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ABSTRACT To quickly respond to variations in the state of network load demand, a solution using
data-driven techniques to predict optimal power flow (OPF) has emerged in recent years. However, most of
the existing methods are highly dependent on large data volumes. This limits their application on the newly
established or expanded systems. In this regard, this work proposes a sample-efficient OPF learning method
to maximize the utilization of limited samples. By decomposing the OPF task before knowledge distillation,
deep learning complexity is reduced. Thereafter, knowledge distillation is used to integrate decoupled tasks
and improve accuracy in low-data setups. Unsupervised pre-training is introduced to alleviate the demand for
labeled data. Additionally, the focal loss function and teacher annealing strategy are adopted to achieve higher
accuracy without extra samples. Numerical tests on different systems corroborate the advanced accuracy and
training speed over other training methods, especially on fewer-sample occasions.

INDEX TERMS
function, stacked denoising autoencoder, deep learning.

I. INTRODUCTION

Optimal power flow (OPF) is the cornerstone of many
research areas such as power system security, reliability, and
economics. Traditionally, the time scale of OPF is 15 minutes
to 1 hour ahead. However, owing to the frequent and uncertain
fluctuations of the renewable generations and loads, the OPF
needs to be computed more efficiently and even in real-time,
to determine the optimal and safe operation strategy [1]. As a
result, the efficiency of OPF becomes an urgent issue to be
addressed.

Due to the non-convex and non-linear nature of the model,
it is difficult to obtain the real-time analytical solution of
OPF. The OPF model has undergone the development of
linearization and decoupling transformation to reduce the
computational burden, such as direct current OPF (DC-OPF)
and fast decoupled load flow [2]. Although many advances
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have been made to simplify the model, the computational
efficiency problem is still a bottleneck.

In recent years, deep-learning-based methods have exerted
significant efficiency improvement for OPF [3], [4]. It uses a
large amount of historical data to approximate the variable
relationship and achieve the real-time response. Compared
with traditional solvers, the deep learning approach has a
computation speed improvement of up to 200 times for
DC-OPF and 35 times for alternating current OPF (AC-OPF)
[5], [6]. In addition, the deep learning technique provides a
feasible solution to address OPF solving in online settings and
state combinations. To address the online efficiency problem
of OPF learning, several approaches have been studied based
on active constraints [7], [8], warm-start points prediction [9],
[10], and so on. However, high data requirements of these
data-intense methods limit their applications [11].

To reduce the data requirements for training, a hybrid
number model-driven approach is adopted to simplify the
iterations. Such an approach is no longer simple end-to-end
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deep learning training, but a way to use training techniques to
accelerate the original OPF solving process. The Lagrangian-
based reinforcement learning is used in the iterative process
to accelerate the convergence to achieve optimality [12].
A trajectory speculation method is proposed to predict and
accelerate convergence [13]. To address the large burden of
data preparation and storage, an efficient sample generation
strategy is presented by compressing the sampling space [14].
Another category of approaches targets fewer samples by
leveraging the prior information. Physically informed learn-
ing takes advantage of prior information from physical mod-
els and avoids the large traditional training datasets [15].
Using constraints as a priori elements, machine learning
methods can predict AC-OPF neural networks and Lagrange
duality with high fidelity and minimal constraint violations
[16], [17]. Similarly, the implementation of pre-classification
with active constraints has become a practical solution strat-
egy [18]. Based on the concept of OPF sensitivity, the solu-
tions learned by DNNs and intermediate results are used to
accelerate the process of OPF solving [19].

In conclusion, existing deep learning approaches in OPF
are either data-intensive or knowledge-demanding. Since the
topology or operation is frequently changed in power sys-
tems, it is prohibitive to retrain models from scratch and the
sample data accumulated in a short time are very limited
[20]. Therefore, sample-efficient learning models with high
accuracy are well motivated [19].

In this regard, the paper proposes a sample-efficient
method for DC-OPF learning, which is suitable for the lim-
ited labeled samples. The work is taken on the DC-OPF
model because its linear model is more convenient to
explore ways for sample efficiency improvement from a
theoretical perspective. Specifically, this paper addresses
the application of small samples from three perspectives.
Firstly, the pre-training strategy is adopted in the stacked
denoising autoencoder (SDAE) network. The size of labeled
data is reduced by transferring work to the unsupervised
pre-training stage. Secondly, the DC-OPF task decompo-
sition strategy and knowledge distillation are combined to
reduce the learning complexity. The knowledge distillation
learning is improved with a teacher annealing strategy
to improve the accuracy. Moreover, the loss function is
improved based on focal loss in the training phase to enhance
the training effect without adding extra samples. In our
work, because the pre-trained results can be reused and
the sample size is reduced, the model training speed can
be greatly improved. The main contributions of this paper
include,

o A sample-efficient method is developed which makes
full use of small-scale data. Free of prior knowledge or
large dataset, the method enables the easy deployment
of deep-learning-based OPF in new system states.

« A method based on DC-OPF task decomposition and
knowledge distillation learning is proposed to alleviate
the training complexity. The proposed method can be
easily extended to different scale systems.
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e Novel continuous focal loss (CFL) functions are
designed and used to improve the training performance
without extra samples. Pre-training and teacher anneal-
ing strategies achieve higher accuracy in the small-data
regime.

The remaining paper is organized as follows. In section II,
challenges of OPF learning are discussed and the scheme of
the proposed solution is outlined. Section III details the train-
ing process. The overall procedure is described in section IV.
Numerical results with the proposed method are shown in
section V. Finally, the paper is summarized in section VL.

Il. PROPOSED OPF LEARNING FRAMEWORK

With no consideration of the mapping relationship and data
distribution, the conventional learning approaches rely heav-
ily on data volumes, which limits the application. Actually,
the variable relationships can be simplified by decoupling the
target outputs in separate networks. Therefore, our solution
is based on OPF task decomposition and organized in a
knowledge distillation framework.

A. PROBLEM STATEMENT AND CHALLENGES

The OPF determines the most economical generation
dispatch while satisfying the load demand and other secu-
rity constraints. The following optimization formulations are
obtained when applying a DC approximation to the tradi-
tional AC-OPF.

min Z (CziP%;i + CliPGi) (1)
i€Qq
Voi — Vg,
P —Pp = B;i———
i,jeQN
Voi — Vi

Prr = Bl]—l P J, k € Qpr (2

PGi,min = PGi = PGi,max» i€ QG

Prr.min < Prk < PFr.max,  k € Qupy

where Pg is the power output of ith generating unit. c¢1; and ¢3;
are the generation cost coefficients. Pp is the power demand
of the ith bus. Py, is the transmission power of the kth branch.
Vi is the voltage phase angle of the ith bus. Q¢g, Qy and 5,
are the set of generating units, bus, and branches, respectively.
B is the susceptance of admittance between the ith and jth
bus.

The OPF model contains information about the branch
parameters and network topology. The complex model
requires a few iterations to reach the optimal solution. It takes
a long time to optimize the power flow for a large number of
operating states.

The researchers are currently interested in a model-free
method based on deep learning, which seeks a function
automatically to fit the abstract relationship between power
demand and power dispatch. In [4], [5], [6], [7], [8], [9], [10],
and [11], load variables are widely used as input features,
while power generations and phase angles are considered
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FIGURE 1. Example of the class-imbalance problem of the power
generation data. The figure shows that the distribution of the 22nd
generating unit in RTS-79 system is right skew and thick-tailed.

as output variables. Other unchangeable factors can be con-
tained in network parameters and thus excluded from the
input features. The most commonly used loss function in
conventional deep learning is the mean square error (MSE)
function.

Such a loss function gives the same emphasis on each
data and thus the class imbalance of the training data
may cause low accuracy, especially with fewer labels.
However, the class-imbalance problem is the intrinsic char-
acteristic, as shown in Fig.1. Moreover, different variables
and active constraints intensify the training difficulty with
fewer samples. In summary, the challenges of using limited
samples consist in the training complexity and prediction
accuracy.

B. PROPOSED SOLUTION AND FRAMEWORK

The key idea of the proposed method is to alleviate
the training difficulty and improve the sample efficiency.
To achieve the first purpose, the DC-OPF can be decoupled
to better generalize the variable relationships. To enhance
the sample efficiency, a focal loss function may be engaged
to give higher importance to the minority class without
extra samples. Unsupervised pre-training is also integrated
where the training dataset is supplemented by the unlabeled
data.

For all the solutions given above, knowledge distilla-
tion [21] is introduced here. It involves building a small
lightweight model and training it with the supervised infor-
mation from a larger model. The large and small models are
called the Teacher model and Student model, respectively.
The supervised information from the output of the Teacher
model is called knowledge, and the process by which the
student learns the supervised information from the teacher is
called Distillation. Knowledge distillation is an ideal candi-
date to integrate them for the following reasons:

1) Data availability: Only a limited amount of labeled
training data is required because the historical data
is partially replaced by the predictions from teacher
models. It is worth stressing that the proposed knowl-
edge distillation methodology can be combined with
unsupervised pre-training approaches.
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2) Input pattern: The OPF problem inputs are consistent
in each teacher model and the student model. These
properties enable OPF learning to utilize the same pre-
training results.

3) Accuracy: The student model can achieve higher accu-
racy compared with the teacher models [22].

Therefore, the aforementioned solutions are organized in
the proposed OPF framework based on knowledge distilla-
tion, including three stages.

Stage 1: Task decoupling: The DC-OPF task is decoupled
according to the types of variables. Unlabeled data is used in
the pre-training stage which can be shared in later training.

Stage 2: Knowledge learning: Two networks are trained
separately to output phase angle and power generation.

Stage 3: Knowledge Distillation: The separate models
obtained from stage 2 are treated as teacher models. The
knowledge is passed to another network (i.e., the student
model) to enable it to output phase angle and power
generation.

C. NETWORK ARCHITECTURE
The SDAE network, with fewer hyperparameters, is com-
patible with the proposed method which combines unsuper-
vised pretraining and finetuning. There are three differences
between our network and the SDAE network normally used
as shown in Fig.3.

First, for the hidden layer setting, the traditional SDAE
network has the smallest hidden layer in the middle, i.e. the
bottleneck layer. In contrast, the middle layer is the widest in
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FIGURE 4. Label flow in OPF learning.

this paper. Second, the hidden layer is symmetric, combined
with coding layers and decoding layers. The coding layer is
designed as a gradually widening structure to enhance the
feature diversity. Third, given the input features, the random
Gaussian noise is used to add noise erosion to the data.

lll. PROPOSED METHOD BASED ON KNOWLEDGE
DISTILLATION
A. TASK DECOUPLING STRATEGY
For such a multi-output problem as OPF, a wider or deeper
network is required for accuracy, but the larger size of the
network also increases the training burden. Therefore, the
main idea of the OPF task decoupling is to train separate
models for different variable relationships. The training pres-
sure is no longer confined to a single network by learning the
decomposed DC-OPF in paralleled models. The sample flow
in training is illustrated in Fig.4.

The variable relationships can be categorized into two
types and thus the OPF task is decoupled as follows,

decoupled task : fr = {fg,,,fG,,}
fo.n (Pp —> Vo) : X = [Pp], Y =[Vy]
Jf (Pp — Pg) : X = [Pp], Y =[Pg] 3)

where fr denotes the task of training teacher models. fp ; and
fa.: are the teacher models to predict Vy and Pg, respectively.

The teacher model fy ,(Pp — Vp): learns the knowledge
of the voltage angle on each bus. In the training dataset, the
voltage angle is regarded as the label.

The teacher model f; ;(Pp — Pg): learns the knowledge
of the generation dispatch. The actual generation dispatch is
treated as the label. The load demand data is the input of both
teacher models.

The student model fis,G),s(Pp — Vo, Pg): mimics the real
label data and teacher model predictions. The training dataset
also involves the power demand as state data. Note that the
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labels are not only the actual data but also the prediction from
teacher models.

B. TRAINING TEACHER MODEL BASED ON LIMITED
LABELS

By decoupling the DC-OPF, the mapping function of each
teacher model is single-variable oriented. The single-task
model for predicting phase angle or power generation is
based on the SDAE network with two-stage training (i.e.
unsupervised pre-training and supervised finetune). Since the
model inputs are the same, the pre-training results are shared
in two teacher models.

1) PRE-TRAIN

The pre-training of the proposed model involves only unla-
beled load data in a task-agnostic way. These data are readily
available in the power system. The pre-training is to train
most of the parameters with unlabeled samples which are
readily accessible. The computational burden is eased for
subsequent supervised training.

The unlabelled state data is used in a self-supervised man-
ner based on feature reconstruction. Feature reconstruction
means the original feature can be recovered to its initial
form after an encoding-decoding process. Pre-training aims
to minimize the distance between the original features and
their corresponding transformations. The more similar the
reconstruction feature is, the more valuable features can be
kept by the encoder.

In a traditional SDAE network, the input value is usually
erased with random zeros to enable the network with anti-
noise ability. However, this random zero strategy is unsuitable
for our input vector because it may lose key features. To deal
with this, a random gaussian noise strategy is proposed to
avoid feature loss.

Pp noise = nPp @ sgn(r —p) + Pp 4
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where Pp noise 1S the input vector Pp added with random
noise. 7 is the noise ratio, which obeys a Gaussian distribution
and lies between +5% and —5%. r is a random vector. p is
the probability vector of noise arising. sgn(r — p) is the noise
flag in the Monte-Carlo simulation. © represents the element-
wise multiplication.

The Gaussian noise strategy is used to add noise to the
features, which prevents the distortion of original data and
increases the diversity of the input samples.

2) FINETUNE BASED ON FOCAL LOSS

The pre-training is agnostic to phase angles or power genera-
tion, but only extracts generic features from the state data.
Thus, the results of the pre-training can be shared by the
models fp ;(Pp — Vp) and fG ;(Pp — Pg). On the basis of
pre-training results, network parameters need to be fine-tuned
with the generation and angle labels.

The finetuning stage is oriented to minimize the gap
between predictions and real values. To make full use of the
minority samples, the focal weight is incorporated into the
traditional MSE function.

The traditional MSE functions in teacher models are
expressed as,

1 2
Loy = ||Vo — Voull3 = - > Voi—Voi) (5

ieQy

1 2
L = |P — Paill3 = - Z (PG.i — Pgri)”  (6)

i€Qg

where Lg; and Lg; are the loss function of models fy ;(Pp —
Vo) and fG:(Pp — Pg), respectively. Vp; and Vy,; are
the ith element in the actual value and teacher prediction,
respectively. Pg,; and Pg; ; are the jth element in the target
and actual output vector. ||Vy ; — Vi, i ||% and ||Pg,i — Pl |%
denote the MSE. ny and ng are the numbers of the bus and
generating units, respectively. For such an MSE function,
it gives the same weight to the error of each variable Vjp ;
or Pg ;.

To increase the sensitivity and sample efficiency of rare
samples, a new loss function is proposed by introducing Focal
Loss. It is to address the extreme imbalance between positive
and negative samples by supporting some categories with
discrete labels such as 0 or 1 [23]. For the learning task in
this paper, the label is a continuous value between 0 and 1.
Therefore, it is necessary to ensure the previous balanced
positive and negative, hard and easy sample properties and
to allow it to support the supervision of continuous values.
It naturally leads to one of our expanded forms of Focal Loss
on continuous labels, which we call Continuous Focal Loss
(CFL). CFL functions are expressed as,

1

Loy = — Z aipi (Vo,i — Vet,i)2 7
e
1

L = — Z aipi (Pg.i — PGt,i)2 3
nG i€eQq
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where a; and p; are the focal weights. g; is determined by the
target value, while p; is related to the prediction value. @; can
be expressed as,

1

= Yi=Vy1,Veoa, PG, PGy
n (L1 + PY;]) i 0,1, Vo,2 G,1,PG2

®

where Y; is the ith element in the label vector, which is the
angle or generation. P[Y;] is the proportion of the correspond-
ing category of Y;. The category is obtained by dividing the
entire range of values into 20 intervals. The proportion is
determined by the number of labels whose values fall into
the same interval.

From the perspective of deep learning, the outputs which
are often equal to zero or maximum reflect that the features
are more distinctive and easier to learn. For these categories,
the corresponding parameters p are attributed with lower
values. The weight p is obtained from the predicted values
after a power operation as follows,

aj

pi=Y;(1—-Yy) +0.5,
Yi= Vo1, Vor2, - - PGe,1, PGra - -+ (10)

where r is set as 1. Y;; is the ith value of the teacher model
prediction and the subscript ¢ denotes the teacher model. The
states whose label is close to 0 or 1 are easy to learn, so the
percentage should be smaller.

The gradient descent algorithm is more suitable to min-
imize the loss function in deep learning models [24]. The
gradient descent process can be expressed as,

A0 =y (L i O ) _ wx Awd T (1)
o o &

@.1) <1§: aL(T}z) a, —1)

Awr =n| — — ) - x Awg T (12)

Gk (1,7) Gk
"= IWer

where w$;” and wi"" are the kth weights in the /th layer after

tth updating. 7 is the learning rate. m is the neural number of

the /th layer. p is the momentum. L , and L(; , are the loss

function. Awg,f) and Awg’kt) are the parameter alterations of
7 th iteration.

C. TRAINING STUDENT MODEL BASED ON ANNEALING
KNOWLEDGE DISTILLATION

This section focuses on proposing the learning method of
knowledge distillation [22]. The knowledge distillation learn-
ing process for the regression model is presented and the
annealing strategy [25] is combined afterward.

Since the pretraining stage is task-agnostic and unrelated
to the downstream work, the result of the pre-train stage can
be reused for the student model initialization and only fine-
tuning is required.

The knowledge-distillation-based finetuning stage aims to
approximate the results of existing single-task models, which
is achieved by minimizing the gap between the prediction of
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the teacher model and the student model.

Ly = Loso1 + Lcs,Gt 13)
1 2
Losor = — Y aipi (Vori — Vos.i) (14)
ng .
IEQN
1 2
LosGi = — Y aipi (Peri — Pay.i) 15)
"G jeqq

where Ly ; is the loss function, which evaluates the difference
between teacher prediction and student prediction. Lgg g; is
the loss function of Vy; and Vp;. L, G: is the loss function of
P and Pgs. Vs and P, are predictions of the student model.
Vis.i and Pgs ; are the ith angle and ith generation predicted
by the student model.

The difference between the teacher model and the student
model is the same as the calculation of the loss function.
Minimizing this difference function is equivalent to train-
ing the multitask model with the predicted values of the
single-task model as labels. And this is undoubtedly less
accurate than using authoritative labels since the predicted
values are always not 100% accurate. To cope with this
problem, teacher models are regarded as the lower bound and
the usage is specified as follows,

L = hgLos s + (1 — Xg)Lgs + AgLGs,6r + (1 — Ag)Lgs
(16)

where L is a comprehensive loss function, which is combined
by Los.6r, Los. Lgs,Gr» and Lgs. Ag and Ag are the weights
of teacher models, which are determined after comparison as
follows,

0, if L L,
ho = if Loy > Lgs (17
1, else
if L L
he = 0, if Lot > Lgs (18)
1, else

where Ly; and Lg; are obtained by (7) and (8). Ly and Lgg
are the loss function value of the student model, which can be
expressed as,

1

Los = — Z aipi (Voi — V9s,i)2 (19)
"0 ey
1

Lgy = — Z aipi (Pci _PGs,i)2 (20)
"G e

In (17) and (18), errors of the student and teacher models
are compared. If the teacher model outperforms the student
model, then the student model learns from teacher models.
Otherwise, the student is trained by actual labels.

To avoid the accuracy limitations of teacher models,
the teacher annealing approach is adopted in our train-
ing. A dynamic annealing weight is introduced in the
two-objective loss function, which can be expressed as,

0. if Lor > Los

Ao = 1-— ¢ else 1)

€max
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0. if L > Lgs

AG = 1 —

(22)

else
€max

where e and emax are the finetune epoch index and the
max epoch number, respectively. A is the dynamic annealing
weight, which increases linearly with iteration.

The (19) and (20) indicate the knowledge distillation pro-
cess is divided into two stages. In the early stage, the student
model learns from the teacher models fy ;(Pp — Vp) and

f6.:(Pp — Pg). With the increasing finetune epochs, the

student model experiences a gradual transition to supervised
learning under target labels.

IV. ALGORITHM AND FLOWCHART OF THE
DATA-DRIVEN OPF

The proposed approach provides a sample-efficient
OPF-solving framework to determine the optimal generation
dispatch. The overall process is shown in Fig.5.

Step 1: Input the historical data or simulation data of the
power flow under different system states.

Step 2: Select the unlabeled data for SDAE pretraining and
the encoder layer parameters are determined.

Step 3: The labeled samples are classified into angle labels
and generation labels.

Step 4: For angle labels, a new network is constructed
based on the encoder.

Step 5: Finetune the network in step 4 and obtain a teacher
network.

Step 6: Calculate teacher predictions and focal loss
function.

(With the generation labels, the teacher model fg ;(Pp —
Pg) is trained in parallel so as with steps 4-6.)

Step 7: Construct a new network as a student model based
on the pre-trained encoder.

Step 8: Set the maximum epoch and initialize the current
epoch counter.

Step 9: Calculate the difference between student and
teacher predictions as (13)-(14), as well as the loss function
for each variable according to (16).

Step 10: Comparing. If the student is more precise, the
weight of teacher A is zero. Otherwise, A decreases with
finetuning epochs linearly as (21)-(22).

Step 11: The weighted sum of the loss function is calcu-
lated and used in parameter updating.

Step 12: Repeat steps 10-12 until the epoch counter reaches
the limitation and the OPF training is finished.

V. CASE STUDY

Numerical test cases are carried out on the RTS-79 sys-
tem [26]. The 9-bus [27], 118-bus [28], and southern Brazil
power systems [29], [30] are involved to test the scalability
of the proposed method. The hardware and software used in
the case study include Intel i5-10600KF CPU, 16G RAM,
WINDOWS 10, and Python 3.8. The Gurobi toolkit is also
involved in benchmark calculation when evaluating accuracy.
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FIGURE 5. Flowchart of the proposed method.

The hyper-parameters of the deep learning model in the
case study are listed as follows. The number of hidden layers
is 3 for each neural network. The teacher encoder size is (150,
200, 250) for each layer and the student model is half the
size accordingly. For the pretraining stage, the SGD optimizer
is used whose initial learning rate is 0.1 and momentum is
0.8. For the finetune stage, the Adam optimizer is involved
with parameter B as (0.7, 0.92) and learning rate as 0.0005.
The total epochs are 40 for pretraining and 50 for model
finetuning. The variance of Gaussian noise is set as 5%.
Batch sizes for pre-training and finetune are 256 and 128,
respectively.

The accuracy indices are defined as follows,

_n(vp—vel =40)

n

Acy (23)
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_ n(|P; = Pg| = Go)

n

Acg (24)

where V, and Vjy are the predicted and actual phase angles.
Py, and P are the predicted and actual power generation. The
judgment thresholds are set to 0.1 rad and 1 MW.

A. PERFORMANCE OF THE PROPOSED METHOD

A variety of methods in Table 1 are compared with the pro-
posed method (M6) in the RTS-79 system. All the methods
are based on the same training dataset whose size is 15000.
The depth of the random forest method M1 is 8. M2 directly
predicts both phase angle and generation output in the same
SDAE network. In M3, the teacher models are trained sep-
arately with the MSE loss function. In M4, they are trained
with the focal loss function. The knowledge distillation pro-
cess is integrated into M5 and M6 where teacher networks are
obtained via M4.

Various methods in Table 1 are applied to the RTS-79 sys-
tem. The computational performance is displayed in Table 2.
M2, M5, and M6 have the same network structure, and
Fig.6 compares relative errors of their predicted node phase
angles.

MO is the method that invokes the Matpower toolkit
for solving, and its outcomes are used as the benchmark.
As shown in Table 2, the solution time of traditional opti-
mization algorithms is 248.2683 s.

Comparing M1 and M2, the SDAE network is proved to be
more effective in predicting OPF. This is because the com-
putational effectiveness of random forests depends greatly
on the manual selection of features. Moreover, the training
effectiveness of random forests is limited by the size of the
output volume. The requirements of tree size and layers in
M1 increase accordingly with the output scale. The problem
of preferring a large number of parameters is difficult to solve
and ultimately detrimental to accuracy.

Results of M2 show that task decomposition enables the
network to concentrate on one particular problem. By decom-
posing the task, interactions between unrelated features can
be avoided to occupy parameter resources, so that parameters
can work together to achieve an accurate output.

Fig.7 compares the generation results obtained by M3
and M4. The advanced focal loss function is effective in
improving the prediction of unbalanced distribution vari-
ables. This technique changes the weighting factor of the
data difference, allowing the model to notice small sample
data without sample data addition. In the RTS-79 system,
generation units 23, 24, and 25-30 are always prioritized in
generation dispatch due to their low cost. The other gener-
ating units operate only in fewer states with high load levels.
The generation labels show uneven distribution, but the Focal
loss function enhances the attention of the network to the
minority data, thus improving the overall effectiveness of the
method.

The results of the M5 and M6 in Table 2 show that
knowledge distillation can integrate multiple high-precision
single-task models while maintaining the same level of
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TABLE 1. Methods in details.

Details
Methods Description Task Focal loss Knowledge Teacher
decomposition function distillation annealing
MO Model-based benchmark
M1 Random Forest
M2 Original SDAE X x X x
M3 , o v x x x
M4 Teacher SDAEs for angle and generation predictions J J y y
M3 Student SDAE based on knowledge distillation v v M *
M6 v V v

—_
(o]
(=]

Relative Error of Phase Angle (%)

1 2 3 4 5 6 7 8 9 10 11

13 14 15 16 17 18 19 20 21 22 23 24

Bus Index

FIGURE 6. Prediction comparison of the relative error of phase angle in the RTS-79 system.

TABLE 2. Accuracy in RTS-79 system.

Accuracy index

Methods Time (s)

Acy Acg

MO 248.2683 1 1

M1 0.5774 0.67796 0.75022
M2 0.00292 0.78911 0.79181
M3 0.0568 0.86366 0.79911
M4 0.0658 0.85093 0.86660
M5 0.0588 0.86002 0.81433
M6 0.0767 0.88980 0.86815

accuracy. Fig.6 shows that the teacher annealing strategy can
achieve higher accuracy in knowledge distillation.

B. FEASIBILITY ON SMALL SAMPLE SIZE
As shown in Table 3, by reusing the pre-trained model, the
proposed training method using the knowledge distillation
strategy can achieve high accuracy results in one minute.
Table 3 and Fig.8 present the results of the application of
the proposed method on a small sample dataset. It shows
that the pre-training strategy helps to improve the accuracy
on small sample size. This is because a large amount of
unlabeled data can be used to train the shallow layer of
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FIGURE 7. Prediction comparison of M3 and M4.

the SDAE network in the pre-training phase, thus reducing
the learning burden in the supervised phase. The proposed
method maintains a higher accuracy level over other meth-
ods, demonstrating its feasibility for small sample states. For
example, the M2 requires 15000 samples to roughly attain
the accuracy that the proposed method (M6) achieves with
200 samples.

C. SCALABILITY ANALYSIS

The proposed method is also applied to the systems with
different scales and the results are presented in Table 4.
the Brazilian system has 242 nodes with 53 generators, and
the specific settings such as line capacity can be found
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FIGURE 8. Comparisons on training data size.

TABLE 3. Accuracy improvement of pre-training in the RTS-79 system.

Size of o Accuracy index
o Training
Training Methods .
Time (s) Acy Acg
data
15000 M2 without pretrain 7.061 0.804348  0.821355
15000 M2 65.495 0.789115  0.791812
15000 M6 74.228 0.889796  0.868153
10000 M2 without pretrain 4.872 0.762594  0.806033
10000 M2 42.249 0.840198  0.821935
10000 M6 49.654 0.910454  0.860447
2000 M2 without pretrain 0.1117 0.744890  0.742027
2000 M2 38.889 0.822885  0.790783
2000 M6 48.669 0.929577  0.852235
200 M2 without pretrain 0.094 0.693679  0.729629
200 M2 27.527 0.708294  0.754456
200 M6 35.576 0.924794  0.842256

TABLE 4. Applying to different systems.

Time (s) Accuracy index
Test system 3
Train Apply Ach Acg
IEEE 9 43.03816 0.00399 0.987467  0.999617
RTS 79 48.669 0.0767 0.924794  0.842256
IEEE 118 198.38320  0.057817  0.814898  0.938225
Southern Brazil ~ 220.06567  0.111701  0.875065  0.938225

in [30]. For each test system, training data contains 200
samples.

It can be seen that the accuracy of the proposed method
slightly decreases as the size of the system increases but main-
tains an acceptable level. Therefore, the proposed method is
suitable for power systems with different scales.

VI. CONCLUSION
This paper proposes a sample-efficient method based on
DC-OPF decomposition and knowledge distillation to enable
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training with limited samples. Numerical results prove the
proposed DC-OPF task decomposition can improve the train-
ing generalization on limited samples, and the annealing
operation in the knowledge distillation can finally enhance
the accuracy by 10% for angle and 8% for power generation.
Moreover, the accuracy improvement of the proposed method
is over 12% which is more significant in lower-data setups.
Compared to the plain deep learning method, the proposed
method can reduce the sample size by 98.6% and improve
the accuracy in phase angle by 12% and generation by 2%.
In the future, it will be studied in AC-OPF with consideration
of reactive power and voltage magnitude.
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