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ABSTRACT Maximum pooling, average pooling, and strided convolution are three widely adopted
down-sampling approaches in deep learning based 3D medical image analysis. However, these methods
have their own pros and cons. Maximum pooling and strided convolution are advantageous in capturing the
discriminative features but often lead to the aliasing problem. In comparison, average pooling anti-aliases the
representations but produces less discriminative representations. To address such shortcoming, anti-aliased
maximum pooling (MaxBlurPool) uses low-pass filters to mitigate the aliasing effect. However, these filters
are designed to be fixed, making it difficult to adapt to various spatial positions. In this paper, we propose
position-aware anti-aliasing filters (PASS) to learn spatially adaptive low-pass filters. Compared to maximum
pooling, PASS integrates a one-layer local attention module, whose computational cost is minimal. Thus,
PASS can be incorporated into existing network architecture with minor efforts. In comparison to previous
anti-aliased counterparts, PASS brings consistent and clear performance gains on brain tumor segmentation,
pulmonary nodule detection, and cerebral hemorrhage detection. Besides, PASS also greatly improves the

model robustness under adversarial attack.

INDEX TERMS Down-sampling, anti-aliasing, attention mechanism, medical imaging.

I. INTRODUCTION

Down-sampling has been a fundamental component of digital
signal processing. Based on this knowledge, modern deep
convolutional neural networks (DCNNs) employ multiple
down-sampling layers to perform rate reduction on images,
where the spatial resolution and number of channels of fea-
ture maps is gradually reduced and increased, respectively.
With this compression process, we can obtain semantically
rich representations from the high-level layers of DCNNs,
which are often more generalizable than low-level features.
In 3D medical image analysis with CNNs, maximum pooling
and average pooling are two widely adopted down-sampling
methods. Specifically, maximum pooling aims to summarize
the most activated presence of features by calculating the
maximum value within a fixed small region. In comparison,
average pooling aggregates the average values of different
feature patches. As another option, convolution can also be
used to conduct down-sampling, where we increase the stride
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of convolution. The resulting down-sampling convolution
operation is often named as strided convolution.

As aforementioned, maximum and average pooling adopt
two different ways to implement down-sampling, and they
too face different problems accordingly. Maximum pool-
ing captures the most predominant parts, which makes the
produced features (cf. Fig. 1b) discriminative. Nonetheless,
maximum pooling layers in DCNNs inevitably result in alias-
ing results because of the preserved high-frequency signals.
This characteristic makes high-level semantic representations
sensitive to small shifts [1]. In comparison, average pooling
is anti-aliased, and thus helps preserve the shift invariance in
DCNNs. However, the outputs of average pooling are often
less discriminative compared to maximum pooling, as shown
in Fig. lc. As a result, the performance of average pooling
is often inferior to that of maximum pooling in a range of
tasks [2]. For strided convolution, Zhang [1] pointed out that
it also suffers from the same issue as maximum pooling does.

On the other hand, applying low-pass filtering is the
default solution to anti-alias in traditional signal processing.
Inspired by such phenomena, anti-alias maximum pooling
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FIGURE 1. Processed results using maximum pooling (MaxPool), average pooling (AvgPool), and our methodology (PASS).

(i.e., MaxBlurPool) [1] incorporated gaussian blur into
archetypical maximum pooling, leading to enhanced shift
invariance and improved task performance. However, the
blur filters in MaxBlurPool are designed to be fixed across
different spatial positions, resulting in the inflexibility to han-
dle various contents. To mitigate this problem, we introduce
position-aware anti-aliasing filters (PASS) to learn adaptive
blur filters based on local contents. Compared to MaxBlur-
Pool, PASS introduces a plug-and-play local attention mod-
ule ahead of low-pass filters to adaptively change filter values
based on local input features. The proposed attention module
comprises only one convolutional layer and its computational
cost is minimal. From Fig. 1d, we see that our PASS integrates
the advantages of maximum and average pooling, producing
anti-aliased and discriminative representations.

We validate the effectiveness of PASS on a range of
medical imaging tasks, which include brain tumor seg-
mentation (BraTS [3] dataset), pulmonary nodule detec-
tion (LUNA [4]), and cerebral hemorrhage detection (this
is an in-house dataset). In experiments, we show that the
proposed PASS dramatically boosts the performance over
both typical pooling approaches (maximum pooling, average
pooling, and strided convolution) and previous anti-aliased
methods by obvious margins. Here are some noteworthy
results. Compared to maximum pooling, our PASS boosts the
overall performance by 3.1 and 3.8 percents on brain tumor
segmentation and cerebral hemorrhage detection, respec-
tively. Moreover, PASS consistently outperforms previous
anti-aliasing counterparts by over 1 percent on all three med-
ical imaging tasks, demonstrating the generalization ability
of PASS.

To summarize, our paper has the following core
contributions:

1) Weintroduce a new down-sampling component, named
PASS, to adaptively anti-alias medical image represen-
tations by taking into account the local contents in 3D
volumes with a local attention module.

2) PASS is computationally efficient, including only one
convolution layer. In practice, PASS can be easily
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integrated into existing 3D medical imaging models as
a plug-and-play component.

3) We perform extensive experiments on various med-
ical imaging tasks to validate the effectiveness of
PASS. The experimental results show that PASS can
outperform typical pooling schemes and advanced
anti-aliasing methodologies by observable and consis-
tent margins.

Il. RELATED WORK

It is common practice to apply low-pass filtering before
down-sampling to avoid aliasing in digital signal processing.
Inspired by this operation, the initial convolutional neural
network [5] proposed to use average pooling for down-
sampling. However, Scherer et al. [2] implemented different
sub-sampling methods on a variety of tasks and drew a
conclusion: maximum pooling operation significantly outper-
forms other sub-sampling operations. Consequently, modern
DCNNs [6], [7], [8], [9] mostly adopted maximum pooling
as the default pooling methodology in the network archi-
tecture for performance boosts while ignoring the impact
of the aliasing emerged in maximum pooling. On the other
hand, anti-aliasing has been an important direction in medical
image analysis. Nonetheless, almost all related work [10],
[11], [12], [13] focused on anti-aliasing the input images
instead of latent representations, prevent their incorporation
into modern DCNNSs.

There are a number of papers investigating how to mitigate
the aliasing effect produced by maximum pooling. Mali-
nowski et al. [14] introduced a smoothness regularization
term that in conjuncture with learnable pooling regions to
alleviate the aliasing problem, which improved the perfor-
mance on object and event recognition tasks. Hénaff and
Simoncelli [15] proposed L, pooling based on the Nyquist
theorem to avoid aliasing artifacts in learned representa-
tions. Azulay and Weiss [16] pointed out that aliasing
adversely affects the invariance characteristic of DCNNs
and presented two ways to mitigate this problem: (i) anti-
aliasing the intermediate representations and (ii) increasing
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FIGURE 2. Methodology overview. PASS decomposes the down-sampling process into three steps: (i) maximum pooling (stride=1). (ii) position-aware
anti-aliasing. (jii) sub-sampling (stride=2). Note that the above two figures are just 2D illustrations, whereas we conduct 3D operations in practice.

data augmentation. Lee et al. [17] utilized a gate function
to control the mix of maximum and average pooling. The
proposed gated pooling improved both the task performance
and prediction stability. Zhang [1] pointed out that maximum
pooling deteriorates the shift invariance in modern DCNN’s
and proposed to integrate typical maximum pooling with
gaussian blur filters, i.e., MaxBlurPool. The experimental
results showed that MaxBlurPool brings observable perfor-
mance gains on natural image classification while resulting
in significant improvements of model robustness against shift
perturbations. Meanwhile, Singh et al. [18] investigated the
impact of MaxBlurPool in lung tuberculosis detect, showing
MaxBlurPool is beneficial under different detection architec-
ture. Vyas and Liao [19] utilized deep learning based image
segmentation to anti-alias seismic data. However, above
approaches failed to address the spatially adaptive problem
in anti-aliasing approaches, which may lead to inflexible
anti-aliased image representations because of fixed blur fil-
ters. Instead, we introduce position-aware anti-aliasing filters
to address the locality problem in anti-aliasing.

lll. METHODOLOGY

Fig. 2 presents an overview of proposed PASS. In practice,
PASS decomposes the down-sampling process into three sep-
arate steps. First, we perform maximum pooling with stride=1
to preserve the most discriminative representations from the
feature map. Then, we apply position-aware anti-aliasing to
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the result of maximum pooling. Specifically, we first compute
a local attention map based on the local features. Next,
we calculate Hadamard product of the local attention matrix
and a pre-defined gaussian blur filter, whose result is passed
to the blur normalization to ensure it is a low-pass filter.
We then convolve the feature map produced from maximum
pooling (stride=1) with the obtained position-aware blur fil-
ter. Finally, we sub-sample the convolved result to acquire the
down-sampled feature map. In the following, we will describe
each step in details.

Step (i): Non-strided maximum pooling (stride=1).
Most maximum pooling operations employ a stride of 2,
which can be decomposed into two procedures: maximum
pooling with stride=1 (i.e., non-strided maximum pooling)
and sub-sampling with stride=2. Suppose F! € RAxWxDxC
denotes the input features to the /-th layer. Step (i) can be
summarized as follows:

F! = MaxPool, | (F)), 1)

where subscripts {2, 1} denotes the kernel size and stride
of maximum pooling, respectively. The goal of non-strided
maximum pooling is to preserve the discriminative features
in feature maps.

Step (ii): Position-aware anti-aliasing. As aforemen-
tioned, maximum pooling inevitably produces aliasing
effects because of the maximization operation. Although
the obtained features are discriminative, they also adversely
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affect the shift invariance characteristic of DCNNs. In prac-
tice, the learned high-level representations with rich seman-
tics may vary a lot with a small shift in the input [1], which
severely deteriorates the performance and robustness.

‘We mitigate the above problem by applying position-aware
anti-aliasing to the result of non-strided maximum pooling.
Suppose the feature map F' contains N overlapping local
volumes, where N = H x W x D x C denotes the number
of positions in F ! where H, W, D are the three dimensions
of the 3D feature map, and C is the number of channels in
the feature map. We use V! € RK*K>K (o denote the local
volume centered at the i-th position, i € {0, 1,...,N — 1}.
Then, we apply a series of operations, including convolution,
instance normalization [20], and the sigmoid function to Vl.l,
which are expressed as follows:

'Pl.l = Sigmoid—IN—COHV:),’l(Vl‘l)y @)

where subscripts {3, 1} refer to the kernel size and stride
of convolution, respectively. 73,.1 e REXKXK  denotes
the position-wise weight matrix for the fixed blur filter
B € RE*KxK The blur filter B is initialized as the multivari-
ate gaussian distribution, which can be formalized as follows:

k2 4m?

Blj,k,ml=e 27 3)

where j, k, m are indices whose range is [— L%J, L%J]. o is
set to 0.9.

Next, we calculate the Hadamard product of the local
weight matrix 731.1 and blur filter B:

ol =Pl oB, )

where © stands for the Hadamard product operator, and
Qﬁ € REXKXK To ensure Qf is a low-pass filter, we apply
blur normalization to Qf:

W! = BlurNorm(Q)). 5)

In practice, we found the softmax function works well for blur
normalization. However, other normalization methods may
have similar effects.

Then, we apply shift-variant convolution to feature map Fl
by first computing the following dot product of the normal-
ized position-aware blur kernel Wll and the local 3D volume
Vl.l to obtain an anti-aliased value vf at every position,

vi=wWH VY, (6)

and then aggregating the N anti-aliased values, i.e.
{vf), R va_l}, into the anti-aliased feature map
j:l e REXWxDxC

Step (iii): Sub-sampling (stride=2). Finally, we apply
a sub-sampling operation with stride=2 to reduce the spa-
tial dimension of F/, resulting in the output feature map

FI+1 e R%X%X%XC:
FI*1 = Sub-sampling,(F?). @)
F'*+1 serves as the input to the next layer in DCNNs.
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Training loss function. For brain tumor segmentation,
the training loss function is a weighted summation of
the cross-entropy loss and the dice loss. Specifically, the
cross-entropy loss is formulated as:

U Z
1
Lee=—7 DD vilogp;, ®)

u=1 z=1

where Z stands for the number of categories, U denotes the
number of voxels in the predicted segmentation mask, y%
denotes the ground-truth binary label of category z at the
u-th voxel, and p?, is the corresponding predicted probability
of category z.

On the basis of the above notations, the dice loss is formu-
lated as follows:

U Z
2214:1 Zz:] yftpi
U y4 U yA :
Zu:l Zz:l yfi + Zu:l Zz:lpi

The training loss function for segmentation is a weighted
combination of the cross-entropy loss and the dice loss.
The cross-entropy loss measures the pixel-level classification
accuracy while the dice loss alleviates the data imbalance
problem:

‘Cdice =1-

©))

Liotal = ¢ Lce + ﬁﬁdice' (10)

In practice, we set « and B to 0.2 and 1.0, respectively.
For pulmonary nodule detection and cerebral hemorrhage
detection, we only use the cross-entropy loss.

IV. EXPERIMENTS

A. DATASETS

We evaluate PASS on three medical imaging tasks, which
are brain tumor segmentation, pulmonary nodule detection,
and cerebral hemorrhage detection. For brain tumor segmen-
tation, we made experiments on the well-established BraTS-
2018 [3] dataset, which comprises 351 magnetic resonance
imaging (MRI) scans of the human brain. There are three
classes in BraTS-2018: whole tumor (WT), tumor core (TC),
and enhancing tumor (ET). As for pulmonary nodule detec-
tion, we used the LUNA-16 [4] dataset, which consists of
888 annotated thoracic computed tomography (CT) scans.
In LUNA-16, radiologists made a total of 5,855 annotations,
where only nodules >3mm were categorized as relevant
lesions. Each nodule annotation was checked by at least one
radiologist. The in-house dataset for cerebral hemorrhage
detection comprises 1,486 brain CT volumes, which are used
to analyse the cause of cerebral hemorrhage. The evaluation
metrics are dice score, AUC and accuracy on BraTS-2018,
LUNA-16 and the in-house cerebral hemorrhage dataset,
respectively. We repeat each experiment 5 times and report
their average results.

B. BASELINES
We compare PASS against five baselines: maximum pooling
(MaxPool), average pooling (AvgPool), strided convolution
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(StridedConv), gated pooling (GTPool) [17], and MaxBlur-
Pool [1]. GTPool is built on top of maximum and average
pooling, where a gate operation is proposed to control the
mix of maximum and average pooling. MaxBlurPool inserts
a fixed blur filter between non-strided maximum pooling
and sub-sampling. Note that the initial implementations of
GTPool and MaxBlurPool are 2D-based. In our experiments,
we implement 3D versions of them.

C. IMPLEMENTATION DETAILS

We implement PASS using PyTorch [21]. For fairness,
we carefully tune hyper-parameters for each dataset, where
baselines and our PASS share the same training protocol.
We save the checkpoint which produces the lowest loss value
and use it for testing.

1) MODEL DESIGN

For the image segmentation task, 3D U-Net [22] and Atten-
tion U-Net [23] are respectively used as the segmentation
network, where we replace the maximum pooling layer
with different down-sampling layers (i.e., down-sampling
baselines and our PASS) to investigate their impacts. Like-
wise, we replace the maximum pooling layer in 3D ResNet-
18 [24], [25] with different down-sampling layers for the
classification task.

2) BRAIN TUMOR SEGMENTATION (BraTS-2018)

We build segmentation models using 3D U-Net [22] and
Attention U-Net [23]. Attention U-Net is included to
investigate the compatibility between PASS and existing
attention modules in DCNNs. We use Adam (8; = 0.9,
B2 =0.999) as the optimizer, and set the weight decay to le-
5. The initial learning rate is le-3. The input image size is
160 x 160 x 128. We train each model for 300 epochs, where
the learning rate is divided by 10 every 100 epochs. The
data augmentation strategies include random crop, random
rotation, and random flip. The batch size is 4. As mentioned
earlier, the loss function is a weighted combination of the
cross-entropy loss and the dice loss. We randomly split the
dataset into training (70%), validation (10%) and test sets
(20%). Instance normalization is used as the default normal-
ization method.

3) PULMONARY NODULE DETECTION (LUNA-16)

3D ResNet-18 [24], [25] is used as the backbone network
in this task. During the training stage, we apply random
crop around nodules to produce positive samples. The ratio
between the numbers of positive and negative samples is 1:2.
We resize all samples to 48 x 48 x 48. The loss function
is the cross entropy loss. Adam (81=0.9, $,=0.999) is used
as the optimizer, and the initial learning rate is set to le-
4. The weight decay of Adam is le-5. We do not run a
fixed number of training epochs on LUNA-16. Specifically,
we do not stop the training process until the validation loss
does not decrease for up to 30 epochs. The resulting total
number of training epochs is 210. The learning rate is divided
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by 10 every 40 epochs. Random crop, random rotation, and
random flip are employed as data augmentation strategies.
The batch size is 128. We randomly split the dataset into
training (70%), validation (10%) and test sets (20%). Batch
normalization is used as the default normalization method.

4) CEREBRAL HEMORRHAGE DETECTION

As in the task of pulmonary nodule detection, we also adopt
3D ResNet-18 [24], [25] as the backbone. The input image
size is 256 x 256 x 30. The loss function is the cross
entropy loss. The default optimizer is SGD, where we set the
momentum to 0.9 and the weight decay to le-4. The initial
learning rate is le-2. We train each model for 200 epochs,
and the learning rate is divided by 10 every 30 epochs. The
data augmentation strategies include random crop, random
rotation, and random flip. The batch size is 64. We randomly
split the dataset into training (70%), validation (10%) and test
sets (20%). Batch normalization is again used as the default
normalization method.

D. COMPARISONS WITH THE STATE OF THE ART

1) BRAIN TUMOR SEGMENTATION

Experimental results using different down-sampling method-
ologies are presented in Table 1. Comparing MaxPool with
AvgPool, we see that maximum pooling is more advanta-
geous in segmenting the whole tumor (WT) while AvgPool
performs better on the tumor core (TC) and enhancing tumor
(ET). Considering WT is much larger than TC and ET, the
above comparisons demonstrate the aliasing adversely affects
the segmentation of small objects. By comparing Strided-
Conv with MaxPool, we find that these two down-sampling
approaches display similar performance, both of which out-
perform AvgPool on the segmentation of WT while showing
slightly worse results on TC and ET. This phenomenon veri-
fies the conclusion provided by [1], which is StridedConv and
MaxPool have similar characteristics.

For state-of-the-art approaches, GTPool surpasses Max-
Pool, AvgPool, and StridedConv on all three tumor categories
by obvious margins. This is consistent with the superiority
of the gate function used in GTPool, which incorporates
the advantages of MaxPool and AvgPool by mixing their
outputs. Similar to GTPool, MaxBlurPool also integrates
a low-pass filter with maximum pooling for anti-aliasing
while maintaining the discriminative features. Compared to
GTPool, MaxBlurPool achieves consistent improvements on
three tumor classes. When we replace MaxBlurPool with our
PASS, we observe very obvious improvements, especially in
TC and ET which are smaller and thus harder to segment com-
pared to WT. These improvements reflect that the anti-aliased
yet discriminative representations may aid the discovery of
small objects. Besides, we find PASS is complementary to
Attention U-Net even if Attention U-Net employs multiple
attention modules in the network. The reason behind might
be that the attention modules of Attention U-Net mainly lie
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TABLE 1. Brain tumor segmentation on BraTS-2018. WT, TC and ET stand for whole tumor, tumor core and enhancing tumor, respectively. t+ means higher
is better. Best results are bolded. P-value is calculated between the mean dice scores of our PASS and MaxBlurPool.

. Dice (1)
Backbone Down-sampling Noan WT TC BT
MaxPool 82.9 87.5 82.6 785
AvgPool 82.7 86.7 82.8 78.6
StridedConv 82.8 87.6 825 784
3D U-Net GTPool 83.9 88.6 835 79.6
MaxBlurPool 84.4 89.1 84.2 799
Our PASS 86.0 899 86,5 81.7
P-value 6.25¢-3
MaxPool 84.1 88.8 83.6 80.0
AvgPool 84.2 88.3 839 804
StridedConv 84.2 89.0 835 80.2
Attention U-Net GTPool 84.8 899 844 80.2
MaxBlurPool 85.6 90.1 853 814
Our PASS 86.9 90.8 869 829
P-value 7.32e-3

TABLE 2. Pulmonary nodule detection on LUNA-16. 1 means higher is better. The best result is bolded. P-value is calculated between our PASS and

MaxBlurPool.

Down-sampling | MaxPool | AvgPool | StridedConv | GTPool | MaxBlurPool | Our PASS | P-value

AUC (1) | 976 | 972 | 974

7980 | 983 | 993 | 9.34e3

in the decoder branch while our PASS layers are all in the
encoder.

2) PULMONARY NODULE DETECTION

From Table 2, we see that MaxPool performs better than
AvgPool on LUNA-16. This is because the lung nodules
from LUNA are mostly larger than 3 mm, making them
easier to recognize even though there exist severe aliasing
in high-level semantics. Interestingly, we find that GTPool
provides a 0.4-percent improvement over MaxPool, showing
that introducing anti-aliasing is still beneficial even to large
objects. Comparing MaxBlurPool to GTPool, we observe
that these two down-sampling methods achieve compara-
ble performance. Our PASS provides the consistent and
obvious performance improvements over all baselines.
Specifically, PASS surpasses MaxBlurPool by 1 percent.
Considering baselines all display quite high performance
(>97%), we believe about 1-percent improvement is already
convincing enough to validate the effectiveness of proposed
PASS on LUNA-16. The above comparisons show that intro-
ducing position-aware anti-aliasing to down-sampling is ben-
eficial and necessary for pulmonary nodule detection.

3) CEREBRAL HEMORRHAGE DETECTION

Compared to pulmonary nodule detection, detecting cerebral
hemorrhage is harder as the hemorrhagic spot is much smaller
and thus more difficult to find. As shown in Table 3, AvgPool
performs slightly better than MaxPool. This is consistent
with the segmentation performance of ET on BraTS-2018,
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indicating that aliasing may adversely affect the discov-
ery of small objects as the learned high-level semantics is
highly influenced by aliasing. Again, StridedConv displays
similar performance as MaxPool does. By integrating the
advantages of maximum and average pooling, GTPool brings
a 0.5-percent improvement over AvgPool. MaxBlurPool
obviously surpasses GTPool by incorporating an explicit
low-pass filter into maximum pooling. Once again our
PASS surpasses MaxBlurPool by 2 percents, again verify-
ing the advantage of learning position-aware anti-aliased
representations.

4) STATISTICAL SIGNIFICANCE

A t-test validation is conducted on all three datasets. We com-
pute p-values between the best and the second best results.
Specifically, on BraTS-2018, we calculate two p-values based
on mean dice scores of 3D U-Net and Attention U-Net. The
p-values on brain tumor segmentation, pulmonary nodule
detection, and in-house cerebral hemorrhage detection are
6.25e-3 (3D U-Net)/7.32e-3 (Attention U-Net), 9.34e-3, and
3.74e-3, respectively. All p-values are smaller than 0.01,
indicating that performance improvements brought by our
PASS are statistically significant at the 1% significance level.

E. ABLATION STUDIES

In this section, we conduct ablation studies to investigate
the impacts of different modules in PASS. All ablative
experiments were performed on brain tumor segmentation
(BraTS-2018).
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MaxBlurPool Our PASS

FIGURE 3. Visualization of tumor segmentation using 3D U-Net. The whole tumor (WT) includes a union of green, yellow and red labels,
the tumor core (TC) is a union of red and yellow, and the enhancing tumor (ET) is shown in yellow.

Table 4 presents the experimental results. Compared to a 0.5-percent improvement. Next, we investigate the influ-
maximum pooling (row 0), adding the blur filter B brings ence of the convolution and instance normalization layers

VOLUME 10, 2022 100157



IEEE Access

S. T. Yu, H.-Y. Zhou: Position-Aware Anti-Aliasing Filters for 3D Medical Image Analysis

TABLE 3. In-house cerebral hemorrhage detection. 1 means higher is better. The best results is bolded. P-value is calculated between our PASS and

MaxBlurPool.

Down-sampling | MaxPool | AvgPool | StridedConv | GTPool | MaxBlurPool | Our PASS | P-value

Acc. 1) | 876 | 880 | 878

| 885 | 894 | 914 | 3743

TABLE 4. Ablation study on brain tumor segmentation. The baseline is 3D U-Net with maximum pooling (row 0). The evaluation metric is mean dice score.
Conv and IN represent the convolution layer and instance normalization layer, respectively. 13 stands for the blur filter and K denotes the blur kernel size.

Conv+IN  Sigmoid B (K=3) B (K=5) BlurNorm | Mean Dice

0 82.9

1 v 83.4

2 v v 84.0

3 v v v 85.2

4 v v v v 86.0

5 v v v v 85.7

TABLE 5. Task performance under adversarial attack.
| MaxPool  AvgPool  StridedConv ~ MaxBlurPool | our PASS

Pulmonary nodule detection (AUC) 31.7 35.0 29.8 41.5 473
Cerebral hemorrhage detection (Acc.) 25.2 29.1 254 35.7 40.6

(cf. Eq. 2). It is obvious that adding Conv+IN helps slightly
boost the segmentation performance by 0.6 percents (cf row
2 in Table 4). Somewhat surprisingly, from row 3 in Table 4,
we observe over 1-percent performance gain after adding the
sigmoid to Conv+IN, implying the regularization effect of the
sigmoid function to local attentions. Comparing row 3 with
row 1, we observe about 1.8-percent improvement over the
fixed guassian blur filter. This improvement is brought by
the proposed local attention module (without blur normal-
ization), which verifies the necessity of introducing position-
aware anti-aliasing. After adding BlurNorm to local attention,
we further observe 0.8-percent improvement, which clarifies
the effectiveness of blur normalization to ensure the low-pass
property of the learned blur filter. Besides, we also studies
the impact of enlarging the blur kernel size. In row 5, we find
that changing the kernel size from 3 to 5 leads to a slight
performance drop by 0.3 percents.

F. DISCUSSION

In this section, we first visually analyze the segmentation
results of the brain tumor. Then, we add adversarial pertur-
bations to the input and investigate the strength of PASS in
enhancing the model robustness.

1) RESISTANCE TO ADVERSARIAL ATTACK

A black-box attacker [26] is used to evaluate the resistance
to adversarial samples of different down-sampling meth-
ods. From Table 5, we see that our PASS is much more
resistant to adversarial perturbations than different pooling
methods and previous anti-aliasing approaches. For instance,
PASS surpasses MaxBlurPool by 5.8 and 4.9 percents on
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pulmonary nodule detection and cerebral hemorrhage detec-
tion, respectively. These comparisons further validate the
anti-aliasing characteristic of PASS, which helps improve
the model robustness. Additionally, we observe that average
pooling performs better than maximum pooling and strided
convolution, again indicating that anti-aliased features do
help models to resist adversarial perturbations.

2) VISUAL ANALYSIS

We follow [27] to visualize the segmentation results in Fig. 3.
We can see that our PASS greatly reduces small-sized false-
positive predictions. For instance, MaxBlurPool produces
lots of isolated noisy predictions because it cannot adap-
tively anti-alias different contents. In comparison, our PASS
can greatly reduce false-positive segmentations. In addition,
we see that PASS performs the best on the segmentation of
the tumor core, which is consistent with the result reported
in Table 1.

V. CONCLUSION

We propose Position-aware Anti-aliasing Filters (PASS)
to adaptively anti-alias high-level representations with rich
semantics. PASS introduces a position-aware local attention
module to typical maximum pooling. PASS comprises only
one convolutional layer, making it computationally efficient
to replace existing down-sampling methods. Compared to
typical pooling strategies and previous anti-aliasing counter-
parts, our PASS produces observable and consistent improve-
ments on a variety of medical imaging tasks, including brain
tumor segmentation, pulmonary nodule detection, and cere-
bral hemorrhage detection.
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