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ABSTRACT We review the literature on statistical process monitoring methods based on neutrosophic
principles. We question some of the underlying assumptions and raise important questions about these and
other neutrosophic statistical methods that need to be addressed before the methodology could be taken

seriously.

INDEX TERMS Control chart, exponentially weighted moving average (EWMA) chart, interval arithmetic,

interval data, Shewhart control chart.

I. INTRODUCTION

Neutrosophic ~ methods  were first proposed by
Smarandache [1]. As stated by Khan et al. [2], “The idea
of neutrosophic sets is a broader platform that expands the
notions of the fuzzy and classical sets.” Neutrosophic statis-
tics was said by Albassam and Aslam [3] to be a generaliza-
tion of traditional statistics that is used to analyze uncertain,
unclear, vague, and incomplete data. Many neutrosophic
statistical methods have been proposed, but in our paper we
focus on neutrosophic statistical process monitoring (NSPM)
methods. Some of the issues we raise, however, extend
to other types of neutrosophic statistical methods, many
of which have been proposed, including multiple regres-
sion analysis [4], analysis of variance [5], [6], forecasting
[7], [8], [9], acceptance sampling plans [10], [11], and cluster
analysis [12].

Statistical process monitoring is based on samples of pro-
cess data collected over time. Historical data are collected
in Phase I in order to understand the process variability,
to identify opportunities for process improvement, and, if sta-
bility is achieved, to fit a statistical model. Important Phase I
issues were discussed by Jones-Farmer et al. [13]. Data are
collected sequentially in Phase II in order to detect changes
from the baseline model fitted in Phase 1. Only Phase II
methods are considered in our paper.
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It is assumed in NSPM that the observed data are interval-
valued. Typically, the sample sizes and the control chart
design constants are also assumed to be interval-valued.
It is often assumed that one is sampling from a particu-
lar neutrosophic probability distribution, i.e., a distribution
for which the parameter, or parameters, are interval-valued.
Many neutrosophic control charts have been proposed. After
our review of these methods, we question some of the
underlying assumptions and raise important questions about
these and other neutrosophic statistical methods that need
to be addressed before the methodology could be taken
seriously.

Neutrosophic control charts for attribute data have
been proposed by Aslam [14], Aslam et al. [15], Albassam
and Aslam [3], and Aslam et al. [16]. These methods are
designed for monitoring proportions based on sampling from
a binomial distribution where the sample sizes, counts of
defective items and possibly the probability of a defective
item are all imprecisely known and represented by inter-
vals. Aslam [14] modified the basic neutrosophic approach
of Aslam et al. [15] to allow repetitive sampling, i.e., addi-
tional samples if the neutrosophic control chart statistic
at a given time was not outside the neutrosophic con-
trol limits or sufficiently close to the neutrosophic cen-
terline. Albassam and Aslam [3] incorporated runs rules
into the neutrosophic p-chart while Aslam et al. [16] used
an exponentially weighted moving average (EWMA) chart
approach.
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Khan et al. [17] proposed a neutrosophic u-chart for mon-
itoring count data along with a neutrosophic p-chart for
monitoring proportions. We note, however, that the sam-
ple sizes of six or fewer items used in their application
of the neutrosophic p-chart were much too low for use of
a p-chart to be appropriate. Ercan-Teksen [18] proposed a
neutrosophic c-chart while Aslam et al. [19], [20] proposed
neutrosophic methods for monitoring the COM-Poisson
distribution.

With continuous data, one needs to monitor the mean and
the variation of the variable of interest. Control charts for
monitoring the mean were proposed by Aslam and Khan [21],
Aslam [22], and Aslam et al. [23]. Aslam [22] modified the
neutrosophic approach of Aslam and Khan [21] to allow
repetitive sampling. Aslam et al. [23] used a moving average
chart approach while Aslam et al. [24] proposed a neutro-
sophic cumulative sum (CUSUM) chart. Aslam et al. [25]
proposed an EWMA chart for monitoring the process mean.
Shafqat et al. [26] proposed double and triple EWMA meth-
ods. Typically it was assumed in these papers that sampling
was from the neutrosophic normal distribution. The data,
sample sizes, control chart limit multipliers, and target mean
were assumed to be known imprecisely and represented by
intervals.

Under similar assumptions, methods for monitor-
ing the wvariance were proposed by Aslam et al. [27],
Aslam et al. [28], Aslam [29], Khan et al. [30], [31],
and Khan et al. [32]. In particular, Aslam et al. [28] used an
EWMA chart approach whereas Aslam [29] incorporated
the repetitive sampling feature. Khan et al. [32] incorporated
multiple dependent state sampling, i.e., the use of runs rules.

Almarashi and Aslam [33], Shawky et al. [34], and
Aslam et al. [35] developed monitoring methods under
the assumption of an underlying neutrosophic gamma
distribution while Khan ef al. [2] assumed an underlying
neutrosophic Rayleigh distribution. Aslam ef al. [36] and
Arif et al. [37] assumed an underlying neutrosophic Weibull
distribution. Neutrosophic Hotelling T> control charts based
on multivariate data were proposed by Alsam and Arif [38]
and Wibawati et al. [39].

In Section II we consider a process monitoring example
based on the neutrosophic Rayleigh distribution so that read-
ers not familiar with neutrosophic methods can more easily
understand the approach and some of our questions about it.
This example and other work on NSPM led us to the issues
and comments discussed in Section III. Our conclusions fol-
low in Section I'V.

Il. NSPM EXAMPLE BASED ON RAYLEIGH DISTRIBUTION
Khan et al. [2] proposed a method for monitoring with an
underlying neutrosophic Rayleigh distribution. The param-
eter of this distribution is a neutrosophic number. The
neutrosophic Rayleigh distribution (RDy) with impreci-
sion in the scale parameter 6y was said to have the
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following characteristics:
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where Oy> 0,Z > 0,6y € [0;,0,]1,f(Z,0n), and F(Z, Oy)
represent the neutrosophic scale parameter, the neutrosophic
density function (PDFy) and cumulative distribution func-
tion (CDFy) of the RDy . Based on the neutrosophic version
of the Rayleigh distribution, the mean and variance of the
neutrosophic random variable Z were given respectively as

T T
N = eN\/; and oy = 05 (2 — ) 3)

The graphical displays of f(Z, 6y), and F(Z, 6y) for the
neutrosophic Rayleigh random variable Z with imprecise
scale parameter Oy = [0.5, 0.75] are shown in Fig. 1, which
was reproduced from Khan et al. [2].

From the general description, it seems that the underly-
ing distribution could be any Rayleigh distribution with a
parameter in the interval [6;, 6,]. In constructing their control
chart, Khan e al. [2] proposed neutrosophic estimators of the
in-control parameter value, an estimator of the parameter at
each sampling point, and then derived their neutrosophic dis-
tributions. Probability-based control limits were based on an
underlying neutrosophic chi-distribution. In the neutrosophic
approach, there are intervals for each control limit, on the
center line of the control chart and for the plotted statistics.
Their method was justified using neutrosophic power curves
and neutrosophic average run length (ARL) profiles, where
the ARL is the expected number of samples until a con-
trol chart signal is given. An ARL curve reproduced from
Khan et al. [2] is shown in Fig.2 where « is the probability
of a false alarm and m represents the sample size.

The neutrosophic Shewhart control chart resulting from the
data in their example is shown in Fig. 3. The control limits and
chart statistic are represented by intervals at each sampling
time.

Ill. QUESTIONS AND CONCERNS

In our view there are some important issues to be addressed
with respect to the neutrosophic methodology. Some of our
questions apply to neutrosophic statistical methods in gen-
eral while other questions and concerns are more focused
on NSPM issues. We have the following comments and
questions:

A. NEUTROSOPHIC MATHEMATICS
It is imperative to clarify the rules of neutrosophic arithmetic
and extensions of the basic neutrosophic distribution theory
discussed by Alhabib et al. [40]. It is not clear, for exam-
ple, how to add an indeterminate number of neutrosophic
numbers.

According to Zhang et al. [41], the neutrosophic rules of
arithmetic for interval-valued data are the same as those
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FIGURE 1. Neutrosophic a) pdf and b) cdf for the neutrosophic Rayleigh random variable with imprecise scale parameter 6y = [0.5, 0.75].

used in interval arithmetic for putting bounds on rounding
errors and measurement errors in mathematical computa-
tions. In particular, we have the following definitions from
Zhang et al. [41]:
Consider any two interval numbers, a
[ak,aV] and b = [b~, bY], and then their
operations are defined as follows:
1) a=b & at =bt,a¥ =bY,
2) a+b=[d"+b" a" +bY],
3) @a—b=1[d—bL, a¥ — Y],
4) axb = [min(akbt, akbY, aVbt, aVbY),
max(albl, albV, aVbl, aVbY)),
5) ka = [ka", kaV], k > 0.

Interval arithmetic originated with Young [42]. More
details can be found in Moore [43], Moore et al. [44] and
IEEE Standards Association [45]. Under this framework the
endpoints of the calculated intervals represent extremes of
what could be calculated given all possible combinations
of values in the various input intervals. We note that the
neutrosophic sample mean and variance for interval-valued
observations proposed by Smarandache [46, pp. 31-33] are
calculated differently from the sample mean and variance
calculated using interval statistics [47].

The basic rules for arithmetic given by
Smarandache [46, pp. 31-33] do not match the rules given by
Zhang et al. [41]. Smarandache [46] expressed neutrosophic
numbers in the form a + bl, where a and b are real numbers,
and I represents the indeterminacy interval such that 1> = |
and 0 - I = 0. Thus the interval neutrosophic number [4, 6]
could be represented as 4 + 21. Smarandache [46] calculated
the average of two neutrosophic numbers, say a + bl and
c+dl,as(a+c)/24+[(b+d)/2]I.

b
b
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FIGURE 2. A neutrosophic ARL curve.

As an example, consider the two neutrosophic numbers
[4, 6] and [2, 4] represented as 4421 and 4 — 21, respectively.
Then using the approach of Smarandache [46], the average of
these two neutrosophic numbers would be 4 + 01, or simply
the precise value 4. This result does not seem reasonable.
Using the approach of Zhang et al. [41] and interval arith-
metic, however, the interval for the average would be [3, 5].
We consider the interval arithmetic approach to lead to the
much more useful and realistic results. As a reviewer pointed
out, the neutrosophic approach would also yield an average
of [3,5] under the restriction that the coefficient of I is
non-negative.
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FIGURE 3. A neutrosophic control chart. Reproduced from Khan et al. [2].

Since the control limits and the plotted statistic values
are all neutrosophic, the rule for declaring the process to
be out-of-control needs to be clearly expressed. An out-of-
control signal was given by Khan et al. [17] when only one
limit of the interval representing the neutrosophic control
chart statistic fell completely outside a neutrosophic control
limit interval. Concern was expressed, however, if just one
of the limits for the control chart statistic interval exceeded
any control chart limit. To understand the signaling rules
and the simulations performed to study neutrosophic chart
performance, it is important to clarify the use of inequalities
for interval data.

In order to understand neutrosophic mathematics, it would
be helpful to see an example of control chart construction
worked out in detail, preferably with the computer code being
provided.

B. INTERVAL STATISTICAL METHODS

There is an extensive body of literature on statistical methods
based on data points represented as intervals. See, for exam-
ple, Gioia, and Lauro [47], Brito [48], and the references in
Zhang and Lin [49]. We note that NSPM researchers do not
refer to interval statistical methods despite their very strong
similarities with neutrosophic statistical methods. We see
value in taking the interval statistical approach in the design
and analysis of control charts when the data are interval-
valued, but with the sample sizes and the control chart design
parameters known precisely. The resulting center lines and
control limits would be very conservative, however, given
that the endpoints would represent extreme scenarios for the
values within the intervals representing the observations.

C. NEUTROSOPHIC SAMPLE SIZES

Having the sample sizes given as imprecise can have a large
effect on the resulting widths of the neutrosophic control
limit intervals, the neutrosophic power curves, and the neu-
trosophic ARL curves. Under the neutrosophic framework it
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is typically assumed that the sample sizes are not known pre-
cisely even after the sample is collected. With NSPM methods
the level of imprecision in the sample sizes is assumed to be
maintained over time. We know of no application in quality
control, however, where the sample size would not be known
precisely after the sample is collected. The examples involv-
ing imprecise sample sizes given in Smarandache [46] all
involve attribute data without carefully expressed operational
definitions. It seems impossible to have a sample of variables
data without knowing the sample size.

Aslam [14] considered the monitoring of attribute data
with neutrosophic sample sizes in some cases represented by
[50, 150] and [20, 200]. This represents an extreme amount
of imprecision. Having the sample size be represented by the
neutrosophic intervals [3, 5] or [2, 4], as in Khan et al. [2],
causes their control limits to be 29% and 41% wider at the
lower sample size compared to the width at the higher sample
size, respectively. The width of control limits tends to be
inversely proportional to the square root of the sample size.
Note, however, that in all the case study examples involving
variables data presented in the neutrosophic literature, the
sample sizes are assumed to be known precisely.

The use of neutrosophic sample sizes is made more
explicit in the neutrosophic acceptance sampling literature.
Aslam [10] considered an example with ny = [26, 34]
and simply chose the sample size to be within this interval.
In particular, he selected n = 28. In this situation, however,
the sample size is known and the neutrosophic approach to the
sample size would not be needed. This approach of selecting
a sample size to be some value in the interval was also used
by Aslam [11]. If the sample size is randomly or arbitrarily
selected to be a fixed value within the neutrosophic interval,
there is no reason to base the further calculations on the
neutrosophic sample size interval or to use the neutrosophic
representation of the sample size at all.

Sample sizes in statistical process monitoring applications
often vary, especially when monitoring proportions, but the
sample sizes are always assumed to be known. There are stan-
dard control charting methods for handling variable sample
sizes, as described, for example, by Montgomery [50].

D. NEUTROSOPHIC CONTROL CHART CONSTANTS

The control chart limit multiplier with the various neutro-
sophic Shewhart control charts is always considered to be a
neutrosophic number. With the neutrosophic EWMA charts
of Aslam et al. [16], [25], [28], both the smoothing parame-
ter and the control limit multiplier are neutrosophic numbers.
Aslam et al. [23] considered the span of a moving average
used in a moving average chart to be unknown precisely.
Since the EWMA smoothing parameter and the moving aver-
age span are both selected by the practitioner, these values
would be known precisely. Thus it is unclear why they are
represented as neutrosophic numbers. We see no advantage
in considering the control limit multiplier to be imprecise.
Representing control chart limit multiplier and other con-
trol chart design constants as neutrosophic numbers adds
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unnecessary imprecision to the control chart limits and the
control chart statistics.

E. MEASUREMENT ERROR AND ROUNDING IN SPM
There would always be at least some small amount of impre-
cision in variables data, such as with weight and dimensional
measurements. Variability will always be present in variables
or measurement data due to the presence of common cause
variability (or background process noise), possible assignable
causes, measurement error, rounding, and data recording or
transmission errors. Maleki et al. [51] provided a review of
the literature on the effect of measurement error on process
monitoring methods.

The effect of rounding on control chart performance
was discussed by Tricker et al. [52], [53], Meneces et al.
[54], [55] and Wheeler [56]. With rounding, the implicitly
defined intervals would be of equal length with the analysis
typically based on the midpoint of each observed interval.
With variables data it would be of interest to compare the
performance of neutrosophic control charts for monitoring
the mean and variance to that of charts based on using as
input the middle value of each data interval.

The monitoring methods proposed by Steiner ef al.
[57], [58] and Steiner [59] are based on the collection of
interval data, but under the assumption that there is a fixed
set of possible interval endpoints resulting from gauging or
rounding.

F. GENERATING RANDOM NEUTROSOPHIC DATA

In order to generate random neutrosophic data, the endpoints
of random intervals could be generated from neutrosophic
cumulative distribution functions such as the one shown on
the right-hand-side of Figure 1 by using the inverse proba-
bility integral transformation. It is not as clear, however, how
random intervals could be simulated from the neutrosophic
normal distribution when the mean and variance are both
neutrosophic numbers. One possibility is to use the inverse
probability integral transformation for the four resulting cdfs,
and picking the interval endpoints as the smallest and largest
values of the four values obtained.

G. SOME TECHNICAL POINTS

As a technical point, all of the ARL calculations for the
EWMA charts in Aslam et al. [25], [28] and Khan et al. [60]
are incorrect. These authors used the asymptotic normal
distribution of the EWMA statistic, but ignored the effect
of the control limits. In addition, they ignored the depen-
dence of the EWMA statistics over time to use a geometric
distribution for the run length. Similar errors were made
in assessing the performance of the belief function method
of Aslam et al. [35] and Shawky et al. [34] since the control
chart statistic is based on an equal weighting of all the past
data values. As discussed by Knoth et al. [61], giving all of
the past data values equal weight is inadvisable and leads to
poor detection of delayed shifts in the process.
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Knoth et al. [62] showed that the double and triple EWMA
chart approach taken by Shafqat et al. [26] should not be
used. These charts give much greater weight to some past data
values than to recent data values, resulting in poor detection
capability for delayed shifts in the process. Khan ef al. [63]
recommended using a moving average statistic as input to
an EWMA chart. Knoth et al. [62] showed that this added
complication of using one control chart statistic as input in to
another control chart statistic has weak justification at best.

In the repetitive sampling generalizations proposed by
Aslam [14], [22], [29], and any other methods that allow
multiple samples at each time point, the fixed sample size
chart competitor should have a sample size set equal to the
expected sample size under the repetitive sampling. This has
not been done, so the ARL comparisons have been biased
toward favoring the repetitive sampling method since it is
based on more data. The rules for implementing repetitive
sampling, however, are not explained clearly.

The multiple dependent state sampling (MDSS) approach
of Albassam and Aslam [3], Shawky er al. [34], Khan et al.
[32], [60], and Khan et al. [64] is equivalent to the use of
standard runs rules. Under the MDSS approaches there is
the signal region outside the control limits, an interior region
close to the centerline, and intermediate regions in between.
If a point falls into the intermediate region, no signal is
given provided at least a specified number of the previous
i (i > 1) points are within the interior region. As pointed
out by Woodall et al. [65], an equivalent standard runs rule
can be expressed in terms of providing an out-of-control
signal provided at least a specified number of the most recent
points are in the intermediate region. Runs rules have been
widely used and studied since the 1950s. See, for example,
Champ and Woodall [66].

IV. CONCLUSION

In our view the justification for NSPM methods, as currently
proposed, is very weak at best. This is due in part to the lack
of explanations of the mathematical details. Other issues need
to be addressed. The sample sizes and control chart design
constants will be known precisely in practice. Representing
them as neutrosophic numbers in NSPM adds unnecessary
imprecision to the control chart statistics and the control
limits. If only the data themselves are interval-valued, then
we see value in obtaining conservative bounds on the control
chart statistics and control limits using interval statistical
methods.

The neutrosophic arithmetic, distribution theory, and
NSPM methods need to be fully explained so that results
can be reproduced. Once this is done, we think it would be
useful to compare the neutrosophic control chart methods for
variables data to standard methods based on the midpoints
of the data intervals. It would be interesting to investigate
how much of the neutrosophic control limit uncertainty is due
solely to the uncertainty in the data values.

Although unstated, it seems that an important goal in many
applications should be to increase the amount of information
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obtained by reducing the imprecision in the collected data.
This would improve the measurement system.
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