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ABSTRACT We review the literature on statistical process monitoring methods based on neutrosophic
principles. We question some of the underlying assumptions and raise important questions about these and
other neutrosophic statistical methods that need to be addressed before the methodology could be taken
seriously.
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INDEX TERMS Control chart, exponentially weighted moving average (EWMA) chart, interval arithmetic,
interval data, Shewhart control chart.

I. INTRODUCTION7

Neutrosophic methods were first proposed by8

Smarandache [1]. As stated by Khan et al. [2], ‘‘The idea9

of neutrosophic sets is a broader platform that expands the10

notions of the fuzzy and classical sets.’’ Neutrosophic statis-11

tics was said by Albassam and Aslam [3] to be a generaliza-12

tion of traditional statistics that is used to analyze uncertain,13

unclear, vague, and incomplete data. Many neutrosophic14

statistical methods have been proposed, but in our paper we15

focus on neutrosophic statistical process monitoring (NSPM)16

methods. Some of the issues we raise, however, extend17

to other types of neutrosophic statistical methods, many18

of which have been proposed, including multiple regres-19

sion analysis [4], analysis of variance [5], [6], forecasting20

[7], [8], [9], acceptance sampling plans [10], [11], and cluster21

analysis [12].22

Statistical process monitoring is based on samples of pro-23

cess data collected over time. Historical data are collected24

in Phase I in order to understand the process variability,25

to identify opportunities for process improvement, and, if sta-26

bility is achieved, to fit a statistical model. Important Phase I27

issues were discussed by Jones-Farmer et al. [13]. Data are28

collected sequentially in Phase II in order to detect changes29

from the baseline model fitted in Phase I. Only Phase II30

methods are considered in our paper.31

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

It is assumed in NSPM that the observed data are interval- 32

valued. Typically, the sample sizes and the control chart 33

design constants are also assumed to be interval-valued. 34

It is often assumed that one is sampling from a particu- 35

lar neutrosophic probability distribution, i.e., a distribution 36

for which the parameter, or parameters, are interval-valued. 37

Many neutrosophic control charts have been proposed. After 38

our review of these methods, we question some of the 39

underlying assumptions and raise important questions about 40

these and other neutrosophic statistical methods that need 41

to be addressed before the methodology could be taken 42

seriously. 43

Neutrosophic control charts for attribute data have 44

been proposed by Aslam [14], Aslam et al. [15], Albassam 45

and Aslam [3], and Aslam et al. [16]. These methods are 46

designed for monitoring proportions based on sampling from 47

a binomial distribution where the sample sizes, counts of 48

defective items and possibly the probability of a defective 49

item are all imprecisely known and represented by inter- 50

vals. Aslam [14] modified the basic neutrosophic approach 51

of Aslam et al. [15] to allow repetitive sampling, i.e., addi- 52

tional samples if the neutrosophic control chart statistic 53

at a given time was not outside the neutrosophic con- 54

trol limits or sufficiently close to the neutrosophic cen- 55

terline. Albassam and Aslam [3] incorporated runs rules 56

into the neutrosophic p-chart while Aslam et al. [16] used 57

an exponentially weighted moving average (EWMA) chart 58

approach. 59
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Khan et al. [17] proposed a neutrosophic u-chart for mon-60

itoring count data along with a neutrosophic p-chart for61

monitoring proportions. We note, however, that the sam-62

ple sizes of six or fewer items used in their application63

of the neutrosophic p-chart were much too low for use of64

a p-chart to be appropriate. Ercan-Teksen [18] proposed a65

neutrosophic c-chart while Aslam et al. [19], [20] proposed66

neutrosophic methods for monitoring the COM-Poisson67

distribution.68

With continuous data, one needs to monitor the mean and69

the variation of the variable of interest. Control charts for70

monitoring themeanwere proposed byAslam andKhan [21],71

Aslam [22], and Aslam et al. [23]. Aslam [22] modified the72

neutrosophic approach of Aslam and Khan [21] to allow73

repetitive sampling. Aslam et al. [23] used a moving average74

chart approach while Aslam et al. [24] proposed a neutro-75

sophic cumulative sum (CUSUM) chart. Aslam et al. [25]76

proposed an EWMA chart for monitoring the process mean.77

Shafqat et al. [26] proposed double and triple EWMA meth-78

ods. Typically it was assumed in these papers that sampling79

was from the neutrosophic normal distribution. The data,80

sample sizes, control chart limit multipliers, and target mean81

were assumed to be known imprecisely and represented by82

intervals.83

Under similar assumptions, methods for monitor-84

ing the variance were proposed by Aslam et al. [27],85

Aslam et al. [28], Aslam [29], Khan et al. [30], [31],86

and Khan et al. [32]. In particular, Aslam et al. [28] used an87

EWMA chart approach whereas Aslam [29] incorporated88

the repetitive sampling feature. Khan et al. [32] incorporated89

multiple dependent state sampling, i.e., the use of runs rules.90

Almarashi and Aslam [33], Shawky et al. [34], and91

Aslam et al. [35] developed monitoring methods under92

the assumption of an underlying neutrosophic gamma93

distribution while Khan et al. [2] assumed an underlying94

neutrosophic Rayleigh distribution. Aslam et al. [36] and95

Arif et al. [37] assumed an underlying neutrosophic Weibull96

distribution. Neutrosophic Hotelling T2 control charts based97

on multivariate data were proposed by Alsam and Arif [38]98

and Wibawati et al. [39].99

In Section II we consider a process monitoring example100

based on the neutrosophic Rayleigh distribution so that read-101

ers not familiar with neutrosophic methods can more easily102

understand the approach and some of our questions about it.103

This example and other work on NSPM led us to the issues104

and comments discussed in Section III. Our conclusions fol-105

low in Section IV.106

II. NSPM EXAMPLE BASED ON RAYLEIGH DISTRIBUTION107

Khan et al. [2] proposed a method for monitoring with an108

underlying neutrosophic Rayleigh distribution. The param-109

eter of this distribution is a neutrosophic number. The110

neutrosophic Rayleigh distribution (RDN ) with impreci-111

sion in the scale parameter θN was said to have the112

following characteristics: 113

f (Z , θN ) =
z

θ2N
e−

1
2 (

z
θN

)2 (1) 114

F(Z , θN ) = 1− e−
1
2 (

z
θN

)2, (2) 115

where θN> 0,Z > 0, θN ∈ [θl, θu], f (Z , θN ), and F(Z , θN ) 116

represent the neutrosophic scale parameter, the neutrosophic 117

density function (PDFN ) and cumulative distribution func- 118

tion (CDFN ) of the RDN . Based on the neutrosophic version 119

of the Rayleigh distribution, the mean and variance of the 120

neutrosophic random variable Z were given respectively as 121

µN = θN

√
π

2
and σ 2

N = θ
2
N (2−

π

2
). (3) 122

The graphical displays of f(Z , θN ), and F(Z , θN ) for the 123

neutrosophic Rayleigh random variable Z with imprecise 124

scale parameter θN = [0.5, 0.75] are shown in Fig. 1, which 125

was reproduced from Khan et al. [2]. 126

From the general description, it seems that the underly- 127

ing distribution could be any Rayleigh distribution with a 128

parameter in the interval [θl, θu]. In constructing their control 129

chart, Khan et al. [2] proposed neutrosophic estimators of the 130

in-control parameter value, an estimator of the parameter at 131

each sampling point, and then derived their neutrosophic dis- 132

tributions. Probability-based control limits were based on an 133

underlying neutrosophic chi-distribution. In the neutrosophic 134

approach, there are intervals for each control limit, on the 135

center line of the control chart and for the plotted statistics. 136

Their method was justified using neutrosophic power curves 137

and neutrosophic average run length (ARL) profiles, where 138

the ARL is the expected number of samples until a con- 139

trol chart signal is given. An ARL curve reproduced from 140

Khan et al. [2] is shown in Fig.2 where α is the probability 141

of a false alarm and m represents the sample size. 142

The neutrosophic Shewhart control chart resulting from the 143

data in their example is shown in Fig. 3. The control limits and 144

chart statistic are represented by intervals at each sampling 145

time. 146

III. QUESTIONS AND CONCERNS 147

In our view there are some important issues to be addressed 148

with respect to the neutrosophic methodology. Some of our 149

questions apply to neutrosophic statistical methods in gen- 150

eral while other questions and concerns are more focused 151

on NSPM issues. We have the following comments and 152

questions: 153

A. NEUTROSOPHIC MATHEMATICS 154

It is imperative to clarify the rules of neutrosophic arithmetic 155

and extensions of the basic neutrosophic distribution theory 156

discussed by Alhabib et al. [40]. It is not clear, for exam- 157

ple, how to add an indeterminate number of neutrosophic 158

numbers. 159

According to Zhang et al. [41], the neutrosophic rules of 160

arithmetic for interval-valued data are the same as those 161
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FIGURE 1. Neutrosophic a) pdf and b) cdf for the neutrosophic Rayleigh random variable with imprecise scale parameter θN = [0.5,0.75].

used in interval arithmetic for putting bounds on rounding162

errors and measurement errors in mathematical computa-163

tions. In particular, we have the following definitions from164

Zhang et al. [41]:165

Consider any two interval numbers, ã =166

[aL , aU ] and b̃ = [bL , bU ], and then their167

operations are defined as follows:168

1) ã = b̃⇔ aL = bL , aU = bU ,169

2) ã+ b̃ = [aL + bL , aU + bU ],170

3) ã− b̃ = [aL − bL , aU − bU ],171

4) ã×b̃ = [min(aLbL , aLbU , aUbL , aUbU ),172

max(aLbL , aLbU , aUbL , aUbU )],173

5) kã = [kaL , kaU ], k > 0.174

Interval arithmetic originated with Young [42]. More175

details can be found in Moore [43], Moore et al. [44] and176

IEEE Standards Association [45]. Under this framework the177

endpoints of the calculated intervals represent extremes of178

what could be calculated given all possible combinations179

of values in the various input intervals. We note that the180

neutrosophic sample mean and variance for interval-valued181

observations proposed by Smarandache [46, pp. 31-33] are182

calculated differently from the sample mean and variance183

calculated using interval statistics [47].184

The basic rules for arithmetic given by185

Smarandache [46, pp. 31-33] do not match the rules given by186

Zhang et al. [41]. Smarandache [46] expressed neutrosophic187

numbers in the form a+ bI , where a and b are real numbers,188

and I represents the indeterminacy interval such that I2 = I189

and 0 · I = 0. Thus the interval neutrosophic number [4, 6]190

could be represented as 4+ 2I . Smarandache [46] calculated191

the average of two neutrosophic numbers, say a + bI and192

c+ dI , as (a+ c)/2+ [(b+ d)/2]I .193

FIGURE 2. A neutrosophic ARL curve.

As an example, consider the two neutrosophic numbers 194

[4, 6] and [2, 4] represented as 4+2I and 4−2I , respectively. 195

Then using the approach of Smarandache [46], the average of 196

these two neutrosophic numbers would be 4 + 0I , or simply 197

the precise value 4. This result does not seem reasonable. 198

Using the approach of Zhang et al. [41] and interval arith- 199

metic, however, the interval for the average would be [3, 5]. 200

We consider the interval arithmetic approach to lead to the 201

much more useful and realistic results. As a reviewer pointed 202

out, the neutrosophic approach would also yield an average 203

of [3, 5] under the restriction that the coefficient of I is 204

non-negative. 205
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FIGURE 3. A neutrosophic control chart. Reproduced from Khan et al. [2].

Since the control limits and the plotted statistic values206

are all neutrosophic, the rule for declaring the process to207

be out-of-control needs to be clearly expressed. An out-of-208

control signal was given by Khan et al. [17] when only one209

limit of the interval representing the neutrosophic control210

chart statistic fell completely outside a neutrosophic control211

limit interval. Concern was expressed, however, if just one212

of the limits for the control chart statistic interval exceeded213

any control chart limit. To understand the signaling rules214

and the simulations performed to study neutrosophic chart215

performance, it is important to clarify the use of inequalities216

for interval data.217

In order to understand neutrosophic mathematics, it would218

be helpful to see an example of control chart construction219

worked out in detail, preferably with the computer code being220

provided.221

B. INTERVAL STATISTICAL METHODS222

There is an extensive body of literature on statistical methods223

based on data points represented as intervals. See, for exam-224

ple, Gioia, and Lauro [47], Brito [48], and the references in225

Zhang and Lin [49]. We note that NSPM researchers do not226

refer to interval statistical methods despite their very strong227

similarities with neutrosophic statistical methods. We see228

value in taking the interval statistical approach in the design229

and analysis of control charts when the data are interval-230

valued, but with the sample sizes and the control chart design231

parameters known precisely. The resulting center lines and232

control limits would be very conservative, however, given233

that the endpoints would represent extreme scenarios for the234

values within the intervals representing the observations.235

C. NEUTROSOPHIC SAMPLE SIZES236

Having the sample sizes given as imprecise can have a large237

effect on the resulting widths of the neutrosophic control238

limit intervals, the neutrosophic power curves, and the neu-239

trosophic ARL curves. Under the neutrosophic framework it240

is typically assumed that the sample sizes are not known pre- 241

cisely even after the sample is collected.WithNSPMmethods 242

the level of imprecision in the sample sizes is assumed to be 243

maintained over time. We know of no application in quality 244

control, however, where the sample size would not be known 245

precisely after the sample is collected. The examples involv- 246

ing imprecise sample sizes given in Smarandache [46] all 247

involve attribute data without carefully expressed operational 248

definitions. It seems impossible to have a sample of variables 249

data without knowing the sample size. 250

Aslam [14] considered the monitoring of attribute data 251

with neutrosophic sample sizes in some cases represented by 252

[50, 150] and [20, 200]. This represents an extreme amount 253

of imprecision. Having the sample size be represented by the 254

neutrosophic intervals [3, 5] or [2, 4], as in Khan et al. [2], 255

causes their control limits to be 29% and 41% wider at the 256

lower sample size compared to the width at the higher sample 257

size, respectively. The width of control limits tends to be 258

inversely proportional to the square root of the sample size. 259

Note, however, that in all the case study examples involving 260

variables data presented in the neutrosophic literature, the 261

sample sizes are assumed to be known precisely. 262

The use of neutrosophic sample sizes is made more 263

explicit in the neutrosophic acceptance sampling literature. 264

Aslam [10] considered an example with nN = [26, 34] 265

and simply chose the sample size to be within this interval. 266

In particular, he selected n = 28. In this situation, however, 267

the sample size is known and the neutrosophic approach to the 268

sample size would not be needed. This approach of selecting 269

a sample size to be some value in the interval was also used 270

by Aslam [11]. If the sample size is randomly or arbitrarily 271

selected to be a fixed value within the neutrosophic interval, 272

there is no reason to base the further calculations on the 273

neutrosophic sample size interval or to use the neutrosophic 274

representation of the sample size at all. 275

Sample sizes in statistical process monitoring applications 276

often vary, especially when monitoring proportions, but the 277

sample sizes are always assumed to be known. There are stan- 278

dard control charting methods for handling variable sample 279

sizes, as described, for example, by Montgomery [50]. 280

D. NEUTROSOPHIC CONTROL CHART CONSTANTS 281

The control chart limit multiplier with the various neutro- 282

sophic Shewhart control charts is always considered to be a 283

neutrosophic number. With the neutrosophic EWMA charts 284

of Aslam et al. [16], [25], [28], both the smoothing parame- 285

ter and the control limit multiplier are neutrosophic numbers. 286

Aslam et al. [23] considered the span of a moving average 287

used in a moving average chart to be unknown precisely. 288

Since the EWMA smoothing parameter and the moving aver- 289

age span are both selected by the practitioner, these values 290

would be known precisely. Thus it is unclear why they are 291

represented as neutrosophic numbers. We see no advantage 292

in considering the control limit multiplier to be imprecise. 293

Representing control chart limit multiplier and other con- 294

trol chart design constants as neutrosophic numbers adds 295
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unnecessary imprecision to the control chart limits and the296

control chart statistics.297

E. MEASUREMENT ERROR AND ROUNDING IN SPM298

There would always be at least some small amount of impre-299

cision in variables data, such as with weight and dimensional300

measurements. Variability will always be present in variables301

or measurement data due to the presence of common cause302

variability (or background process noise), possible assignable303

causes, measurement error, rounding, and data recording or304

transmission errors. Maleki et al. [51] provided a review of305

the literature on the effect of measurement error on process306

monitoring methods.307

The effect of rounding on control chart performance308

was discussed by Tricker et al. [52], [53], Meneces et al.309

[54], [55] and Wheeler [56]. With rounding, the implicitly310

defined intervals would be of equal length with the analysis311

typically based on the midpoint of each observed interval.312

With variables data it would be of interest to compare the313

performance of neutrosophic control charts for monitoring314

the mean and variance to that of charts based on using as315

input the middle value of each data interval.316

The monitoring methods proposed by Steiner et al.317

[57], [58] and Steiner [59] are based on the collection of318

interval data, but under the assumption that there is a fixed319

set of possible interval endpoints resulting from gauging or320

rounding.321

F. GENERATING RANDOM NEUTROSOPHIC DATA322

In order to generate random neutrosophic data, the endpoints323

of random intervals could be generated from neutrosophic324

cumulative distribution functions such as the one shown on325

the right-hand-side of Figure 1 by using the inverse proba-326

bility integral transformation. It is not as clear, however, how327

random intervals could be simulated from the neutrosophic328

normal distribution when the mean and variance are both329

neutrosophic numbers. One possibility is to use the inverse330

probability integral transformation for the four resulting cdfs,331

and picking the interval endpoints as the smallest and largest332

values of the four values obtained.333

G. SOME TECHNICAL POINTS334

As a technical point, all of the ARL calculations for the335

EWMA charts in Aslam et al. [25], [28] and Khan et al. [60]336

are incorrect. These authors used the asymptotic normal337

distribution of the EWMA statistic, but ignored the effect338

of the control limits. In addition, they ignored the depen-339

dence of the EWMA statistics over time to use a geometric340

distribution for the run length. Similar errors were made341

in assessing the performance of the belief function method342

of Aslam et al. [35] and Shawky et al. [34] since the control343

chart statistic is based on an equal weighting of all the past344

data values. As discussed by Knoth et al. [61], giving all of345

the past data values equal weight is inadvisable and leads to346

poor detection of delayed shifts in the process.347

Knoth et al. [62] showed that the double and triple EWMA 348

chart approach taken by Shafqat et al. [26] should not be 349

used. These charts givemuch greater weight to some past data 350

values than to recent data values, resulting in poor detection 351

capability for delayed shifts in the process. Khan et al. [63] 352

recommended using a moving average statistic as input to 353

an EWMA chart. Knoth et al. [62] showed that this added 354

complication of using one control chart statistic as input in to 355

another control chart statistic has weak justification at best. 356

In the repetitive sampling generalizations proposed by 357

Aslam [14], [22], [29], and any other methods that allow 358

multiple samples at each time point, the fixed sample size 359

chart competitor should have a sample size set equal to the 360

expected sample size under the repetitive sampling. This has 361

not been done, so the ARL comparisons have been biased 362

toward favoring the repetitive sampling method since it is 363

based on more data. The rules for implementing repetitive 364

sampling, however, are not explained clearly. 365

The multiple dependent state sampling (MDSS) approach 366

of Albassam and Aslam [3], Shawky et al. [34], Khan et al. 367

[32], [60], and Khan et al. [64] is equivalent to the use of 368

standard runs rules. Under the MDSS approaches there is 369

the signal region outside the control limits, an interior region 370

close to the centerline, and intermediate regions in between. 371

If a point falls into the intermediate region, no signal is 372

given provided at least a specified number of the previous 373

i (i > 1) points are within the interior region. As pointed 374

out by Woodall et al. [65], an equivalent standard runs rule 375

can be expressed in terms of providing an out-of-control 376

signal provided at least a specified number of the most recent 377

points are in the intermediate region. Runs rules have been 378

widely used and studied since the 1950s. See, for example, 379

Champ and Woodall [66]. 380

IV. CONCLUSION 381

In our view the justification for NSPM methods, as currently 382

proposed, is very weak at best. This is due in part to the lack 383

of explanations of the mathematical details. Other issues need 384

to be addressed. The sample sizes and control chart design 385

constants will be known precisely in practice. Representing 386

them as neutrosophic numbers in NSPM adds unnecessary 387

imprecision to the control chart statistics and the control 388

limits. If only the data themselves are interval-valued, then 389

we see value in obtaining conservative bounds on the control 390

chart statistics and control limits using interval statistical 391

methods. 392

The neutrosophic arithmetic, distribution theory, and 393

NSPM methods need to be fully explained so that results 394

can be reproduced. Once this is done, we think it would be 395

useful to compare the neutrosophic control chart methods for 396

variables data to standard methods based on the midpoints 397

of the data intervals. It would be interesting to investigate 398

howmuch of the neutrosophic control limit uncertainty is due 399

solely to the uncertainty in the data values. 400

Although unstated, it seems that an important goal in many 401

applications should be to increase the amount of information 402
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obtained by reducing the imprecision in the collected data.403

This would improve the measurement system.404
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