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ABSTRACT The popularity of immersive multimedia content is prevalent and the consumption of 360◦

videos is increasing rapidly in varied domains. The broadcast of such content in cellular networks will be
challenging in terms of dynamic content adaptation and efficient resource allocation to serve heterogeneous
consumers. In this work, we propose an intelligent immersive new radio multimedia broadcast multicast
system (NR-MBMS), I2MB, for next-generation cellular networks. I2MB intelligently forecasts the users’
viewing angle and the 360◦ video tiles to be broadcast beforehand using long short-term memory network.
We define broadcast areas by using modified K-means clustering. The complex multivariable optimization
problem that integrates efficient adaptive 360-degree video encoding and tiled broadcast using optimized
transmission parameters is defined as as a Markov decision process (MDP). In a dense urban scenario with
a large MBSFN (multimedia broadcast multicast service single frequency network) synchronization area,
the state and action space dimensionality is very high, in which the solution is obtained by using deep
deterministic policy gradient (DDPG) algorithm. I2MB incorporates deep reinforcement learning based
radio resource allocation (modulation-coding scheme and frequency-time resource blocks) and tiled video
encoding to maximize the viewport video quality experienced by the broadcast mobile users. I2MB provides
improved immersive video broadcast streaming quality while serving a higher number of mobile users.
Adaptive encoding of 360◦ video tiles and radio resource allocation are performed based on users’ forecasted
viewing angle, spatial distribution, channel conditions, and service request. The performance evaluation of
our proposed scheme, I2MB, shows considerable gains in viewport quality ( 46.83%) and number of users
served ( 30.52%), over a recent state-of-the-art method VRCAST.
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INDEX TERMS Multimedia broadcast and multicast services (MBMS), new radio MBMS (NR-MBMS),
360◦ video, viewing angle prediction, immersive tiled video.

I. INTRODUCTION22

Immersive 360◦ video streaming is increasingly used in23

diverse applications such as virtual reality, gaming, and enter-24

tainment [1]. In the immersive environment, when a viewer25

changes their viewing direction, the content is accordingly26

rendered. However, streaming such content requires very27

high bandwidth and is challenging [1]. A 360◦ immersive28

video can be divided into small portions spatially known29

as ’tiles’ that can be encoded at different quality levels.30

The associate editor coordinating the review of this manuscript and

approving it for publication was Jon Montalban .

This has enabled tiling-based viewport-adaptive 360◦ video 31

streaming, where tiles are delivered to clients based on their 32

viewing direction and network conditions. Concretely, the 33

tiles within the user’s viewport can be transmitted at a higher 34

quality, while the rest of the tiles can be delivered at a lower 35

quality [2]. 36

Digital television (TV) broadcast is a popular service in 37

wireless networks comprising on-demand content streaming 38

and multimedia broadcast to heterogeneous customers on 39

their smart devices like TVs, phones, and car-infotainment 40

systems [3]. Streaming on-demandmultimedia data tomobile 41

users using unicast transmission requires considerably higher 42
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amounts of network resources and it is difficult to scale43

up to a urban dense network scenario. Multicast/broadcast44

instead offer a more scalable solution, but face certain dif-45

ficulties like, user-centric adaptation, responsiveness to user46

interactivity, and providing seamless quality. This motivates47

the investigation of resource efficient 360◦ video broadcast48

solutions for future large/dense cellular networks.49

The further evolved multimedia broadcast multicast ser-50

vices (FeMBMS) standard, defined in 3GPP Release 14, pro-51

vides for multimedia streaming over cellular network [4].52

With the advent of next generation communication standards,53

efforts are being made to define NR-MBMS (5G New Radio54

MBMS) and advance FeMBMS [5]. Herein, synchronization55

area, is an important definition, within which the associ-56

ated 3GPP 5G Next Generation base stations (gNBs) need57

to be time synchronized. According to the standard, the mul-58

timedia broadcast multicast service single frequency network59

(MBSFN) consists of a group of gNBs that broadcast the60

same content using the same set of radio resources, simultane-61

ously, within a synchronization area. Thereby, at the receiver62

a better quality can be ensured by combining the signal63

received from various gNBs. The broadcast along with the64

unicast transmission can be simultaneously facilitated within65

each cell of an MBSFN area, and cell capacity can be shared66

for both.67

FIGURE 1. I2MB Scenario in 5G NR networks.

We have developed an intelligent immersive (360◦ ) mul-68

timedia broadcast solution, I2MB, that can be deployed in69

future cellular networks and is suitable for large and dense70

network scenarios. Fig. 1 shows a sample scenario of I2MB in71

5G-NR cellular networks. The heterogeneous users will have72

diverse user equipment, program requests, viewing direc-73

tions, and gNodeB (gNB) association. The broadcast trans-74

mitter (gNB) in the radio access network fetches the broadcast75

content from the video server through the broadcast transmit-76

ter core element and broadcasts the tiles subject to viewport77

of associated users. The tiles of an immersive video are sent78

from the multimedia server to gNB using the backhaul link.79

The MBMS user and bearer services are managed by the80

broadcast transmitter element in the core that also maintains81

the MBSFN area formation and resource allocation. Each82

MBSFN comprises of several gNBs that broadcast same set 83

of programs in a synchronized manner using the same set 84

of radio resources. A gNB can be a part of more than one 85

MBSFN area. In the given example, a cell is shown to be a 86

member of two MBSFN areas: {1, 2}. The users u1 − u6 are 87

accessing the 360o multimedia program at different viewing 88

angles and are receiving the corresponding tiles in their view- 89

port. 90

The trend in viewing and popularity of TV content (i.e. 91

programs and TV channels) is found to be dependent on 92

demography, social, economical, age, and region specific fac- 93

tors of the viewers [6], [7], [8]. Ratings of TV channels, pro- 94

grams, and audience can help in deciding content production 95

and schedules [9]. Multiple channel TV service has another 96

alternative over-the-top (OTT) streaming that has behavioral 97

advertising based monetization [10]. Overall, it motivates us 98

to group users using multi-criteria clustering to formMBSFN 99

areas. We perform NR-MBMS resource allocation based on 100

multiple parameters: user content interest (request), viewing 101

direction angles, gNB association, and program popularity, 102

in a given MBSFN synchronization area. In our proposed 103

scheme, I2MB, we form MBSFN area by grouping cells 104

while considering user content request, location, experienced 105

channel conditions, and user head navigation direction. 106

Given a set of MBSFNs, we aim to maximize the immer- 107

sive quality delivered to the users by adaptively encoding 108

360◦ video tile and efficiently allocating radio resource. 109

We have formulated an algorithm based on deep reinforce- 110

ment learning (DRL) that executes at the broadcast transmit- 111

ter (BTx) to efficiently allocate radio resources and adaptively 112

encode the 360◦ video tiles that have to be broadcast. The 113

aim is to minimize the sum-distortion and churn rate expe- 114

rienced by the users in the system. The users’ program 115

requests, viewing directions, and channel conditions are con- 116

sidered to be unknown to the users and the BTx beforehand. 117

We demonstrate using performance evaluation results consid- 118

erable gains in viewport peak signal to noise ratio (PSNR) and 119

number of served users, over a recent state-of-the-art method 120

VRCAST. 121

The rest of the paper is organized as follows. Section II 122

discusses related works. Section III presents the I2MB system 123

architecture and components. Section IV describes the I2MB 124

framework consisting of User head navigation direction fore- 125

casting, MBSFN formation using multi-criteria clustering, 126

and deep reinforcement learning based tile quality adaptation 127

and resource allocation. Section V provides details on the 128

simulation scenario and presents the key performance results. 129

Finally, Section VI draws our conclusions. 130

II. RELATED WORK AND KEY CONTRIBUTIONS 131

Adaptive 360◦ video streaming based on users’ viewport 132

has been studied in [1] and [2] via the design of efficient 133

360◦ video representations and resource allocation methods. 134

Live scalable 360◦ video network multicast has been investi- 135

gated in [11] via rate-distortion optimization and user view- 136

port prediction. The reference method we consider in our 137
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experiments is known as VRCAST and has been studied138

in [12] for streaming of live 360◦ videos to mobile users.139

It considers grouping of users, adaptive resource allocation,140

and tile-quality selection. However, it focuses on live multi-141

cast and does not address multiple parallel broadcast sessions142

for larger and denser cellular networks, where a unilateral143

channel condition based grouping for a limited number of144

users fails. Our approach aims to fill this gap.145

LTE eMBMS resource allocation formultimedia streaming146

to heterogeneous users with diverse channel conditions is147

discussed in [13]. However, adaptive encoding of immersive148

multimedia content, user heterogeneity, and quality assurance149

are also important factors that need due consideration. Sim-150

ilarly, multicast transmission can be optimized by dynam-151

ically defining the MBSFN areas and has been discussed152

in [14]. However, multi-criteria heterogeneous user clustering153

to efficiently defineMBSFN areas, efficient encoding of 360◦154

immersive multimedia tiles, and NR-MBMS resource allo-155

cation optimization, as considered in this paper, represents a156

novel topic that has not been studied before.157

Time series forecasting using long short-term memory158

(LSTM) deep learning model has been used for C-reactive159

protein used in cancer immunotherapy clinical decision mak-160

ing [15]. LSTM deep learning model with with adaptive161

moment estimation (Adam) has been used for multi-step162

ahead time series prediction [16]. Deep learning LSTM163

model has been used to forecast short-term electricity supply164

load [17]. Traffic demand forecasts is essential for transporta-165

tion network companies to properly allocate resources and166

avoid delays in services provisioning. This involves long-,167

medium, and short-term forecasting that can be implemented168

using deep neural networks [18]. The cellular metrics (con-169

nections, throughput) can be forecast in social events using170

LSTM deep learning model that is applied to the social infor-171

mation and data from past events [19].172

Reinforcement learning has self-learning ability and good173

generality [20]. The channel dynamics and user requests are174

governed by the stochastic processes that are unknown a175

priori in the real-world networks. In such scenarios where176

system dynamics are unknown, reinforcement learning (RL)177

method such as Q-learning can be used [21]. Q-learning178

based content caching algorithm can assist the network to179

efficiently utilize the resource of the BSs [22]. Deep RL180

(DRL) can be used to optimize the wireless network oper-181

ation. Deep deterministic policy gradient (DDPG) algorithm182

combines the architectures of deep Q-learning, deterministic183

policy gradient and Actor-Critic. It is suitable for continuous184

action space. DDPG can automate wireless network opti-185

mization [21]. It can also be used for optimal path planning186

of mobile robots [20]. Live streaming services for vehicu-187

lar infotainment systems in the Internet of Vehicles (IoV)188

requires high quality, low latency, and low bitrate variance.189

Due to the dynamic properties of wireless channels, the live190

video transcoding and streaming scheme in vehicular fog-191

computing (VFC)-enabled IoV is achieved by using a soft192

actor-critic DRL DDPG algorithm [23].193

The following are a few key contributions of this work: 194

• User head navigation direction prediction using deep 195

learning LSTM model. 196

• Efficient Multi-criteria clustering based MBSFN area 197

formation with optimal number of clusters. 198

• The DDPG algorithm based optimal radio resource allo- 199

cation and adaptive 360◦ tiles encoding that minimizes 200

the users’ sum-distortion and system churn rate. 201

• Extensive simulation based evaluation shows the effec- 202

tiveness of the proposed I2MB technique that outper- 203

forms state-of-the-art VRCAST algorithm in terms of 204

churn rate and video quality. 205

III. I2MB SYSTEM ARCHITECTURE AND COMPONENTS 206

The architecture of our proposed I2MB system is illustrated 207

in Figure 2. Heterogeneous user equipments (UEs) send the 208

head navigation information to their serving gNB (RAN 209

broadcast Transmitter). This is then used to refine the LSTM 210

users’ viewport forecast. The gNB forward this information to 211

the broadcast transmitter core element consisting of multicast 212

(multi-cell) coordination entity (MCE) and NR-MBMS gate- 213

way. These elements define theMBSFN area (based onmulti- 214

criteria clustering) in order to efficiently broadcast 360◦ 215

immersive digital TV content to heterogeneous UEs. There- 216

after, these also adaptively allocate radio resources (resource 217

blocks, modulation and coding scheme). The content server 218

adaptively encodes 360◦ video tiles using quantization level 219

selection based on user requests, viewport (based on head 220

movement navigation data), rate-distortion (R-D) character- 221

istics of the immersive media content, and radio resource 222

constraints. 223

FIGURE 2. I2MB system architecture.

A. USER HEAD MOVEMENT NAVIGATION DATA AND TILE 224

MAPPING 225

The user head-movement data corresponding to user naviga- 226

tion of a 360◦ video over time is monitored by the UE. At the 227

UE, the immersive extended/ virtual reality (XR/VR) device 228

records the viewpoint direction, Vi, of the user i, on the 360◦ 229

viewing sphere. The user is considered to be positioned at 230

the center of this sphere. This is shown in Fig. 3(b). In par- 231

ticular, the spherical coordinates azimuth and polar angles, 232
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FIGURE 3. User head movement navigation: (a) Rotation angles (yaw,
pitch, and roll) in three coordinate axis (b) Azimuthal and polar angles
(φ, θ) in spherical coordinates (c) mapping to panoramic area with
8× 8 spatial tiling.

φ ∈ [0o, 360o] and θ ∈ [0o, 360o] describe the surface that233

is normal of Vi on the 360◦ sphere, as shown in Fig. 3(b).234

These two angles are correspondingly referred to as yaw and235

pitch and are the rotation angles around the axes, as shown in236

Fig. 3(a).237

The 360◦ video is partitioned into a set of 8×8 spatial tiles,238

as shown in Fig. 3(c). The tiles can be separately encoded239

and streamed to the user. Tiling the video at the HEVC (high240

efficiency video coding) encoder is possible using its tiling241

feature. Each tile is indexed in a raster fashion, top-to-bottom242

and left-to-right. The surface corresponding to viewport Vi on243

the sphere (c.f. Fig. 3(b)) can be mapped to the spatial tiles244

in the panoramic visualization of the 360◦ video as shown in245

Fig. 3(c).246

B. NR-MBMS RESOURCE ALLOCATION247

The channel quality indicator (CQI) is a measure of chan-248

nel quality being experienced by a user. The gNB selects249

suitable modulation and coding scheme (MCS) to broadcast250

tiles to users based on CQI. In 5G-NR, grouping of radio251

resources into resource blocks (RBs) is used in downlink252

communication. Each RB consists of 12 consecutive subcar-253

riers in frequency domain and depending on the bandwidth254

each lasts for 0.0625-1ms. In practice, the resource allocation255

can be performed periodically every subframe. According to256

NR-MBMS, all subframes, i.e., 100% of the available radio257

resources, can be allocated for broadcasting services [4], [5].258

In broadcasting, the UE experiencing the worst CQI in the259

group (receiving the broadcast content in an MBSFN area)260

governs the radio resource allocation parameters. Therefore,261

in order to broadcast tile τ of 360◦ program p using a fraction262

(σ pτ , 0 ≤ σ
p
τ ≤ 1) of total subframes, with channel bandwidth263

B MHz, and allocation of MCS mpτ with spectral efficiency264

empτ , the capacity is given by C(σ
p
τ ,m

p
τ ) = B ·σ pτ ·empτ . Hence,265

the MBSFN area capacity depends on the allocated MCS and266

the fraction of total subframes that are used to broadcast the267

360◦ video tiles.268

IV. I2MB: MBSFN FORMATION, TILE QUALITY269

ADAPTATION, AND RESOURCE ALLOCATION270

We discuss our proposed framework, I2MB, that consists271

of MBSFN formation (Sec. IV-B) (based on user viewport272

forecasting and efficient clustering) and adaptive immersive273

tile-based multimedia encoding with corresponding network274

resource allocation (Sec. IV-C) to broadcast a set of immer- 275

sive content to heterogeneous users in large-dense next- 276

generation cellular networks. 277

A. USER HEAD NAVIGATION FORECASTING AND TILE 278

MAPPING 279

We perform user head navigation direction (rotation angle) 280

time series forecasting using LSTM regression network, 281

a deep learning technique, with the LSTM layer specified 282

to have > 150 hidden units. The pattern of head navigation 283

of a user helps in forecasting the viewing direction in the 284

immediate future (for the next GOP transmission). We train 285

a time-series forecasting LSTM model to predict the future 286

time step values of user viewport. We train the sequence-to- 287

sequence regression LSTM network, where the responses are 288

the training sequence of values that are shifted by a few time 289

step. This means that in each time step of the input sequence, 290

the LSTM network learns to predict the next few set of values 291

in subsequent time steps. We forecast the values of multiple 292

time steps in the future and predict time steps one at a time 293

and update the network state at each prediction. We train 294

an LSTM network to forecast the head navigation direction 295

(rotation angle) of each user given the previous time-step 296

direction information. The predictor is trained by ADAM 297

optimizer [24], [25] for the non-stationary head navigation 298

data of immersive multimedia users. 299

Since, the monitored head navigation information is sent 300

to the broadcast transmitter (gNB), the actual values of time 301

steps are accessible between predictions. Hence, the observed 302

values are used to update the network state instead of the 303

predicted values. We begin by initializing the network state 304

and proceed thereafter by resetting it to prevent previous 305

predictions from affecting the predictions in subsequent time 306

steps. For each prediction in each time step, prediction in sub- 307

sequent time step uses the observed value (at the users’ head 308

navigation monitoring module) of the previous time step. The 309

prediction accuracy is enhanced when the network state is 310

updated with the observed values instead of the predicted 311

values [16]. The prediction model performance is evaluated 312

using root mean squared error (RMSE), defined as: 313

RMSE =

√√√√1
ν

ν∑
i=1

(Ai − Fi)
2 , (1) 314

where, Ai is the actual value and Fi is the predicted value 315

during forecasting and ν is the total number of time steps over 316

which the prediction has been performed. 317

B. MBSFN AREA FORMATION: MULTI-CRITERIA 318

CLUSTERING 319

The heterogeneous users within the MBSFN synchronization 320

area have diverse program requests, gNB association, and 321

user location. The heterogeneous users report their CQI, head 322

navigation direction (i.e. viewing angle), and the requested 323

360◦ video program to their gNB. Based on this informa- 324

tion, the broadcast core transmitter core MCE element forms 325
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the MBSFN areas and assigns the programs to be broadcast326

in each area. We perform multi-criteria clustering based on327

information pertaining to each user i ∈ [1,N ], requesting328

for program pi, associated with BS with position ϑi, and is329

experiencing Signal to Interference-Noise Ratio (SINR) to330

the the associated BS as γi. The clusters group UEs with sim-331

ilar video program requests and nearby locations. MBSFN332

areas are thereafter defined as group of gNBs to which user333

clusters aremapped. This ensures theMBSFNs suitably adapt334

to heterogeneous requests and distribution of UEs in a broad-335

cast service area. We assign a set of programs, Pk ⊆ P , to be336

broadcast in each MBSFN k based on user requests in the337

corresponding cluster, the availability of radio resources, and338

quantization parameter selection for video-tiles.339

Multi-dimensional clustering is an NP hard problem [26].340

K-Means, K-medoid, and Fuzzy C-means are well known and341

a popular algorithms for multi-criteria clustering. We have342

analyzed these clustering methods to perform the MBSFN343

area formation. These multi-criteria clustering methods can344

be validated using indices like the global silhouette index, and345

Dunn index [27]. The distance metric for user i to the centroid346

ck of a cluster k is defined as:347

d2(ui, ck ) = (ϑi − ϑck )
2
+ (γi − γck )

2
+ π2

i,ck ,348

πi,cj =

{
1, pi ∈ Pk
0, otherwise

. (2)349

We evaluate the efficacy of the multi-criteria clustering meth-350

ods in our cellular 360◦ multimedia broadcast framework351

using the following metrics:352

1) Euclidean distance (De):353

De =

√∑
∀k

de(k) ,354

de(k) =
1
Nk

∑
∀i∈k

d2(ui, ck ) . (3)355

User i belongs to cluster k . There are total of Nk users in356

cluster k . We can find the nearest neighbors using De.357

2) Mahalanobis distance (Dm):358

Dm = XT · C−1 · X , (4)359

X =



√
de(1)
...

√
de(k)
...

√
de(K )

 ,360

C matrix contains covariance withing each cluster as361

the diagonal elements. Dm accounts for correlatedness362

between the clustering variables. While considering363

covariance between the cluster points redundancy is364

removed in the distance calculation.365

3) Silhouette coefficient (S): This measure validates con-366

sistency in clusters and similarity of an object with its367

cluster368

(cohesion) compared to other clusters (separation). It is 369

used to evaluate the distance of separation between the 370

clusters resulting from the usedmethod [28]. The silhou- 371

ette plot visually shows closeness of points in a cluster 372

than to those in neighboring clusters. 373

S =
1
K

K∑
k=1

Sk , 374

Sk =
1
Nk

Nk∑
i=1

si, si =
bi − ai

max (ai, bi)
, (5) 375

where, si (−1 ≤ si ≤ 1) is the Silhoutte width, a con- 376

fidence indicator on the membership of i in cluster k . 377

When si is close to 1, it indicates that i is well clustered 378

(i.e., assigned to appropriate cluster). When si is close to 379

zero, indicates that i can also be assigned to the closest 380

neighboring cluster [27]. The average distance between 381

i and all other users included in k is denoted as ai and 382

minimum of the average distance between i and all of 383

the samples clustered in k ′ (k 6= k ′, 1 ≤ k ≤ K ) is 384

denoted as bi. 385

The partition that results in the maximum value of S 386

is the optimal corresponding to the most appropriate 387

number of Clusters, i.e. optimal K [29]. 388

4) Dunn’s index (DI ): This validity index aims to identify 389

clusters with a high inter-cluster and low intra-cluster 390

distance. 391

DI = min
1≤k≤K

{
min

1≤k ′≤K ,k 6=k ′

{
d(ck , ck ′ )
max

1≤k≤K
{1ck}

}}
, 392

1(ck ) = max
i,j∈k
{d(i, j)} . (6) 393

1(ck ) represents the complete diameter intracluster dis- 394

tance of cluster k . This measure maximizes the inter- 395

cluster while minimizing intracluster distances. A large 396

value ofDI corresponds to good clusters [27]. The num- 397

ber of clusters that maximizes DI could be taken as the 398

optimal number of clusters and a higher value represents 399

a better cluster quality. 400

The Dunn [30] and Silhouette [28] coefficient result from 401

nonlinear combination of compactness and separation. 402

We begin by setting K , i.e. number of clusters, as 1. There- 403

after in each iteration, we increase K by 1. When the perfor- 404

mance metric obtained is better that the previous iteration, the 405

algorithm continues till a drop in performance is observed. 406

This gives us the optimal size of cluster, K∗. According to 407

the 3GPP standard, a gNB can belong to at most 8 MBSFN 408

areas, we ensure that this limitation is enforced i.e. a gNB 409

can be associated with maximum 8 clusters at a time. These 410

clusters would have the highest proportion of UEs asso- 411

ciated with the gNB. The proposed I2MB MBSFN area 412

formation multi-criteria clustering framework is given in 413

Algorithm 1, Function I. This function in the algorithm gives 414

theK MBSFN areas, the set of 360◦ programs to be broadcast 415

in K (i.e. Pk ), and the video tiles to be broadcast. 416
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C. DEEP REINFORCEMENT LEARNING BASED ADAPTIVE417

IMMERSIVE TILE ENCODING AND RESOURCE ALLOCATION418

FIGURE 4. I2MB: DRL system model.

Multicriteria clustering gives us a set ofMBSFN areas with419

the list of associated gNB and users as well as the set of420

360◦ video programs and tiles to be broadcast. We model421

the logical resource allocation (MCS,mkp,τ , and proportion of422

SFs, σ kp,τ ) and efficient tile encoding using the MDP shown423

in Fig. 4. The immersive video tiles (1 ≤ τ ≤ Tp) of the 360◦424

TV programs (1 ≤ p ≤ Pk ) are being broadcast in MBSFN425

area k (1 ≤ k ≤ K ).426

The broadcasting decisions include the following: (i) pro-427

gram and tile set to be broadcast given the radio resource con-428

straints, (ii) quantization level selection for tiles encoding of429

the 360◦ TV program, and (iii) resource block proportion and430

MCS level to broadcasting the required tiles of each program431

in the set. The radio resource (i.e. broadcast spectrum) is dis-432

tributed between the 360◦ broadcast content tiles, each being433

transmitted in a time interval (TTI), i.e. the smallest time434

unit that can be allocated. The resource allocation module is435

deployed in BTx that coordinates with the gNBs (in MBSFN436

areas) and the granularity scale is one subframe and a RB437

in the time-frequency domain, respectively. The allocation of438

radio resources to tiled broadcast happens in every decision439

interval, where the proportion of RBs allocated to a particular440

program p and tile τ is indicated by the metric σp,τ .441

The gNB allocates resources to a tile of program being442

broadcast in every TTI. Our intelligent immersive tile-based443

multimedia encoding and radio resource allocation scheme444

minimizes the users’ 360◦ video distortion and system churn445

rate, accounting for different UE requests, viewing angles,446

and channel conditions. Corresponding to theMBSFN area 1,447

as shown in Fig. 4, the video tiles data of programs p ∈ [1,P1]448

are arriving at the broadcast transmitter (group of gNBS) from449

the immersive 360◦ video server at a rate λp.450

FIGURE 5. (a) Rate, (b) Y-MSE, and (b) Quality, with analytical model and
variation with QP level for a 360-degree video.

In the following discussions, we consider that each UE at 451

any given point of time is requesting at most 1 360◦ program. 452

We denotes the maximum number of tiles of a 360◦ program 453

p as Tp. We define the 360◦ immersive multimedia broadcast 454

service distortion for heterogeneous UEs as follows: 455

Definition 1: Immersive video distortion is governed by 456

the rate-distortion (R-D) characteristics of the video. The 457

video bitrate varies with the variation of quantization param- 458

eter (QP) at the encoder. In particular, QP is a video encod- 459

ing parameter that regulates the extent of spatial detail in 460

encoded video. As QP is increased, the bit rate drops in 461

exchange for increased distortion. It is related to quantization 462

step size q as: q = 2(QP−4)/6. Effectively, the user i viewport 463

distortion is given as: 464

Di=
∑

∀τ, 1≤τ≤Tp

ατ,iDτ (Rτ ) , 465

ατ,i =

{
1, if τ is in viewport Vi
0, otherwise.

, (7) 466

ατ,i is an indicator of tile τ appearing in user i’s viewport Vi 467

for the requested program p. 468

Correspondingly, the video quality, Y-PSNR, is given as: 469

Qi = 10·log10(Imax/Di), Imax is the peak luminance intensity, 470

given that Di is the luminance mean square error (Y-MSE). 471

We define system (network) churn rate for I2MB as follows. 472

Definition 1: System (network) churn rate is the ratio of 473

the unserved and the total users in the system. A user i is 474

served if it successfully receives the tiles in its viewport Vi 475

and is given as: 476

Cr=
∑N

i=1
(
1− βτ,i

)
N

, 477

βτ, i =


1, if γi ≥ SINR_thr(m

p
τi ), Q(qp,τi ) ≥ Qmin,

and ατ,i = 1
0, otherwise.

(8) 478

SINR_thr denotes the SINR threshold corresponding to the 479

MCS mkp,τi selected for transmission of corresponding tile. 480

βτ,i is an indicator of tile τ being successfully received 481

by user i. The condition Q(qp,τi ) ≥ Qmin and γi ≥ 482

SINR_thr(mpτi ) ensures that the served user gets an accept- 483

able minimum quality level. A lower value of churn rate is 484

desired in the system, which would signify an increased num- 485

ber of users are getting serviced in the network. 486

We assume that channel characteristics remain stationary, 487

i.e. SINR experienced by users remains constant, during the 488

broadcast of all tiles (Tp) for a group of picture (GOP) of the 489

requested 360o program. We also assume that the number 490

of users in the system remains constant for the time dura- 491

tion of GOP broadcast of the requested program. Therefore, 492

a UE can successfully receive immersive video tile τi (in its 493

viewport) if its experienced SINR is greater than the thresh- 494

old corresponding to the MCS mkp,τi that is being used to 495

broadcast tile τi of p in MBSFN k . Only when the 360◦ 496

multimedia service quality experienced by user i is above 497
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minimum acceptable level corresponding to rate supported by498

the MCS allocated for its transmission, i.e.mkp,τi , we consider499

the corresponding quality. It is assumed to be zero other wise.500

The SINR pertaining to the worst channel condition user501

amongst those requesting tile τ of program p at time t is502

denoted as γ tp,τ . The corresponding set containing the SINR503

value for all tiles of program p is γ tp = {γp,1, . . . , γ
t
p,Tp}. The504

combined state of all 360◦ programs and their tiles is given505

by the matrix 0t .506

The 360◦ program p’s stream status at time t is represented507

by Rt
p. The combined state of all 360◦ program streams at508

time t is given by the vectorRt
= {R1 . . .RPk }. We assume509

that new set of data is arriving from the immersive 360◦510

multimedia server with independent and identical distribution511

(i.i.d.). The average arrival rate of the p-th program data is512

denoted by λp (bits/s). The program data (i.e. tiles) arriving513

in time slot t is denoted by l tp. The 360
◦ program p’s stream514

state in the next time slot, i.e. t + 1, is given by the following515

Lindley recursion,516

Rt+1
p = max(0,Rt

p − a
t
p(Rt ,0t ))+ l tp , (9)517

where, atp(Rt ,0t ) denotes the amount of data of program p518

for transmission based on resource allocation action. Given519

the arrival distribution Plp and the resource allocation action520

ap, the probability that program p stream transitions from521

stateRp to R′p is,522

PRp (R′p|Rp, ap) = El[I{R′p=max(0,Rt
p−atp(Rt ,0t ))+ltp}

], (10)523

where I{·} is an indicator function that takes a value 1 when524

{·} is true, and 0 otherwise. The state of a program p stream to525

be broadcast in anMBSFN area k is defined as sp , (Rp, γ p)526

and the system state is s = {s1 . . . sPk }.527

The mapping of states to resource allocation actions is a528

policy that is denoted as5 : S → A. The objective is to mini-529

mize the average sum of 360◦ program distortion experienced530

by users and the system churn rate by selecting the optimal531

(best) policy 5∗ and thereby performing the resource allo-532

cation and efficient encoding. Since the resource allocation533

decisions at the current time affect the present and the future534

distortion-churn rate experienced by the UEs, we formulate535

the broadcast resource and encoding parameter allocation536

problem as MDP.537

We define a program stream cost that applies penalty to538

higher distortion and churn rate in the system. Given stream539

state stp and the resource allocation action a
t
p, we program p’s540

stream cost in time slot t as the change in state from time t to541

t + 1 is defined as:542

ctp(s
t
p, a

t
p) = [max (0,Rt

p − a
t
p)+ l

t
p]−Rt

p , (11)543

where the term in square brackets is equal to Rt+1
p from (9).544

Minimizing the long-term average of (11) minimizes the sys-545

tem churn rate. The total cost incurred in time slot t is defined546

as the sum of costs incurred by each program stream: i.e.,547

ct (st , at ) =
Pk∑
p=1

ctp(s
t
p, a

t
p) , (12)548

where st = {sti . . . sPk } and a
t
= {ati . . . aPk } are joint state 549

and actions, respectively. 550

The value of each state when following the policy 5 is 551

defined using Value function, V5(s), given as: 552

V5(s) = E
[ ∞∑
t=0

(ω)tct (st ,5(st ))|s = s0
]
, (13) 553

where ω ∈ [0, 1]; (ω)t is the t-th power of the discount factor. 554

We take the expectation over a sequence of states that is gov- 555

erned by the controlled Markov chain with transition prob- 556

abilities P(s′|s, a) =
Pk∏
p=1

PR(R′p|Rp, ap)
Tp∏
τ=1

Pγ (γ ′p,τ |γp,τ ). 557

We can represent expected future cost using the recursive 558

expression of the value function based on the transition prob- 559

ability as: V5(s) = c(s,5(s))+ ω
∑
s′∈S

P(s′|s,5(s))V5(s′). 560

Then, the objective of the resource allocation strategy is 561

to determine the resource allocation and tile encoding policy 562

that solves the following optimization: 563

min
5∈5

V5(s) , (14) 564

where 5 is the set of all the possible policies. The optimal 565

solution to (14) satisfies the Bellman equation, ∀s ∈ S: 566

V ∗(s) = min
a∈A

{
c(s, a)+ ω

∑
s′∈S

P(s′|s, a)V ∗(s′)
}
, (15) 567

, min
a∈A

ψ∗(s, a) , (16) 568

whereV ∗(s) is the optimal value function.ψ∗(s, a) is the opti- 569

mal action-value function that evaluates the value of taking an 570

action a in state s and thereafter following the optimal policy. 571

The optimal policy 5∗(s) can be determined by taking the 572

action that minimizes the right-hand side of (16) and thereby 573

gives us the optimal action to take in each state. 574

Since the possibilities for quantization parameter selec- 575

tion and resource allocation are nearly infinite, there is a 576

large number of discrete states and actions. Furthermore, the 577

dynamics of the underlying system (user channel quality, 578

user requests, video data rate adaptation, gNB radio resource 579

allocation) is predominant and the complexity would be very 580

high if the broadcast resource and encoding parameter allo- 581

cation problem has to be entirely solved for each video GOP 582

from scratch. For a scenario with Pk programs and M RBs, 583

and each 360◦ program stream has Tp tiles and there are 584

|q| = qmax−qmin possible program stream data values andM 585

possible MCS levels that can be allocated to the tiles of each 586

program, then there are a total of Pk ×M × Tp × |q| × M 587

possible states andM×M ×|q| possible resource allocation 588

actions. Hence, we use DRL to solve this problem. 589

We use a deep neural network deterministic policy gradient 590

method, DDPG algorithm. It is suitable for high dimensional, 591

continuous or discrete, large action state space problems. 592

The underlying principle is Actor-Critic framework consist- 593

ing of an actor and a critic function. The former chooses 594

the actions and latter evaluates the corresponding selection. 595
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We employ DRL-based DDPG method that reduces the time596

complexity by maintaining a cache (i.e., replay buffer) with597

state-action transitions and by performing an iterative update598

of the networks (critic, actor, and target) on-the-go instead599

of exploring the state-action mapping each time from the600

beginning. The current policy is specified by mapping states601

to an action in the DNN (parameters ηµ) by means of an actor602

function, µ(s|ηµ). The critic function, ψ(s, a|ηψ ), is imple-603

mented usingDNN (parameter: ηψ ) that learns usingBellman604

equation and provides feedback based on selected action.605

We update the actor DNN using gradient of the expectation606

of return J in terms of ηµ, similar to (13).607

∇ηµJ ≈ Est∼ρδ [∇ηµψ(s, a|ηψ )|s=st ,a=µ(st |ηµ)] . (17)608

We update the critic network by minimizing the MSE:609

L(ηψ ) = Est∼ρδ,at∼δ,ct∼E
[
(ψ(st , at |ηψ )− yt )2

]
, (18)610

yt = c(st , at )+ ωψ(st+1, µ(st+1)|ηψ ) , (19)611

where, E is the stochastic environment that has been modeled612

as MDP, δ is the stochastic behavior policy, ρ denotes the613

discounted state visitation distribution, and yt is the target614

value.615

DDPG architectural modifications consisting of DNN616

function approximations are used to learn in large state-action617

spaces. The transition tuples (st , at , ct , st+1) are stored in a618

replay buffer (finite-size cache) to prevent sample correlation.619

We update the actor-critic in each time step by sampling the620

stored transitions in the replay buffer, thereby learning from621

uncorrelated transitions. The divergence and stability due to622

the update in network and yt using the same Q-network is623

addressed by considering copies and slow updates in these624

copies of the actor-critic networks. We add samples from a625

noisy process to the actor policy, µ′(st ) = µ(st |ψµt ) + N ,626

where N is environment specific.627

The storing of transition tuples in the replay buffer also628

enables an instantaneous update in action based on system629

state, preventing action computation each time. This reduces630

the time complexity toO(1) [31] by mapping the system state631

to an action from the cache that stores the Pk ×M × Tp ×632

|q|×M states. The agent in DRL-based method can instantly633

determine the action given the dynamic system information634

(user requests, SINR, channel characteristics,MBSFNgroup)635

while populating the replay memory cache on-the-go and636

simultaneously updating the deep neural network represent-637

ing the action policy. Overall, the state, action, and networks638

(critic, actor, and target) are initialized (i.e. Steps 4 and 5 in639

Algorithm I-Function II) only once at the beginning. There-640

after, the long term cost (given by (11), Step 6 in Algorithm641

I-Function II)) is minimized by executing it each time the642

system state gets updated.643

I2MB selects the efficient 360◦ video encoding parameters644

(quantization level qkp,τ , 1 ≤ τ ≤ Tp) and performs opti-645

mal radio resource allocation for each program p in P and646

MBSFN k (1 ≤ k ≤ K ). We formulate two dual objectives:647

(i) I2MB(Dmin) minimizes the immersive multimedia broad- 648

cast service distortion for the served users in the system, and 649

(ii) I2MB(Crmin) minimizes the churn rate, i.e. maximizes the 650

number of served users N in the system with a guaranteed 651

minimum acceptable video quality, subject tomultiple system 652

constraints. Particularly, the following needs to be ensured: 653

(a) the gNB capacity provides the upper bound to the total 654

rate that can be broadcast to the heterogeneous UEs; 655

(b) the sum of proportional time-frequency resource block 656

allocation to broadcast the various 360◦ immersive video 657

content is upper bound to 1 at each gNB; 658

(c) all gNB in an MBSFN area need to use the same quan- 659

tization level qpτ for tiles of program p, allocate the same 660

set of radio resource σ pτ to each video tile τ , 1 ≤ τ ≤ Tp, 661

and use the same MCS mpτ to broadcast it; 662

(d) the MCS selected to broadcast the immersive video tiles 663

can belong to the set of allowedMCS levels in accordance 664

with the 3GPP standard. 665

We formulate the respective optimization problems below, 666

where the constraints (20a)-(20d) capture the above 667

conditions. 668

I2MB(Dmin) : min
[q1,...,qK ]

N∑
i=1

Di, (20) 669

s.t.:
|P |∑
p=1

Tp∑
τ=1

11p,jR(qpτ ) 670

≤

|P |∑
p=1

Tp∑
τ=1

11p,jC(σ pτ ,m
p
τ ), (20a) 671

|P |∑
p=1

Tp∑
τ=1

11p,jσ pτ ≤ 1, ∀ gNB j ,

(20b)

672

qkp,τ =q
p
τ ; σ

k
p,τ =σ

p
τ ; m

k
p,τ =m

p
τ ,

(20c)
673

∀ τ, p broadcast in k , 674

1 ≤ mkp,τ ≤ 15,∀ τ, k. (20d) 675

I2MB(Crmin) : min
[q1,...,qK ]

Cr 676

s.t.: (20a)− (20d), (21) 677
678

where the indicator function 11p,j = 1 if gNB j broadcasts 679

the program p. The vector of quantization levels used for 680

encoding the tiles of video programs being broadcasted in 681

MBSFN k (p ∈ Pk , 1 ≤ k ≤ K ) is denoted as qk = 682

[qk1,1, . . . , q
k
1,T1

, . . . , qkPk ,1, . . . , q
k
Pk ,TPk

]. 683

If gNB j is a part of MBSFN k and p ∈ Pk then it 684

broadcasts p, provided atleast one or more users experience 685

acceptable program quality Qi > 0. Thus, constraints (20c) 686

and (20d) is subject to broadcast of program p by gNB j. 687

Additionally, since gNB can belong tomore than oneMBSFN 688

area, (20b)-(20c) applies to each gNB instead of an MBSFN 689

area. Given program p and its tile τ , qpτ , σ
p
τ and mpτ appearing 690
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Algorithm 1: I2MB: MBSFN Formation, Tile Encoding,
and Resource Allocation

Input: ui, 1 ≤ i ≤ N , K
Function I: MBSFN_Formation(ui, K):

1) Select centroids from ui: c1 randomly, ck , 2 ≤ k≤K ,
2) based on clustering policy.
2) K-cluster formation: Assign user i to cluster k?,

k? = min
k

d2(ui, ck )

3) Cluster update: Reassign centroid ck to decrease

1) average measure:

(
N∑
i=1

d2(ui, ck )

)
/N

4) Reiterate step 2-3 until cluster assignments
1) are unchanged
5) gNB with UEs in cluster k , belongs to MBSFN area k
6) TV programs set broadcast in MBSFN k , Pk , are those

requested by users in cluster k
return K MBSFN areas, {Pk }k

Function II: Resource_alloc_Tile_encoding_DDPG({Pk }k ,
ui, i ∈ cluster k):

1) Proportion of resource allocation to program tiles
for each program p ∈ Pk
for each tile τ = 1 to Tp
#users in k: Nk , #requesting τ of p: npτ
σ
p
τ =

npτ
Nk

2) MCS allocation to program tiles
for each program p ∈ Pk
for each tile τ = 1 to Tp
I2MB(Dmin):γ=least SINR, user subset
I2MB(Crmin):γ=least SINR, all users set
Select mpτ = min

m
(SINRthr (m) ≥ γ )

3) Quantization parameter selection for video tiles
for each program p ∈ Pk
for each tile τ = 1 to Tp
Select qpτ = max

q
(C(σ pτ ,m

p
τ ) ≥ R(q))

Rp = R(q)
4) State s1 = {Rp, γ } and action a1 = {mpτ , σ

p
τ , q

p
τ }

5) Initialize critic (ψ), actor (µ) and target (ψ ′, µ′)
1) networks
6) Minimize the long-term average of (11):
for iteration= 1, I do
Initialize random process N for action exploration
for t = 1, T do

Select action at = µ(st |ηµ)+N t

Execute at , observe ct and st+1

Store transition (st , at , ct , st+1) in replay buffer
Sample transitions (replay buffer): (si, ai, ci, si+1)
Set yi using ci, si+1, ψ ′, µ′ in (19)
Update critic by minimizing the loss in (18)
Update actor policy: sample-policy-gradient in (17)
Update target network:
ηψ
′

← %ηψ + (1− %)ηψ
′

ηµ
′

← %ηµ + (1− %)ηµ
′

end for
end for

return mpτ , σ
p
τ , q

p
τ

Output: K MBSFN areas, {Pk }k , m
p
τ , σ

p
τ , q

p
τ

in (3b), (3c) The data rate R(qpτ ) required for transmission of691

tile τ of program p is set by the encoder. The DDPG based692

resource allocation (MCS and resource block) and efficient693

tile encoding in the proposed I2MB framework using Algo- 694

rithm 1 Function II. 695

The optimization problem I2MB(Dmin) is solved based 696

on the following proposition that enables formulating a 697

low-complexity solution to the problem described below: 698

Proposition 1: The objective (20) is a strictly increasing 699

function of the quantization levels [q1, . . . , qK ]. 700

Proof: It is evident from Fig. 5 that both quality and rate 701

are strictly decreasing functions of quantization parameter q. 702

The distortion is a strictly increasing function of q. Analyt- 703

ically, we model R(q) = a · eb·q and D(q) = c · ed ·q, and 704

Q(q) = 10 · log10(
Imax
D(q) . It is shown in Fig. 5(a) that this video 705

rate model for Tile 40 of a 360-degree video corresponds to 706

a = 57500 and b = −0.2 with RMSE = 0.00097. The 707

video distortion (Y-MSE) model is shown in Fig. 5(b) for 708

Tile 40 and it corresponds to c = 11.2 and b = −0.12 with 709

RMSE = 0.00852. The video quality (V-PSNR) model for 710

Tile 40 is shown in Fig. 5(c) and it has RMSE=0.00361. 711

The non-negative weighted linear sum of strictly increas- 712

ing functions is increasing [32], [33]. Hence, we prove that 713

our objective function is strictly increasing with the quan- 714

tization level value by proving it for generic Di. The first 715

derivative ofDi with respect to qkp (i.e., the quantization level 716

of the program requested by ui in the MBSFN(s) to which the 717

UE belongs) is of the form c · q (c > 0 and a constant). This 718

is positive thus proving the assertion. � 719

The objective function (20) with constraints (20a)-(20d) 720

selects the highest possible quantization parameter level for 721

the group of users requesting tiles of a program such that the 722

resource constraint in the network are met. 723

The optimization problem for I2MB(Crmin) is solved by 724

selecting the lowest possible mpτ and the highest possible 725

qp,τ ∀ τ, p such that Q(qp,τ ) ≥ Qmin. This ensures that the 726

maximum number of users in the system have φφ=1 which is 727

in accordance with objective (21). 728

V. PERFORMANCE EVALUATION 729

FIGURE 6. Panoramic snapshots of 360o video.

To assess the performance of our scheme, we have used 730

360◦ videos with diverse content types (for example: Office, 731

City, Sports, Jungle, and Sunrise). Sample snapshots of three 732

videos from the set that has bee used is shown in Fig. 6. They 733

have 4K spatial resolution, 1800 frames, and 30fps frame 734

rate. Each video is divided into M = 64 tiles (8 × 8 tiling) 735

that are compressed using HEVC [34] into 9 quality versions 736

corresponding to 9 QP values of 16, 20, 24, 28, 32, 36, 40, 737

44, and 48. We use the 5G NR frequency range 1 (FR1) [5] 738

network scenario for performance evaluation. The overall 739

simulation parameters are listed in Table 1. 740
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TABLE 1. Simulation parameters.

A. HEAD NAVIGATION PREDICTION: LSTM FORECASTING741

We have used the dataset [35] that is an aggregation of six742

different previously published datasets [36], [37], [38], [39],743

[40], [41]. The original datasets contained user head orienta-744

tions while viewing 360 degree videos using a head mounted745

streaming device. This data is extracted, and preprocessed to746

yield a common representation. This dataset contains user747

head orientation trajectories for 3791 independent viewings748

of 88 different 360◦ videos with an average of 45 viewings749

per video. The total viewing duration is 514215 seconds750

(142 hours 50 minutes 15 seconds).751

Fig. 7 shows the LSTM forecasting output of predicted752

pitch and yaw angle for one of the users while watching753

one of the immersive video content. Fig. 7(a) and (d) shows754

that the relative length of training sequence is less than755

30% of the entire video duration, denoted as ’Observed’.756

Fig. 7(b) and (e) show that the predicted pitch and yaw angle757

values are very close to the observed user head navigation758

angles, respectively. The sample error (between the predicted759

and observed values) for the pitch and yaw angles is shown760

in Fig. 7(c) and (f), respectively, with an overall RMSE less761

than 0.1. This shows the efficacy of the LSTM forecasting762

model with network state update in predicting the head navi-763

gation direction of the heterogeneous users.764

We studied the predictor performance for the entire set of765

34 users viewing the 15 immersive video content. Fig. 8(a)766

shows the RMSE performance of the predictor for Pitch and767

Yaw angles when varying the relative training and predicted768

sample duration from less than 10% to 90% with 50 training769

epochs. It is observed that RMSE reduces with increase in rel-770

ative training duration and also that RMSE of less than 0.01 is771

achieved with a 10 sec training duration. Fig. 8(b) shows the772

predictor RMSE when the maximum training epochs (itera-773

tions) are varied from 10 to 100. The RMSE reduces with774

FIGURE 7. Forecasting head navigation angles of users.

FIGURE 8. Head navigation angle prediction RMSE.

increase in the number of training iterations and RMSE of 775

less than 0.01 is achieved with 30 or more iterations. 776

B. MBSFN AREA FORMATION: USER CLUSTERING 777

We have assessed K-means, K-medoids, and fuzzy c-means 778

multi-criteria clustering algorithms to chose the most effec- 779

tive method to efficiently form the MBSFN areas. These 780

clustering methods have been evaluated in terms of met- 781

rics listed in Section IV-B, i.e. Euclidean distance, Maha- 782

lanobis distance, Silhouette coefficient, and Dunn’s index. 783

The clustering performance of these methods in terms of 784

the mentioned metrics is shown in Fig. 9(a)-(d), respec- 785

tively. It is seen that K-means and K-medoid multi-criteria 786

clustering methods have comparable and significantly better 787

performance than fuzzy c-means in terms of the Euclidean 788

and Mahalanobis distance. Furthermore, K-means efficacy 789

as compared to K-medoid and Fuzzy c-means method is 790

evident from its higher Dunn’s index value, shown in 791

Fig. f:cluster1(d). 792

The Silhouette value for the eight clusters formed in a 793

scenario consisting of 70 users per cell and 10 programs using 794

the three methods is shown in Fig. 10. Even though Fuzzy 795
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FIGURE 9. (a) Euclidean distance, (b) Mahalanobis distance,
(c) Silhouette coefficient, (d) Dunn’s index, for user clustering using
k-means, k-medoid, and fuzzy c-means methods.

FIGURE 10. Silhouette for user clustering using k-means, k-medoid, and
fuzzy c-means methods.

c-means method has a higher Silhouette coefficient than the796

other two methods, as is evident from Fig. 9(c) and Fig. 10,797

we prefer K-means method due to its better performance in798

terms of other three metrics. Also, as can be seen from Fig. 10799

the clusters are more balanced in terms of cluster size for800

K-means as compared to fuzzy c-means. This further moti-801

vates us to use K-means multi-criteria clustering method to802

form MBSFN areas in our I2MB framework.803

Given a network scenario, we obtain the optimum num-804

ber of clusters using the Euclidean and Silhouette method.805

According to the Elbow curve method [42] the optimal num-806

ber of cluster is the point where Euclidean distance drops807

suddenly ( ’Elbow’).The optimal number of clusters maxi-808

mizes the Silhouette coefficient [42]. It is again evident from809

Fig. 11(a) and 11(b) that K-means clustering can effectively810

use these methods to find the optimal number of clusters in a811

given scenario.812

K-means multicriteria clustering implementation is a sim-813

ple, easy, and effectivemethod to classify data [43]. Addition-814

ally, it is fast with few computations and has linear complexity815

O(n). We therefore apply the Lloyds K-means heuristic [44]816

for our multi-criteria clustering of heterogeneous users into817

K MBSFN areas. The cluster centroids are selected using the818

FIGURE 11. (a) Euclidean distance and (b) Silhouette coefficient for
increasing number of cluster. (c) Optimum number of clusters with
increasing number of users per cell and broadcast program.

FIGURE 12. Multi-criteria K-means area formation (8 clusters).

K-means++ approach [45]. The optimal number of clusters 819

is system scenario dependent and can be assessed through 820

Fig. 11(c). The optimum number of clusters depends on the 821

number of users and number of programs. A few program 822

options results in a fewer number of clusters (i.e. fewer 823

MBSFN areas). As can be seen from Fig. 11(c), sometimes 824

a higher number of users provides more competent centroid 825

options resulting in lesser number of optimum clusters. 826

C. I2MB COMPARATIVE PERFORMANCE 827

Fig. 12 shows an instance of the network scenario we con- 828

sider. It includes 200 uniformly randomly distributed users 829

per cell and 52 gNodeB cells. Each user randomly views the 830

broadcast program at a particular viewing angle based on the 831

dataset [35]. The 5G NR simulation parameters are listed in 832

Table 1. For each user in anMBSFN area with a given number 833

of interfering cells, the SINR is computed according to [5]. 834

The performance of our system is obtained by averaging the 835

results over several iterations (>150 iterations with 95% con- 836

fidence interval) with uniformly random distribution of users. 837

We also examine the impact of the number of users. 838

Given the above scenario, our approach leads to the for- 839

mation of an optimum number of MBSFN areas using the 840

approach discussed in Section V-B. Eight clusters (MBSFN 841

areas) are formed in the scenario shown in Fig. 12, indi- 842

cated by different color markers. The efficacy of our pro- 843

posed LSTM based viewport angle prediction scheme in 844

I2MB is evident from the Fig. 13(a) that shows the viewport 845
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FIGURE 13. Performance comparison in terms of (a) RMSE and (b) System
aggregate data rate.

yaw and pitch angle prediction RMSE with respect to linear846

regression, persistence, and LSTM enc-dec (encoder-847

decoder) schemes from the literature [46]. The linear regres-848

sion uses a linearmodel, the persistence predictor uses the last849

known viewpoint, and LSTM enc-dec network predicts the850

mean viewpoint position every second [46]. Overall, it can be851

seen from Fig. 13(a) that the RMSE of our proposed viewport852

angle prediction scheme, I2MB(LSTM) is below 0.1 and this853

is significantly lower than the other schemes. The efficacy854

of the proposed LSTM based forecast scheme in I2MB is855

attributed to the network state update using the observed856

viewport angles instead of the predicted values, making the857

prediction model more efficient.858

The efficacy of the proposed I2MB schemes in terms of859

MBSFN area formation and resource allocation is evalu-860

ated in terms of system aggregate data rate performance,861

shown in Fig. 13(b), with respect to Single Content Fusion862

(SCF) and MBSFN Area Formation (MAF) schemes [47]863

from literature. SCF comprises of interest similarity based864

overlappingMBSFN formation andMAF focuses on improv-865

ing system aggregate data rate for video-on-demand requests866

by dynamically creating MBSFN Areas [47]. The proposed867

I2MB scheme benefits from dynamic MBSFN area forma-868

tion, efficient resource allocation, and intelligent immersive869

multimedia encoding. Overall, it can be seen from Fig. 13(b)870

that I2MB (Crmin) and I2MB (Dmin) schemes have a higher871

system aggregate data rate (on average) by 18.44%, 9.45%872

and 25.4%, 15.87% than SCF, MAF, respectively.873

The significance of tile based immersive video broadcast874

in I2MB is evident from Fig. 14. Fig. 14(a) shows the total875

number of users requiring specific tile numbers of program876

p = 1 based on their viewing angles. It can be seen that there877

are some tiles (tiles 11-12, 29-30), based on heterogeneous878

users’ viewing direction, that are being viewed by more users879

while a few others (tiles 16-18, 24-26) are not being viewed880

at all. The MCS selection for adaptive tile encoding based on881

the resource constraint and user distribution within aMBSFN882

area for these programs is shown in Fig. 14(b). Fig. 14(c)883

shows the corresponding efficient QP level, respectively. The884

corresponding quality in terms of viewport luminance PSNR885

(Y-PSNR) is shown in Fig. 14(d). The tile specific rates of886

FIGURE 14. (a) Number of users requesting tiles (based on viewport),
(b) MCS, (c) QP, (d) Quality (Y-PSNR in dB), and (e) Rate for tiles of
Program p = 1.

FIGURE 15. (a) Churn rate, (b) Viewport PSNR, and (c) MSE for I2MB with
increasing number of users per cell.

FIGURE 16. (a) Quality (Y-PSNR in dB), (b) CDF of Quality.

the tiles of this program is shown in Fig. 14(e). I2MB (both 887

Dmin and Crmin schemes) selects efficient QP and MCS level 888

as compared to existing scheme (VRCAST [12]) in dense 889

network scenario while ensuring higher tile quality delivered 890

to users. 891

We also examine the performance of I2MB (bothDmin and 892

Crmin schemes) in terms of the churn rate (i.e., proportion of 893

unserved users), immersive video quality (in terms of view- 894

port PSNR) and distortion (MSE). It is evident fromFig. 15(a) 895

that the churn rate increases as the number of users per cell 896

increases. The churn rate of I2MB(Dmin) and I2MB(Crmin) 897
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is 65.63% and 71.88% (on average) lower than VRCAST.898

The Viewport PSNR (V-PSNR) reduces with an increase in899

number of users per cell but is maintained above 27 dB for the900

two I2MBmethods unlike VRCAST that has 23 dB V-PSNR,901

as shown in Fig. 15(b). The MSE increases with increase in902

number of users and the performance of I2MB(Dmin) and903

I2MB(Crmin) is 76.14% and 42.28% better (i.e. lower dis-904

tortion, MSE), respectively, than the existing scheme [12],905

as shown in Fig. 15(c).906

The quality per user for a scenario with fifty users in each907

cell is shown in Fig. 16(a) and the corresponding cumulative908

distribution function (CDF) is shown in Fig. 16(b). It is evi-909

dent from Fig. 16 that I2MB(Dmin) and I2MB(Crmin) provides910

higher quality (greater than 30dB) for all users as compared911

to VRCAST. Specifically, as can be seen from Fig. 16(a), for912

example, user 1, 3, and 4 receive Y-PSNR greater than 40 dB913

using I2MB(Dmin) and ≈35 dB using I2MB(Crmin), while914

VRCAST provides<30dB Y-PSNR in the given dense urban915

network scenario. The CDF in Fig. 16(b) shows the I2MB916

in guaranteeing a higher video quality to the heterogeneous917

users.918

VI. CONCLUSION919

Wehave developed a novel and efficient intelligent immersive920

multimedia broadcast scheme, I2MB, for next generation cel-921

lular networks, that significantly improves the overall 360◦922

video quality while serving an increased number of hetero-923

geneous users. It considers the users’ channel conditions,924

viewing angle, and service requests for adaptively broad-925

casting the 360o immersive video content. The time series926

forecasting of head navigation direction of users is performed927

using LSTM deep learning model. Thereafter, I2MB scheme928

performs the multi-criteria K-means clustering with optimal929

number of clusters to dynamically and efficiently define the930

MBSFN areas. We optimally encode immersive video tiles931

and perform efficient radio resources allocation using Deep932

Reinforcement Learning (DRL) Deep Deterministic Policy933

Gradient algorithm to either minimize the immersive broad-934

cast video distortion (i.e. I2MB(Dmin) scheme) or minimize935

the churn rate (i.e. I2MB(Crmin) scheme). We have shown that936

our proposed framework, I2MB, outperforms other recent937

scheme by providing ≈ 14 and 8 dB improvement in quality938

while serving 28.47% and 37.14% higher number of hetero-939

geneous users withDmin and Crmin schemes, respectively, in a940

large-dense cellular network. This framework will further be941

extended to include complex scenarios with revenue models942

in next-generation cellular networks.943
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