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ABSTRACT Contrast enhancement is required in many applications. Many studies have been conducted to
perform contrast enhancement automatically, but most of them do not consider various personal preferences
for contrast. We propose an edge-aware interactive contrast enhancement algorithm to enable a user to adjust
image contrast easily according to his or her preference. A user provides a parameter for controlling the global
brightness and two types of scribbles to darken or brighten local regions in an image. Then, the proposed
algorithm generates an edge-aware mask by propagating the scribbles to nearby regions and restores an
enhanced image through a neural network, called e-IceNet. The user can provide annotations iteratively
until he or she obtains a desired image. We train e-IceNet on guidance images to yield reliable results for
diverse input images. We also propose two differentiable losses to train e-IceNet effectively and reliably.
Extensive experiments demonstrate that the proposed e-IceNet is capable of allowing users to enhance images
satisfactorily with simple scribbles, as well as producing enhanced images automatically.
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INDEX TERMS Interactive contrast enhancement, personalized contrast enhancement, convolutional neural
networks, multiple random walkers, guidance images.

I. INTRODUCTION14

Nowadays people take many digital photographs casually,15

but uncontrolled environments often cause photographs with16

low dynamic ranges. Especially, abnormal lighting condi-17

tions would distort colors and textures considerably, thereby18

degrading the visual experience. Contrast enhancement (CE)19

can alleviate these problems, and its performance can be20

improved if user interactions are allowed. For example, Pho-21

toshop provides interactive tools to adjust contrast according22

to personal preferences, but using such tools takes much23

effort.24

A lot of researches have been carried out to perform CE25

automatically. Recently, with the success of convolutional26

neural networks (CNNs) in the field of low-level vision [1],27

[2], [3], [4], various CNN-based CE algorithms [5], [6], [7],28

[8], [9], [10] have been developed. They learn mappings from29

low contrast images to high contrast ones using big training30

datasets. However, CE is a non-trivial task, partly due to31

the non-linear relationship between input and output images.32

Furthermore, it makes CE even more challenging that people33
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have different preferences for images; CE is a subjective 34

process. 35

In this regard, the conventional algorithms [5], [6], [7], 36

[8], [9], [10] have the limitation that they cannot sat- 37

isfy various personal preferences. To overcome it, Ko and 38

Kim [11] recently developed the IceNet algorithm, which 39

enhances image contrast after accepting user annotations. 40

However, their algorithm demands meticulous interactions: 41

users should pay attention to the boundaries of regions for 42

controlling brightness. Otherwise, unwanted results may be 43

obtained as illustrated in Figures 1(b) and 1(d). 44

To overcome this problem, we develop an edge-aware 45

interaction system, which allows a user to specify desired 46

regions roughly without painstaking annotations but can gen- 47

erate accurate masks, as shown in Figures 1(c) and 1(e). 48

Specifically, a user provides a parameter for controlling 49

the global brightness and two types of scribbles to darken 50

or brighten local regions in an image. Since the scribbles 51

represent only rough locations for controlling brightness, 52

we propagate them to nearby regions in an edge-aware man- 53

ner, by employing multiple randomwalkers (MRW) [12], and 54

generate accuratemasks. Then, we restore an enhanced image 55

through the proposed edge-aware interactive CE network 56
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FIGURE 1. Comparison of e-IceNet with the conventional algorithm [11].
An image with scribbles in (a) is used as input: red and blue scribbles are
for darkening and brightening ones, respectively. Using the scribbles, in
(b) and (c), the masks are generated by [11] and e-IceNet. Then, in (d) and
(e), the enhanced images are obtained by [11] and e-IceNet.

(e-IceNet), which consists of the multi-scale feature fusion57

(MFF), local feature extraction (LFE), and gamma estimation58

(GME) modules. For interactive CE, we construct guidance59

images from low contrast images. By employing the guid-60

ance images, we can provide more reliable results than con-61

ventional interactive CE methods. In other words, we train62

e-IceNet using those guidance images to yield reliable results63

for diverse images. It is worth pointing out that e-IceNet64

also can produce an enhanced image automatically, which65

can serve as a basis for further interactive adjustments if66

so desired. Extensive experiments show that the proposed67

e-IceNet not only provides users with satisfactory images but68

also outperforms the state-of-the-art algorithms qualitatively69

and quantitatively. In particular, the proposed algorithm is70

preferred to existing algorithms three times more frequently71

in subjective tests. It is strongly recommended to watch the72

accompanying video for a real-time demo of e-IceNet.73

To summarize, this work has three main contributions:74

• We develop the edge-aware interactive CE system75

to enable users to obtain satisfactory images without76

requiring meticulous annotations.77

• We propose an effective mask generation scheme that78

converts rough user scribbles into accurate masks based79

on the MRW simulation.80

• We also propose e-IceNet, composed of the MFF, LFE,81

and GME modules, and train it on guidance images to82

yield reliable results for diverse input images.83

II. RELATED WORK84

The objectives of enhancement are closely related but dif-85

ferent between CE, color enhancement [13], dehazing [14],86

[15], and detail enhancement [16], [17]. This section briefly87

reviews CE techniques.88

Early CE methods improve the contrast of images using89

transformation functions or based on retinex theory. There are90

various transformation functions [18], [19], [20], [21], [22], 91

amongwhich gamma correction and logarithmic mapping are 92

well-known parametric curves for mapping input pixel values 93

to output ones. On the other hand, some CE algorithms [23], 94

[24], [25], [26] have been developed based on retinex the- 95

ory [27]. These conventional methods produce promising 96

results. However, their performance usually depends on care- 97

ful parameter tuning. It is difficult to find reliable parameters 98

effectively for diverse input images. To address this problem, 99

algorithms based on edge-preserving filters [28], [29], [30] 100

have been proposed, but they take a long processing time to 101

construct optimized filters [28]. 102

The release of big paired datasets, containing pairs of 103

low and high contrast images, has enabled CNN-based CE 104

methods [5], [6], [7], [8], [9], [10] to yield impressive results. 105

In the paired datasets, each pair is captured from the same 106

scene, or a low contrast image is synthesized from a high 107

contrast one. However, it is hard to capture the same scene 108

twice because of moving objects, or synthesized low contrast 109

images may not be photo-realistic. Therefore, by employing 110

adversarial losses [1], some methods [31], [32], [33] train 111

the CE networks using unpaired datasets, consisting of low 112

and high contrast images of different scenes, but they should 113

select unpaired images carefully. To avoid this cumbersome 114

selection process, Guo et al. [34] proposed a self-supervised 115

learning scheme that needs only low contrast images for 116

training. However, all these CNN methods are not adaptive, 117

so they cannot satisfy diverse user preferences. 118

To meet various preferences, professional software pro- 119

vides CE tools, but using these tools takes a lot of effort 120

and training. To reduce such effort, simple interactive meth- 121

ods have been developed. Stoel et al. [35] proposed an inter- 122

active histogram equalization scheme for medical images. 123

Their method allows a user to specify a region of interest 124

(RoI) and applies the equalization to the region. Grund- 125

land and Dodgson [36] proposed an interactive tone adjust- 126

ment method. When a user selects key tones on an image, 127

it preserves those tones but adjusts the other tones, while 128

maintaining the overall tonal balance. Lischinski et al. [37] 129

and Dodgson et al. [38] also proposed interactive methods, 130

in which a user specifies RoIs for local CE. Since these inter- 131

active methods are based on traditional CE methods, their 132

performance depends on careful parameter tuning. Recently, 133

Ko and Kim [11] proposed the first CNN-based interactive 134

CE algorithm allowing a user to scribble local regions for CE, 135

but their algorithm demands meticulous interactions. 136

III. PROPOSED ALGORITHM 137

The proposed algorithm yields an enhanced image according 138

to simple user annotations, as shown in Figure 2. By inspect- 139

ing an image I, a user provides an exposure level η for 140

controlling the global brightness and two types of scribbles: 141

blue and red scribbles, respectively, mean that the user wants 142

to brighten and darken the corresponding local regions. Then, 143

the proposed algorithm generates an edge-aware maskM and 144

reconstructs an enhanced image J through e-IceNet. 145
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FIGURE 2. Overview of the proposed algorithm. A user provides an
exposure level η and scribbles: red or blue scribbles are for darkening or
brightening local regions in an image I, respectively. Given the
annotations, the proposed algorithm generates an edge-aware mask M
and then reconstructs an image J through e-IceNet. Please see the
supplemental video for a real-time demo of the interactive enhancement.

A. MASK GENERATION146

We generate an edge-aware mask by assigning each pixel147

to one label l ∈ {lb, ld, lu}: pixels labeled with lb, ld and lu148

are to be brightened, darkened, and unchanged, respectively.149

Somemaywant to brighten a certain region, while others may150

want to darken the same region or leave it as it is. To satisfy151

such different preferences, we perform the labeling based152

on user scribbles. However, for users’ convenience, we do153

not require the scribbles to be accurate to the pixel level.154

Instead, we need only rough scribbles for lb and ld. Then,155

we propagate them in an edge-aware manner by adopting156

the MRW system [12], which simulates the interactions of157

multiple agents on a graph. Note that MRW was originally158

developed for unsupervised segmentation. We extend it to159

accommodate user scribbles.160

FIGURE 3. Flowchart for the edge-aware mask generation.

Figure 3 is the flowchart for the edge-aware mask gen-161

eration. Instead of an entire image, we extract a K × K162

patch around each scribble to reduce the computational163

complexity. Then, we divide the patch into superpixels.164

We compute the standard deviation of each of R, G, B chan-165

nels of all superpixels and calculate the average standard166

deviation σ over the three channels. If σ is smaller than167

a threshold (= 10), we double the patch size to con-168

sider a broader region. Initially, we set K = 32. Next,169

we estimate initial distributions of the three agents. Finally,170

we perform the MRW simulation, yielding an edge-aware171

mask.172

TABLE 1. Distance metrics in the similarity function s.

1) GRAPH CONSTRUCTION 173

First, we over-segment an image into N superpixels [39]. 174

The number of superpixels is set to N = min{4K , 250}. 175

We construct the graph G = (V, E), where V = {v1, . . . , vN } 176

is the set of nodes (or superpixels) and E = {eij} is the set of 177

edges. Each edge eij, connecting neighboring nodes vi and vj, 178

is assigned a weight 179

wij = exp
(
−

∑
l

λldl(vi, vj)
)

(1) 180

where dl is the distancemetrics of node features. Table 1 sum- 181

marizes the distance metrics. Here, the MFF feature is 182

extracted from the proposed MFF module in Figure 5. 183

2) INITIAL ESTIMATION 184

We employ three agents for the three classes in {lb, ld, lu}: b- 185

agent, d-agent, and u-agent. We set the initial distributions of 186

b-agent and d-agent uniformly along the nodes overlapping 187

with brightening and darkening scribbles, respectively. Also, 188

the initial distribution of u-agent is set uniformly along the 189

boundary nodes, excluding those similar to the scribbled 190

nodes. Specifically, we allocate uniform probabilities to the 191

nodes v at the image boundaries that satisfy the conditions 192

s(v, vb) < κ, ∀vb and s(v, vd) < κ, ∀vd, (2) 193

where κ = 10−4. Here, vb and vd are the nodes overlapping 194

with the brightening and darkening scribbles, respectively. 195

3) MRW SIMULATION 196

The three initial distributions are refined by MRW iterations. 197

In MRW, each agent travels on the graph G according to the 198

transition probability aij to move from node vj to node vi. 199

We obtain aij by normalizing wij in (1), aij = wij/
∑

k (wkj). 200

We then construct the transition matrix A = [aij]. 201

For simplicity, we describe the MRW process from the 202

viewpoint of b-agent. The others, d-agent and u-agent, are 203

processed in the same manner. Let pθb =
[
pθb,1, . . . , p

θ
b,N

]T
204

be the distribution of b-agent, in which pθb,i is the probability 205

that b-agent is found at node vi at iteration θ . The random 206

movement of b-agent is determined recursively by 207

pθ+1b = (1− ε)Apθb + εr
θ
b (3) 208

where rθb =
[
rθb,1, . . . , r

θ
b,N

]T
is the restart distribution. With 209

probability 1 − ε, b-agent moves according to the transition 210

matrix A. On the other hand, with probability ε, it is forced 211

to restart with the distribution rθb . To make the three agents 212
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FIGURE 4. An example of the MRW simulation: (a) an input image with scribbles and the node set V , (b)∼(e) the evolution of the distributions of b-agent
(blue), d-agent (red), and u-agent (green), and (f) the generated edge-aware mask.

FIGURE 5. The network structure of e-IceNet, which includes the
multi-scale feature fusion (MFF), local feature extraction (LFE), and
gamma estimation (GME) modules.

interact with one another, we propose the restart rule, which213

determines the restart distributions rθb , r
θ
d , and rθu by consid-214

ering pθb , p
θ
d , and p

θ
u jointly. Specifically, we set215

rθb,i = (1− δ)r (θ−1)b,i + δ
pθb,i + p

0
b,i∑

k∈{b,d,u}(p
θ
k,i + p

0
k,i)

(4)216

where δ is a cooling factor [12] and r0b = p0b is set. Here,217

we increase the probability that b-agent stays at its scribbled218

nodes, by adding the initial probability p0b,i at iteration 0.219

Also, b-agent is enforced to restart with higher likelihoods at220

nodes in which it is more probable than the other two agents.221

This makes the three agents repel one another and form their222

own clusters.223

We perform the MRW iterations until the agents yield the224

stationary distributions πb, πd, and πu. Figure 4 visualizes225

the evolvement of the three distributions. As the iteration goes226

on, the agents yield more mutually exclusive probabilities.227

Eventually, we obtain the stationary distributions that delin-228

eate the target regions effectively. Finally, we generate a mask229

value mi at node vi, given by230

mi =


1 if πb,i > max{πd,i, πu,i},
−1 if πd,i > max{πb,i, πu,i},
0 otherwise.

(5)231

These mask values form the edge-aware maskM .232

B. E-IcENEt233

Figure 5 shows the structure of e-IceNet. First, we convert an234

RGB image I into the HSV space. Next, given an edge-aware235

FIGURE 6. The multi-scale feature fusion (MFF) module.

maskM and an exposure level η, we estimate a gammamap0 236

for pixel-wise gamma correction. Finally, an enhanced image 237

J is obtained through the color restoration. 238

1) GAMMA ESTIMATION 239

Gamma correction is widely used for CE [11], [22], [40], 240

[41]. It is important to select an appropriate gamma value 241

by considering personal preferences as well as contextual 242

information in an image. We hence determine a gamma value 243

for each pixel in the image I using the MFF, LFE, and GME 244

modules in Figure 5. 245

In general, coarse-scale feature maps provide global con- 246

texts, whereas fine-scale ones convey detailed local contexts. 247

Because both global and local contexts are important for 248

CE [10], we extract multi-scale contexts through the MFF 249

module in Figure 6. Based on the U-Net architecture [42], 250

MFF includes seven residual blocks [43] and convolutional 251

layers. Each residual block consists of two convolutional 252

layers and a residual connection. 253

In addition to the contextual information extracted byMFF, 254

we obtain user-specific information for controlling local 255

brightness by feeding the HSV image and the edge-aware 256

mask into the LFE module. Then, in the GME module, 257

wemix the contextual information and the user-specific infor- 258

mation using three convolutional layers, yielding a feature 259

map F. Also, we produce a brightness vector w from η via 260

two fully-connected layers. Note that the brightness vector w 261

encodes the user preference for the global brightness. Finally, 262

based on the brightness vector w, we convert the feature 263

vector F(x) at pixel x to a gamma value 0(x), given by 264

0(x) = 10ϕ(〈F(x),w〉) (6) 265

where 〈·,·〉 is the inner product and ϕ(·) is the sigmoid 266

function. Hence, we have 0 < 0(x) < 10. 267
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FIGURE 7. Examples of guidance images. Although e-IceNet is trained on
both reliable (blue) and unreliable (red) guidance images, it yields robust
and effective CE results in all cases.

2) COLOR RESTORATION268

In the HSV space, the color image can be enhanced by pro-269

cessing only the value component (V ), which corresponds to270

the luminance image, while preserving the hue and saturation271

components [22]. Hence, we obtain the gamma-corrected272

luminance image W by transforming each pixel in V using273

its gamma value in (6),274

W (x) = Vmax

(
V (x)
Vmax

)0(x)
(7)275

where Vmax is the maximum intensity (typically 255).276

To reconstruct the enhanced image J, we transform the HSV277

image into the RGB image after replacing V with W .278

3) GUIDANCE IMAGES279

The CNN-based CE methods in [5], [6], [7], [8], [9], and [10]280

learn mappings from low contrast images to high contrast281

ones. Despite their promising CE results, they cannot satisfy282

various user preferences. On the other hand, the traditional283

CE methods in [18], [19], [20], [21], and [22] can provide284

personalized images, satisfying user preferences, by adjust-285

ing transformation functions. However, they may fail to yield286

reliable results for diverse input images.287

To take advantage of both approaches, we construct guid-288

ance images by adapting traditional transformation functions289

to meet various requirements. Then, we use those guid-290

ance images to train the proposed e-IceNet, yielding reliable291

results for diverse input images. Since guidance images are292

obtained based on traditional transformation functions, they293

may be unreliable in some cases, such as the bottom one294

in Figure 7. However, e-IceNet is trained using not only295

unreliable guidance images but also (more numerous) reliable296

ones. Therefore, it enhances diverse input images effectively297

and robustly, even though some of them may have poor298

guidance images.299

FIGURE 8. The reversed-S curves for various exposure levels η, when the
histogram equalization (HE), LDR [20], and AGCWD [22] are used for T in
(8), respectively.

We construct a guidance image adaptively according to the 300

exposure level η and the edge-aware maskM . We first derive 301

a reversed-S-shaped curve S from a conventional transforma- 302

tion function T by 303

S(l) = ηT (l)+ (1− η)T−1(l) (8) 304

where l denotes an input intensity level and T−1 is the inverse 305

function of T . Note that a typical transformation function T 306

for CE is concave and has steep and flat slopes near the min- 307

imum and maximum intensity levels, respectively. By com- 308

bining T and T−1, the reversed-S curve S has steep slopes at 309

both theminimum andmaximum levels, as shown in Figure 8, 310

so it can enhance both under- and over-exposed regions effec- 311

tively. Also, we can control the overall output brightness by 312

changing η. Various transformation functions can be used for 313

T . In the default mode, we adopt AGCWD [22] to generate T 314

adaptively according to the intensity distribution of an image. 315

To enable e-IceNet to control local brightness, we add the 316

edge-aware maskM to the input intensity V , 317

Ṽ = V + λM (9) 318

where λ is a parameter controlling the impacts of M , which 319

is fixed to 10. Then, we obtain the guidance image G by 320

transforming each pixel in Ṽ via S, given by 321

G(x) = S(Ṽ (x)). (10) 322

4) AUTOMATED INITIALIZATION 323

It is useful to present a user with an automatically enhanced 324

image and then allow the user to adjust it further. To this 325

end, we provide an initial exposure level ηinit. Especially, 326

we use polynomial regression to accommodate the preference 327

of a new user with minimal effort. It captures a nonlinear 328

relationship between the entropy h of an input image and the 329

corresponding exposure level. Specifically, an initial expo- 330

sure level is estimated with a cubic function by 331

ηinit = c3h3 + c2h2 + c1h+ c0. (11) 332

The four coefficients {ci}3i=0 are obtained from the observa- 333

tions {(hi, ηi)}Oi=1 using the method of least squares, where 334

ηi is the exposure level selected by the user to enhance 335

the ith image with entropy hi. We perform this automated 336

initialization when O > 4. 337
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FIGURE 9. Qualitative comparison of the proposed e-IceNet with
IceNet [11]. The results are obtained at η = 0.65.

C. LOSS FUNCTIONS338

We train e-IceNet by minimizing a weighted sum of two339

losses,340

L = Lg + wdLd. (12)341

Here, Lg is the guidance loss, which is the mean square error342

between the output image W in (7) and the guidance image343

G in (10). Also, Ld is the denoising loss. Images captured344

in low-light environments tend to contain noise, which may345

be amplified during CE. Some methods [11], [34] attempt346

to suppress it by encouraging smooth variations between347

neighboring pixels, but they may blur edges. Instead, based348

on the observation that noise is negligible in the intensity map349

Ṽ in (9), we design the denoising loss Ld as350

Ld =
∑
x

wx(σṼ ,x − σW ,x)
2 (13)351

where σṼ ,x and σW ,x are standard deviations over the352

15 × 15 patches around x in Ṽ and W , respectively. Also353

wx = exp(−σṼ ,x). Note that we assign a large weight wx354

when σṼ ,x is small, because amplified noise is more visible355

in flat regions.356

D. IMPLEMENTATION DETAILS357

In MFF, for down-sampling, we horizontally and vertically358

decimate the spatial resolutions with a sampling rate of 2;359

for up-sampling, we use bi-linear interpolation with a scale360

factor of 2. We perform zero padding and adopt ReLU as the361

activation function in all layers. In (3), (4), and (12), we set362

ε = 0.1, δ = 0.95, and wd = 10, respectively.363

We use the same 2,002 training images as [11], ran-364

domly selected from the Part1 subset of SICE [44]. They365

include under-, normal-, and over-exposed images. We crop a366

128 × 128 patch randomly for training. We train e-IceNet367

using the Adam optimizer with a minibatch size of 32.368

We start with a learning rate of 10−3. The training is iterated369

for 50 epochs with an RTX 2080Ti GPU. To emulate user370

FIGURE 10. Results of e-IceNet during the 2nd user study.

annotations, an exposure level η is randomly selected from 371

[0.2, 0.8], and brightening and darkening scribbles, respec- 372

tively, are generated 0∼5 times at random positions. 373

IV. EXPERIMENTS 374

A. COMPARATIVE ASSESSMENT 375

We compare the proposed algorithm with a recent interac- 376

tive algorithm (IceNet [11]) and seven conventional ones 377

(AGCWD [22], LDR [20], SRIE [24], LIME [25], Zero- 378

DCE [34], EnlightenGAN [33], RUAS [9]). We obtain 379

enhanced images of the conventional algorithms using the 380

source codes and parameters provided by the authors. 381

1) INTERACTIVE CE 382

We conducted user studies to assess the interactive CE per- 383

formance of the proposed e-IceNet. 384

First, using 10 images in DICM [20], we asked 15 partici- 385

pants to provide annotations to e-IceNet and IceNet and vote 386

for better results. 150 votes in total (10 images × 15 partic- 387

ipants) were cast. The proposed e-IceNet won significantly 388

more votes: it was preferred in 76% of the tests, while IceNet 389

in only 24%. This is because e-IceNet generates more accu- 390

rate masks from simple scribbles and provides more natural 391

CE results. In contrast, as shown in Figure 1, IceNet does not 392

provide sufficiently accurate masks. Moreover, in Figure 9, 393

IceNet over-enhances images even at a middle exposure level 394

η = 0.65. 395

For more subjective assessment, we collected 50 images by 396

choosing the first 10 indexed images from each of the test sets 397

of NPE [23], LIME [25],MEF [45], DICM [20], andVV [46]. 398

Then, we conducted another user study with the participants. 399

It was designed as follows: 400

1) A participant provides annotations to e-IceNet, which 401

then yields an enhanced image. 402

2) The eight enhanced images obtained by e-IceNet and 403

the seven conventional algorithms are presented to the 404

participant in random order. 405

3) The participant votes for the most pleasing result. 406
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FIGURE 11. Qualitative comparison of the proposed algorithm with the conventional ones. Traditional enhancement methods are in the top row, while
CNN-based methods are in the bottom row.

It is recommended to watch the supplemental video for a407

demo of this 2nd user study. Note that a participant may prefer408

an automatically enhanced image of a conventional algorithm409

to the result of e-IceNet. This study was conducted to check410

whether the participants were sufficiently satisfied with their411

interactive CE results using e-IceNet.412

Figure 10 shows some results of e-IceNet during the 2nd413

user study. Table 2 summarizes the results. The proposed414

e-IceNet won the most votes by far. This is because the415

participants with diverse preferences for contrast were more416

satisfied with their interactive results than with automatically417

obtained results. Figure 11 compares qualitative results, 418

in which the result of e-IceNet was obtained by a participant. 419

We see that e-IceNet yields a more natural result by bringing 420

out details without over-enhancement. 421

2) AUTOMATED INITIALIZATION 422

Next, we asked the participants to select the preferred image 423

among the automatically enhanced images by LDR [20], 424

SRIE [24], EnlightenGAN [33], and e-IceNet. Note that 425

LDR, SRIE, and EnlightenGAN are the three most preferred 426

algorithms among the conventional methods in Table 2. 427
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TABLE 2. In the 2nd user study, e-IceNet was the most preferred in 53%
of the tests, while the second-best SRIE in only 13%.

TABLE 3. Subjective assessment of automatically enhanced images.

TABLE 4. Full-reference image quality assessment on the Part2 subset of
SICE [44]. The best results are boldfaced.

In this test, the proposed e-IceNet automatically generated428

output images using the exposure levels ηinit in (11) with-429

out requiring annotations. The coefficients for the auto-430

matic enhancement were personalized by observing the pairs431

{hi, ηi}, which had been selected by each participant during432

the 2nd user study in Table 2. Then, we collected 20 new433

test images by sampling five low contrast images from each434

of NPE, MEF, DICM, and VV. These new images do not435

overlap with the test images in Table 2. Table 3 summarizes436

the voting results on these new images: e-IceNet won themost437

votes again, indicating that it outperforms the conventional438

methods even without per-image interaction. This confirms439

that the participants have diverse preferences for contrast and440

e-IceNet can provide them with satisfactory images automat-441

ically through previously collected exposure levels.442

To assess automatically enhanced images quantitatively,443

we use 767 pairs of under- and normal-exposed images in the444

Part2 subset of SICE [44]. Note that the same test images are445

used in [34] and [11]. In this test, the coefficients in (11) are446

determined by the method of least squares, in which 70 pairs447

of (hi, ηi) are computed from randomly sampled training448

images. Table 4 compares the average PSNRs and SSIMs.449

Being trained on a different paired dataset LoL [8], RUAS [9]450

performs poorly in this test. The proposed e-IceNet achieves451

the best PSNR and SSIM scores even without interaction,452

by generating adaptive results according to the input.453

FIGURE 12. Comparison of the proposed mask generation with
conventional interactive segmentation techniques [47], [48].

FIGURE 13. Impacts of the proposed MFF module.

B. ABLATION AND ANALYSIS 454

1) MASK GENERATION 455

CNN-based interactive segmentation techniques [47], [48], 456

[50], [51], [52] have been developed. However, they train the 457

networks to generate segmentation masks for objects in spe- 458

cific classes in normal-exposed images, yielding unreliable 459

masks for unknown classes in under-exposed images. Fig- 460

ure 12 compares the results of the state-of-the-art interactive 461

segmentation techniques [47], [48] with those of the proposed 462

algorithm. For a fair comparison, we provide the same anno- 463

tations. The proposed algorithm yields better results on such 464

under-exposed images. 465

2) MULTI-SCALE FEATURE FUSION 466

We analyze the impacts of MFF. Figure 13 compares the 467

results of e-IceNet trained without and with MFF. In this test, 468

the output images are generated at η = 0.7 without scribbles. 469

It is observed that e-IceNet with MFF restores more pleasing 470

images with less noticeable artifacts than that without MFF. 471

3) TRANSFORMATION FUNCTIONS 472

We analyze the impacts of transformation functions for 473

guidance images. Figure 14 compares enhanced results 474
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FIGURE 14. Comparison of four versions of e-IceNet, trained on guidance images by HE, LDR [20], AGCWD [22], and SPD [53]
respectively. Note that differences between (b) and (c) can be seen more clearly in the background (e.g. cloud and stone).

FIGURE 15. Comparison of results of e-IceNet trained with different
denoising losses. They are obtained at η = 1 without scribbles.

of e-IceNet trained using transformation functions of HE,475

LDR [20], AGCWD [22], and SPD [53], some of which476

are illustrated in Figure 8. Note that SPD is a multi-scale477

exposure fusion algorithm. Thus, we obtain transformation478

functions of SPD using multi-scale exposure images. We see479

that e-IceNet provides different results according to the trans-480

formation functions. The original HE tends to over-enhance481

images, so the corresponding e-IceNet also causes over-482

stretching. On the other hand, LDR, AGCWD, and SPD can483

be used to train e-IceNet more effectively. The corresponding484

versions of e-IceNet enhance the images satisfactorily but in485

different styles.486

4) DENOISING LOSS487

Figure 15 shows the results of e-IceNet trained with different488

denoising losses. We first train e-IceNet without the pro-489

posed denoising loss Ld in Figure 15(b), which incurs severe490

noise within the red square. Second, we replace Ld with the491

smoothness lossLsmo [11], [34] in Figure 15(c), which yields492

blurring artifacts within the blue square. Finally, Figure 15(d)493

FIGURE 16. CE results of IceNet [11] and e-IceNet using the same masks,
generated by the proposed MRW simulation.

shows the result of e-IceNet with Ld. It yields better CE 494

results overall. 495

5) EDGE-AWARE ENHANCEMENT 496

Figure 16 shows CE results of IceNet and e-IceNet using the 497

same masks, generated by the proposed MRW simulation. 498

In this test, the results are obtained at low exposure levels 499

to emphasize the differences between the two algorithms. 500

Even when provided with accurate masks, IceNet generates 501

visually annoying rippling artifacts near themask boundaries. 502

It is because IceNet is trained to encourage smooth variations 503

between adjacent pixels. On the other hand, e-IceNet yields 504

much better results near the boundaries. 505

6) ROBUSTNESS TO UNRELIABLE GUIDANCE IMAGES 506

Figure 17 compares enhanced images obtained by 507

AGCWD [22] and e-IceNet at η = 1 without scribbles. 508

Note that, at η = 1, S = T in (8), guidance images are 509

VOLUME 10, 2022 98989



K. Ko, C.-S. Kim: Edge-Aware Interactive Contrast Enhancement

FIGURE 17. Enhanced images obtained by AGCWD [22] and e-IceNet at
η = 1.0 without scribbles.

FIGURE 18. PSNR performances on the Part2 subset of SICE [44]
according to the degree of a polynomial and the input data.

obtained by AGCWD directly. These results, hence, indicate510

that e-IceNet yields more reliable results than AGCWD, even511

though it uses the AGCWD results as the guidance images.512

Furthermore, e-IceNet can accommodate user scribbles to513

achieve personalized CE.514

7) POLYNOMIAL FUNCTIONS FOR AUTOMATED515

INITIALIZATION516

We use the cubic function in (11) to estimate an initial expo-517

sure level. Figure 18 shows that the performance increases518

up to the degree of three and then saturates, meaning that the519

cubic function is an effective choice. Also, the blue circles520

correspond to the PSNRs using the average luminance as521

input as in [11]. They are poorer than the PSNRs using the522

entropy. Thus, we adopt the entropy as input.523

8) RUNNING TIMES524

In this test, we measure the running times of the proposed525

algorithm with an RTX 2080Ti GPU and a Ryzen 9 3900X526

CPU. A real-time demo of the proposed algorithm is available527

in the supplementary video.528

Table 5 lists the average running times of the proposed529

mask generation according to the patch sizes. As the patch530

TABLE 5. Average running times of the proposed mask generation
according to the patch sizes.

TABLE 6. Comparisons of running times in seconds per image.

TABLE 7. Average IoU results according to the hyper-parameters.

size gets larger, the running time increases, but the proposed 531

mask generation is fast enough for practical applications. 532

Thus, we set K = 32. Table 6 compares the average running 533

times per image of size 1200 × 900. Note that the codes 534

in the CPU versions only are available for the conventional 535

algorithms in [20], [22], and [25]. The proposed e-IceNet can 536

be performed in real-time. 537

9) HYPER-PARAMETERS 538

Let us discuss the impacts of the hyper-parameters in Figure 3 539

and Table 1. In this test, we measure the segmentation per- 540

formance by the intersection over union (IoU) scores with 541

100 images in the VidSeg dataset [54]. We compute the aver- 542

age IoU scores by changing each parameter in Table 7. In this 543

test, we generate a segmentation mask from one scribble with 544

the initial patch size K = 64. The performance increases up 545

to λ1 = 2.5, λ2 = 1.0, λ3 = 103, and σ = 10, respectively, 546

and then decreases. 547

10) PERSONAL PREFERENCES 548

Figure 19 shows how two participants enhanced the same 549

input image differently during the user study, which indi- 550

cates that people have diverse preferences for contrast. Also, 551

by comparing Figure 19(c) with Figure 19(d), we see that the 552

visual quality is affected significantly by user scribbles. The 553

proposed e-IceNet allows the user to specify desired regions 554
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FIGURE 19. Two participants enhanced the same images differently, which indicates that people have diverse preferences for contrast.
Note that the obvious differences between (c) and (d) can be seen around scribbles.

easily without painstaking annotations, satisfying personal555

preferences effectively.556

V. CONCLUSION557

We proposed the edge-aware interactive CE system, com-558

posed of the mask generation scheme and e-IceNet. The559

mask generation scheme enables a user to specify desired560

regions using only rough scribbles. Then, e-IceNet yields561

an enhanced image by considering personal preference as562

well as contextual information. Also, the proposed algorithm563

can achieve personalized CE without per-image annotation.564

Extensive experiments demonstrated outstanding CE perfor-565

mance of the proposed algorithm.566
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