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ABSTRACT Contrast enhancement is required in many applications. Many studies have been conducted to
perform contrast enhancement automatically, but most of them do not consider various personal preferences
for contrast. We propose an edge-aware interactive contrast enhancement algorithm to enable a user to adjust
image contrast easily according to his or her preference. A user provides a parameter for controlling the global
brightness and two types of scribbles to darken or brighten local regions in an image. Then, the proposed
algorithm generates an edge-aware mask by propagating the scribbles to nearby regions and restores an
enhanced image through a neural network, called e-IceNet. The user can provide annotations iteratively
until he or she obtains a desired image. We train e-IceNet on guidance images to yield reliable results for
diverse input images. We also propose two differentiable losses to train e-IceNet effectively and reliably.
Extensive experiments demonstrate that the proposed e-IceNet is capable of allowing users to enhance images
satisfactorily with simple scribbles, as well as producing enhanced images automatically.

INDEX TERMS Interactive contrast enhancement, personalized contrast enhancement, convolutional neural

networks, multiple random walkers, guidance images.

I. INTRODUCTION

Nowadays people take many digital photographs casually,
but uncontrolled environments often cause photographs with
low dynamic ranges. Especially, abnormal lighting condi-
tions would distort colors and textures considerably, thereby
degrading the visual experience. Contrast enhancement (CE)
can alleviate these problems, and its performance can be
improved if user interactions are allowed. For example, Pho-
toshop provides interactive tools to adjust contrast according
to personal preferences, but using such tools takes much
effort.

A lot of researches have been carried out to perform CE
automatically. Recently, with the success of convolutional
neural networks (CNNs) in the field of low-level vision [1],
[2], [3], [4], various CNN-based CE algorithms [5], [6], [7],
[81, [9], [10] have been developed. They learn mappings from
low contrast images to high contrast ones using big training
datasets. However, CE is a non-trivial task, partly due to
the non-linear relationship between input and output images.
Furthermore, it makes CE even more challenging that people
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have different preferences for images; CE is a subjective
process.

In this regard, the conventional algorithms [5], [6], [7],
[8], [9], [10] have the limitation that they cannot sat-
isfy various personal preferences. To overcome it, Ko and
Kim [11] recently developed the IceNet algorithm, which
enhances image contrast after accepting user annotations.
However, their algorithm demands meticulous interactions:
users should pay attention to the boundaries of regions for
controlling brightness. Otherwise, unwanted results may be
obtained as illustrated in Figures 1(b) and 1(d).

To overcome this problem, we develop an edge-aware
interaction system, which allows a user to specify desired
regions roughly without painstaking annotations but can gen-
erate accurate masks, as shown in Figures 1(c) and 1(e).
Specifically, a user provides a parameter for controlling
the global brightness and two types of scribbles to darken
or brighten local regions in an image. Since the scribbles
represent only rough locations for controlling brightness,
we propagate them to nearby regions in an edge-aware man-
ner, by employing multiple random walkers (MRW) [12], and
generate accurate masks. Then, we restore an enhanced image
through the proposed edge-aware interactive CE network
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(b) Mask by [11] (c) Mask by e-IceNet

(d) Enhanced image of [11]

(e) Enhanced image of e-IceNet

FIGURE 1. Comparison of e-lceNet with the conventional algorithm [11].
An image with scribbles in (a) is used as input: red and blue scribbles are
for darkening and brightening ones, respectively. Using the scribbles, in
(b) and (c), the masks are generated by [11] and e-IceNet. Then, in (d) and
(e), the enhanced images are obtained by [11] and e-IceNet.

(e-IceNet), which consists of the multi-scale feature fusion
(MFF), local feature extraction (LFE), and gamma estimation
(GME) modules. For interactive CE, we construct guidance
images from low contrast images. By employing the guid-
ance images, we can provide more reliable results than con-
ventional interactive CE methods. In other words, we train
e-IceNet using those guidance images to yield reliable results
for diverse images. It is worth pointing out that e-IceNet
also can produce an enhanced image automatically, which
can serve as a basis for further interactive adjustments if
so desired. Extensive experiments show that the proposed
e-IceNet not only provides users with satisfactory images but
also outperforms the state-of-the-art algorithms qualitatively
and quantitatively. In particular, the proposed algorithm is
preferred to existing algorithms three times more frequently
in subjective tests. It is strongly recommended to watch the
accompanying video for a real-time demo of e-IceNet.

To summarize, this work has three main contributions:

o We develop the edge-aware interactive CE system
to enable users to obtain satisfactory images without
requiring meticulous annotations.

o We propose an effective mask generation scheme that
converts rough user scribbles into accurate masks based
on the MRW simulation.

« We also propose e-IceNet, composed of the MFF, LFE,
and GME modules, and train it on guidance images to
yield reliable results for diverse input images.

Il. RELATED WORK
The objectives of enhancement are closely related but dif-
ferent between CE, color enhancement [13], dehazing [14],
[15], and detail enhancement [16], [17]. This section briefly
reviews CE techniques.

Early CE methods improve the contrast of images using
transformation functions or based on retinex theory. There are
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various transformation functions [18], [19], [20], [21], [22],
among which gamma correction and logarithmic mapping are
well-known parametric curves for mapping input pixel values
to output ones. On the other hand, some CE algorithms [23],
[24], [25], [26] have been developed based on retinex the-
ory [27]. These conventional methods produce promising
results. However, their performance usually depends on care-
ful parameter tuning. It is difficult to find reliable parameters
effectively for diverse input images. To address this problem,
algorithms based on edge-preserving filters [28], [29], [30]
have been proposed, but they take a long processing time to
construct optimized filters [28].

The release of big paired datasets, containing pairs of
low and high contrast images, has enabled CNN-based CE
methods [5], [6], [7], [8], [9], [10] to yield impressive results.
In the paired datasets, each pair is captured from the same
scene, or a low contrast image is synthesized from a high
contrast one. However, it is hard to capture the same scene
twice because of moving objects, or synthesized low contrast
images may not be photo-realistic. Therefore, by employing
adversarial losses [1], some methods [31], [32], [33] train
the CE networks using unpaired datasets, consisting of low
and high contrast images of different scenes, but they should
select unpaired images carefully. To avoid this cumbersome
selection process, Guo et al. [34] proposed a self-supervised
learning scheme that needs only low contrast images for
training. However, all these CNN methods are not adaptive,
so they cannot satisfy diverse user preferences.

To meet various preferences, professional software pro-
vides CE tools, but using these tools takes a lot of effort
and training. To reduce such effort, simple interactive meth-
ods have been developed. Stoel et al. [35] proposed an inter-
active histogram equalization scheme for medical images.
Their method allows a user to specify a region of interest
(Rol) and applies the equalization to the region. Grund-
land and Dodgson [36] proposed an interactive tone adjust-
ment method. When a user selects key tones on an image,
it preserves those tones but adjusts the other tones, while
maintaining the overall tonal balance. Lischinski et al. [37]
and Dodgson et al. [38] also proposed interactive methods,
in which a user specifies Rols for local CE. Since these inter-
active methods are based on traditional CE methods, their
performance depends on careful parameter tuning. Recently,
Ko and Kim [11] proposed the first CNN-based interactive
CE algorithm allowing a user to scribble local regions for CE,
but their algorithm demands meticulous interactions.

lIl. PROPOSED ALGORITHM

The proposed algorithm yields an enhanced image according
to simple user annotations, as shown in Figure 2. By inspect-
ing an image I, a user provides an exposure level 1 for
controlling the global brightness and two types of scribbles:
blue and red scribbles, respectively, mean that the user wants
to brighten and darken the corresponding local regions. Then,
the proposed algorithm generates an edge-aware mask M and
reconstructs an enhanced image J through e-IceNet.
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FIGURE 2. Overview of the proposed algorithm. A user provides an
exposure level y and scribbles: red or blue scribbles are for darkening or
brightening local regions in an image I, respectively. Given the
annotations, the proposed algorithm generates an edge-aware mask M
and then reconstructs an image J through e-IceNet. Please see the
supplemental video for a real-time demo of the interactive enhancement.

A. MASK GENERATION

We generate an edge-aware mask by assigning each pixel
to one label I € {ly, l4, ly}: pixels labeled with Iy, I3 and [,
are to be brightened, darkened, and unchanged, respectively.
Some may want to brighten a certain region, while others may
want to darken the same region or leave it as it is. To satisfy
such different preferences, we perform the labeling based
on user scribbles. However, for users’ convenience, we do
not require the scribbles to be accurate to the pixel level.
Instead, we need only rough scribbles for , and /4. Then,
we propagate them in an edge-aware manner by adopting
the MRW system [12], which simulates the interactions of
multiple agents on a graph. Note that MRW was originally
developed for unsupervised segmentation. We extend it to
accommodate user scribbles.

; Il K - 2K ||~ No
K XK p.atch Graph.
extraction construction
: MRW I.nitia.l Yes
simulation estimation

FIGURE 3. Flowchart for the edge-aware mask generation.

Figure 3 is the flowchart for the edge-aware mask gen-
eration. Instead of an entire image, we extract a K x K
patch around each scribble to reduce the computational
complexity. Then, we divide the patch into superpixels.
We compute the standard deviation of each of R, G, B chan-
nels of all superpixels and calculate the average standard
deviation o over the three channels. If o is smaller than
a threshold (= 10), we double the patch size to con-
sider a broader region. Initially, we set K = 32. Next,
we estimate initial distributions of the three agents. Finally,
we perform the MRW simulation, yielding an edge-aware
mask.
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TABLE 1. Distance metrics in the similarity function s.

l ‘ Feature ‘ Feature encoding ‘ Al ‘ Dimension Distance
1 RGB Super-pixel mean | 2.5 3 Euclidean
2 LAB Super-pixel mean 1.0 3 Euclidean
3 MFF Super-pixel mean | 103 32 Euclidean

1) GRAPH CONSTRUCTION

First, we over-segment an image into N superpixels [39].
The number of superpixels is set to N = min{4K, 250}.
We construct the graph G = (V, £), where V = {v, ..., vy}
is the set of nodes (or superpixels) and £ = {e;;} is the set of
edges. Each edge e;j, connecting neighboring nodes v; and vj,
is assigned a weight

wij = exp (= Y hadivi, ) M
1

where d} is the distance metrics of node features. Table 1 sum-
marizes the distance metrics. Here, the MFF feature is
extracted from the proposed MFF module in Figure 5.

2) INITIAL ESTIMATION

We employ three agents for the three classes in {/y,, lg, /,}: b-
agent, d-agent, and u-agent. We set the initial distributions of
b-agent and d-agent uniformly along the nodes overlapping
with brightening and darkening scribbles, respectively. Also,
the initial distribution of u-agent is set uniformly along the
boundary nodes, excluding those similar to the scribbled
nodes. Specifically, we allocate uniform probabilities to the
nodes v at the image boundaries that satisfy the conditions

s(v,vw) <k, Vvpands(v,vq) <k, Vg, 2)

where k = 107, Here, v, and vg are the nodes overlapping
with the brightening and darkening scribbles, respectively.

3) MRW SIMULATION
The three initial distributions are refined by MRW iterations.
In MRW, each agent travels on the graph G according to the
transition probability a;; to move from node v; to node v;.
We obtain a;; by normalizing wy; in (1), a;; = wij/ >, (Wi)).
We then construct the transition matrix A = [a;;].

For simplicity, we describe the MRW process from the
viewpoint of b-agent. The others, d-agent and u-agent, are

processed in the same manner. Let pg = [pg Lo pg_ N]

be the distribution of b-agent, in which pg ; 1s the probability
that b-agent is found at node v; at iteration 8. The random
movement of b-agent is determined recursively by

pi = (1 — ©Ap] +erf 3)
T

vy rg, N] is the restart distribution. With

probability 1 — €, b-agent moves according to the transition

matrix A. On the other hand, with probability ¢, it is forced

to restart with the distribution rg. To make the three agents

o _|.0
where ry = [rb’l, ..
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(b) 6 =0 () 0=10

(a) Input image

aR .I.

(d) 6 =20 (e) 6 =30

(f) Edge-aware mask

FIGURE 4. An example of the MRW simulation: (a) an input image with scribbles and the node set V, (b)~(e) the evolution of the distributions of b-agent
(blue), d-agent (red), and u-agent (green), and (f) the generated edge-aware mask.
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FIGURE 5. The network structure of e-lceNet, which includes the
multi-scale feature fusion (MFF), local feature extraction (LFE), and
gamma estimation (GME) modules.

interact with one another, we propose the restart rule, which
determines the restart distributions rg, rg, and rﬁ by consid-

ering pg, pg, and pg jointly. Specifically, we set
0 0
Ppi TPy

9 0
> kep.du Pri TP

where § is a cooling factor [12] and rg = pg is set. Here,

we increase the probability that b-agent stays at its scribbled
nodes, by adding the initial probability pg’i at iteration 0.
Also, b-agent is enforced to restart with higher likelihoods at
nodes in which it is more probable than the other two agents.
This makes the three agents repel one another and form their
own clusters.

We perform the MRW iterations until the agents yield the
stationary distributions xy, w4, and &,. Figure 4 visualizes
the evolvement of the three distributions. As the iteration goes
on, the agents yield more mutually exclusive probabilities.
Eventually, we obtain the stationary distributions that delin-
eate the target regions effectively. Finally, we generate a mask
value m; at node v;, given by

=0 =8r "+

“

1 if i > max{mq i, Ty i},
mi = 4§ —1 ifng; > max{mp ;, my ;}, )

0 otherwise.

These mask values form the edge-aware mask M.

B. E-ICENEt

Figure 5 shows the structure of e-IceNet. First, we convert an
RGB image I into the HSV space. Next, given an edge-aware
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FIGURE 6. The multi-scale feature fusion (MFF) module.

mask M and an exposure level n, we estimate a gamma map I'
for pixel-wise gamma correction. Finally, an enhanced image
J is obtained through the color restoration.

1) GAMMA ESTIMATION

Gamma correction is widely used for CE [11], [22], [40],
[41]. It is important to select an appropriate gamma value
by considering personal preferences as well as contextual
information in an image. We hence determine a gamma value
for each pixel in the image I using the MFF, LFE, and GME
modules in Figure 5.

In general, coarse-scale feature maps provide global con-
texts, whereas fine-scale ones convey detailed local contexts.
Because both global and local contexts are important for
CE [10], we extract multi-scale contexts through the MFF
module in Figure 6. Based on the U-Net architecture [42],
MFF includes seven residual blocks [43] and convolutional
layers. Each residual block consists of two convolutional
layers and a residual connection.

In addition to the contextual information extracted by MFF,
we obtain user-specific information for controlling local
brightness by feeding the HSV image and the edge-aware
mask into the LFE module. Then, in the GME module,
we mix the contextual information and the user-specific infor-
mation using three convolutional layers, yielding a feature
map F. Also, we produce a brightness vector w from 7 via
two fully-connected layers. Note that the brightness vector w
encodes the user preference for the global brightness. Finally,
based on the brightness vector w, we convert the feature
vector F(x) at pixel x to a gamma value I'(x), given by

I'(x) = 10p((F(x), w)) (6)

where (-,-) is the inner product and ¢(-) is the sigmoid
function. Hence, we have 0 < I'(x) < 10.

VOLUME 10, 2022
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FIGURE 7. Examples of guidance images. Although e-IceNet is trained on
both reliable (blue) and unreliable (red) guidance images, it yields robust
and effective CE results in all cases.

2) COLOR RESTORATION

In the HSV space, the color image can be enhanced by pro-
cessing only the value component (V'), which corresponds to
the luminance image, while preserving the hue and saturation
components [22]. Hence, we obtain the gamma-corrected
luminance image W by transforming each pixel in V using
its gamma value in (6),

V(X))m) )

Vmax

W(X) = Vinax <

where Vpax is the maximum intensity (typically 255).
To reconstruct the enhanced image J, we transform the HSV
image into the RGB image after replacing V with W.

3) GUIDANCE IMAGES

The CNN-based CE methods in [5], [6], [7], [8], [9], and [10]
learn mappings from low contrast images to high contrast
ones. Despite their promising CE results, they cannot satisfy
various user preferences. On the other hand, the traditional
CE methods in [18], [19], [20], [21], and [22] can provide
personalized images, satisfying user preferences, by adjust-
ing transformation functions. However, they may fail to yield
reliable results for diverse input images.

To take advantage of both approaches, we construct guid-
ance images by adapting traditional transformation functions
to meet various requirements. Then, we use those guid-
ance images to train the proposed e-IceNet, yielding reliable
results for diverse input images. Since guidance images are
obtained based on traditional transformation functions, they
may be unreliable in some cases, such as the bottom one
in Figure 7. However, e-IceNet is trained using not only
unreliable guidance images but also (more numerous) reliable
ones. Therefore, it enhances diverse input images effectively
and robustly, even though some of them may have poor
guidance images.
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FIGURE 8. The reversed-S curves for various exposure levels 5, when the
histogram equalization (HE), LDR [20], and AGCWD [22] are used for T in
(8), respectively.

We construct a guidance image adaptively according to the
exposure level 1 and the edge-aware mask M. We first derive
areversed-S-shaped curve S from a conventional transforma-
tion function 7' by

SO =T+ A =mT™'1) ®)

where [ denotes an input intensity level and 7" is the inverse
function of T. Note that a typical transformation function T
for CE is concave and has steep and flat slopes near the min-
imum and maximum intensity levels, respectively. By com-
bining 7 and T, the reversed-S curve S has steep slopes at
both the minimum and maximum levels, as shown in Figure 8,
so0 it can enhance both under- and over-exposed regions effec-
tively. Also, we can control the overall output brightness by
changing 7. Various transformation functions can be used for
T . In the default mode, we adopt AGCWD [22] to generate T
adaptively according to the intensity distribution of an image.

To enable e-IceNet to control local brightness, we add the
edge-aware mask M to the input intensity V,

V=V+M )

where A is a parameter controlling the impacts of M, which
is fixed to 10. Then, we obtain the guidance image G by
transforming each pixel in V via S, given by

G(x) = S(V(x)). (10)

4) AUTOMATED INITIALIZATION

It is useful to present a user with an automatically enhanced
image and then allow the user to adjust it further. To this
end, we provide an initial exposure level nini;. Especially,
we use polynomial regression to accommodate the preference
of a new user with minimal effort. It captures a nonlinear
relationship between the entropy £ of an input image and the
corresponding exposure level. Specifically, an initial expo-
sure level is estimated with a cubic function by

Minic = c3h° + c2h? + c1h + co. (11)

The four coefficients {ci}?zo are obtained from the observa-
tions {(/;, 17,-)}1,0=1 using the method of least squares, where
n; is the exposure level selected by the user to enhance
the ith image with entropy h;. We perform this automated
initialization when O > 4.
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Input image IceNet e-IceNet

FIGURE 9. Qualitative comparison of the proposed e-lceNet with
IceNet [11]. The results are obtained at 5 = 0.65.

C. LOSS FUNCTIONS
We train e-IceNet by minimizing a weighted sum of two
losses,

E=Eg+wd£d. (12)

Here, Eg is the guidance loss, which is the mean square error
between the output image W in (7) and the guidance image
G in (10). Also, L4 is the denoising loss. Images captured
in low-light environments tend to contain noise, which may
be amplified during CE. Some methods [11], [34] attempt
to suppress it by encouraging smooth variations between
neighboring pixels, but they may blur edges. Instead, based
on the observation that noise is negligible in the intensity map
V in (9), we design the denoising loss L as

La=) wilop,—owx)’ (13)
X

where oy and ow x are standard deviations over the
15 x 15 patches around x in V and W, respectively. Also
wx = exp(—oy ). Note that we assign a large weight wy
when oV x is small, because amplified noise is more visible
in flat regions.

D. IMPLEMENTATION DETAILS

In MFF, for down-sampling, we horizontally and vertically
decimate the spatial resolutions with a sampling rate of 2;
for up-sampling, we use bi-linear interpolation with a scale
factor of 2. We perform zero padding and adopt ReLU as the
activation function in all layers. In (3), (4), and (12), we set
€ =0.1,6 = 0.95, and wy = 10, respectively.

We use the same 2,002 training images as [11], ran-
domly selected from the Partl subset of SICE [44]. They
include under-, normal-, and over-exposed images. We crop a
128 x 128 patch randomly for training. We train e-IceNet
using the Adam optimizer with a minibatch size of 32.
We start with a learning rate of 1073. The training is iterated
for 50 epochs with an RTX 2080Ti GPU. To emulate user
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FIGURE 10. Results of e-IceNet during the 2nd user study.

annotations, an exposure level 5 is randomly selected from
[0.2, 0.8], and brightening and darkening scribbles, respec-
tively, are generated 0~5 times at random positions.

IV. EXPERIMENTS

A. COMPARATIVE ASSESSMENT

We compare the proposed algorithm with a recent interac-
tive algorithm (IceNet [11]) and seven conventional ones
(AGCWD [22], LDR [20], SRIE [24], LIME [25], Zero-
DCE [34], EnlightenGAN [33], RUAS [9]). We obtain
enhanced images of the conventional algorithms using the
source codes and parameters provided by the authors.

1) INTERACTIVE CE
We conducted user studies to assess the interactive CE per-
formance of the proposed e-IceNet.

First, using 10 images in DICM [20], we asked 15 partici-
pants to provide annotations to e-IceNet and IceNet and vote
for better results. 150 votes in total (10 images x 15 partic-
ipants) were cast. The proposed e-IceNet won significantly
more votes: it was preferred in 76% of the tests, while IceNet
in only 24%. This is because e-IceNet generates more accu-
rate masks from simple scribbles and provides more natural
CE results. In contrast, as shown in Figure 1, IceNet does not
provide sufficiently accurate masks. Moreover, in Figure 9,
IceNet over-enhances images even at a middle exposure level
n = 0.65.

For more subjective assessment, we collected 50 images by
choosing the first 10 indexed images from each of the test sets
of NPE [23], LIME [25], MEF [45], DICM [20], and VV [46].
Then, we conducted another user study with the participants.
It was designed as follows:

1) A participant provides annotations to e-IceNet, which

then yields an enhanced image.

2) The eight enhanced images obtained by e-IceNet and
the seven conventional algorithms are presented to the
participant in random order.

3) The participant votes for the most pleasing result.

VOLUME 10, 2022



K. Ko, C.-S. Kim: Edge-Aware Interactive Contrast Enhancement

IEEE Access

Input image

Zero-DCE [34]

Input image

AGCWD [22]

Zero-DCE [34]

EnlightenGAN [33]
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FIGURE 11. Qualitative comparison of the proposed algorithm with the conventional ones. Traditional enhancement methods are in the top row, while

CNN-based methods are in the bottom row.

It is recommended to watch the supplemental video for a
demo of this 2nd user study. Note that a participant may prefer
an automatically enhanced image of a conventional algorithm
to the result of e-IceNet. This study was conducted to check
whether the participants were sufficiently satisfied with their
interactive CE results using e-IceNet.

Figure 10 shows some results of e-IceNet during the 2nd
user study. Table 2 summarizes the results. The proposed
e-IceNet won the most votes by far. This is because the
participants with diverse preferences for contrast were more
satisfied with their interactive results than with automatically

VOLUME 10, 2022

obtained results. Figure 11 compares qualitative results,
in which the result of e-IceNet was obtained by a participant.
We see that e-IceNet yields a more natural result by bringing
out details without over-enhancement.

2) AUTOMATED INITIALIZATION

Next, we asked the participants to select the preferred image
among the automatically enhanced images by LDR [20],
SRIE [24], EnlightenGAN [33], and e-IceNet. Note that
LDR, SRIE, and EnlightenGAN are the three most preferred
algorithms among the conventional methods in Table 2.
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TABLE 2. In the 2nd user study, e-lceNet was the most preferred in 53%
of the tests, while the second-best SRIE in only 13%.

AGCWD LDR SRIE LIME
[22] [20] [24] [25]
Votes (%) | 8.8% 9.9% 13.2% 1.3%
Zero-DCE EnlightenGAN RUAS Proposed
[34] [33] [91 e-IceNet
Votes (%) | 3.9% 9.2% 1.1% 52.7%

TABLE 3. Subjective assessment of automatically enhanced images.

LDR SRIE EnlightenGAN Proposed
[20] [24] [33] e-IceNet
Votes (%) | 10.0% 15.7% 14.0% 60.3%

TABLE 4. Full-reference image quality assessment on the Part2 subset of
SICE [44]. The best results are boldfaced.

AGCWD LDR LIME Li et al.

[22] [20] [25] [26]
PSNR 13.81 13.64 16.17 15.19
SSIM 0.55 0.46 0.57 0.54
RetinexNet Zero-DCE Zheng et al. SDD
[8] [34] [45] [30]
PSNR 15.99 16.57 17.59 14.80
SSIM 0.53 0.59 0.63 0.61

EnlightenGAN RUAS IceNet Proposed

[33] 9] [11] e-IceNet
PSNR 16.21 11.84 17.33 17.71
SSIM 0.59 0.46 0.67 0.67

In this test, the proposed e-IceNet automatically generated
output images using the exposure levels n;,;; in (11) with-
out requiring annotations. The coefficients for the auto-
matic enhancement were personalized by observing the pairs
{hi, n;}, which had been selected by each participant during
the 2nd user study in Table 2. Then, we collected 20 new
test images by sampling five low contrast images from each
of NPE, MEF, DICM, and VV. These new images do not
overlap with the test images in Table 2. Table 3 summarizes
the voting results on these new images: e-IceNet won the most
votes again, indicating that it outperforms the conventional
methods even without per-image interaction. This confirms
that the participants have diverse preferences for contrast and
e-IceNet can provide them with satisfactory images automat-
ically through previously collected exposure levels.

To assess automatically enhanced images quantitatively,
we use 767 pairs of under- and normal-exposed images in the
Part2 subset of SICE [44]. Note that the same test images are
used in [34] and [11]. In this test, the coefficients in (11) are
determined by the method of least squares, in which 70 pairs
of (h;, n;) are computed from randomly sampled training
images. Table 4 compares the average PSNRs and SSIMs.
Being trained on a different paired dataset LoL [8], RUAS [9]
performs poorly in this test. The proposed e-IceNet achieves
the best PSNR and SSIM scores even without interaction,
by generating adaptive results according to the input.
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Inputs Masks by [48] Masks by [49] Ours

FIGURE 12. Comparison of the proposed mask generation with
conventional interactive segmentation techniques [47], [48].

w/o MFF  with MFF

Enhanced images Input

FIGURE 13. Impacts of the proposed MFF module.

B. ABLATION AND ANALYSIS

1) MASK GENERATION

CNN-based interactive segmentation techniques [47], [48],
[50], [51], [52] have been developed. However, they train the
networks to generate segmentation masks for objects in spe-
cific classes in normal-exposed images, yielding unreliable
masks for unknown classes in under-exposed images. Fig-
ure 12 compares the results of the state-of-the-art interactive
segmentation techniques [47], [48] with those of the proposed
algorithm. For a fair comparison, we provide the same anno-
tations. The proposed algorithm yields better results on such
under-exposed images.

2) MULTI-SCALE FEATURE FUSION

We analyze the impacts of MFF. Figure 13 compares the
results of e-IceNet trained without and with MFF. In this test,
the output images are generated at = 0.7 without scribbles.
It is observed that e-IceNet with MFF restores more pleasing
images with less noticeable artifacts than that without MFF.

3) TRANSFORMATION FUNCTIONS
We analyze the impacts of transformation functions for
guidance images. Figure 14 compares enhanced results
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(a) HE (b) LDR [20]

(c) AGCWD [22] (d) SPD [53]

FIGURE 14. Comparison of four versions of e-IceNet, trained on guidance images by HE, LDR [20], AGCWD [22], and SPD [53]
respectively. Note that differences between (b) and (c) can be seen more clearly in the background (e.g. cloud and stone).

Input without L4 with Lsmo

FIGURE 15. Comparison of results of e-lceNet trained with different
denoising losses. They are obtained at n = 1 without scribbles.

of e-IceNet trained using transformation functions of HE,
LDR [20], AGCWD [22], and SPD [53], some of which
are illustrated in Figure 8. Note that SPD is a multi-scale
exposure fusion algorithm. Thus, we obtain transformation
functions of SPD using multi-scale exposure images. We see
that e-IceNet provides different results according to the trans-
formation functions. The original HE tends to over-enhance
images, so the corresponding e-IceNet also causes over-
stretching. On the other hand, LDR, AGCWD, and SPD can
be used to train e-IceNet more effectively. The corresponding
versions of e-IceNet enhance the images satisfactorily but in
different styles.

4) DENOISING LOSS

Figure 15 shows the results of e-IceNet trained with different
denoising losses. We first train e-IceNet without the pro-
posed denoising loss L4 in Figure 15(b), which incurs severe
noise within the red square. Second, we replace L£q with the
smoothness loss Lgmo [11], [34] in Figure 15(c), which yields
blurring artifacts within the blue square. Finally, Figure 15(d)

VOLUME 10, 2022

IceNet [11]

e-IceNet

FIGURE 16. CE results of IceNet [11] and e-IceNet using the same masks,
generated by the proposed MRW simulation.

shows the result of e-IceNet with Lq4. It yields better CE
results overall.

5) EDGE-AWARE ENHANCEMENT

Figure 16 shows CE results of IceNet and e-IceNet using the
same masks, generated by the proposed MRW simulation.
In this test, the results are obtained at low exposure levels
to emphasize the differences between the two algorithms.
Even when provided with accurate masks, IceNet generates
visually annoying rippling artifacts near the mask boundaries.
It is because IceNet is trained to encourage smooth variations
between adjacent pixels. On the other hand, e-IceNet yields
much better results near the boundaries.

6) ROBUSTNESS TO UNRELIABLE GUIDANCE IMAGES

Figure 17 compares enhanced images obtained by
AGCWD [22] and e-IceNet at = 1 without scribbles.
Note that, at n = 1, § = T in (8), guidance images are
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Input AGCWD [22]

FIGURE 17. Enhanced images obtained by AGCWD [22] and e-IceNet at
n = 1.0 without scribbles.
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FIGURE 18. PSNR performances on the Part2 subset of SICE [44]
according to the degree of a polynomial and the input data.

obtained by AGCWD directly. These results, hence, indicate
that e-IceNet yields more reliable results than AGCWD, even
though it uses the AGCWD results as the guidance images.
Furthermore, e-IceNet can accommodate user scribbles to
achieve personalized CE.

7) POLYNOMIAL FUNCTIONS FOR AUTOMATED
INITIALIZATION

We use the cubic function in (11) to estimate an initial expo-
sure level. Figure 18 shows that the performance increases
up to the degree of three and then saturates, meaning that the
cubic function is an effective choice. Also, the blue circles
correspond to the PSNRs using the average luminance as
input as in [11]. They are poorer than the PSNRs using the
entropy. Thus, we adopt the entropy as input.

8) RUNNING TIMES
In this test, we measure the running times of the proposed
algorithm with an RTX 2080Ti GPU and a Ryzen 9 3900X
CPU. A real-time demo of the proposed algorithm is available
in the supplementary video.

Table 5 lists the average running times of the proposed
mask generation according to the patch sizes. As the patch
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TABLE 5. Average running times of the proposed mask generation
according to the patch sizes.

Patch size ‘ 8x 8 16 x 16 32x32 64x64 96 x 96
Time (ms) | 3 7 15 45 76

TABLE 6. Comparisons of running times in seconds per image.

Method | Time (ms) | Platform
AGCWD [22] 346 Python (CPU)
LDR [20] 49 Matlab (CPU)
LIME [25] 245 Matlab (CPU)
Zero-DCE [34] 2 Pytorch (GPU)
EnlightenGAN [33] 8 Pytorch (GPU)
RUAS [9] 4 Pytorch (GPU)
IceNet [11] 2 Pytorch (GPU)
e-IceNet 3 Pytorch (GPU)

TABLE 7. Average loU results according to the hyper-parameters.

N 0 L5 2.5 35
| 6448 7051 70.65 67.14
Az | 0 0.5 1.0 L5
| 6617 70.61 70.65 68.55
Az | 0 10 103 104
| 7019 70.26 70.65 57.40
o | 3 5 10 15
| 6143 70.19 70.65 70.53

size gets larger, the running time increases, but the proposed
mask generation is fast enough for practical applications.
Thus, we set K = 32. Table 6 compares the average running
times per image of size 1200 x 900. Note that the codes
in the CPU versions only are available for the conventional
algorithms in [20], [22], and [25]. The proposed e-IceNet can
be performed in real-time.

9) HYPER-PARAMETERS

Let us discuss the impacts of the hyper-parameters in Figure 3
and Table 1. In this test, we measure the segmentation per-
formance by the intersection over union (IoU) scores with
100 images in the VidSeg dataset [54]. We compute the aver-
age IoU scores by changing each parameter in Table 7. In this
test, we generate a segmentation mask from one scribble with
the initial patch size K = 64. The performance increases up
tol; =25, =1.0,13 = 103, and o = 10, respectively,
and then decreases.

10) PERSONAL PREFERENCES

Figure 19 shows how two participants enhanced the same
input image differently during the user study, which indi-
cates that people have diverse preferences for contrast. Also,
by comparing Figure 19(c) with Figure 19(d), we see that the
visual quality is affected significantly by user scribbles. The
proposed e-IceNet allows the user to specify desired regions
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User A

User B

User A

User B

(a) Input with annotations (b) Generated masks

(¢) Enhancement without the masks

(d) Enhancement with the masks

FIGURE 19. Two participants enhanced the same images differently, which indicates that people have diverse preferences for contrast.
Note that the obvious differences between (c) and (d) can be seen around scribbles.

easily without painstaking annotations, satisfying personal
preferences effectively.

V. CONCLUSION

We proposed the edge-aware interactive CE system, com-
posed of the mask generation scheme and e-IceNet. The
mask generation scheme enables a user to specify desired
regions using only rough scribbles. Then, e-IceNet yields
an enhanced image by considering personal preference as
well as contextual information. Also, the proposed algorithm
can achieve personalized CE without per-image annotation.
Extensive experiments demonstrated outstanding CE perfor-
mance of the proposed algorithm.

REFERENCES

[1] 1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial Nets,” in
Proc. NIPS, 2014, pp. 1-6.

[2] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 2414-2423.

[3] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and
L. Shao, “CyclelSP: Real image restoration via improved data synthe-
sis,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 2696-2705.

[4] K. Ko, Y. J. Koh, and C.-S. Kim, “Blind and compact denoising network
based on noise order learning,” IEEE Trans. Image Process., vol. 31,
pp. 1657-1670, 2022.

[5] K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: A deep autoencoder
approach to natural low-light image enhancement,” Pattern Recognit.,
vol. 61, pp. 650-662, Jan. 2017.

VOLUME 10, 2022

[6] C.Li,J.Guo,F. Porikli, and Y. Pang, “LightenNet: A convolutional neural
network for weakly illuminated image enhancement,” Pattern Recognit.
Lett., vol. 104, pp. 15-22, Mar. 2018.

R. Wang, Q. Zhang, C.-W. Fu, X. Shen, W.-S. Zheng, and J. Jia, “Under-

exposed photo enhancement using deep illumination estimation,” in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,

pp. 6849-6857.

[8] C. Wei, W. Wang, W. Yang, and J. Liu, “Deep Retinex decomposition for
low-light enhancement,” in Proc. BMVC, 2018, pp. 1-12.

[9] R. Liu, L. Ma, J. Zhang, X. Fan, and Z. Luo, “Retinex-inspired unrolling
with cooperative prior architecture search for low-light image enhance-
ment,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 10561-10570.

[10] H. Kim, S.-M. Choi, C.-S. Kim, and Y. J. Koh, “Representative color
transform for image enhancement,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 4459-4468.

[11] K.KoandC.-S. Kim, “IceNet for interactive contrast enhancement,” 2021,
arXiv:2109.05838.

[12] C.Lee, W.-D. Jang, J.-Y. Sim, and C.-S. Kim, “Multiple random Walkers
and their application to image cosegmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3837-3845.

[13] H.-U. Kim, Y. J. Koh, and C.-S. Kim, ‘“PieNet: Personalized image
enhancement network,” in Proc. ECCV, Aug. 2020, pp. 374-390.

[14] J.-H. Kim, W.-D. Jang, J.-Y. Sim, and C.-S. Kim, “Optimized contrast
enhancement for real-time image and video dehazing,” J. Vis. Commun.
Image Represent., vol. 24, no. 3, pp. 410425, Apr. 2013.

[15] R. W. Liu, Y. Guo, Y. Lu, K. T. Chui, and B. B. Gupta, “Deep
network-enabled haze visibility enhancement for visual IoT-driven intel-
ligent transportation systems,” IEEE Trans. Ind. Informat., early access,
Apr. 27, 2022, doi: 10.1109/TI1.2022.3170594.

[16] S. Bae, S. Paris, and F. Durand, “Two-scale tone management for photo-
graphic look,” ACM Trans. Graph., vol. 25, no. 3, pp. 637-645, 2006.

[17] F. Kou, W. Chen, Z. Li, and C. Wen, “Content adaptive image detail
enhancement,” IEEE Signal Process. Lett., vol. 22, no. 2, pp. 211-215,
Feb. 2015.

[7

—

98991


http://dx.doi.org/10.1109/TII.2022.3170594

IEEE Access

K. Ko, C.-S. Kim: Edge-Aware Interactive Contrast Enhancement

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

T. Arici, S. Dikbas, and Y. Altunbasak, “A histogram modification frame-
work and its application for image contrast enhancement,” IEEE Trans.
Image Process., vol. 18, no. 9, pp. 1921-1935, Sep. 2009.

T. Celik and T. Tjahjadi, “Contextual and variational contrast enhance-
ment,” IEEE Trans. Image Process., vol. 20, no. 12, pp. 3431-3441,
Dec. 2011.

C. Lee, C. Lee, and C.-S. Kim, “Contrast enhancement based on layered
difference representation of 2D histograms,” IEEE Trans. Image Process.,
vol. 22, no. 12, pp. 5372-5384, Dec. 2013.

L. Yuan and J. Sun, “‘Automatic exposure correction of consumer pho-
tographs,” in Proc. ECCV, Oct. 2012, pp. 771-785.

S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, “Efficient contrast enhance-
ment using adaptive gamma correction with weighting distribution,” IEEE
Trans. Image Process., vol. 22, no. 3, pp. 1032-1041, Mar. 2013.

S. Wang, J. Zheng, H.-M. Hu, and B. Li, “Naturalness preserved enhance-
ment algorithm for non-uniform illumination images,” IEEE Trans. Image
Process., vol. 22, no. 9, pp. 3538-3548, Sep. 2013.

X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding, “A weighted vari-
ational model for simultaneous reflectance and illumination estimation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2782-2790.

X. Guo, Y. Li, and H. Ling, “LIME: Low-light image enhancement via
illumination map estimation,” IEEE Trans. Image Process., vol. 26, no. 2,
pp. 982-993, Feb. 2017.

M. Li, J. Liu, W. Yang, X. Sun, and Z. Guo, “Structure-revealing low-
light image enhancement via robust Retinex model,” IEEE Trans. Image
Process., vol. 27, no. 6, pp. 2828-2841, Jun. 2018.

E. H. Land and J. J. McCann, ‘“‘Lightness and Retinex theory,” J. Opt. Soc.
Amer., vol. 61, no. 1, pp. 1-11, 1971.

G. Deng, “A generalized unsharp masking algorithm,” IEEE Trans. Image
Process., vol. 20, no. 5, pp. 1249-1261, May 2011.

Z. Lu, B. Long, K. Li, and F. Lu, “Effective guided image filtering
for contrast enhancement,” IEEE Signal Process Lett., vol. 25, no. 10,
pp. 1585-1589, Oct. 2018.

S. Hao, X. Han, Y. Guo, X. Xu, and M. Wang, “‘Low-light image enhance-
ment with semi-decoupled decomposition,” [EEE Trans. Multimedia,
vol. 22, no. 12, pp. 3025-3038, Dec. 2020.

G. Kim, D. Kwon, and J. Kwon, “Low-LightGAN: Low-light enhance-
ment via advanced generative adversarial network with task-driven train-
ing,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019,
pp. 2811-2815.

T. Ma, M. Guo, Z. Yu, Y. Chen, X. Ren, R. Xi, Y. Li, and
X. Zhou, “RetinexGAN: Unsupervised low-light enhancement with two-
layer convolutional decomposition networks,” IEEE Access, vol. 9,
pp. 56539-56550, 2021.

Y. Jiang, X. Gong, D. Liu, Y. Cheng, and C. Fang, “EnlightenGAN:
Deep light enhancement without paired supervision,” IEEE Trans. Image
Process., vol. 30, pp. 2340-2349, 2021.

C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong, “Zero-
reference deep curve estimation for low-light image enhancement,” in
Proc. CVPR, Jun. 2020, pp. 1780-1789.

B. C. Stoel, A. M. Vossepoel, F. P. Ottes, P. L. Hofland, H. M. Kroon, and
L.J. S. Kool, “Interactive histogram equalization,” Pattern Recognit. Lett.,
vol. 11, no. 4, pp. 247-254, 1990.

M. Grundland and N. A. Dodgson, “Interactive contrast enhancement
by histogram warping,” in Proc. ICCVG in Computational Imaging and
Vision, 2004, pp. 832-838.

D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski, “‘Interactive
local adjustment of tonal values,” ACM Trans. Graph., vol. 25, no. 3,
pp. 646-653, 2006.

N. A. Dodgson, M. Grundland, and R. Vohra, “Contrast brushes: Inter-
active image enhancement by direct manipulation,” in Computational
Aesthetics in Graphics, Visualization, and Imaging. Geneva, Switzerland:
Eurographics Association, 2009.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Siisstrunk, “SLIC
superpixels compared to state-of-the-art superpixel methods,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274-2282, Nov. 2012.
Z.-G. Wang, Z.-H. Liang, and C.-L. Liu, “A real-time image processor
with combining dynamic contrast ratio enhancement and inverse gamma
correction for PDP,” Displays, vol. 30, no. 3, pp. 133-139, Jul. 2009.
K.-F. Yang, H. Li, H. Kuang, C.-Y. Li, and Y.-J. Li, “An adaptive method
for image dynamic range adjustment,” IEEE Trans. Circuits Syst. Video
Technol., vol. 29, no. 3, pp. 640-652, Mar. 2019.

98992

(42]

[43]

(44]

[45]

(46]
(47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. MICCAI, 2015,
pp. 234-241.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

J. Cai, S. Gu, and L. Zhang, “Learning a deep single image contrast
enhancer from multi-exposure images,” IEEE Trans. Image Process.,
vol. 27, no. 4, pp. 2049-2062, Apr. 2018.

K. Ma, K. Zeng, and Z. Wang, “Perceptual quality assessment for
multi-exposure image fusion,” IEEE Trans. Image Process., vol.24,no. 11,
pp. 3345-3356, Nov. 2015.

VV. Accessed: Feb. 1, 2022. [Online]. Available: https:/sites.google.com/
site/vonikakis/datasets

K. Sofiiuk, I. A. Petrov, and A. Konushin, “Reviving iterative training with
mask guidance for interactive segmentation,” 2021, arXiv:2102.06583.
Y. Heo, Y. J. Koh, and C.-S. Kim, “Guided interactive video object
segmentation using reliability-based attention maps,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 7322-7330.
C.Zheng, Z. Li, Y. Yang, and S. Wu, ““Single image brightening via multi-
scale exposure fusion with hybrid learning,” IEEE Trans. Circuits Syst.
Video Technol., vol. 31, no. 4, pp. 1425-1435, Apr. 2021.

W.-D. Jang and C.-S. Kim, “Interactive image segmentation via backprop-
agating refinement scheme,” in Proc. CVPR, Jun. 2019, pp. 5297-5306.
K. Sofiiuk, I. Petrov, O. Barinova, and A. Konushin, “f-BRS: Rethinking
backpropagating refinement for interactive segmentation,” in Proc. CVPR,
Jun. 2020, pp. 8623-8632.

Y. Heo, Y. Jun Koh, and C.-S. Kim, “Interactive video object segmentation
using global and local transfer modules,” in Proc. ECCV, Aug. 2020,
pp. 297-313.

K. Ma, H. Li, H. Yong, Z. Wang, D. Meng, and L. Zhang, ‘“‘Robust multi-
exposure image fusion: A structural patch decomposition approach,” IEEE
Trans. Image Process., vol. 26, no. 5, pp. 2519-2532, May 2017.

W.-D. Jang, C. Lee, and C.-S. Kim, “Primary object segmentation in
videos via alternate convex optimization of foreground and background
distributions,” in Proc. CVPR, Jun. 2016, pp. 696-704.

KEUNSOO KO (Student Member, IEEE) received
the B.S. degree in electrical engineering from
Korea University, Seoul, South Korea, in 2017,
where he is currently pursuing the Ph.D. degree
in electrical engineering. His research interests
include image processing and machine learning.

CHANG-SU KIM (Senior Member, IEEE)
received the Ph.D. degree (Hons.) in electri-
cal engineering from Seoul National University,
in 2000. From 2000 to 2001, he was a Visit-
ing Scholar at the Signal and Image Processing
Institute, University of Southern California, Los
Angeles. From 2001 to 2003, he coordinated the
3D Data Compression Group in National Research
Laboratory for 3D Visual Information Processing
in SNU. From 2003 to 2005, he was an Assistant

Professor at the Department of Information Engineering, Chinese University
of Hong Kong. In September 2005, he joined at the School of Electrical
Engineering, Korea University, where he is a Professor. He has published
more than 290 technical papers in international journals and conferences. His
research interests include image processing, computer vision, and machine
learning. He is a member of the Multimedia Systems and Application
Technical Committee (MSATC) of the IEEE Circuits and Systems Society.
Also, he was an APSIPA Distinguished Lecturer from 2017 to 2018. In 2009,
he received the IEEK/IEEE Joint Award for Young IT Engineer of the Year,
the Distinguished Dissertation Award from Seoul National University, and
the Best Paper Award from Journal of Visual Communication and Image
Representation (JVCI), in 2014. He was the Editorial Board Member of JVCI
and an Associate Editor of IEEE TRANSACTIONS ON IMAGE ProcessING. He is a
Senior Area Editor of JVCI and an Associate Editor of IEEE TRANSACTIONS
ON MULTIMEDIA.

VOLUME 10, 2022



