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ABSTRACT To quickly respond to variations in the state of network load demand, a solution using
data-driven techniques to predict optimal power flow (OPF) has emerged in recent years. However, most of
the existing methods are highly dependent on large data volumes. This limits their application on the newly
established or expanded systems. In this regard, this work proposes a sample-efficient OPF learning method
to maximize the utilization of limited samples. By decomposing the OPF task before knowledge distillation,
deep learning complexity is reduced. Thereafter, knowledge distillation is used to integrate decoupled tasks
and improve accuracy in low-data setups. Unsupervised pre-training is introduced to alleviate the demand for
labeled data. Additionally, the focal loss function and teacher annealing strategy are adopted to achieve higher
accuracy without extra samples. Numerical tests on different systems corroborate the advanced accuracy and
training speed over other training methods, especially on fewer-sample occasions.
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INDEX TERMS Optimal power flow, sample efficiency, annealing knowledge distillation, focal loss
function, stacked denoising autoencoder, deep learning.

I. INTRODUCTION13

Optimal power flow (OPF) is the cornerstone of many14

research areas such as power system security, reliability, and15

economics. Traditionally, the time scale of OPF is 15 minutes16

to 1 hour ahead. However, owing to the frequent and uncertain17

fluctuations of the renewable generations and loads, the OPF18

needs to be computed more efficiently and even in real-time,19

to determine the optimal and safe operation strategy [1]. As a20

result, the efficiency of OPF becomes an urgent issue to be21

addressed.22

Due to the non-convex and non-linear nature of the model,23

it is difficult to obtain the real-time analytical solution of24

OPF. The OPF model has undergone the development of25

linearization and decoupling transformation to reduce the26

computational burden, such as direct current OPF (DC-OPF)27

and fast decoupled load flow [2]. Although many advances28
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have been made to simplify the model, the computational 29

efficiency problem is still a bottleneck. 30

In recent years, deep-learning-based methods have exerted 31

significant efficiency improvement for OPF [3], [4]. It uses a 32

large amount of historical data to approximate the variable 33

relationship and achieve the real-time response. Compared 34

with traditional solvers, the deep learning approach has a 35

computation speed improvement of up to 200 times for 36

DC-OPF and 35 times for alternating current OPF (AC-OPF) 37

[5], [6]. In addition, the deep learning technique provides a 38

feasible solution to address OPF solving in online settings and 39

state combinations. To address the online efficiency problem 40

of OPF learning, several approaches have been studied based 41

on active constraints [7], [8], warm-start points prediction [9], 42

[10], and so on. However, high data requirements of these 43

data-intense methods limit their applications [11]. 44

To reduce the data requirements for training, a hybrid 45

number model-driven approach is adopted to simplify the 46

iterations. Such an approach is no longer simple end-to-end 47
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deep learning training, but a way to use training techniques to48

accelerate the original OPF solving process. The Lagrangian-49

based reinforcement learning is used in the iterative process50

to accelerate the convergence to achieve optimality [12].51

A trajectory speculation method is proposed to predict and52

accelerate convergence [13]. To address the large burden of53

data preparation and storage, an efficient sample generation54

strategy is presented by compressing the sampling space [14].55

Another category of approaches targets fewer samples by56

leveraging the prior information. Physically informed learn-57

ing takes advantage of prior information from physical mod-58

els and avoids the large traditional training datasets [15].59

Using constraints as a priori elements, machine learning60

methods can predict AC-OPF neural networks and Lagrange61

duality with high fidelity and minimal constraint violations62

[16], [17]. Similarly, the implementation of pre-classification63

with active constraints has become a practical solution strat-64

egy [18]. Based on the concept of OPF sensitivity, the solu-65

tions learned by DNNs and intermediate results are used to66

accelerate the process of OPF solving [19].67

In conclusion, existing deep learning approaches in OPF68

are either data-intensive or knowledge-demanding. Since the69

topology or operation is frequently changed in power sys-70

tems, it is prohibitive to retrain models from scratch and the71

sample data accumulated in a short time are very limited72

[20]. Therefore, sample-efficient learning models with high73

accuracy are well motivated [19].74

In this regard, the paper proposes a sample-efficient75

method for DC-OPF learning, which is suitable for the lim-76

ited labeled samples. The work is taken on the DC-OPF77

model because its linear model is more convenient to78

explore ways for sample efficiency improvement from a79

theoretical perspective. Specifically, this paper addresses80

the application of small samples from three perspectives.81

Firstly, the pre-training strategy is adopted in the stacked82

denoising autoencoder (SDAE) network. The size of labeled83

data is reduced by transferring work to the unsupervised84

pre-training stage. Secondly, the DC-OPF task decompo-85

sition strategy and knowledge distillation are combined to86

reduce the learning complexity. The knowledge distillation87

learning is improved with a teacher annealing strategy88

to improve the accuracy. Moreover, the loss function is89

improved based on focal loss in the training phase to enhance90

the training effect without adding extra samples. In our91

work, because the pre-trained results can be reused and92

the sample size is reduced, the model training speed can93

be greatly improved. The main contributions of this paper94

include,95

• A sample-efficient method is developed which makes96

full use of small-scale data. Free of prior knowledge or97

large dataset, the method enables the easy deployment98

of deep-learning-based OPF in new system states.99

• A method based on DC-OPF task decomposition and100

knowledge distillation learning is proposed to alleviate101

the training complexity. The proposed method can be102

easily extended to different scale systems.103

• Novel continuous focal loss (CFL) functions are 104

designed and used to improve the training performance 105

without extra samples. Pre-training and teacher anneal- 106

ing strategies achieve higher accuracy in the small-data 107

regime. 108

The remaining paper is organized as follows. In section II, 109

challenges of OPF learning are discussed and the scheme of 110

the proposed solution is outlined. Section III details the train- 111

ing process. The overall procedure is described in section IV. 112

Numerical results with the proposed method are shown in 113

section V. Finally, the paper is summarized in section VI. 114

II. PROPOSED OPF LEARNING FRAMEWORK 115

With no consideration of the mapping relationship and data 116

distribution, the conventional learning approaches rely heav- 117

ily on data volumes, which limits the application. Actually, 118

the variable relationships can be simplified by decoupling the 119

target outputs in separate networks. Therefore, our solution 120

is based on OPF task decomposition and organized in a 121

knowledge distillation framework. 122

A. PROBLEM STATEMENT AND CHALLENGES 123

The OPF determines the most economical generation 124

dispatch while satisfying the load demand and other secu- 125

rity constraints. The following optimization formulations are 126

obtained when applying a DC approximation to the tradi- 127

tional AC-OPF. 128

min
∑
i∈�G

(
c2iP2Gi + c1iPGi

)
(1) 129

PG − PD =
∑
i,j∈�N

Bij
Vθ i − Vθ j

x

PFk = Bij
Vθ i − Vθ j

x
, k ∈ �br

PGi,min ≤ PGi ≤ PGi,max, i ∈ �G

PFk.min ≤ PFk ≤ PFk.max, k ∈ �br

(2) 130

wherePG is the power output of ith generating unit. c1i and c2i 131

are the generation cost coefficients. PD is the power demand 132

of the ith bus. PFk is the transmission power of the kth branch. 133

Vθ i is the voltage phase angle of the ith bus.�G,�N and�br 134

are the set of generating units, bus, and branches, respectively. 135

Bij is the susceptance of admittance between the ith and jth 136

bus. 137

The OPF model contains information about the branch 138

parameters and network topology. The complex model 139

requires a few iterations to reach the optimal solution. It takes 140

a long time to optimize the power flow for a large number of 141

operating states. 142

The researchers are currently interested in a model-free 143

method based on deep learning, which seeks a function 144

automatically to fit the abstract relationship between power 145

demand and power dispatch. In [4], [5], [6], [7], [8], [9], [10], 146

and [11], load variables are widely used as input features, 147

while power generations and phase angles are considered 148
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FIGURE 1. Example of the class-imbalance problem of the power
generation data. The figure shows that the distribution of the 22nd
generating unit in RTS-79 system is right skew and thick-tailed.

as output variables. Other unchangeable factors can be con-149

tained in network parameters and thus excluded from the150

input features. The most commonly used loss function in151

conventional deep learning is the mean square error (MSE)152

function.153

Such a loss function gives the same emphasis on each154

data and thus the class imbalance of the training data155

may cause low accuracy, especially with fewer labels.156

However, the class-imbalance problem is the intrinsic char-157

acteristic, as shown in Fig.1. Moreover, different variables158

and active constraints intensify the training difficulty with159

fewer samples. In summary, the challenges of using limited160

samples consist in the training complexity and prediction161

accuracy.162

B. PROPOSED SOLUTION AND FRAMEWORK163

The key idea of the proposed method is to alleviate164

the training difficulty and improve the sample efficiency.165

To achieve the first purpose, the DC-OPF can be decoupled166

to better generalize the variable relationships. To enhance167

the sample efficiency, a focal loss function may be engaged168

to give higher importance to the minority class without169

extra samples. Unsupervised pre-training is also integrated170

where the training dataset is supplemented by the unlabeled171

data.172

For all the solutions given above, knowledge distilla-173

tion [21] is introduced here. It involves building a small174

lightweight model and training it with the supervised infor-175

mation from a larger model. The large and small models are176

called the Teacher model and Student model, respectively.177

The supervised information from the output of the Teacher178

model is called knowledge, and the process by which the179

student learns the supervised information from the teacher is180

called Distillation. Knowledge distillation is an ideal candi-181

date to integrate them for the following reasons:182

1) Data availability: Only a limited amount of labeled183

training data is required because the historical data184

is partially replaced by the predictions from teacher185

models. It is worth stressing that the proposed knowl-186

edge distillation methodology can be combined with187

unsupervised pre-training approaches.188

FIGURE 2. Scheme of the proposed method.

FIGURE 3. Key structure of the SDAE network.

2) Input pattern: The OPF problem inputs are consistent 189

in each teacher model and the student model. These 190

properties enable OPF learning to utilize the same pre- 191

training results. 192

3) Accuracy: The student model can achieve higher accu- 193

racy compared with the teacher models [22]. 194

Therefore, the aforementioned solutions are organized in 195

the proposed OPF framework based on knowledge distilla- 196

tion, including three stages. 197

Stage 1: Task decoupling: The DC-OPF task is decoupled 198

according to the types of variables. Unlabeled data is used in 199

the pre-training stage which can be shared in later training. 200

Stage 2: Knowledge learning: Two networks are trained 201

separately to output phase angle and power generation. 202

Stage 3: Knowledge Distillation: The separate models 203

obtained from stage 2 are treated as teacher models. The 204

knowledge is passed to another network (i.e., the student 205

model) to enable it to output phase angle and power 206

generation. 207

C. NETWORK ARCHITECTURE 208

The SDAE network, with fewer hyperparameters, is com- 209

patible with the proposed method which combines unsuper- 210

vised pretraining and finetuning. There are three differences 211

between our network and the SDAE network normally used 212

as shown in Fig.3. 213

First, for the hidden layer setting, the traditional SDAE 214

network has the smallest hidden layer in the middle, i.e. the 215

bottleneck layer. In contrast, the middle layer is the widest in 216
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FIGURE 4. Label flow in OPF learning.

this paper. Second, the hidden layer is symmetric, combined217

with coding layers and decoding layers. The coding layer is218

designed as a gradually widening structure to enhance the219

feature diversity. Third, given the input features, the random220

Gaussian noise is used to add noise erosion to the data.221

III. PROPOSED METHOD BASED ON KNOWLEDGE222

DISTILLATION223

A. TASK DECOUPLING STRATEGY224

For such a multi-output problem as OPF, a wider or deeper225

network is required for accuracy, but the larger size of the226

network also increases the training burden. Therefore, the227

main idea of the OPF task decoupling is to train separate228

models for different variable relationships. The training pres-229

sure is no longer confined to a single network by learning the230

decomposed DC-OPF in paralleled models. The sample flow231

in training is illustrated in Fig.4.232

The variable relationships can be categorized into two233

types and thus the OPF task is decoupled as follows,234

decoupled task : fT =
{
fθ,t , fG,t

}
235

fθ,t (PD→ Vθ ) : X = [PD] , Y = [Vθ ]236

fG,t (PD→ PG) : X = [PD] , Y = [PG] (3)237

where fT denotes the task of training teacher models. fθ,t and238

fG,t are the teacher models to predict Vθ and PG, respectively.239

The teacher model fθ,t (PD → Vθ ): learns the knowledge240

of the voltage angle on each bus. In the training dataset, the241

voltage angle is regarded as the label.242

The teacher model fG,t (PD → PG): learns the knowledge243

of the generation dispatch. The actual generation dispatch is244

treated as the label. The load demand data is the input of both245

teacher models.246

The student model f(θ,G),s(PD→ Vθ , PG): mimics the real247

label data and teacher model predictions. The training dataset248

also involves the power demand as state data. Note that the249

labels are not only the actual data but also the prediction from 250

teacher models. 251

B. TRAINING TEACHER MODEL BASED ON LIMITED 252

LABELS 253

By decoupling the DC-OPF, the mapping function of each 254

teacher model is single-variable oriented. The single-task 255

model for predicting phase angle or power generation is 256

based on the SDAE network with two-stage training (i.e. 257

unsupervised pre-training and supervised finetune). Since the 258

model inputs are the same, the pre-training results are shared 259

in two teacher models. 260

1) PRE-TRAIN 261

The pre-training of the proposed model involves only unla- 262

beled load data in a task-agnostic way. These data are readily 263

available in the power system. The pre-training is to train 264

most of the parameters with unlabeled samples which are 265

readily accessible. The computational burden is eased for 266

subsequent supervised training. 267

The unlabelled state data is used in a self-supervised man- 268

ner based on feature reconstruction. Feature reconstruction 269

means the original feature can be recovered to its initial 270

form after an encoding-decoding process. Pre-training aims 271

to minimize the distance between the original features and 272

their corresponding transformations. The more similar the 273

reconstruction feature is, the more valuable features can be 274

kept by the encoder. 275

In a traditional SDAE network, the input value is usually 276

erased with random zeros to enable the network with anti- 277

noise ability. However, this random zero strategy is unsuitable 278

for our input vector because it may lose key features. To deal 279

with this, a random gaussian noise strategy is proposed to 280

avoid feature loss. 281

PD,noise = ηPD � sgn (r − p)+ PD (4) 282
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where PD,noise is the input vector PD added with random283

noise. η is the noise ratio, which obeys a Gaussian distribution284

and lies between +5% and −5%. r is a random vector. p is285

the probability vector of noise arising. sgn(r − p) is the noise286

flag in theMonte-Carlo simulation.� represents the element-287

wise multiplication.288

The Gaussian noise strategy is used to add noise to the289

features, which prevents the distortion of original data and290

increases the diversity of the input samples.291

2) FINETUNE BASED ON FOCAL LOSS292

The pre-training is agnostic to phase angles or power genera-293

tion, but only extracts generic features from the state data.294

Thus, the results of the pre-training can be shared by the295

models fθ,t (PD → Vθ ) and fG,t (PD → PG). On the basis of296

pre-training results, network parameters need to be fine-tuned297

with the generation and angle labels.298

The finetuning stage is oriented to minimize the gap299

between predictions and real values. To make full use of the300

minority samples, the focal weight is incorporated into the301

traditional MSE function.302

The traditional MSE functions in teacher models are303

expressed as,304

Lθ t = ‖Vθ − Vθ t‖22 =
1
nθ

∑
i∈�N

(
Vθ,i − Vθ t,i

)2 (5)305

LGt = ‖PG − PGt‖22 =
1
nG

∑
i∈�G

(
PG,i − PGt,i

)2 (6)306

where Lθ t and LGt are the loss function of models fθ,t (PD→307

Vθ ) and fG,t (PD → PG), respectively. Vθ,i and Vθ t,i are308

the ith element in the actual value and teacher prediction,309

respectively. PG,i and PGt,i are the jth element in the target310

and actual output vector. ||Vθ,i−Vθ t,i ||22 and ||PG,i−PGt,i||
2
2311

denote the MSE. nθ and nG are the numbers of the bus and312

generating units, respectively. For such an MSE function,313

it gives the same weight to the error of each variable Vθ,i314

or PG,i.315

To increase the sensitivity and sample efficiency of rare316

samples, a new loss function is proposed by introducing Focal317

Loss. It is to address the extreme imbalance between positive318

and negative samples by supporting some categories with319

discrete labels such as 0 or 1 [23]. For the learning task in320

this paper, the label is a continuous value between 0 and 1.321

Therefore, it is necessary to ensure the previous balanced322

positive and negative, hard and easy sample properties and323

to allow it to support the supervision of continuous values.324

It naturally leads to one of our expanded forms of Focal Loss325

on continuous labels, which we call Continuous Focal Loss326

(CFL). CFL functions are expressed as,327

Lθ t =
1
nθ

∑
i∈�N

aipi
(
Vθ,i − Vθ t,i

)2 (7)328

LGt =
1
nG

∑
i∈�G

aipi
(
PG,i − PGt,i

)2 (8)329

where ai and pi are the focal weights. ai is determined by the 330

target value, while pi is related to the prediction value. ai can 331

be expressed as, 332

ai =
1

ln (1.1+ P[Yi])
, Yi = Vθ,1,Vθ,2, · · ·PG,1,PG,2 · · · 333

(9) 334

where Yi is the ith element in the label vector, which is the 335

angle or generation. P[Yi] is the proportion of the correspond- 336

ing category of Yi. The category is obtained by dividing the 337

entire range of values into 20 intervals. The proportion is 338

determined by the number of labels whose values fall into 339

the same interval. 340

From the perspective of deep learning, the outputs which 341

are often equal to zero or maximum reflect that the features 342

are more distinctive and easier to learn. For these categories, 343

the corresponding parameters p are attributed with lower 344

values. The weight p is obtained from the predicted values 345

after a power operation as follows, 346

pi = Y rti (1− Yti)
r
+ 0.5, 347

Yti = Vθ t,1,Vθ t,2, · · ·PGt,1,PGt,2 · · · (10) 348

where r is set as 1. Yti is the ith value of the teacher model 349

prediction and the subscript t denotes the teacher model. The 350

states whose label is close to 0 or 1 are easy to learn, so the 351

percentage should be smaller. 352

The gradient descent algorithm is more suitable to min- 353

imize the loss function in deep learning models [24]. The 354

gradient descent process can be expressed as, 355

1w(l,τ )
θk = η

(
1
m

m∑
k=1

∂Lτθ,t

∂W (l,τ )
θk

)
− µ×1w(l, τ−1)

θk (11) 356

1w(l,τ )
Gk = η

(
1
m

m∑
k=1

∂LτG,t

∂W (l,τ )
Gk

)
− µ×1w(l, τ−1)

Gk (12) 357

wherew(l,τ )
θk andw(l,τ )

Gk are the kth weights in the lth layer after 358

τ th updating. η is the learning rate. m is the neural number of 359

the lth layer. µ is the momentum. Lτθ,t and L
τ
G,t are the loss 360

function.1w(l,τ )
θk and1w(l,τ )

Gk are the parameter alterations of 361

τ th iteration. 362

C. TRAINING STUDENT MODEL BASED ON ANNEALING 363

KNOWLEDGE DISTILLATION 364

This section focuses on proposing the learning method of 365

knowledge distillation [22]. The knowledge distillation learn- 366

ing process for the regression model is presented and the 367

annealing strategy [25] is combined afterward. 368

Since the pretraining stage is task-agnostic and unrelated 369

to the downstream work, the result of the pre-train stage can 370

be reused for the student model initialization and only fine- 371

tuning is required. 372

The knowledge-distillation-based finetuning stage aims to 373

approximate the results of existing single-task models, which 374

is achieved by minimizing the gap between the prediction of 375
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the teacher model and the student model.376

Ls,t = Lθs,θ t + LGs,Gt (13)377

Lθs,θ t =
1
nθ

∑
i∈�N

aipi
(
Vθ t,i − Vθs,i

)2 (14)378

LGs,Gt =
1
nG

∑
i∈�G

aipi
(
PGt,i − PGs,i

)2 (15)379

where Ls,t is the loss function, which evaluates the difference380

between teacher prediction and student prediction. Lθs,θ t is381

the loss function of Vθ t and Vθs. LGs,Gt is the loss function of382

PGt andPGs.Vθs andPGs are predictions of the studentmodel.383

Vθs,i and PGs,i are the ith angle and ith generation predicted384

by the student model.385

The difference between the teacher model and the student386

model is the same as the calculation of the loss function.387

Minimizing this difference function is equivalent to train-388

ing the multitask model with the predicted values of the389

single-task model as labels. And this is undoubtedly less390

accurate than using authoritative labels since the predicted391

values are always not 100% accurate. To cope with this392

problem, teacher models are regarded as the lower bound and393

the usage is specified as follows,394

L = λθLθs,θ t + (1− λθ )Lθs + λGLGs,Gt + (1− λG)LGs395

(16)396

where L is a comprehensive loss function, which is combined397

by Lθs,θ t , Lθs, LGs,Gt , and LGs. λθ and λG are the weights398

of teacher models, which are determined after comparison as399

follows,400

λθ =

{
0, if Lθ t > Lθs
1, else

(17)401

λG =

{
0, if LGt > LGs
1, else

(18)402

where Lθ t and LGt are obtained by (7) and (8). Lθs and LGs403

are the loss function value of the student model, which can be404

expressed as,405

Lθs =
1
nθ

∑
i∈�N

aipi
(
Vθ i − Vθs,i

)2 (19)406

LGs =
1
nG

∑
i∈�G

aipi
(
PGi − PGs,i

)2 (20)407

In (17) and (18), errors of the student and teacher models408

are compared. If the teacher model outperforms the student409

model, then the student model learns from teacher models.410

Otherwise, the student is trained by actual labels.411

To avoid the accuracy limitations of teacher models,412

the teacher annealing approach is adopted in our train-413

ing. A dynamic annealing weight is introduced in the414

two-objective loss function, which can be expressed as,415

λθ =

 0. if Lθ t > Lθs
1−

e
emax

else
(21)416

λG =

 0. if LGt > LGs
1−

e
emax

else
(22) 417

where e and emax are the finetune epoch index and the 418

max epoch number, respectively. λ is the dynamic annealing 419

weight, which increases linearly with iteration. 420

The (19) and (20) indicate the knowledge distillation pro- 421

cess is divided into two stages. In the early stage, the student 422

model learns from the teacher models fθ,t (PD → Vθ ) and 423

fG,t (PD → PG). With the increasing finetune epochs, the 424

student model experiences a gradual transition to supervised 425

learning under target labels. 426

IV. ALGORITHM AND FLOWCHART OF THE 427

DATA-DRIVEN OPF 428

The proposed approach provides a sample-efficient 429

OPF-solving framework to determine the optimal generation 430

dispatch. The overall process is shown in Fig.5. 431

Step 1: Input the historical data or simulation data of the 432

power flow under different system states. 433

Step 2: Select the unlabeled data for SDAE pretraining and 434

the encoder layer parameters are determined. 435

Step 3: The labeled samples are classified into angle labels 436

and generation labels. 437

Step 4: For angle labels, a new network is constructed 438

based on the encoder. 439

Step 5: Finetune the network in step 4 and obtain a teacher 440

network. 441

Step 6: Calculate teacher predictions and focal loss 442

function. 443

(With the generation labels, the teacher model fG,t (PD → 444

PG) is trained in parallel so as with steps 4-6.) 445

Step 7: Construct a new network as a student model based 446

on the pre-trained encoder. 447

Step 8: Set the maximum epoch and initialize the current 448

epoch counter. 449

Step 9: Calculate the difference between student and 450

teacher predictions as (13)-(14), as well as the loss function 451

for each variable according to (16). 452

Step 10: Comparing. If the student is more precise, the 453

weight of teacher λ is zero. Otherwise, λ decreases with 454

finetuning epochs linearly as (21)-(22). 455

Step 11: The weighted sum of the loss function is calcu- 456

lated and used in parameter updating. 457

Step 12:Repeat steps 10-12 until the epoch counter reaches 458

the limitation and the OPF training is finished. 459

V. CASE STUDY 460

Numerical test cases are carried out on the RTS-79 sys- 461

tem [26]. The 9-bus [27], 118-bus [28], and southern Brazil 462

power systems [29], [30] are involved to test the scalability 463

of the proposed method. The hardware and software used in 464

the case study include Intel i5-10600KF CPU, 16G RAM, 465

WINDOWS 10, and Python 3.8. The Gurobi toolkit is also 466

involved in benchmark calculation when evaluating accuracy. 467
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FIGURE 5. Flowchart of the proposed method.

The hyper-parameters of the deep learning model in the468

case study are listed as follows. The number of hidden layers469

is 3 for each neural network. The teacher encoder size is (150,470

200, 250) for each layer and the student model is half the471

size accordingly. For the pretraining stage, the SGD optimizer472

is used whose initial learning rate is 0.1 and momentum is473

0.8. For the finetune stage, the Adam optimizer is involved474

with parameter β as (0.7, 0.92) and learning rate as 0.0005.475

The total epochs are 40 for pretraining and 50 for model476

finetuning. The variance of Gaussian noise is set as 5%.477

Batch sizes for pre-training and finetune are 256 and 128,478

respectively.479

The accuracy indices are defined as follows,480

Acθ =
n
(∣∣V ′θ − Vθ ∣∣ ≤ θ0)

n
(23)481

AcG =
n
(∣∣P′G − PG∣∣ ≤ G0

)
n

(24) 482

where V ′θ and Vθ are the predicted and actual phase angles. 483

P′G and PG are the predicted and actual power generation. The 484

judgment thresholds are set to 0.1 rad and 1 MW. 485

A. PERFORMANCE OF THE PROPOSED METHOD 486

A variety of methods in Table 1 are compared with the pro- 487

posed method (M6) in the RTS-79 system. All the methods 488

are based on the same training dataset whose size is 15000. 489

The depth of the random forest method M1 is 8. M2 directly 490

predicts both phase angle and generation output in the same 491

SDAE network. In M3, the teacher models are trained sep- 492

arately with the MSE loss function. In M4, they are trained 493

with the focal loss function. The knowledge distillation pro- 494

cess is integrated intoM5 andM6where teacher networks are 495

obtained via M4. 496

Various methods in Table 1 are applied to the RTS-79 sys- 497

tem. The computational performance is displayed in Table 2. 498

M2, M5, and M6 have the same network structure, and 499

Fig.6 compares relative errors of their predicted node phase 500

angles. 501

M0 is the method that invokes the Matpower toolkit 502

for solving, and its outcomes are used as the benchmark. 503

As shown in Table 2, the solution time of traditional opti- 504

mization algorithms is 248.2683 s. 505

Comparing M1 andM2, the SDAE network is proved to be 506

more effective in predicting OPF. This is because the com- 507

putational effectiveness of random forests depends greatly 508

on the manual selection of features. Moreover, the training 509

effectiveness of random forests is limited by the size of the 510

output volume. The requirements of tree size and layers in 511

M1 increase accordingly with the output scale. The problem 512

of preferring a large number of parameters is difficult to solve 513

and ultimately detrimental to accuracy. 514

Results of M2 show that task decomposition enables the 515

network to concentrate on one particular problem. By decom- 516

posing the task, interactions between unrelated features can 517

be avoided to occupy parameter resources, so that parameters 518

can work together to achieve an accurate output. 519

Fig.7 compares the generation results obtained by M3 520

and M4. The advanced focal loss function is effective in 521

improving the prediction of unbalanced distribution vari- 522

ables. This technique changes the weighting factor of the 523

data difference, allowing the model to notice small sample 524

data without sample data addition. In the RTS-79 system, 525

generation units 23, 24, and 25-30 are always prioritized in 526

generation dispatch due to their low cost. The other gener- 527

ating units operate only in fewer states with high load levels. 528

The generation labels show uneven distribution, but the Focal 529

loss function enhances the attention of the network to the 530

minority data, thus improving the overall effectiveness of the 531

method. 532

The results of the M5 and M6 in Table 2 show that 533

knowledge distillation can integrate multiple high-precision 534

single-task models while maintaining the same level of 535

99730 VOLUME 10, 2022



Z. Dong et al.: Sample-Efficient OPF Learning Method Based on Annealing Knowledge Distillation

TABLE 1. Methods in details.

FIGURE 6. Prediction comparison of the relative error of phase angle in the RTS-79 system.

TABLE 2. Accuracy in RTS-79 system.

accuracy. Fig.6 shows that the teacher annealing strategy can536

achieve higher accuracy in knowledge distillation.537

B. FEASIBILITY ON SMALL SAMPLE SIZE538

As shown in Table 3, by reusing the pre-trained model, the539

proposed training method using the knowledge distillation540

strategy can achieve high accuracy results in one minute.541

Table 3 and Fig.8 present the results of the application of542

the proposed method on a small sample dataset. It shows543

that the pre-training strategy helps to improve the accuracy544

on small sample size. This is because a large amount of545

unlabeled data can be used to train the shallow layer of546

FIGURE 7. Prediction comparison of M3 and M4.

the SDAE network in the pre-training phase, thus reducing 547

the learning burden in the supervised phase. The proposed 548

method maintains a higher accuracy level over other meth- 549

ods, demonstrating its feasibility for small sample states. For 550

example, the M2 requires 15000 samples to roughly attain 551

the accuracy that the proposed method (M6) achieves with 552

200 samples. 553

C. SCALABILITY ANALYSIS 554

The proposed method is also applied to the systems with 555

different scales and the results are presented in Table 4. 556

the Brazilian system has 242 nodes with 53 generators, and 557

the specific settings such as line capacity can be found 558
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FIGURE 8. Comparisons on training data size.

TABLE 3. Accuracy improvement of pre-training in the RTS-79 system.

TABLE 4. Applying to different systems.

in [30]. For each test system, training data contains 200559

samples.560

It can be seen that the accuracy of the proposed method561

slightly decreases as the size of the system increases butmain-562

tains an acceptable level. Therefore, the proposed method is563

suitable for power systems with different scales.564

VI. CONCLUSION565

This paper proposes a sample-efficient method based on566

DC-OPF decomposition and knowledge distillation to enable567

training with limited samples. Numerical results prove the 568

proposed DC-OPF task decomposition can improve the train- 569

ing generalization on limited samples, and the annealing 570

operation in the knowledge distillation can finally enhance 571

the accuracy by 10% for angle and 8% for power generation. 572

Moreover, the accuracy improvement of the proposedmethod 573

is over 12% which is more significant in lower-data setups. 574

Compared to the plain deep learning method, the proposed 575

method can reduce the sample size by 98.6% and improve 576

the accuracy in phase angle by 12% and generation by 2%. 577

In the future, it will be studied in AC-OPF with consideration 578

of reactive power and voltage magnitude. 579
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