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ABSTRACT Maximum pooling, average pooling, and strided convolution are three widely adopted
down-sampling approaches in deep learning based 3D medical image analysis. However, these methods
have their own pros and cons. Maximum pooling and strided convolution are advantageous in capturing the
discriminative features but often lead to the aliasing problem. In comparison, average pooling anti-aliases the
representations but produces less discriminative representations. To address such shortcoming, anti-aliased
maximum pooling (MaxBlurPool) uses low-pass filters to mitigate the aliasing effect. However, these filters
are designed to be fixed, making it difficult to adapt to various spatial positions. In this paper, we propose
position-aware anti-aliasing filters (PASS) to learn spatially adaptive low-pass filters. Compared tomaximum
pooling, PASS integrates a one-layer local attention module, whose computational cost is minimal. Thus,
PASS can be incorporated into existing network architecture with minor efforts. In comparison to previous
anti-aliased counterparts, PASS brings consistent and clear performance gains on brain tumor segmentation,
pulmonary nodule detection, and cerebral hemorrhage detection. Besides, PASS also greatly improves the
model robustness under adversarial attack.

14 INDEX TERMS Down-sampling, anti-aliasing, attention mechanism, medical imaging.

I. INTRODUCTION15

Down-sampling has been a fundamental component of digital16

signal processing. Based on this knowledge, modern deep17

convolutional neural networks (DCNNs) employ multiple18

down-sampling layers to perform rate reduction on images,19

where the spatial resolution and number of channels of fea-20

ture maps is gradually reduced and increased, respectively.21

With this compression process, we can obtain semantically22

rich representations from the high-level layers of DCNNs,23

which are often more generalizable than low-level features.24

In 3D medical image analysis with CNNs, maximum pooling25

and average pooling are two widely adopted down-sampling26

methods. Specifically, maximum pooling aims to summarize27

the most activated presence of features by calculating the28

maximum value within a fixed small region. In comparison,29

average pooling aggregates the average values of different30

feature patches. As another option, convolution can also be31

used to conduct down-sampling, where we increase the stride32
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of convolution. The resulting down-sampling convolution 33

operation is often named as strided convolution. 34

As aforementioned, maximum and average pooling adopt 35

two different ways to implement down-sampling, and they 36

too face different problems accordingly. Maximum pool- 37

ing captures the most predominant parts, which makes the 38

produced features (cf. Fig. 1b) discriminative. Nonetheless, 39

maximum pooling layers in DCNNs inevitably result in alias- 40

ing results because of the preserved high-frequency signals. 41

This characteristic makes high-level semantic representations 42

sensitive to small shifts [1]. In comparison, average pooling 43

is anti-aliased, and thus helps preserve the shift invariance in 44

DCNNs. However, the outputs of average pooling are often 45

less discriminative compared to maximum pooling, as shown 46

in Fig. 1c. As a result, the performance of average pooling 47

is often inferior to that of maximum pooling in a range of 48

tasks [2]. For strided convolution, Zhang [1] pointed out that 49

it also suffers from the same issue as maximum pooling does. 50

On the other hand, applying low-pass filtering is the 51

default solution to anti-alias in traditional signal processing. 52

Inspired by such phenomena, anti-alias maximum pooling 53
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FIGURE 1. Processed results using maximum pooling (MaxPool), average pooling (AvgPool), and our methodology (PASS).

(i.e., MaxBlurPool) [1] incorporated gaussian blur into54

archetypical maximum pooling, leading to enhanced shift55

invariance and improved task performance. However, the56

blur filters in MaxBlurPool are designed to be fixed across57

different spatial positions, resulting in the inflexibility to han-58

dle various contents. To mitigate this problem, we introduce59

position-aware anti-aliasing filters (PASS) to learn adaptive60

blur filters based on local contents. Compared to MaxBlur-61

Pool, PASS introduces a plug-and-play local attention mod-62

ule ahead of low-pass filters to adaptively change filter values63

based on local input features. The proposed attention module64

comprises only one convolutional layer and its computational65

cost is minimal. FromFig. 1d, we see that our PASS integrates66

the advantages of maximum and average pooling, producing67

anti-aliased and discriminative representations.68

We validate the effectiveness of PASS on a range of69

medical imaging tasks, which include brain tumor seg-70

mentation (BraTS [3] dataset), pulmonary nodule detec-71

tion (LUNA [4]), and cerebral hemorrhage detection (this72

is an in-house dataset). In experiments, we show that the73

proposed PASS dramatically boosts the performance over74

both typical pooling approaches (maximum pooling, average75

pooling, and strided convolution) and previous anti-aliased76

methods by obvious margins. Here are some noteworthy77

results. Compared to maximum pooling, our PASS boosts the78

overall performance by 3.1 and 3.8 percents on brain tumor79

segmentation and cerebral hemorrhage detection, respec-80

tively. Moreover, PASS consistently outperforms previous81

anti-aliasing counterparts by over 1 percent on all three med-82

ical imaging tasks, demonstrating the generalization ability83

of PASS.84

To summarize, our paper has the following core85

contributions:86

1) We introduce a new down-sampling component, named87

PASS, to adaptively anti-alias medical image represen-88

tations by taking into account the local contents in 3D89

volumes with a local attention module.90

2) PASS is computationally efficient, including only one91

convolution layer. In practice, PASS can be easily92

integrated into existing 3D medical imaging models as 93

a plug-and-play component. 94

3) We perform extensive experiments on various med- 95

ical imaging tasks to validate the effectiveness of 96

PASS. The experimental results show that PASS can 97

outperform typical pooling schemes and advanced 98

anti-aliasing methodologies by observable and consis- 99

tent margins. 100

II. RELATED WORK 101

It is common practice to apply low-pass filtering before 102

down-sampling to avoid aliasing in digital signal processing. 103

Inspired by this operation, the initial convolutional neural 104

network [5] proposed to use average pooling for down- 105

sampling. However, Scherer et al. [2] implemented different 106

sub-sampling methods on a variety of tasks and drew a 107

conclusion:maximumpooling operation significantly outper- 108

forms other sub-sampling operations. Consequently, modern 109

DCNNs [6], [7], [8], [9] mostly adopted maximum pooling 110

as the default pooling methodology in the network archi- 111

tecture for performance boosts while ignoring the impact 112

of the aliasing emerged in maximum pooling. On the other 113

hand, anti-aliasing has been an important direction in medical 114

image analysis. Nonetheless, almost all related work [10], 115

[11], [12], [13] focused on anti-aliasing the input images 116

instead of latent representations, prevent their incorporation 117

into modern DCNNs. 118

There are a number of papers investigating how to mitigate 119

the aliasing effect produced by maximum pooling. Mali- 120

nowski et al. [14] introduced a smoothness regularization 121

term that in conjuncture with learnable pooling regions to 122

alleviate the aliasing problem, which improved the perfor- 123

mance on object and event recognition tasks. Hénaff and 124

Simoncelli [15] proposed L2 pooling based on the Nyquist 125

theorem to avoid aliasing artifacts in learned representa- 126

tions. Azulay and Weiss [16] pointed out that aliasing 127

adversely affects the invariance characteristic of DCNNs 128

and presented two ways to mitigate this problem: (i) anti- 129

aliasing the intermediate representations and (ii) increasing 130
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FIGURE 2. Methodology overview. PASS decomposes the down-sampling process into three steps: (i) maximum pooling (stride=1). (ii) position-aware
anti-aliasing. (iii) sub-sampling (stride=2). Note that the above two figures are just 2D illustrations, whereas we conduct 3D operations in practice.

data augmentation. Lee et al. [17] utilized a gate function131

to control the mix of maximum and average pooling. The132

proposed gated pooling improved both the task performance133

and prediction stability. Zhang [1] pointed out that maximum134

pooling deteriorates the shift invariance in modern DCNNs135

and proposed to integrate typical maximum pooling with136

gaussian blur filters, i.e., MaxBlurPool. The experimental137

results showed that MaxBlurPool brings observable perfor-138

mance gains on natural image classification while resulting139

in significant improvements of model robustness against shift140

perturbations. Meanwhile, Singh et al. [18] investigated the141

impact of MaxBlurPool in lung tuberculosis detect, showing142

MaxBlurPool is beneficial under different detection architec-143

ture. Vyas and Liao [19] utilized deep learning based image144

segmentation to anti-alias seismic data. However, above145

approaches failed to address the spatially adaptive problem146

in anti-aliasing approaches, which may lead to inflexible147

anti-aliased image representations because of fixed blur fil-148

ters. Instead, we introduce position-aware anti-aliasing filters149

to address the locality problem in anti-aliasing.150

III. METHODOLOGY151

Fig. 2 presents an overview of proposed PASS. In practice,152

PASS decomposes the down-sampling process into three sep-153

arate steps. First, we performmaximumpoolingwith stride=1154

to preserve the most discriminative representations from the155

feature map. Then, we apply position-aware anti-aliasing to156

the result of maximumpooling. Specifically, we first compute 157

a local attention map based on the local features. Next, 158

we calculate Hadamard product of the local attention matrix 159

and a pre-defined gaussian blur filter, whose result is passed 160

to the blur normalization to ensure it is a low-pass filter. 161

We then convolve the feature map produced from maximum 162

pooling (stride=1) with the obtained position-aware blur fil- 163

ter. Finally, we sub-sample the convolved result to acquire the 164

down-sampled featuremap. In the following, wewill describe 165

each step in details. 166

Step (i): Non-strided maximum pooling (stride=1). 167

Most maximum pooling operations employ a stride of 2, 168

which can be decomposed into two procedures: maximum 169

pooling with stride=1 (i.e., non-strided maximum pooling) 170

and sub-sampling with stride=2. Suppose F l
∈ RH×W×D×C

171

denotes the input features to the l-th layer. Step (i) can be 172

summarized as follows: 173

F̃ l
= MaxPool2,1(F l), (1) 174

where subscripts {2, 1} denotes the kernel size and stride 175

of maximum pooling, respectively. The goal of non-strided 176

maximum pooling is to preserve the discriminative features 177

in feature maps. 178

Step (ii): Position-aware anti-aliasing. As aforemen- 179

tioned, maximum pooling inevitably produces aliasing 180

effects because of the maximization operation. Although 181

the obtained features are discriminative, they also adversely 182
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affect the shift invariance characteristic of DCNNs. In prac-183

tice, the learned high-level representations with rich seman-184

tics may vary a lot with a small shift in the input [1], which185

severely deteriorates the performance and robustness.186

Wemitigate the above problem by applying position-aware187

anti-aliasing to the result of non-strided maximum pooling.188

Suppose the feature map F̃ l contains N overlapping local189

volumes, where N = H × W × D × C denotes the number190

of positions in F̃ l , where H , W , D are the three dimensions191

of the 3D feature map, and C is the number of channels in192

the feature map. We use V li ∈ RK×K×K to denote the local193

volume centered at the i-th position, i ∈ {0, 1, . . . ,N − 1}.194

Then, we apply a series of operations, including convolution,195

instance normalization [20], and the sigmoid function to V li ,196

which are expressed as follows:197

P l
i = Sigmoid-IN-Conv3,1(V li ), (2)198

where subscripts {3, 1} refer to the kernel size and stride199

of convolution, respectively. P l
i ∈ RK×K×K denotes200

the position-wise weight matrix for the fixed blur filter201

B ∈ RK×K×K . The blur filter B is initialized as the multivari-202

ate gaussian distribution, which can be formalized as follows:203

B[j, k,m] = e−
j2+k2+m2

2σ3 , (3)204

where j, k,m are indices whose range is [−bK2 c, b
K
2 c]. σ is205

set to 0.9.206

Next, we calculate the Hadamard product of the local207

weight matrix P l
i and blur filter B:208

Ql
i = P l

i � B, (4)209

where � stands for the Hadamard product operator, and210

Ql
i ∈ RK×K×K . To ensure Ql

i is a low-pass filter, we apply211

blur normalization to Ql
i :212

W l
i = BlurNorm(Ql

i). (5)213

In practice, we found the softmax functionworks well for blur214

normalization. However, other normalization methods may215

have similar effects.216

Then, we apply shift-variant convolution to feature map F̃ l
217

by first computing the following dot product of the normal-218

ized position-aware blur kernel W l
i and the local 3D volume219

V li to obtain an anti-aliased value vli at every position,220

vli =W l
i · V

l
i , (6)221

and then aggregating the N anti-aliased values, i.e.222

{vl0, . . . , v
l
N−1}, into the anti-aliased feature map223

F̂ l
∈ RH×W×D×C .224

Step (iii): Sub-sampling (stride=2). Finally, we apply225

a sub-sampling operation with stride=2 to reduce the spa-226

tial dimension of F̂ l , resulting in the output feature map227

F l+1
∈ R

H
2 ×

W
2 ×

D
2 ×C :228

F l+1
= Sub-sampling2(F̂ l). (7)229

F l+1 serves as the input to the next layer in DCNNs.230

Training loss function. For brain tumor segmentation, 231

the training loss function is a weighted summation of 232

the cross-entropy loss and the dice loss. Specifically, the 233

cross-entropy loss is formulated as: 234

Lce = −
1
U

U∑
u=1

Z∑
z=1

yzu log p
z
u, (8) 235

where Z stands for the number of categories, U denotes the 236

number of voxels in the predicted segmentation mask, yzu 237

denotes the ground-truth binary label of category z at the 238

u-th voxel, and pzu is the corresponding predicted probability 239

of category z. 240

On the basis of the above notations, the dice loss is formu- 241

lated as follows: 242

Ldice = 1−
2

∑U
u=1

∑Z
z=1 y

z
up
z
u∑U

u=1
∑Z

z=1 y
z
u +

∑U
u=1

∑Z
z=1 p

z
u
. (9) 243

The training loss function for segmentation is a weighted 244

combination of the cross-entropy loss and the dice loss. 245

The cross-entropy loss measures the pixel-level classification 246

accuracy while the dice loss alleviates the data imbalance 247

problem: 248

Ltotal = αLce + βLdice. (10) 249

In practice, we set α and β to 0.2 and 1.0, respectively. 250

For pulmonary nodule detection and cerebral hemorrhage 251

detection, we only use the cross-entropy loss. 252

IV. EXPERIMENTS 253

A. DATASETS 254

We evaluate PASS on three medical imaging tasks, which 255

are brain tumor segmentation, pulmonary nodule detection, 256

and cerebral hemorrhage detection. For brain tumor segmen- 257

tation, we made experiments on the well-established BraTS- 258

2018 [3] dataset, which comprises 351 magnetic resonance 259

imaging (MRI) scans of the human brain. There are three 260

classes in BraTS-2018: whole tumor (WT), tumor core (TC), 261

and enhancing tumor (ET). As for pulmonary nodule detec- 262

tion, we used the LUNA-16 [4] dataset, which consists of 263

888 annotated thoracic computed tomography (CT) scans. 264

In LUNA-16, radiologists made a total of 5,855 annotations, 265

where only nodules ≥3mm were categorized as relevant 266

lesions. Each nodule annotation was checked by at least one 267

radiologist. The in-house dataset for cerebral hemorrhage 268

detection comprises 1,486 brain CT volumes, which are used 269

to analyse the cause of cerebral hemorrhage. The evaluation 270

metrics are dice score, AUC and accuracy on BraTS-2018, 271

LUNA-16 and the in-house cerebral hemorrhage dataset, 272

respectively. We repeat each experiment 5 times and report 273

their average results. 274

B. BASELINES 275

We compare PASS against five baselines: maximum pooling 276

(MaxPool), average pooling (AvgPool), strided convolution 277
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(StridedConv), gated pooling (GTPool) [17], and MaxBlur-278

Pool [1]. GTPool is built on top of maximum and average279

pooling, where a gate operation is proposed to control the280

mix of maximum and average pooling. MaxBlurPool inserts281

a fixed blur filter between non-strided maximum pooling282

and sub-sampling. Note that the initial implementations of283

GTPool and MaxBlurPool are 2D-based. In our experiments,284

we implement 3D versions of them.285

C. IMPLEMENTATION DETAILS286

We implement PASS using PyTorch [21]. For fairness,287

we carefully tune hyper-parameters for each dataset, where288

baselines and our PASS share the same training protocol.289

We save the checkpoint which produces the lowest loss value290

and use it for testing.291

1) MODEL DESIGN292

For the image segmentation task, 3D U-Net [22] and Atten-293

tion U-Net [23] are respectively used as the segmentation294

network, where we replace the maximum pooling layer295

with different down-sampling layers (i.e., down-sampling296

baselines and our PASS) to investigate their impacts. Like-297

wise, we replace the maximum pooling layer in 3D ResNet-298

18 [24], [25] with different down-sampling layers for the299

classification task.300

2) BRAIN TUMOR SEGMENTATION (BraTS-2018)301

We build segmentation models using 3D U-Net [22] and302

Attention U-Net [23]. Attention U-Net is included to303

investigate the compatibility between PASS and existing304

attention modules in DCNNs. We use Adam (β1 = 0.9,305

β2 = 0.999) as the optimizer, and set the weight decay to 1e-306

5. The initial learning rate is 1e-3. The input image size is307

160× 160× 128.We train each model for 300 epochs, where308

the learning rate is divided by 10 every 100 epochs. The309

data augmentation strategies include random crop, random310

rotation, and random flip. The batch size is 4. As mentioned311

earlier, the loss function is a weighted combination of the312

cross-entropy loss and the dice loss. We randomly split the313

dataset into training (70%), validation (10%) and test sets314

(20%). Instance normalization is used as the default normal-315

ization method.316

3) PULMONARY NODULE DETECTION (LUNA-16)317

3D ResNet-18 [24], [25] is used as the backbone network318

in this task. During the training stage, we apply random319

crop around nodules to produce positive samples. The ratio320

between the numbers of positive and negative samples is 1:2.321

We resize all samples to 48 × 48 × 48. The loss function322

is the cross entropy loss. Adam (β1=0.9, β2=0.999) is used323

as the optimizer, and the initial learning rate is set to 1e-324

4. The weight decay of Adam is 1e-5. We do not run a325

fixed number of training epochs on LUNA-16. Specifically,326

we do not stop the training process until the validation loss327

does not decrease for up to 30 epochs. The resulting total328

number of training epochs is 210. The learning rate is divided329

by 10 every 40 epochs. Random crop, random rotation, and 330

random flip are employed as data augmentation strategies. 331

The batch size is 128. We randomly split the dataset into 332

training (70%), validation (10%) and test sets (20%). Batch 333

normalization is used as the default normalization method. 334

4) CEREBRAL HEMORRHAGE DETECTION 335

As in the task of pulmonary nodule detection, we also adopt 336

3D ResNet-18 [24], [25] as the backbone. The input image 337

size is 256 × 256 × 30. The loss function is the cross 338

entropy loss. The default optimizer is SGD, where we set the 339

momentum to 0.9 and the weight decay to 1e-4. The initial 340

learning rate is 1e-2. We train each model for 200 epochs, 341

and the learning rate is divided by 10 every 30 epochs. The 342

data augmentation strategies include random crop, random 343

rotation, and random flip. The batch size is 64. We randomly 344

split the dataset into training (70%), validation (10%) and test 345

sets (20%). Batch normalization is again used as the default 346

normalization method. 347

D. COMPARISONS WITH THE STATE OF THE ART 348

1) BRAIN TUMOR SEGMENTATION 349

Experimental results using different down-sampling method- 350

ologies are presented in Table 1. Comparing MaxPool with 351

AvgPool, we see that maximum pooling is more advanta- 352

geous in segmenting the whole tumor (WT) while AvgPool 353

performs better on the tumor core (TC) and enhancing tumor 354

(ET). Considering WT is much larger than TC and ET, the 355

above comparisons demonstrate the aliasing adversely affects 356

the segmentation of small objects. By comparing Strided- 357

Conv with MaxPool, we find that these two down-sampling 358

approaches display similar performance, both of which out- 359

perform AvgPool on the segmentation of WT while showing 360

slightly worse results on TC and ET. This phenomenon veri- 361

fies the conclusion provided by [1], which is StridedConv and 362

MaxPool have similar characteristics. 363

For state-of-the-art approaches, GTPool surpasses Max- 364

Pool, AvgPool, and StridedConv on all three tumor categories 365

by obvious margins. This is consistent with the superiority 366

of the gate function used in GTPool, which incorporates 367

the advantages of MaxPool and AvgPool by mixing their 368

outputs. Similar to GTPool, MaxBlurPool also integrates 369

a low-pass filter with maximum pooling for anti-aliasing 370

while maintaining the discriminative features. Compared to 371

GTPool, MaxBlurPool achieves consistent improvements on 372

three tumor classes. When we replace MaxBlurPool with our 373

PASS, we observe very obvious improvements, especially in 374

TC andETwhich are smaller and thus harder to segment com- 375

pared toWT. These improvements reflect that the anti-aliased 376

yet discriminative representations may aid the discovery of 377

small objects. Besides, we find PASS is complementary to 378

Attention U-Net even if Attention U-Net employs multiple 379

attention modules in the network. The reason behind might 380

be that the attention modules of Attention U-Net mainly lie 381
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TABLE 1. Brain tumor segmentation on BraTS-2018. WT, TC and ET stand for whole tumor, tumor core and enhancing tumor, respectively. ↑ means higher
is better. Best results are bolded. P-value is calculated between the mean dice scores of our PASS and MaxBlurPool.

TABLE 2. Pulmonary nodule detection on LUNA-16. ↑ means higher is better. The best result is bolded. P-value is calculated between our PASS and
MaxBlurPool.

in the decoder branch while our PASS layers are all in the382

encoder.383

2) PULMONARY NODULE DETECTION384

From Table 2, we see that MaxPool performs better than385

AvgPool on LUNA-16. This is because the lung nodules386

from LUNA are mostly larger than 3 mm, making them387

easier to recognize even though there exist severe aliasing388

in high-level semantics. Interestingly, we find that GTPool389

provides a 0.4-percent improvement over MaxPool, showing390

that introducing anti-aliasing is still beneficial even to large391

objects. Comparing MaxBlurPool to GTPool, we observe392

that these two down-sampling methods achieve compara-393

ble performance. Our PASS provides the consistent and394

obvious performance improvements over all baselines.395

Specifically, PASS surpasses MaxBlurPool by 1 percent.396

Considering baselines all display quite high performance397

(>97%), we believe about 1-percent improvement is already398

convincing enough to validate the effectiveness of proposed399

PASS on LUNA-16. The above comparisons show that intro-400

ducing position-aware anti-aliasing to down-sampling is ben-401

eficial and necessary for pulmonary nodule detection.402

3) CEREBRAL HEMORRHAGE DETECTION403

Compared to pulmonary nodule detection, detecting cerebral404

hemorrhage is harder as the hemorrhagic spot is much smaller405

and thus more difficult to find. As shown in Table 3, AvgPool406

performs slightly better than MaxPool. This is consistent407

with the segmentation performance of ET on BraTS-2018,408

indicating that aliasing may adversely affect the discov- 409

ery of small objects as the learned high-level semantics is 410

highly influenced by aliasing. Again, StridedConv displays 411

similar performance as MaxPool does. By integrating the 412

advantages of maximum and average pooling, GTPool brings 413

a 0.5-percent improvement over AvgPool. MaxBlurPool 414

obviously surpasses GTPool by incorporating an explicit 415

low-pass filter into maximum pooling. Once again our 416

PASS surpasses MaxBlurPool by 2 percents, again verify- 417

ing the advantage of learning position-aware anti-aliased 418

representations. 419

4) STATISTICAL SIGNIFICANCE 420

A t-test validation is conducted on all three datasets. We com- 421

pute p-values between the best and the second best results. 422

Specifically, on BraTS-2018, we calculate two p-values based 423

on mean dice scores of 3D U-Net and Attention U-Net. The 424

p-values on brain tumor segmentation, pulmonary nodule 425

detection, and in-house cerebral hemorrhage detection are 426

6.25e-3 (3D U-Net)/7.32e-3 (Attention U-Net), 9.34e-3, and 427

3.74e-3, respectively. All p-values are smaller than 0.01, 428

indicating that performance improvements brought by our 429

PASS are statistically significant at the 1% significance level. 430

E. ABLATION STUDIES 431

In this section, we conduct ablation studies to investigate 432

the impacts of different modules in PASS. All ablative 433

experiments were performed on brain tumor segmentation 434

(BraTS-2018). 435
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FIGURE 3. Visualization of tumor segmentation using 3D U-Net. The whole tumor (WT) includes a union of green, yellow and red labels,
the tumor core (TC) is a union of red and yellow, and the enhancing tumor (ET) is shown in yellow.

Table 4 presents the experimental results. Compared to436

maximum pooling (row 0), adding the blur filter B brings437

a 0.5-percent improvement. Next, we investigate the influ- 438

ence of the convolution and instance normalization layers 439
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TABLE 3. In-house cerebral hemorrhage detection. ↑ means higher is better. The best results is bolded. P-value is calculated between our PASS and
MaxBlurPool.

TABLE 4. Ablation study on brain tumor segmentation. The baseline is 3D U-Net with maximum pooling (row 0). The evaluation metric is mean dice score.
Conv and IN represent the convolution layer and instance normalization layer, respectively. B stands for the blur filter and K denotes the blur kernel size.

TABLE 5. Task performance under adversarial attack.

(cf. Eq. 2). It is obvious that adding Conv+IN helps slightly440

boost the segmentation performance by 0.6 percents (cf row441

2 in Table 4). Somewhat surprisingly, from row 3 in Table 4,442

we observe over 1-percent performance gain after adding the443

sigmoid to Conv+IN, implying the regularization effect of the444

sigmoid function to local attentions. Comparing row 3 with445

row 1, we observe about 1.8-percent improvement over the446

fixed guassian blur filter. This improvement is brought by447

the proposed local attention module (without blur normal-448

ization), which verifies the necessity of introducing position-449

aware anti-aliasing. After adding BlurNorm to local attention,450

we further observe 0.8-percent improvement, which clarifies451

the effectiveness of blur normalization to ensure the low-pass452

property of the learned blur filter. Besides, we also studies453

the impact of enlarging the blur kernel size. In row 5, we find454

that changing the kernel size from 3 to 5 leads to a slight455

performance drop by 0.3 percents.456

F. DISCUSSION457

In this section, we first visually analyze the segmentation458

results of the brain tumor. Then, we add adversarial pertur-459

bations to the input and investigate the strength of PASS in460

enhancing the model robustness.461

1) RESISTANCE TO ADVERSARIAL ATTACK462

A black-box attacker [26] is used to evaluate the resistance463

to adversarial samples of different down-sampling meth-464

ods. From Table 5, we see that our PASS is much more465

resistant to adversarial perturbations than different pooling466

methods and previous anti-aliasing approaches. For instance,467

PASS surpasses MaxBlurPool by 5.8 and 4.9 percents on468

pulmonary nodule detection and cerebral hemorrhage detec- 469

tion, respectively. These comparisons further validate the 470

anti-aliasing characteristic of PASS, which helps improve 471

the model robustness. Additionally, we observe that average 472

pooling performs better than maximum pooling and strided 473

convolution, again indicating that anti-aliased features do 474

help models to resist adversarial perturbations. 475

2) VISUAL ANALYSIS 476

We follow [27] to visualize the segmentation results in Fig. 3. 477

We can see that our PASS greatly reduces small-sized false- 478

positive predictions. For instance, MaxBlurPool produces 479

lots of isolated noisy predictions because it cannot adap- 480

tively anti-alias different contents. In comparison, our PASS 481

can greatly reduce false-positive segmentations. In addition, 482

we see that PASS performs the best on the segmentation of 483

the tumor core, which is consistent with the result reported 484

in Table 1. 485

V. CONCLUSION 486

We propose Position-aware Anti-aliasing Filters (PASS) 487

to adaptively anti-alias high-level representations with rich 488

semantics. PASS introduces a position-aware local attention 489

module to typical maximum pooling. PASS comprises only 490

one convolutional layer, making it computationally efficient 491

to replace existing down-sampling methods. Compared to 492

typical pooling strategies and previous anti-aliasing counter- 493

parts, our PASS produces observable and consistent improve- 494

ments on a variety of medical imaging tasks, including brain 495

tumor segmentation, pulmonary nodule detection, and cere- 496

bral hemorrhage detection. 497
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