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ABSTRACT Ensemble learning techniques have achieved state-of-the-art performance in diverse machine
learning applications by combining the predictions from two or more base models. This paper presents
a concise overview of ensemble learning, covering the three main ensemble methods: bagging, boosting,
and stacking, their early development to the recent state-of-the-art algorithms. The study focuses on the
widely used ensemble algorithms, including random forest, adaptive boosting (AdaBoost), gradient boosting,
extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and categorical boost-
ing (CatBoost). An attempt is made to concisely cover their mathematical and algorithmic representations,
which is lacking in the existing literature and would be beneficial to machine learning researchers and
practitioners.
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INDEX TERMS Algorithms, classification, ensemble learning, fraud detection, machine learning, medical
diagnosis.

I. INTRODUCTION12

The recent advances in computing power and machine learn-13

ing (ML) have given rise to several innovations and devel-14

opments in many areas of research and human lives. In the15

last few years, advancements in machine learning, a subset16

of artificial intelligence (AI), have transformed and inher-17

ently changed almost every area of our lives [1], [2]. Par-18

ticularly, ML has been applied in disease diagnosis [3],19

fraud detection [4], text classification [5], and image recog-20

nition [6], among others. Unlike humans, ML algorithms21

consider several factors when making decisions, and they22

are not prone to fatigue or prejudice. Meanwhile, learn-23

ing can sometimes be challenging, especially when learning24

from high-dimensional and imbalanced datasets [7],[8], [9].25

Research has shown that conventional ML algorithms tend26

to underperform when trained with imbalanced datasets [10].27

Therefore, researchers have frequently resorted to new and28

improved learning approaches, such as ensemble and deep29

learning.30

The associate editor coordinating the review of this manuscript and

approving it for publication was Wanqing Zhao .

Ensemble learning and deep learning are two approaches 31

that have dominated the machine learning domain [11], [12], 32

[13]. Ensemble learning methods train multiple base learners 33

and combine their predictions to obtain improved perfor- 34

mance and better generalization ability than the individual 35

base learners [14]. The fundamental idea behind ensemble 36

learning is the recognition that machine learning models have 37

limitations and can make errors. Hence, ensemble learning 38

aims to improve classification performance by harnessing the 39

strengths of multiple base models. Meanwhile, some limita- 40

tions of ML algorithms include: that they result in models 41

with high variance, high bias, and low accuracy [15], [16]. 42

However, several studies have shown that ensemble models 43

often achieve higher accuracy than single ML models [17]. 44

Ensemble methods can limit the variance and bias errors 45

associated with single ML models; for example, bagging 46

reduces variance without increasing the bias, while boosting 47

reduces bias [18], [19], [20]. Overall, ensemble classifiers are 48

more robust and perform better than the individual ensemble 49

learners. 50

Ensemble learning methods are broadly categorized into 51

boosting, bagging, and stacking [21]. Gradient boost- 52

ing, XGBoost, and AdaBoost are examples of boosting 53
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algorithms, while random forest and Extra Trees classifier54

are well-known bagging algorithms. Meanwhile, examples of55

the stacking framework include super ensemble and blending56

techniques [22], [23], [24]. These ensemble algorithms have57

achieved excellent performance in various ML applications58

[25], [26], [27]. Their utilization in many real-world applica-59

tions is also well-known [28]. Due to their high performance,60

ensemble methods are the go-to algorithms in many machine61

learning competitions. When implementing ensemble clas-62

sifiers, the accuracy and diversity of the base learners are63

two essential factors that need to be considered [29]. Most64

ensemble algorithms ensure diversity through data resam-65

pling or by altering the structure of the individual learners66

[30]. Furthermore, base learners that ensure higher accuracy67

than random guessing are desirable. The individual learners68

need to have separate knowledge of the task being learned69

and are also expected to have errors different from the others.70

In the past, researchers have conducted some general71

ensemble learning reviews [31], [32], [33], reviews that focus72

on ensemble learning for feature selection [34], reviews on73

ensemble learning in healthcare applications [35], and a74

review of recent developments and applications of ensem-75

ble learning [36]. Other ensemble learning reviews in the76

literature include those that focus on intrusion detection sys-77

tems [37], sentiment analysis [38], and big data [39]. A tax-78

onomy for characterizing ensemble methods was presented79

in [40].Most published reviews and surveys provide a general80

overview of ensemble learning and focus on its applications81

in specific tasks. However, what is lacking in the literature is82

a succinct explanation of ensemble learning algorithms, their83

early developments, and concise mathematical and algorith-84

mic representations in one peer-reviewed article. We think85

it is relevant and timely to have a survey that fills this gap,86

considering the rise in the popularity of ensemble methods,87

their application in diverse problems, and the introduction88

of more recent variants such as XGBoost, LighGBM, and89

CatBoost.90

Therefore, this paper provides a concise yet deep insight91

into ensemble learning methods and algorithms. The paper92

aims to differentiate between the three main ensemble meth-93

ods: bagging, boosting, and stacking. Particular focus is94

placed on the mathematical and algorithmic representations95

of the widely used ensemble algorithms, including random96

forest, gradient boosting, AdaBoost, XGBoost, LightGBM,97

and CatBoost. This review is for ML researchers and practi-98

tioners who intend to understand ensemble learning and the99

various ensemble algorithms.100

The remainder of this paper comprises the following101

sections: Section 2 introduces the concept of ensemble102

learning, its early development, the main building blocks103

of an ensemble classifier, the popular methods used to104

combine ensemble base learners, and ensemble selection105

strategies.Meanwhile, Section 3 discusses the various ensem-106

ble methods and algorithms. Section 4 outlines recent107

ensemble learning applications, focusing on medical diag-108

nosis, fraud detection, and sentiment analysis. Meanwhile,109

Section 5 presents a discussion and future research directions, 110

while Section 6 concludes the paper. 111

II. OVERVIEW OF ENSEMBLE LEARNING 112

This section presents an overview of ensemble learning, 113

detailing the building blocks of most ensemble methods, 114

the techniques used for combining ensemble base learners, 115

and ensemble selection methods. Most research works refer 116

to the 1979 article by Dasarathy and Sheela [41] as one 117

of the foundation works of ensemble learning. The authors 118

presented a method to partition the feature space using 119

multiple component classifiers. Then in 1990, Hansen and 120

Salamon [42] demonstrated that applying an ensemble of 121

similar artificial neural network classifiers achieved superior 122

prediction performance than a single classifier. Meanwhile, 123

in the same year, Schapire [43] proposed the boosting tech- 124

nique, a method developed to convert a weak classifier into 125

a strong one, and this technique was the foundation that 126

gave rise to the present robust algorithms such as AdaBoost, 127

gradient boosting, and XGBoost [33]. 128

Ensemble learning is a technique used to combine two or 129

more ML algorithms to obtain superior performance com- 130

pared to when the constituent algorithms are used individ- 131

ually. Instead of relying on a single model, the predictions 132

from the individual learners are combined using a combi- 133

nation rule to obtain a single prediction that is more accu- 134

rate. Generally, ensemble methods can be classified into par- 135

allel and sequential ensembles. The parallel methods train 136

different base classifiers independently and combine their 137

predictions using a combiner. A popular parallel ensemble 138

method is bagging and its extension, the random forest algo- 139

rithm [44]. Parallel ensemble algorithms use the parallel gen- 140

eration of base learners to encourage diversity in the ensemble 141

members. 142

Meanwhile, sequential ensembles do not fit the base mod- 143

els independently. They are trained iteratively so that the 144

models at every iteration learn to correct the errors made by 145

the previous model. A popular type of sequential ensemble 146

is the boosting algorithm [45]. Figures 1 and 2 show block 147

diagrams depicting parallel and sequential ensemble learning. 148

Furthermore, parallel ensembles can be classified into homo- 149

geneous or heterogeneous, depending on the base learners’ 150

homogeneity. Homogeneous ensembles consist of models 151

built using the same ML algorithm, while heterogeneous 152

ensembles comprise models from different algorithms [46], 153

[47], [48]. 154

The success of ensemble learning techniques mainly relies 155

on the accuracy and diversity of the base learners [49]. 156

A machine learning model is considered accurate if it has a 157

good generalization ability on unseen instances. In contrast, 158

ML models are diverse if their errors on unseen instances are 159

not the same [47]. Therefore, diversity is seen as the differ- 160

ence between base learners in an ensemble [50]. Unlike accu- 161

racy, there is no general rule of thumb in measuring diversity. 162

Meanwhile, it is challenging to have diversity in the base 163

models when implementing ensemble classifiers. In most 164
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FIGURE 1. Block diagram of parallel ensemble learning.

FIGURE 2. Block diagram of sequential ensemble learning.

ensembles, the base learners are trained using subsets of the165

same training data, making the models correlated and diffi-166

cult to achieve diversity. Different ensemble techniques try167

to achieve diversity heuristically or implicitly. For instance,168

bagging achieves diversity by subsampling the training data169

while boosting achieves diversity by reweighting the training170

data.171

Furthermore, different techniques are used to achieve172

diversity among base learners in homogeneous and hetero-173

geneous ensembles. For example, heterogeneous ensembles174

employ different ML algorithms as base learners; therefore,175

they are essentially diverse. The main challenge in heteroge-176

neous ensembles is obtaining the most effective method to177

combine the different base learners’ predictions [46]. How-178

ever, the main challenge of homogeneous ensemble meth-179

ods is ensuring the base learners are diverse even though180

they use the same ML algorithm. Hence, bootstrap methods181

such as random forest [51] and boosting methods such as182

AdaBoost [52] have been developed to achieve diversity in183

the ensemble.184

A. COMBINING BASE LEARNERS185

A vital step in building ensemble classifiers is the method186

applied to combine the constituent base learners. The type of187

ensemble learning method usually determines the combina-188

tion mechanism used. For example, the combination rule can189

be applied in bagging and boosting once the base models are190

trained, while stacking involves training a separate algorithm191

to do the combination [53]. The most common mechanism192

used to combine ensemble base models is majority voting.193

1) MAJORITY VOTING194

Majority voting is the most popular and intuitive combination195

method in classification and regression tasks [54]. In classi-196

fication problems, the predictions for each class are summed,197

and the class with the majority vote is returned as the ensem- 198

ble prediction. Meanwhile, the majority vote is achieved in 199

regression tasks by computing the average predictions from 200

the various base learners [33]. Assuming the decision of the 201

t − th classifier is dt,c ∈ {0, 1}, t = 1, . . . ,T , and c = 202

1, . . . ,C , where T and C represents the number of classifiers 203

and the number of classes, respectively. Then, using majority 204

voting, class ωc∗ is selected as the ensemble prediction, if 205

T∑
t=1

dt,c = max
c

T∑
t=1

dt,c (1) 206

Meanwhile, the ensemble’s individual base models often 207

do not have equal performance. Hence, considering them 208

equally in the summationmight be inappropriate [55]. Amore 209

suitable solution is to weigh the performance of the individual 210

models using the weighted majority voting technique. 211

2) WEIGHTED MAJORITY VOTING 212

The weighted majority voting assumes that some classi- 213

fiers in the ensemble are more skilful than others, and their 214

predictions are given more priority when computing the 215

final ensemble prediction. The conventional majority voting 216

assumes that all the base models are equally skilled and their 217

predictions are treated equally when calculating the final 218

ensemble prediction. However, the weighted majority voting 219

assigns a specific weight to the base classifiers, which is 220

then multiplied by the models’ output when computing the 221

final ensemble prediction [56]. Assuming the generalization 222

ability of each base model is known, then a weight Wt can 223

be assigned to classifier ht according to its estimated general- 224

ization ability. Therefore, using the weighted majority voting, 225

the ensemble classifier selects class c∗, if 226

T∑
t=1

wtdt,c∗ = max
c

T∑
t=1

wtdt,c (2) 227
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Usually, the voting weights are normalized so that their228

sum is equal to 1. A more comprehensive overview of the229

weighted majority voting is presented in [57]. Meanwhile,230

there are several combination rules in the literature. In [58],231

some combination rules were introduced, including the min-232

imum, maximum, product, median, and sum rules.233

B. ENSEMBLE SELECTION234

Ensemble selection is a technique used to build ensemble235

classifiers from a set of base models. It is a vital topic in236

ensemble learning because selecting a suitable subset of base237

models could lead to better performance than when all the238

models are used to construct the ensemble classifier [59].239

Since the base models are developed using various ML algo-240

rithms or different subsets of the training data, their perfor-241

mances would be different; while some would have good242

performance, others might have poor performance. Instead243

of combining the good and bad models, selecting only a244

subset of models with good performance might be beneficial,245

which would enhance the overall ensemble performance [60].246

An ensemble selection strategy is employed to select the247

optimal subset of base classifiers, and they are usually guided248

by a scoring function [61]. Caruana et al. [60] developed the249

foremost forward model selection strategy to extract the best250

performing subset of base models, and its basic procedure is251

outlined as follows:252

i. Begin with the empty ensemble.253

ii. Select the base classifier from the library that maximizes254

the ensemble’s performance using a validation set.255

iii. Repeat step II for a predefined number of iterations or256

until all the models in the library have been examined.257

iv. Return the subset of models that produces the best per-258

formance on the validation set.259

The forward model selection strategy is fast and efficient260

but occasionally overfits, leading to poor ensemble perfor-261

mance. Hence, several ensemble selection strategies have262

been recently proposed; for example, Sun and Pfahringer [61]263

developed the bagging ensemble selection, which combines264

bagging and ensemble selection. Furthermore, the ensemble265

selection strategies can be divided into static and dynamic266

methods. The static strategy selects a single subset of base267

models during model training and applies it to predict all268

the unseen instances. The static selection methods can be269

grouped into ordering-based techniques and optimization-270

based techniques.271

As the name implies, ordering-based techniques attempt to272

order the base models with respect to specific criteria, and273

only the top models are chosen as the optimal subset. Some274

criteria for ordering the base models include validation error275

and kappa measure [59]. Guo et al. [62] recently developed276

a method to order the base models via an evaluation metric277

that takes the margin and diversity into consideration. Mean-278

while, optimization-based techniques formulate the selec-279

tion process as an optimization problem that can be solved280

using mathematical programming or heuristic optimization.281

Static methods limits the flexibility of the ensemble selection 282

process. 283

The dynamic methods dynamically select a subset of 284

models for making a prediction based on specific features 285

of the unseen instances. Every region of the input feature 286

space is assigned a subset of models that perform best in 287

that region. A foremost example of the dynamic selection 288

strategy is the k-Nearest Neighbor Oracle (KNORA) [63]. 289

Recently, Nguyen et al. [59] proposed a selection strategy 290

that combines aspects of both static and dynamic ensemble 291

selection. Other recently proposed dynamic ensemble selec- 292

tion methods can be found in [64], [65], [66]. Meanwhile, 293

Pérez-Gállego et al. [67] present a detailed description of 294

ensemble selection strategies and a comparison between 295

static and dynamic selection methods. 296

III. ENSEMBLE LEARNING METHODS 297

A. BOOSTING 298

Boosting is a machine learning technique capable of con- 299

verting weak learners into a strong classifier. It is a type of 300

ensemble meta-algorithm used for reducing bias and vari- 301

ance. Meanwhile, a weak learner is a classifier that performs 302

a bit better than random guessing, while strong learners are 303

those that attain good accuracy [16], and they are the core 304

of which the boosting ensemble algorithms are built. The 305

boosting algorithm was first discussed in a 1990 paper by 306

Schapire [43] in response to a question asked by Kearns 307

and Valiant [68] if a set of weak learners could produce a 308

single strong learner. The work by Schapire [43] had a sig- 309

nificant impact on machine learning and statistics, which led 310

to the development of several boosting algorithms, including 311

AdaBoost [69] and XGBoost [70]. 312

The main idea behind boosting involves iteratively apply- 313

ing the base learning algorithm to adjusted versions of the 314

input data [14]. In particular, boosting techniques use the 315

input data to train a weak learner, compute the predictions 316

from the weak learner, select misclassified training samples, 317

and train the subsequent weak learner with an adjusted train- 318

ing set comprising the misclassified instances from the pre- 319

vious training round [71]. The iterative learning process con- 320

tinues until a predefined number of base learners is obtained, 321

and the base learners are weighted together [27]. Boosting 322

focuses more on reducing bias than variance [28]. Therefore, 323

it enhances base learners with a high bias and low variance, 324

such as decision stumps (a decision tree with one internal 325

node). Misclassified samples get more weight, causing the 326

base learner to focus on such samples. Hence, if the base 327

classifier is biased against specific samples, those samples 328

are given more weight; hence, the algorithm corrects the bias. 329

However, this iterative learning approach makes boosting 330

unsuitable for learning noisy data because the weight given 331

to noisy samples is usually much greater than the weights 332

given to the other samples, thereby forcing the algorithm to 333

focus excessively on the noisy samples, resulting in over- 334

fitting. Despite that, boosting-based ensemble methods are 335
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among the most successful algorithms in applied machine336

learning [72], [73].337

1) AdaBoost338

The AdaBoost algorithm is a type of boosting algorithm339

capable of using weak learners to obtain a robust classifier.340

It was developed in 1995 by Freund and Schapire [69] and341

is among the most robust ML algorithms. AdaBoost was the342

first successful boosting algorithm, and the base learners are343

decision trees having a single split. Because the decision trees344

are short, they are usually called decision stumps. The most345

successful AdaBoost implementation is the AdaBoost M1,346

used for binary classification tasks [74].347

The AdaBoost learning process involves training a base348

classifier using a base algorithm, usually a decision tree.349

The sample weights are adjusted with respect to the clas-350

sifier’s predictions, and the adjusted samples are employed351

for training the subsequent classifier. Therefore, the mis-352

classified samples are assigned larger weights and correctly353

classified instances are assigned lesser weights, ensuring that354

subsequent classifiers give more attention to the misclassified355

samples.356

The different base learners are added sequentially and357

weighed to obtain the strong classifier [75]. At every iteration,358

the AdaBoost algorithm assigns weights to each instance359

in the training set [76]. Given m labelled training instances360

S = {(x1, y1), . . . , (xi, yi), . . . , (xm, ym)}, where yi is the361

target label of sample xi, and yi ∈ Y = {−1,+1}, the weight362

D1 of the sample xi and the weight updateDt+1 are computed363

as:364

D1(i) =
1
n
, i = 1, 2, . . . ,m (3)365

Dt+1(i) =
Dt (i)
zt

exp(−αtyiht (xi)), i = 1, 2, . . . , (4)366

where ht (x) is the base classifier, t = 1, . . . ,T is the number367

of iterations, Zt denotes a normalization factor, while αt is368

the weight of the classifier ht (x). The weight αt measures369

the importance of the classifier ht (x) when obtaining the final370

classifier prediction. The instances that are wrongly predicted371

in ht (x) are assigned larger weights in the t + 1 training372

round. Furthermore, Zt is selected such that Dt+1 will be a373

distribution. Zt and αt are obtained using:374

Zt =
n∑
t+1

Dt (i) exp (−αtyiht (xi)) (5)375

αt =
1
2
In(

1− εt
εt

) (6)376

where εt represents the error rate of the classifier, and it is377

obtained using:378

εt = P[ht (xi) 6= yi] =
n∑
i=n

Di(i)I [ht (xi) 6= yi] (7)379

When the given number of iterations have been completed, 380

the final strong classifier is computed using: 381

H (x) = sign(
T∑
t=1

αtht (x)) (8) 382

The AdaBoost algorithm is summarized in Algorithm 1. 383

The AdaBoost is easy to implement with little need to tune its 384

hyperparameters [77]. Furthermore, the AdaBoost is flexible 385

and can use a variety of algorithms as the base learner; 386

hence, an algorithm suitable for a specific application can be 387

used as the base learner, and the AdaBoost can enhance its 388

performance. However, a limitation of the AdaBoost is that it 389

is sensitive to noisy data and outliers because of its iterative 390

learning approach, causing overfitting. 391

Algorithm 1 AdaBoost.M1 Algorithm
Input: training data S = (x1, y1), . . . , (x2, y2), . . . , (xm, ym)

The base algorithm L
The number of iterations T .
Procedure:
Initialize the weight D1 of sample xi using (3)
for t = 1, . . . ,T :
1) Train the base classifier ht (x) by minimizing εt .
2) Calculate the weight αt of the classifier using (6).
3) Update the sample weights using (4)

end for
Output: Apply (8) to combine the predictions of the base

classifiers to obtain the final strong classifier H (x).

2) GRADIENT BOOSTING 392

Gradient boosting is a machine learning algorithm that uses 393

the boosting technique to create strong ensembles. It mainly 394

uses decision trees as the base learner to produce a robust 395

ensemble classifier, and it is also called gradient boosted 396

decision tree (GBDT). The gradient boosting technique was 397

first introduced by Breiman [19], who noted that boosting can 398

be represented as an optimization technique on an appropriate 399

loss function. 400

Subsequently, an extended version of the gradient boosting 401

algorithm was developed by Friedman [78]. The learning 402

process of this algorithm involves sequentially training new 403

models to obtain a robust classifier. It is developed in a step- 404

by-step manner similar to other boosting techniques, but its 405

core idea is to develop base learners that are highly correlated 406

with the negative gradient of the loss function related to the 407

entire ensemble [79]. 408

Given a training set S = {xi, yi}N1 , the gradient boost- 409

ing technique aims to find an approximation, F̂(x), of a 410

function F∗(x) that maps the predictor variables x to their 411

response variables y, by minimizing the specified loss func- 412

tion L(y,F(x)). The GBDT creates an additive approximation 413

of F (x) through a weighted sum of functions: 414

Fm(x) = Fm−1(x)+ ρmhm(x) (9) 415
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where ρm represents the weight of the mth function, hm(x).416

These functions are the decision tree models in the ensemble.417

The algorithm performs the approximation iteratively. Mean-418

while, a constant approximation of F∗(x) is achieved using:419

F0(x) = argminα
N∑
i=1

L(yi, α) (10)420

Successive base learners aim to minimize421

(ρmhm(x)) = argminρ,h
N∑
i=1

L(yi,Fm−1(xi)+ ρh(xi)) (11)422

Meanwhile, rather than performing the optimization task423

directly, every hm can be considered a greedy step in a gra-424

dient descent optimization for F∗ [80]. Therefore, every hm425

is trained with a new training set D = {xi, rmi}Ni=1, where rmi426

represents the false residuals, and it is the difference between427

the output of an individual base classifier and the actual428

label [60]. The false residual is also called pseudo residuals,429

and it is computed as:430

rmi = [
δL(yi,F(x))
δF(x)

]F(x)=Fm−1(x) (12)431

Subsequently, the value of ρm is calculated by performing432

a line search optimization. Meanwhile, this algorithm could433

overfit if the iterative task is not regularized appropriately434

[78]. For certain loss functions, such as quadratic loss func-435

tion, if hm fits the false residuals perfectly, then in subsequent436

iteration the false residuals would be zero and the iteration437

ends early.438

Furthermore, many regularization hyperparameters have439

been studied to optimize the GBDT’s additive learning440

method. However, the intrinsic approach to regularize the441

GBDT is by using shrinkage to limit every gradient decent442

step Fm(x) = Fm−1(x) + vρmhm(x), where v is normally443

assigned a value of 0.1 [82]. The gradient boosting procedure444

is summarized in Algorithm 2.445

The main advantage of gradient boosting is that, like other446

boosting algorithms, it can learn complex patterns from the447

input data since it is trained to correct the errors of the448

previous model. However, a model built using this algorithm449

can overfit and model noise if the input data is noisy [79],450

[83]. This algorithm is optimal for applications with small451

datasets [84].452

3) XGBoost453

The XGBoost algorithm is a decision tree-based ensemble454

that employs the gradient boosting framework. It is a scal-455

able and highly accurate algorithm used for classification456

and regression applications. The XGBoost has recently dom-457

inated the applied machine learning domain and has won458

several Kaggle competitions. It was developed in 2016 by459

Chen and Guestrin [70], having several advancements com-460

pared to the conventional gradient boosting algorithm. Unlike461

the gradient boosting, the XGBoost loss function contains a462

Algorithm 2 Gradient Boosting
Input: training data S = (x1, y1), . . . , (x2, y2), . . . , (xm, ym)

A differential loss function L(y,F(x)).
The number of iterations T .
Procedure:
1) Initialize the model with a constant value using

F0 = argminα
∑N

i=1 L(yi, α)
2) for m = 1, . . . ,M :

(i) Calculate the false residuals
rmi = [ δL(yi,F(x))

δF(x) ]F(x)=Fm−1(x) for i = 1, . . . , n (ii)
Train a base learner using the training set
D = xi, rmiNi=1
(iii) Obtain ρm by performing the line search opti-
mization:
(ρmhm(x)) = argminρ,h

∑N
i=1 L(yi,Fm−1(xi) +

ρh(xi))
(iv) Update the model:
Fm(x) = Fm−1(x) + ρmhm(x)

end for
Output: Return the final model Fm(x).

regularization term that prevents overfitting [48]: 463

LM (F(xi)) =
n∑
i=1

L(yi,F(xi))+
M∑
m=1

�(hm) (13) 464

where F(xi) represents the prediction on the i − th instance 465

at the M − th iteration, L(∗) represents a loss function that 466

computes the differences between the predicted class and the 467

actual class of the target variable. Meanwhile,�(hm) denotes 468

the regularization term, and it is formulated as: 469

�(h) = γT +
1
2
λ||ω||2 (14) 470

whereϒ represents the complexity parameter, and it controls 471

the minimum loss reduction gain required for splitting an 472

internal node. Assigning a high value to ϒ leads to simpler 473

trees. Meanwhile, T represents the number of leaves in the 474

tree, λ is a penalty parameter, and ω denotes the output of 475

the leaf nodes. Meanwhile, unlike the first-order derivative in 476

GBDT, a second-order Taylor approximation of the objective 477

function is employed in the XGBoost. Therefore, Equation 13 478

is transformed thus: 479

LM ≈
n∑
i=1

[gifm(xi)+
1
2
hif 2m(xi)]+�(hm) (15) 480

where gi and hi denote the first and second derivatives of 481

the loss function. Assuming Ij represents the samples in leaf 482

node j, then the final loss value is calculated by summing the 483

loss values of the various leaf nodes. Hence, the objection 484

function is represented as: 485

LM =
T∑
j=1

[(
∑
i∈Ij

gi)ωj +
1
2
(
∑
i∈Ij

hi + λ)ω2
j ]+ γT (16) 486
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Essentially, the optimization is modified to a quadratic487

approximation of the objective function. Additionally, due to488

the introduction of the regularization term in the XGBoost,489

it is not susceptible to overfitting [85]. Like the gradient490

boosting algorithm, the XGBoost employs maximum tree491

depth, learning rate, and subsampling to prevent the model492

from overfitting.493

Some advantage of using the XGBooost algorithm is that494

it requires minimal feature engineering, such as data nor-495

malization and feature scaling because the algorithm can496

handle such situations. Also, it is capable of handling missing497

values. This algorithm can output feature importance, which498

can be used to understand the input features better and also499

perform feature selection. The XGBoost is faster than most500

ML algorithms, can handle large datasets, and is not prone to501

overfitting. Furthermore, it often outperforms other ML algo-502

rithms, which is why it has won several Kaggle competitions.503

However, it has a few limitations, including its high number504

of hyperparameters, making it difficult to tune [86], [87].505

4) LightGBM506

The light gradient boosting machine (LightGBM) is an effi-507

cient implementation of the gradient boosting algorithm, and508

it was developed in 2017 by researchers at Microsoft [88].509

It can be used for classification, ranking, and other ML510

problems. The LightGBM algorithm uses two novel methods,511

Gradient-based One-Sided Sampling (GOSS) and Exclusive512

Feature Bundling (EFB), ensuring the algorithm trains faster513

and achieves high accuracy. The GOSS technique is a modi-514

fication of the gradient boosting technique, which takes into515

account the training instances that lead to a larger gradient,516

thereby making the learning process fast and reducing the517

computational complexity of the model.518

Specifically, the GOSS technique involves excluding a519

considerable number of training examples with small gradi-520

ents and uses only the remaining examples to compute the521

information gain [89]. The reason behind excluding samples522

with small gradients is that instances with large gradients523

are more useful in calculating the information gain (IG).524

Hence, the GOSS technique achieves excellent estimation of525

the IG with a reduced sample size [88]. Meanwhile, the EFB526

method performs a feature selection task by bundling sparse527

mutually exclusive attributes, thereby reducing the number528

of attributes [90]. Several attributes are almost exclusive in529

sparse feature space, i.e. they hardly take nonzero values530

simultaneously [91]. A typical example of exclusive features531

is One-hot encoded features. Furthermore, the EFB technique532

bundles such features to reduce the dimension of the feature533

matrix [92].534

The main benefit of the LightGBM is that it is fast and535

mostly leads to a very efficient model. Secondly, it has a low536

memory consumption since it converts continuous values to537

discrete bins. Thirdly, it achieves much higher accuracy than538

most boosting methods, resulting from the introduction of539

GOSS and EFB techniques. Lastly, the LightGBM algorithm540

performs well when trained with large datasets, with a faster541

training time than the XGBoost algorithm [93]. In terms 542

of disadvantages, the LightGBM can overfit small training 543

datasets easily as it performs better with large datasets. Also, 544

splitting the tree leaf-wise could result in overfitting because 545

more complex trees are produced. 546

Meanwhile, the LightGBM has been applied for different 547

classification problems, achieving excellent results [94], [95], 548

[96], [97], and its procedure is presented in Algorithm 3. 549

A detailed explanation of the LightGBM technique can be 550

found in [88]. Also, a comprehensive mathematical overview 551

of the LightGBM algorithm is presented in [98]. 552

Algorithm 3 LightGBM
Input: training data S = (x1, y1), . . . , (x2, y2), . . . , (xn, yn)

The loss function L(y,2(x))
The number of iterations T .
The sampling ratio of large gradient data a, and the
sampling ratio of small gradient data b.
Procedure:
1) Merge mutually exclusive features of xi, i =
{1, . . . ,N } using the EFB technique.

2) Initialize 20 (x) = argminc
∑N

i L(yi, c)
3) for t=1,. . . ,T:

(i) Compute the absolute values of gradients:
ri = [ δL(yi,2(xi))

δ2(xi)
]2(x)=2t−1(x), i = {1, . . . ,N }

(ii) Resample the dataset using the GOSS technique
topN = a× len(D); randN = b× len(D);
sorted = GetSortedIndices(abs(r));
A = sorted[1 : topN ];B =

RandomPick(sorted[topN : len(D)], randN );
D’ = A + B;
(iii) Calculate information gain values

Vj(d) =
1
n (

(
∑

xi∈Ai
ri+ 1−a

b
∑

xi∈Bi
ri)2

nji(d)
+

(
∑

xi∈Ai
ri+ 1−a

b
∑

xi∈Bi
ri)2

nji(d)
)

(iv) Obtain a new decision tree 2t (x)′ on set D′

(v) Update 2t (x) = 2t−1 (x)+2t (x)′

end for
Output: θ̂(x) = 2T (x)

5) CatBoost 553

The CatBoost algorithm is an implementation of gradient 554

boosting proposed in 2017 by Prokhorenkova et al. [99]. The 555

algorithm effectively handles categorical features during the 556

training phase. A notable improvement in CatBoost is its 557

ability to perform unbiased gradient estimation that reduces 558

overfitting. Therefore, in order to estimate the gradient of 559

each example at every boosting iteration, the CatBoost algo- 560

rithm omits that example from being used to train the current 561

model [100]. 562

Another notable improvement in the CatBoost algorithm 563

is how it automatically transforms categorical features into 564

numerical ones. Categorical features contain a discrete set 565
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of values termed categories that are mostly not compara-566

ble. Hence, these features are not suitable for building deci-567

sion trees in their present state. The categorical features568

are often converted to numerical features at the preprocess-569

ing stage, where they are replaced with numerical values.570

One-hot encoding is the most common method applied to571

low-cardinality categorical attributes, in which the original572

feature is replaced with a binary variable.573

Furthermore, another method used to handle categorical574

attributes is the Greedy Target-based Statistics (Greedy TS)575

which replaces categorical features with an equivalent aver-576

age label value [101]. Assuming we have a dataset S =577

{(Xi,Yi)}i=1...n, where Xi = (xi,1 , . . . , xi,m ) represents a578

vector of m features, and Yi ∈ R is the label value [102]. In the579

Greedy TS method, the categorical features are replaced with580

the average label value of the entire training set [103]. There-581

fore, xi,k is replaced with
∑n

j=1[xj,k=xi,k ].Yj∑n
j=1[xj,k=xi,k ]

, where [·] is an582

indicator function, i.e., [xj,k = xi,k ] would be 1 if xj,k = xi,k583

and 0 otherwise. Meanwhile, this method produces models584

that overfit. For instance, if there is one sample from the585

category x(i,k) in the dataset, the new numerical feature would586

be equal to the label value of this sample [102].587

However, CatBoost applies an improved and more robust588

approach that does not lead to overfitting and ensures all the589

examples in the training set are used for training the model.590

This method involves performing a random permutation of591

the training set, and for every sample, the algorithm calculates592

the average label value for the sample with the same category593

value located before the given one in the permutation [102].594

If σ = (σ1, . . . , σn) is the permutation, then xσp,k is replaced595

with596 ∑p−1
j=1 [xσj ,k = xσp ,k ]Yσj + a.p∑p−1
j=1 [xσj ,k = xσp ,k ]Yσj + a

(17)597

where P is a prior value, and a is the weight of the prior value.598

Meanwhile, the parameter a > 0. Furthermore, adding the599

prior value and the prior weight in the CatBoost algorithm600

ensures the noise obtained from low-frequency categories601

is reduced [104]. Prokhorenkova et al. [99], in their pio-602

neer CatBoost article, compared its performance with that603

of XGBoost and LightGBM, and they stated that CatBoost604

is less likely to overfit than XGBoost or LightGBM. They605

attributed the enhanced performance to the above method606

used by the CatBoost algorithm to encode categorical fea-607

tures. The CatBoost algorithm achieves excellent perfor-608

mance and outperforms most ML algorithms when the input609

is categorical data, and it inherently handles missing data.610

However, its performance can be poor if the parameters are611

not tuned effectively.612

B. BAGGING613

The bootstrap aggregating (bagging) was developed in614

1994 by Breiman [105] to enhance the classification per-615

formance of ML models by combining the predictions from616

randomly generated training sets. The author argued that617

perturbing the learning set could lead to significant modifi- 618

cations in the obtained predictor; hence bagging can improve 619

accuracy [105]. Meanwhile, diversity is obtained in bagging 620

by creating bootstrapped replicas of the input data, where 621

several subsets of the input data are picked randomly with 622

replacements from the original training set. Therefore, the 623

various training sets are seen as diverse and used to train 624

multiple base learners of the same ML algorithm. 625

Basically, the bagging method involves splitting the train- 626

ing data for each base learner using random sampling to 627

generate b different subsets used to train b base learners. 628

The b base learners are then combined using majority voting 629

to obtain a strong classifier [27]. The bagging procedure is 630

shown in Algorithm 4. Random forest is a popular implemen- 631

tation of the bagging technique 632

Bagging enhances the performance of base learners more 633

if the algorithm used in learning the model is unstable. 634

An unstable algorithm significantly changes its generaliza- 635

tion ability when slight modifications are made to its input. 636

Bagging focuses more on reducing the variance in the ensem- 637

ble members than the bias. Therefore, bagging performs 638

optimally when the ensemble members have high variance 639

and low bias. An example of an unstable algorithm is the 640

decision tree; hence, bagged decision trees usually perform 641

better than the single decision tree. Meanwhile, k-nearest 642

Neighbor (KNN) and naïve Bayes are examples of stable 643

algorithms, and bagging does not perform well with these 644

algorithms as base learners [28]. 645

A major advantage of bagging is that it efficiently 646

decreases the variance without increasing bias. Other advan- 647

tages of bagging include its ability to introduce diversity 648

in the input data because of the bootstrapping approach. 649

For large datasets, bagging has less computational time than 650

most ML algorithms since it trains the model with a small 651

sample size [20]. Meanwhile, a limitation of bagging is that 652

it enhances the model’s accuracy without regard for inter- 653

pretability. For example, if only one tree were applied as 654

the base learner, a suitable and easy-to-interpret tree dia- 655

gram would have been obtained; hence, the interpretability 656

is neglected since bagging uses many decision trees. Also, 657

the selected features during training are not interpretable 658

in bagging, so there could be situations where certain vital 659

features are never used. 660

1) RANDOM FOREST 661

Random forest is an ensemble algorithm that applies the 662

bagging technique to build multiple decision trees using boot- 663

strapped samples. The bagging technique generates random 664

samples with replacements from the input data and trains the 665

decision trees from the samples [106]. The decision tree is the 666

main component in the random forest algorithm [107]. Mean- 667

while, the algorithm was first developed in 1995 by Ho [108] 668

using the random subspacemethod, and in 2001 Breiman [51] 669

developed an extended version of the algorithm. 670

The random forest algorithm has been widely applied for 671

numerous tasks [109], [110], [111] because it is easy to 672
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Algorithm 4 Bagging
Input: training data S = (x1, y1), . . . , (x2, y2), . . . , (xn, yn)

Base ML algorithm L
The number of base learners T .
Procedure:
for t = 1, . . . ,T :
1) Generate a bootstrap sample Sj from the input data

S
2) Fit a base learner hj using Sj, i.e. hj = L(Sj)

end for
Output: Combine the outputs of the base learners, H (x) =

mode(h1(x), . . . , hT (x))

implement, fast, and obtains excellent performance. Two673

essential aspects of the random forest algorithm include the674

development of multiple decision trees during training and675

the combination of their predictions using majority voting.676

Since decision trees are prone to overfitting, the voting677

approach minimises the random forest’s chances to over-678

fit [106]. The random forest algorithm follows the parallel679

ensemble learning block diagram in Figure 1, where the base680

learners are decision trees.681

Furthermore, this algorithm uses bagging and feature ran-682

domness in building a forest of uncorrelated decision trees.683

Meanwhile, feature randomness is achieved using the ran-684

dom subspace method that ensures the features are randomly685

selected for training each decision tree in the forest [112]. The686

correlation between the decision trees that make up the forest687

is reduced since the trees are trained using a random feature688

subset rather than the whole feature set.689

The random forest uses a random subset of k attributes,690

unlike the traditional bagging that uses all p attributes at each691

node of the trees. Also, the optimal partitioning rules for692

the nodes are chosen from the specific random subset only.693

Furthermore, the random forest algorithm ensures the trees694

are diverse and uncorrelated by using only a subset of pre-695

dictors [113]. Furthermore, combining several uncorrelated696

trees reduces the model’s variance, thereby enhancing the697

classification accuracy [105]. Studies have shown that the698

performance of random forest is superior to the performance699

of the initial bagging algorithm [114]. The random forest700

algorithm is presented in Algorithm 5.701

A significant advantage of using this algorithm is its ability702

to solve the overfitting issue common in decision tree models.703

This is achieved through the random feature subset selection.704

Secondly, the random forest can handle missing data [115].705

Additionally, random forests usually achieve excellent per-706

formance when the input data contains many features, i.e.707

high dimensional data [116]. Meanwhile, some limitations708

exist when using this algorithm; for example, more trees are709

needed to obtain a more accurate classification. However,710

too many trees would slow down the model training process.711

Also, as the number of decision trees increases, the random712

forest becomes slow in making predictions.713

Algorithm 5 Random Forest Algorithm
Input: training data S = (x1, y1), . . . , (x2, y2), . . . , (xn, yn),

p attributes and class variables.
The number of trees T in the forest
The number of class labels C
Procedure:
for t = 1, . . . ,T :
1) Generate a bootstrap sample Sj from the input data

S
2) Fit a base learner hj using Sj, and for a given node

n,
(A) Randomly select k attributes. Usually k ≈

√
p

for classification tasks.
(B) Compute the best split features using the ran-
domly selected feature subset.
(C) Split the node using the optimal split features
obtained in step B.
Repeat A-C until the stopping criteria are achieved.

3) Repeat steps 1 and 2 for T times to build a forest of
T trees.

end for
Output: Combine the outputs of the various trees. For a

given test sample x, the final predicted class label from
the T trees is:
HT (x) = argmaxj

∑K
k=1 I (hk (x) = j, for j = 1, . . . ,C

C. STACKING 714

Stacked generalization (Stacking) is an ensemble learning 715

framework that trains a separate ML algorithm to combine 716

the predictions from two or more ensemble members. It was 717

introduced in 1992 byWolpert [117] to reduce the generaliza- 718

tion error in machine learning problems. Stacking is useful 719

in situations where several ML models are uniquely skilful 720

on a particular task; then, the stacking approach would use a 721

separate ML model to learn when to use the predictions from 722

the various models [118]. The stacking framework is depicted 723

in Figure 3. 724

Specifically, it involves building models using multiple 725

base algorithms, called level-0 models, and a meta-learning 726

algorithm that trains another model to combine the predic- 727

tions from the base models. The meta-model is termed a 728

level-1model [33]. The core idea in stacking is that the level-0 729

base learners are trained using the training dataset and are 730

provided with out-of-sample or unseen data; their predicted 731

target labels on the unseen data, together with the actual 732

labels, form the input and output pairs of a new dataset used 733

to train the meta-learner [119]. 734

Meta-learning is the part of machine learning where 735

algorithms are trained using the output of other ML algo- 736

rithms and make more accurate predictions given the pre- 737

dictions made by the other base classifiers [120]. As shown 738

in Figure 3, the meta-learner is an integral part of the 739

stacking framework because it trains the model that makes 740
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the final prediction. The meta-classifier learns how best741

to combine base learners’ predictions [121]. The stacking742

method is powerful because it uses the strengths of multiple743

well-performing classifiers to make classifications that are744

superior to the individual models that make up the ensemble.745

Furthermore, stacking uses different base algorithms746

and the same dataset to obtain models that are diverse747

and approach the predictive modelling problem differently.748

Unlike bagging, which mainly uses decision tree models749

trained on subsets of the input data, the stacked models use750

different algorithms and are trained on the same dataset.751

Also, unlike boosting, which sequentially trains models to752

correct the predictions of previous models, stacking uses a753

single model to learn how to optimally combine the pre-754

dictions from the base learners. Meanwhile, the meta-model755

is usually simple as it learns from the predictions made756

by the level-0 models. Therefore, linear classifiers, such as757

logistic regression, are often used as meta-learners. However,758

in regression problems, linear regression is mainly used as759

the meta-classifier [122]. The stacking framework has the760

following steps:761

• Step 1: Apply the selected algorithms to train the base762

models using the training data. The choice of the base763

algorithms depends on the specific user and the problem764

domain.765

• Step 2: Use the output of the base models to create a766

new dataset. Specifically, the predicted target labels of767

the base models are taken as new features, while the768

actual target labels are taken as the target variables in769

the new dataset. For example, if each instance in S is770

{xi, yi}, an equivalent instance {x̂i, yi} is obtained in the771

new dataset, where x̂i = {h1(xi), h2(x2), . . . , hT (xi)}.772

• Step 3: Train the selected meta-learner using the new773

dataset.774

After the meta-model is obtained, it is applied to combine775

the various base models. For an out-of-sample instance x,776

its predicted target outcome after applying the stacking777

framework is ĥ(h1(x), h2(x) . . . , hT (x)), where ĥ denotes the778

level-1 classifier and {h1, h2, . . . , hT } are the level-0 classi-779

fiers [123]. The stacking ensemble framework is summarized780

in Algorithm 6. Lastly, stacking is considered a framework781

more than an actual machine learning algorithm. It is not as782

popular as boosting and bagging in applied machine learning783

because it is quite difficult to implement and could easily lead784

to data leakage if not correctly done [118].785

The main benefit of stacking is that stacked models usually786

utilize the ability of several well-performing algorithms for787

making classifications that are better than any of the individ-788

ual algorithms used to build the ensemble. Usually, stacked789

models have high accuracies, a significant reason why they790

have been applied in and won several ML competitions [124],791

[125], [126]. Also, stacked models have improved diversity792

since different ML algorithms are used for training the base793

models. For example, using a factorization model such as794

matrix factorization and tree-based models (such as decision795

tree and random forest) as base learners could provide a good796

diversity because the former is trained quite differently from 797

the latter.Meanwhile, themain limitation of stackedmodels is 798

that they can have high computational time when the training 799

dataset is large because the entire dataset is used to train each 800

base classifier. 801

Algorithm 6 Stacking
Input: training data S = (x1, y1), . . . , (x2, y2), . . . , (xm, ym)

The base learning algorithms T
Procedure:
Step 1: Train base learning models
for t = 1, . . . ,T :
Fit a base learner ht using S
end for
Step 2: Obtain a new dataset from S
for t = 1, . . . ,T :
Obtain a new dataset containing {x̂i, yi}, where x̂i =
{h1(xi), h2(x2), . . . , hT (xi)}
end for
Step 3: Train the meta-learner ĥ using the new dataset
return H (x) = ĥ(h1(x), h2(2), . . . , hT (x))

Output: A stacked ensemble classifier H .

IV. ENSEMBLE LEARNING APPLICATIONS IN RECENT 802

LITERATURE 803

Ensemble learning methods have obtained excellent perfor- 804

mance in numerous applications, attracting much attention in 805

many research fields. These methods are capable of enhanc- 806

ing the generalization ability of single classifiers. This section 807

highlights some applications of ensemble methods that have 808

dominated the field of applied machine learning in recent 809

years: medical diagnosis, fraud detection, and sentiment anal- 810

ysis [127], [128], [129], [130]. Each of these application 811

areas had problems that made it difficult for traditional ML 812

algorithms to perform well. The problems include the class 813

imbalance in medical and fraud detection datasets, the lim- 814

ited sample size in medical datasets, too many redundant 815

attributes in medical and fraud detection data, and the chal- 816

lenge of decoding the ambiguity of human language in senti- 817

ment analysis. 818

A. MEDICAL DIAGNOSIS 819

Recently, there have been numerous advancements in the 820

application of machine learning for diagnosing diseases, such 821

as heart disease, hypertension, cancer, and diabetes. The 822

early detection of diseases is crucial in effectively man- 823

aging the progression of the disease. Electrocardiograms, 824

computerized tomography (CT) scans, and other medical 825

tests can detect diverse diseases. Still, the high cost of 826

using such machines has made it difficult for people to 827

access them, especially in developing countries [131]. Mean- 828

while, machine learning-based methods have been developed 829

to overcome the challenges associated with the traditional 830

methods [132]. However, there are specific challenges faced 831
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FIGURE 3. Block diagram of the Stacking framework.

by conventional ML algorithms when applied to medical832

datasets, including the imbalanced class problem and outliers833

in the dataset. These problems can affect the learning ability834

of conventional ML algorithms and reduce their prediction835

accuracy. Ensemble learning is one of the methods used to836

handle the class imbalance problem and outlier detection and837

elimination [133].838

For example, Fitriyani et al. [134] developed an ensemble839

model for the early detection of hypertension and type 2 dia-840

betes using the patient’s risk factors information. The study841

used four different datasets: hypertension, prehypertension,842

type 2 diabetes, and chronic kidney disease datasets. Firstly,843

the study employed the SMOTETomek link (SMOTETomek)844

to create new datasets with even class distribution since845

all four datasets are imbalanced. Secondly, the study uses846

the isolation forest (iForest) algorithm [135] to detect and847

remove outliers in the datasets. Meanwhile, the iForest is an848

ensemble implementation that creates isolation trees using849

the given dataset. The isolation trees are repeatedly devel-850

oped by splitting the training set until all the samples are851

isolated or the specified tree height is obtained. The exper-852

imental results show that the proposed approach achieved853

superior classification performance than other methods and854

prior research works. The proposed ensemble obtained855

96.7%, 85.8%, 75.8%, and 100% accuracy when predicting856

type 2 diabetes, hypertension, prehypertension, and CKD,857

respectively.858

Kazemi and Mirroshandel [136] proposed a novel ensem-859

blemethod for the early detection of kidney stones, a common860

disease affecting people globally. The study employed several861

ML algorithms, including decision trees, naïve Bayes, and862

artificial neural networks (ANN), to learn the relationships863

between some biological features related to kidney stone864

disease. Furthermore, the study developed a novel method865

to combine the different classifiers. The combination method866

involved assigning weights to the different classifiers via a867

genetic algorithm (GA) based computation. Meanwhile, the868

data used in the research was obtained between 2012 and869

2016 from 936 patients with kidney stone disease. The pro-870

posed ensemble achieved a classification accuracy of 97.1%.871

In addition, the ensemble model identified features that872

increase the risk of kidney stone disease, and these features873

include heart diseases, dehydration, gastric bypass surgery, 874

prostate diseases, the consumption of calcium-based medica- 875

tions, and diuretic drugs. 876

Deep learning (DL) algorithms have recently received 877

much attention due to their robust learning and generalization 878

abilities. An et al. [137] proposed an ensemble approach cou- 879

pled with deep learning techniques to predict Alzheimer’s, 880

a brain disorder associated with memory loss. Firstly, two 881

sparse autoencoders (SAE) were employed for feature learn- 882

ing. Secondly, different ML algorithms were employed to 883

develop several models from the learned data. A deep belief 884

network (DBN) was utilized for training a meta-model that 885

combines the predictions of the base models. The final deep 886

ensemble was then applied to classify Alzheimer’s disease 887

using clinical data. The results show that the proposedmethod 888

has accuracy 4% higher than six widely used ensemble algo- 889

rithms. 890

There have been significant advancements in machine 891

learning for medical diagnosis. However, many machine 892

learning models only output the disease prediction or classi- 893

fication without explaining the fundamental decision-making 894

process. Gu et al. [138] proposed using ensemble learning 895

combined with case-based reasoning (CBR) for explainable 896

breast cancer detection. The model performed a case-based 897

explanation of the output predictions, thereby aiding clini- 898

cians in making better decisions. The XGBoost algorithm 899

was used in building the predictive ensemble model, and 900

the CBR provided an interpretation of the predictions. The 901

proposed method is an improvement to recent ML research 902

that has focused more on improving the accuracy rather than 903

providing relevant explanations for the predictions. 904

Aljame et al. [139] applied ensemble learning to detect the 905

novel coronavirus disease (COVID-19). The study aimed to 906

detect the disease early using the XGBoost algorithm. Mean- 907

while, the dataset was first preprocessed to make it suitable 908

for building the ML models. Hence, the missing values and 909

outliers in the dataset were fixed using the k-nearest Neighbor 910

(KNN) imputation technique and isolation forest, respec- 911

tively. The dataset contained 5644 instances with 559 posi- 912

tive cases, indicating an imbalanced dataset. Therefore, the 913

SMOTE technique was used to create a new dataset with 914

an even class distribution. The XGBoost classifier trained 915
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with the preprocessed data obtained excellent classification916

results with an accuracy of 99.9%. The authors performed a917

comparative analysis with other well-performing studies in918

the literature, and the XGBoost ensemble showed superior919

performance.920

Similarly, Abayomi-Alli et al. [140] used ensemble921

learning methods to build ML models that efficiently pre-922

dict COVID-19. The methods include AdaBoost and ran-923

dom forest, and the AdaBoost classifier obtained the best924

performance with an accuracy of 99.3%. Furthermore,925

Mohammed et al. [141] used an ensemble of CNN classifiers926

to detect COVID-19, achieving an accuracy of 77.0%. Simi-927

larly, Ragab et al. [142] employed a deep learning ensemble928

to detect COVID-19. Before building the ensemblemodel, the929

dataset was preprocessed using the Gaussian filtering tech-930

nique. The specific deep learning algorithms that made up931

the ensemble include recurrent neural network (RNN), gated932

recurrent unit (GRU), and long short-term memory (LSTM).933

The proposed ensemble classifier obtained a classification934

accuracy of 97.2%.935

Mienye and Sun [143] utilized ensemble learning for936

heart disease prediction. The proposed approach involved937

using the synthetic minority oversampling technique-edited938

nearest Neighbor (SMOTE-ENN) to resample the dataset.939

Secondly, the recursive feature elimination (RFE) method940

was employed to select the most significant feature set for941

building the predictionmodel. Several classifiers were trained942

using the reduced feature set, and the XGBoost classifier943

obtained the best results with an accuracy of 95.6%. Further-944

more, Mienye et al. [144] proposed an ensemble method to945

predict heart disease. The study applied the weighted ageing946

classifier ensemble (WAE) to combine the predictions from947

multiple classification and regression tree (CART) models.948

The proposed method achieved a classification accuracy of949

93% when applied to the Cleveland heart disease dataset,950

outperforming similar techniques in the literature.951

Gao et al. [145] studied the performance of the random952

forest ensemble classifier and other single ML algorithms953

for detecting heart disease. The single algorithms include954

SVM, naïve Bayes, decision tree, and KNN. The study used955

principal component analysis (PCA) and linear discriminant956

analysis (LDA) techniques to identify the most informative957

features in the dataset. The experimental results showed958

that the ensemble classifier outperformed the other algo-959

rithms, obtaining an accuracy of 98.6%. Similarly, Prakash960

and Karthikeyan [146] developed a heart disease prediction961

method using feature selection and ensemble learning. How-962

ever, this study combined the genetic algorithm (GA) and963

LDA to achieve a robust feature selectionmodel. The selected964

features were then employed to build a bagging-based965

predictive model using SVM, decision tree, and MLP as966

base learners. The proposed approach obtained an accu-967

racy of 93.7%, outperforming other classifiers used for the968

performance comparison.969

Velusamy and Ramasamy [147] proposed an ensemble970

classifier to detect heart disease. The ensemble was achieved971

by combining SVM, KNN, and random forest (RF). Several 972

ensemble combination schemes were employed, including 973

majority voting, weighted average voting (WAV), and aver- 974

age voting. The study employed the SMOTE technique to 975

resample the data and obtain a balanced dataset for training 976

the ML model. Also, the Boruta feature selection technique 977

was used to select the optimal feature set. The experimental 978

results indicated that the ensemble classifier obtained using 979

the weighted average voting method got the highest accu- 980

racy of 100%. Furthermore, the statistical results showed 981

the superior performance of the weighted average voting 982

technique, which efficiently distinguished heart disease cases 983

from healthy ones. Chicco and Jurman [148] applied ensem- 984

ble learning to detect hepatitis. The study employed the ran- 985

dom forest algorithm for feature selection and to build the 986

prediction model, which was trained using electronic patient 987

records containing 615 instances. Firstly, it identified alanine 988

aminotransferase and aspartate aminotransferase enzymes as 989

the most informative features in the dataset. The ensemble 990

achieved a classification accuracy of 95.4%. 991

In another research, Ghiasi and Zendehboudi [149] used 992

two decision tree-based ensemble algorithms to build breast 993

cancer prediction models. The algorithms include the extra 994

tree classifier (ETC) and the random forest algorithms, and 995

the Wisconsin breast cancer dataset was used to train and test 996

the models. The models achieved accuracies of 100%, out- 997

performing the methods in previous literature, and the study 998

concluded that both algorithms were effective at accurately 999

diagnosing breast cancer. Similarly, Nanglia et al. [150] pro- 1000

posed a breast cancer detection model using an ensemble of 1001

multiple classifiers, including the decision tree, SVM, and 1002

KNN. The study employed a meta-classifier to combine the 1003

predictions of the ensemble members. The proposed ensem- 1004

ble achieved a classification accuracy of 78%, which was 1005

superior to the individual base models. Furthermore, the pro- 1006

posed ensemble model’s performance was better than models 1007

developed using naïve Bayes, ANN, and logistic regression 1008

algorithms. 1009

From the papers surveyed in this section, it is observed that 1010

ensemble methods have been widely utilized for diverse dis- 1011

ease predictions and medical diagnoses, achieving excellent 1012

performance and outperforming traditional machine learn- 1013

ing algorithms Table 1 presents a summary of the articles 1014

discussed in this section. 1015

B. FRAUD DETECTION 1016

Recently, due to technological advances and the fourth 1017

industrial revolution, most companies and organizations 1018

have embraced electronic commerce (e-commerce) systems, 1019

which has increased the use of credit cards and other 1020

electronic payment options. Fraudsters have targeted these 1021

e-commerce systems, hence, the need for efficient fraud 1022

detection systems to proactively detect and prevent fraud 1023

where possible [151]. Ensemble learning methods have 1024

been applied for fraud detection due to their robust perfor- 1025

mance and ability to handle imbalanced data. For example, 1026
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TABLE 1. Summary of the medical diagnosis papers.

Xie et al. [152] proposed a credit card fraud detection system1027

that integrates a KNN-based algorithm with a heterogeneous1028

ensemble method to handle the class imbalance in the credit1029

card dataset. The proposed approach achieved an excellent1030

performance in classifying fraudulent and legitimate transac-1031

tions.1032

Forough and Momtazi [153] proposed a fraud detection1033

model using ensemble learning. The method applied a deep1034

recurrent neural network (DRNN) and an ANN-based voting1035

technique. The model was trained sequentially to identify1036

fraudulent transactions using two real-world datasets. The1037

DRNN ensured the time series inherent in the credit card1038

data wasmodelled efficiently. The proposedmethod achieved1039

precision values of 92.9% and 77.5% when trained with the1040

European cardholders dataset and Brazilian credit dataset,1041

respectively The performance of the proposed method was1042

superior to the state-of-the-art methods used for credit card1043

fraud detection.1044

Karthik et al. [154] proposed a hybrid ensemblemethod for1045

credit card fraud detection. The proposed method combined1046

boosting and bagging techniques to obtain a robust model.1047

Mainly, the AdaBoost technique was used for feature engi-1048

neering to obtain a suitable feature space. After that, learning1049

models were developed using the extra tree classifier and ran-1050

dom forest. The proposed AdaBoost combined with the extra1051

tree classifier achieved an accuracy of 99.1%. In comparison,1052

the proposed AdaBoost combined with the random forest1053

classifier obtained an accuracy of 99.2%, outperforming other1054

baseline models.1055

Alfaiz and Fati [155] developed credit card fraud detec-1056

tion models using the European cardholders dataset. The1057

study used several ensemble-based methods, including ran-1058

dom forest, XGBoost, LightGBM, CatBoost, and GBDT.1059

These algorithms were combined with numerous resampling1060

techniques to determine which combination obtains the best1061

performance. The experimental results showed that the Cat-1062

Boost with a KNN-based undersampling technique achieved1063

the best performance with a sensitivity of 95.9% and AUC1064

of 97.9%. Similarly, Ileberi et al. [156] applied several ML1065

algorithms to detect credit card fraud using the European 1066

cardholders dataset. The study applied the genetic algorithm 1067

to select the most informative features in the dataset. The 1068

selected features were then used to train the ML algorithms, 1069

including a random forest ensemble, ANN, and logistic 1070

regression. The random forest classifier obtained the best 1071

performance with an accuracy of 99.9%. 1072

Ileberi et al. [157] employed the AdaBoost algorithm to 1073

develop a credit card fraud detection framework. The frame- 1074

work involves a data resampling step using the SMOTE tech- 1075

nique. Secondly, different algorithms were used individually 1076

as base learners in the AdaBoost implementation. The base 1077

learners included a decision tree, logistic regression, support 1078

vector machine, XGBoost, and random forest. The experi- 1079

mental results showed that the AdaBoost technique coupled 1080

with the selected algorithms achieved better classification 1081

performance compared to when the algorithms were used 1082

individually. Haider et al. [158] applied ensemble learning 1083

methods to detect advertisement (ad) fraud due to malicious 1084

ad displays. The ensemble methods used in the study include 1085

bagging and boosting techniques.Meanwhile, the dataset was 1086

first resampled using the SMOTE technique, and the most 1087

relevant features were selected using the information gain 1088

method. The experimental results indicated that theAdaBoost 1089

classifier obtained the best performance with an accuracy 1090

of 99%. 1091

Esenogho et al. [26] proposed an ensemble learning-based 1092

credit card fraud detection method. The study aimed to 1093

develop a method capable of adapting to the dynamic nature 1094

of credit card transactions and solve the class imbalance in 1095

the dataset. The proposed method used the LSTM algorithm 1096

as the base classifier in the AdaBoost implementation. Mean- 1097

while, the SMOTE-ENN technique was used to balance the 1098

dataset. Compared to other baseline models, the proposed 1099

ensemble learning method obtained superior performance, 1100

with a sensitivity of 99.6% and specificity of 99.8%. 1101

Furthermore, Kewei et al. [159] proposed a deep 1102

learning-based ensemble for detecting online fraud. The 1103

method combined the binary cross-entropy (BCE) loss and 1104
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TABLE 2. Summary of the fraud detection papers.

Focal loss to obtain the proposed model’s loss function. The1105

proposed method ensures the model converges faster and1106

learns effectively from the imbalanced dataset. The proposed1107

deep learning ensemble achieved a classification accuracy of1108

95.8% and an AUC of 91.0%. Ensemble learning methods1109

have also been applied for stock price manipulation [160] and1110

recruitment fraud [161]. Table 2 presents a summary of the1111

articles discussed in this section.1112

C. SENTIMENT ANALYSIS1113

Sentiment analysis (SA) (also known as opinion mining)1114

is the application of natural language processing (NLP) to1115

extract and analyze the emotional states and opinions of a1116

writer or speaker [162]. Sentiment analysis has become a cru-1117

cial research topic in machine learning with the rising number1118

of social media applications and communities. Other than the1119

traditional SA that detects the general sentiment of a spe-1120

cific text, aspect-based sentiment analysis (ABSA) identifies1121

sentiment polarities (such as positive, negative, or neutral)1122

of various aspects in a single sentence [163]. In the past,1123

it was identified that the application of ensemble learning in1124

sentiment analysis was limited [164]. However, there have1125

recently been several applications of ensemble methods in1126

sentiment analysis, and this section discusses some of those1127

applications.1128

Basiri et al. [165] developed an ensemble classifier to1129

analyze COVID-19-related tweets and Google searches to1130

understand people’s sentiments at various times and loca-1131

tions. The ensemble model was obtained by combining four1132

deep learning algorithms and one conventional ML algo-1133

rithm. The deep learning techniques include convolutional1134

neural network (CNN), bidirectional gated recurrent network1135

(BiGRU), fastText, and DistiBERT, while the conventional1136

ML algorithm is the naïve Bayes support vector machines1137

(NBSVM). The study employed the stacked generalization1138

strategy to combine the five ensemble members. The research1139

discovered that the coronavirus got people’s attention in dif-1140

ferent countries at different times and intensities. The study1141

also highlighted that the sentiments in the tweets are closely1142

related to the news and happenings in the countries, such as1143

the number of new infections, deaths and recoveries.1144

Similarly, Kandasamy et al. [166] proposed an ensemble1145

deep learning model to analyze COVID-19-related senti-1146

ments and opinions among Twitter users. The study used the1147

ensemble model to obtain better predictions than previous1148

studies. Firstly, a feature extraction step was implemented 1149

using the N-gram stacked autoencoder neural network, and 1150

the output of this step was then used to build ML mod- 1151

els using SVM, decision tree, KNN, and random for- 1152

est algorithms. Secondly, the ML models were combined 1153

using mean and mode-based voting methods. The proposed 1154

deep learning-based feature extraction step integrated with 1155

the ensemble learning classification step was compared 1156

with other methods in recent literature, and the proposed 1157

method obtained superior performance with an accuracy 1158

of 87.8%. 1159

Lin et al. [167] proposed an ensemble learning method 1160

to identify fake and harmful information in news reports. 1161

Usually, a news report is expected to be neutral, stating the 1162

facts, and should not contain too much of the writer’s emo- 1163

tions and personal opinions. However, this is not always the 1164

case, as there are news reports that are written maliciously 1165

to achieve personal gains; hence, the study aimed to detect 1166

such news and classify them as fake. The study employed 1167

the bidirectional encoder representation from transformers 1168

(BERT) model using ensemble learning techniques with text 1169

sentiment classification. Specifically, the research employed 1170

bagging and stacking ensemble techniques to enhance the 1171

model’s performance. The experimental results showed that 1172

the ensemble techniques enhanced the prediction of fake 1173

news with an accuracy of 99%. 1174

AlGhamdi et al. [168] proposed an ensemble learning- 1175

based approach to perform aspect-oriented sentiment iden- 1176

tification using datasets from multiple domains. The study 1177

employed the prior knowledge topic model algorithm and the 1178

stacking-based ensemble technique. From the experimental 1179

results, the proposed approach efficiently classify labels of 1180

the three review domains, i.e. Saudi airlines, restaurant, 1181

and movie, with a classification accuracy of 84.4%, 83.2%, 1182

and 84%, respectively. Meanwhile, the proposed approach 1183

achieved better performance compared to some baseline clas- 1184

sifiers. Another aspect-based sentiment analysis model was 1185

developed by Zhang et al. [169] to predict customers’ true 1186

consumption emotions and readiness to consume again using 1187

restaurant review data. Firstly, four conventional ML algo- 1188

rithms were used to develop single models. The algorithms 1189

include SVM, XGBoost, gradient boosting decision tree, 1190

and logistic regression. However, since a model developed 1191

using a single ML algorithm usually has inadequate diversity, 1192

the study employed the four algorithms as base learners 1193

99142 VOLUME 10, 2022



I. D. Mienye, Y. Sun: Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects

TABLE 3. Summary of the sentiment analysis papers.

in building an ensemble classifier, which outperformed the1194

individual models.1195

Chen et al. [170] used the ensemble method to assess1196

the degree of humor in text data. The research applied the1197

stacking technique on 6 ML models. The models were devel-1198

oped using deep learning algorithms such as long short-term1199

memory (LSTM), recurrent convolutional neural network1200

(R-CNN), BERT, Text-CNN, BiLSTM, and feed-forward1201

neural network (FFNN). The research employed the1202

SemEval-2020 dataset, which is used to assess humor in1203

edited news headlines. Firstly, the models were trained1204

to obtain six separate text embeddings. Secondly, the text1205

representations are stacked and fed into a meta-classifier1206

which outputs the final prediction. Furthermore, the study1207

concluded that applying the ensemble classifier led to bet-1208

ter classification results than using the individual models.1209

Other applications of ensemble learning in sentiment analysis1210

include hate speech detection using stacking LSTM and1211

RNN [171], authorship identification using a voting ensem-1212

ble of multilayer perceptron, XGBoost, and random forest1213

[172], and an opinion target extraction in restaurant review1214

sentences using majority voting [173]. Table 3 presents a1215

summary of the articles discussed in this section.1216

V. DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS1217

Ensemble learning methods have recently obtained excellent1218

performance in numerous applications and have attracted1219

much attention, as seen in the preceding section. These meth-1220

ods are capable of enhancing the generalization ability of1221

single classifiers. The number of ensemble learning methods1222

presented in this paper is not intended to be all-inclusive. The1223

methods discussed have been selected due to their popularity1224

in diverse machine learning applications. The focus of this1225

paper was to present a concise and straightforward overview1226

of the selected ensemble learning algorithm, which is lacking1227

in the existing literature.1228

In medical diagnosis, it is observed that random forest1229

and XGBoost have been mostly used in the literature. Both1230

methods offer reliable performances. In particular, XGBoost1231

is quite robust and can handle missing values and class1232

imbalance problems associated with medical datasets, pos-1233

sibly one of the reasons the XGBoost is popular in this1234

domain. XGBoost handles missing values by default, but1235

the scaleposweight hyperparameter is usually tuned for the1236

algorithm to handle imbalanced data. Meanwhile, in fraud1237

detection, the AdaBoost is the most popular. The AdaBoost 1238

algorithm is fast, simple, and easy to model with less need 1239

for hyperparameter tuning. A variety of algorithms can be 1240

used to train the base learner in AdaBoost. Therefore, the 1241

user can select an algorithm suitable for a specific task as 1242

the base estimator. For example, some research works used 1243

LSTM, a robust algorithm for time-series modelling, as the 1244

base estimator for credit card fraud detection, a task needing 1245

time-series modelling. 1246

From the previous section, we can infer that stacking is 1247

mainly preferred for sentiment analysis. Several researchers 1248

have applied and proposed diverse stacking-based methods 1249

for different sentiment analysis problems. Firstly, the main 1250

challenge in sentiment analysis tasks is obtaining models that 1251

efficiently learn the data to achieve high performance. Stack- 1252

ing methods are mainly used because, unlike bagging and 1253

boosting, stacking employs different ML algorithms, which 1254

learn from the data differently. These algorithms approach 1255

the learning problem differently, leading to enhanced per- 1256

formance due to diversity in the ensemble model. Secondly, 1257

a meta-classifier learns how best to combine the base models, 1258

ensuring optimal performance. 1259

As is evident in this paper and other research works, 1260

ensemble learning has evolved over the years and can be con- 1261

sidered a mature subfield of machine learning compared to 1262

deep learning, transfer learning, and reinforcement learning. 1263

Furthermore, ensemble learning methods have been com- 1264

bined with deep learning for different applications, includ- 1265

ing human activity recognition [174], time series forecasting 1266

[175], disease prediction [137], [176], [177], wind speed 1267

prediction [178], and outlier detection [179]. Also, ensemble 1268

learning, deep learning, and transfer learning were combined 1269

in [180] to estimate the capacity of lithium-ion batteries. 1270

The literature shows that the performance of deep learn- 1271

ing techniques can be further improved when fused with 1272

some ensemble mechanism. For example, based on the notion 1273

that diverse convolutional neural network (CNN) methods 1274

learn different aspects of an image representation, in [181], 1275

an ensemble of CNNswas developed to achieve better feature 1276

extraction from medical images. The experimental results 1277

showed that the proposed approach obtained better feature 1278

extraction and accuracy than when a single CNN architecture 1279

was used. Even though much research has been carried out 1280

in ensemble deep learning and other areas, as seen in the 1281

previous section, many problems are still unexplored where 1282
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ensemble methods can perform well. These unexplored areas1283

are potential future research directions, and they are outlined1284

below:1285

• Firstly, ensemble learning methods could potentially1286

revolutionize applied machine learning by combining1287

the vital functional elements of deep learning, transfer1288

learning, and reinforcement learning to solve seemingly1289

difficult and complex problems. Therefore, one future1290

research direction is that ensemble learning would be1291

instrumental in developing the next generation of start-1292

of-the-art deep learning architectures. Also, we expect1293

ensemble learning methods to play crucial roles in the1294

advancements of transfer learning and reinforcement1295

learning.1296

• Another future research direction is the application of1297

ensemble learning to solve big data challenges. Big data1298

has received significant attention in recent times. Deep1299

learning has been a valuable tool for big data processing1300

and modelling. Meanwhile, deep learning models are1301

mostly complex and difficult to train compared to tradi-1302

tional ML models. Studying the suitability and benefit1303

of ensemble methods in this fast-growing area could1304

be worthwhile. Additionally, a few research works have1305

already studied the application of ensemble learning in1306

big data [182], [183], [184]. However, this area could1307

benefit from more ensemble learning-based research.1308

• The use of ensemble techniques in clustering-based1309

problems is a potential future research direction. The1310

clustering domain has not benefitted from the vast1311

number of ensemble algorithms. Recent studies have1312

shown that conventional clustering methods, such as1313

K-means clustering, tend to underperform when faced1314

with high-dimensional data containing redundant fea-1315

tures, sparse distribution, and outliers [185], [186].1316

In order to solve these problems, ensemble methods1317

suitable for high-dimensional data could be studied and1318

applied. Meanwhile, ensemble clustering has become a1319

vital research area in cluster analysis. It aims to fuse1320

two or more clustering models to obtain a superior per-1321

formance compared to the single models [187], [188],1322

[189]. Even though there are a few studies on ensemble1323

clustering [190], more still needs to be done for it to1324

become an established study area. Therefore, ensemble1325

clustering is a recommended future research direction.1326

VI. CONCLUSION1327

Due to its robust learning ability, ensemble learning algo-1328

rithms have been frequently applied in several classification1329

and regression tasks in various domains such as medical1330

diagnosis, fraud detection, sentiment analysis, and anomaly1331

detection. This paper presents a brief but comprehensive1332

overview of ensemble learning, from its early development1333

to the recent state-of-the-art algorithms. This paper covers1334

the three main categories of ensemble methods: bagging,1335

boosting, and stacking. A focus is placed on the widely1336

used ensemble algorithms, such as random forest, AdaBoost,1337

XGBoost, LightGBM, and CatBoost. This paper will be 1338

crucial for machine learning researchers and practitioners 1339

who wish to understand ensemble learning and the popular 1340

ensemble algorithms. 1341
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