kB
Channel bandwidth 50 MHz
Frequency 3.4 GHz
Number of data carriers 1200
Receiver noise figure 7dB
Maximum transmitter output power | 46 dBm
Transmitter (Receiver) antenna gain | 18 (0) dBi
Building loss 14.0 dB
Receiver sensitivity —106.4 dBm
Shadowing standard deviation 8dB
Average cell radius 720 m

A. HEAD NAVIGATION PREDICTION: LSTM FORECASTING
We have used the dataset [35] that is an aggregation of six
different previously published datasets [36], [37], [38], [39],
[40], [41]. The original datasets contained user head orienta-
tions while viewing 360 degree videos using a head mounted
streaming device. This data is extracted, and preprocessed to
yield a common representation. This dataset contains user
head orientation trajectories for 3791 independent viewings
of 88 different 360° videos with an average of 45 viewings
per video. The total viewing duration is 514215 seconds
(142 hours 50 minutes 15 seconds).

Fig. 7 shows the LSTM forecasting output of predicted
pitch and yaw angle for one of the users while watching
one of the immersive video content. Fig. 7(a) and (d) shows
that the relative length of training sequence is less than
30% of the entire video duration, denoted as ’Observed’.
Fig. 7(b) and (e) show that the predicted pitch and yaw angle
values are very close to the observed user head navigation
angles, respectively. The sample error (between the predicted
and observed values) for the pitch and yaw angles is shown
in Fig. 7(c) and (f), respectively, with an overall RMSE less
than 0.1. This shows the efficacy of the LSTM forecasting
model with network state update in predicting the head navi-
gation direction of the heterogeneous users.

We studied the predictor performance for the entire set of
34 users viewing the 15 immersive video content. Fig. 8(a)
shows the RMSE performance of the predictor for Pitch and
Yaw angles when varying the relative training and predicted
sample duration from less than 10% to 90% with 50 training
epochs. It is observed that RMSE reduces with increase in rel-
ative training duration and also that RMSE of less than 0.01 is
achieved with a 10 sec training duration. Fig. 8(b) shows the
predictor RMSE when the maximum training epochs (itera-
tions) are varied from 10 to 100. The RMSE reduces with
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FIGURE 8. Head navigation angle prediction RMSE.

increase in the number of training iterations and RMSE of
less than 0.01 is achieved with 30 or more iterations.

B. MBSFN AREA FORMATION: USER CLUSTERING
We have assessed K-means, K-medoids, and fuzzy c-means
multi-criteria clustering algorithms to chose the most effec-
tive method to efficiently form the MBSFN areas. These
clustering methods have been evaluated in terms of met-
rics listed in Section IV-B, i.e. Euclidean distance, Maha-
lanobis distance, Silhouette coefficient, and Dunn’s index.
The clustering performance of these methods in terms of
the mentioned metrics is shown in Fig. 9(a)-(d), respec-
tively. It is seen that K-means and K-medoid multi-criteria
clustering methods have comparable and significantly better
performance than fuzzy c-means in terms of the Euclidean
and Mahalanobis distance. Furthermore, K-means efficacy
as compared to K-medoid and Fuzzy c-means method is
evident from its higher Dunn’s index value, shown in
Fig. f:cluster1(d).

The Silhouette value for the eight clusters formed in a
scenario consisting of 70 users per cell and 10 programs using
the three methods is shown in Fig. 10. Even though Fuzzy
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FIGURE 9. (a) Euclidean distance, (b) Mahalanobis distance,
(c) Silhouette coefficient, (d) Dunn’s index, for user clustering using
k-means, k-medoid, and fuzzy c-means methods.
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FIGURE 10. Silhouette for user clustering using k-means, k-medoid, and
fuzzy c-means methods.

c-means method has a higher Silhouette coefficient than the
other two methods, as is evident from Fig. 9(c) and Fig. 10,
we prefer K-means method due to its better performance in
terms of other three metrics. Also, as can be seen from Fig. 10
the clusters are more balanced in terms of cluster size for
K-means as compared to fuzzy c-means. This further moti-
vates us to use K-means multi-criteria clustering method to
form MBSFN areas in our I2MB framework.

Given a network scenario, we obtain the optimum num-
ber of clusters using the Euclidean and Silhouette method.
According to the Elbow curve method [42] the optimal num-
ber of cluster is the point where Euclidean distance drops
suddenly ( ’Elbow’).The optimal number of clusters maxi-
mizes the Silhouette coefficient [42]. It is again evident from
Fig. 11(a) and 11(b) that K-means clustering can effectively
use these methods to find the optimal number of clusters in a
given scenario.

K-means multicriteria clustering implementation is a sim-
ple, easy, and effective method to classify data [43]. Addition-
ally, it is fast with few computations and has linear complexity
O(n). We therefore apply the Lloyds K-means heuristic [44]
for our multi-criteria clustering of heterogeneous users into
K MBSEFN areas. The cluster centroids are selected using the
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FIGURE 12. Multi-criteria K-means area formation (8 clusters).

K-means++ approach [45]. The optimal number of clusters
is system scenario dependent and can be assessed through
Fig. 11(c). The optimum number of clusters depends on the
number of users and number of programs. A few program
options results in a fewer number of clusters (i.e. fewer
MBSEN areas). As can be seen from Fig. 11(c), sometimes
a higher number of users provides more competent centroid
options resulting in lesser number of optimum clusters.

C. I2MB COMPARATIVE PERFORMANCE

Fig. 12 shows an instance of the network scenario we con-
sider. It includes 200 uniformly randomly distributed users
per cell and 52 gNodeB cells. Each user randomly views the
broadcast program at a particular viewing angle based on the
dataset [35]. The 5G NR simulation parameters are listed in
Table 1. For each user in an MBSFN area with a given number
of interfering cells, the SINR is computed according to [5].
The performance of our system is obtained by averaging the
results over several iterations (> 150 iterations with 95% con-
fidence interval) with uniformly random distribution of users.
We also examine the impact of the number of users.

Given the above scenario, our approach leads to the for-
mation of an optimum number of MBSFN areas using the
approach discussed in Section V-B. Eight clusters (MBSFN
areas) are formed in the scenario shown in Fig. 12, indi-
cated by different color markers. The efficacy of our pro-
posed LSTM based viewport angle prediction scheme in
I2MB is evident from the Fig. 13(a) that shows the viewport
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FIGURE 13. Performance comparison in terms of (a) RMSE and (b) System
aggregate data rate.

yaw and pitch angle prediction RMSE with respect to linear
regression, persistence, and LSTM enc-dec (encoder-
decoder) schemes from the literature [46]. The linear regres-
sion uses a linear model, the persistence predictor uses the last
known viewpoint, and LSTM enc-dec network predicts the
mean viewpoint position every second [46]. Overall, it can be
seen from Fig. 13(a) that the RMSE of our proposed viewport
angle prediction scheme, 2MB(LSTM) is below 0.1 and this
is significantly lower than the other schemes. The efficacy
of the proposed LSTM based forecast scheme in I2MB is
attributed to the network state update using the observed
viewport angles instead of the predicted values, making the
prediction model more efficient.

The efficacy of the proposed I2MB schemes in terms of
MBSFN area formation and resource allocation is evalu-
ated in terms of system aggregate data rate performance,
shown in Fig. 13(b), with respect to Single Content Fusion
(SCF) and MBSFN Area Formation (MAF) schemes [47]
from literature. SCF comprises of interest similarity based
overlapping MBSFN formation and MAF focuses on improv-
ing system aggregate data rate for video-on-demand requests
by dynamically creating MBSFN Areas [47]. The proposed
I2MB scheme benefits from dynamic MBSFN area forma-
tion, efficient resource allocation, and intelligent immersive
multimedia encoding. Overall, it can be seen from Fig. 13(b)
that I2MB (Cryin) and I2MB (D,;,i,) schemes have a higher
system aggregate data rate (on average) by 18.44%, 9.45%
and 25.4%, 15.87% than SCF, MAF, respectively.

The significance of tile based immersive video broadcast
in I2MB is evident from Fig. 14. Fig. 14(a) shows the total
number of users requiring specific tile numbers of program
p = 1 based on their viewing angles. It can be seen that there
are some tiles (tiles 11-12, 29-30), based on heterogeneous
users’ viewing direction, that are being viewed by more users
while a few others (tiles 16-18, 24-26) are not being viewed
at all. The MCS selection for adaptive tile encoding based on
the resource constraint and user distribution within a MBSFN
area for these programs is shown in Fig. 14(b). Fig. 14(c)
shows the corresponding efficient QP level, respectively. The
corresponding quality in terms of viewport luminance PSNR
(Y-PSNR) is shown in Fig. 14(d). The tile specific rates of
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the tiles of this program is shown in Fig. 14(e). I2MB (both
Dinin and Crpin, schemes) selects efficient QP and MCS level
as compared to existing scheme (VRCAST [12]) in dense
network scenario while ensuring higher tile quality delivered
to users.

We also examine the performance of I2MB (both D,,;,, and
Crmin schemes) in terms of the churn rate (i.e., proportion of
unserved users), immersive video quality (in terms of view-
port PSNR) and distortion (MSE). It is evident from Fig. 15(a)
that the churn rate increases as the number of users per cell
increases. The churn rate of I2MB(D,;,) and I2MB(Cryin)
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is 65.63% and 71.88% (on average) lower than VRCAST.
The Viewport PSNR (V-PSNR) reduces with an increase in
number of users per cell but is maintained above 27 dB for the
two I2MB methods unlike VRCAST that has 23 dB V-PSNR,
as shown in Fig. 15(b). The MSE increases with increase in
number of users and the performance of 12MB(D,;,) and
I2MB(Cryin) is 76.14% and 42.28% better (i.e. lower dis-
tortion, MSE), respectively, than the existing scheme [12],
as shown in Fig. 15(c).

The quality per user for a scenario with fifty users in each
cell is shown in Fig. 16(a) and the corresponding cumulative
distribution function (CDF) is shown in Fig. 16(b). It is evi-
dent from Fig. 16 that 2MB(D,,,;;,) and I2MB(Cry;p,) provides
higher quality (greater than 30dB) for all users as compared
to VRCAST. Specifically, as can be seen from Fig. 16(a), for
example, user 1, 3, and 4 receive Y-PSNR greater than 40 dB
using [2MB(D,;,) and ~35 dB using I2MB(Cry,), while
VRCAST provides <30dB Y-PSNR in the given dense urban
network scenario. The CDF in Fig. 16(b) shows the I2MB
in guaranteeing a higher video quality to the heterogeneous
users.

VI. CONCLUSION

We have developed a novel and efficient intelligent immersive
multimedia broadcast scheme, I2MB, for next generation cel-
lular networks, that significantly improves the overall 360°
video quality while serving an increased number of hetero-
geneous users. It considers the users’ channel conditions,
viewing angle, and service requests for adaptively broad-
casting the 360° immersive video content. The time series
forecasting of head navigation direction of users is performed
using LSTM deep learning model. Thereafter, [2MB scheme
performs the multi-criteria K-means clustering with optimal
number of clusters to dynamically and efficiently define the
MBSFN areas. We optimally encode immersive video tiles
and perform efficient radio resources allocation using Deep
Reinforcement Learning (DRL) Deep Deterministic Policy
Gradient algorithm to either minimize the immersive broad-
cast video distortion (i.e. 2MB(D,;,) scheme) or minimize
the churn rate (i.e. I2MB((ry,,i,) scheme). We have shown that
our proposed framework, I2MB, outperforms other recent
scheme by providing &~ 14 and 8 dB improvement in quality
while serving 28.47% and 37.14% higher number of hetero-
geneous users with D,,,;;, and Cryy,;,, schemes, respectively, in a
large-dense cellular network. This framework will further be
extended to include complex scenarios with revenue models
in next-generation cellular networks.
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