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ABSTRACT With the increasing number of satellites in orbit, traditional scheduling methods can no longer
satisfy the increasing data demands of users. The timeliness of remote sensing images with large data
volumes is poor in the backhaul process through low-earth-orbit (LEO) satellite networks. To address the
above problems, we propose an edge-computing load-balancing method for LEO satellite networks based
on the maximum flow of virtual links. First, the minimum rectangle composed of computing nodes is
determined by the source and destination nodes of the transmission task under the configuration of the
2D-Torus topology of LEO satellite networks. Second, edge computing virtual links are established between
computing nodes and users. Third, the Ford-Fulkerson algorithm is used to obtain the maximum flow of
the topology with virtual links. Finally, a strategy is generated for computing and transmission resource
allocation. The simulation results show that the proposed method can optimize the total capacity of the multi-
node information backhaul in the remote sensing scenario of LEO satellite networks. The effectiveness of
the proposed algorithm is verified in several special scenarios.
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INDEX TERMS 2D-torus topology, information backhaul, LEO satellite networks, load balancing, virtual
links.

I. INTRODUCTION15

Satellite communication networks can provide seamless16

wireless coverage and global access as supplements to17

existing terrestrial communication networks. Low-earth-orbit18

(LEO) satellite networks are considered a promising solu-19

tion for future wireless network architecture [1], [2], [3],20

[4], [5], [6]. In the past two decades, the development of21

satellite Internet has entered an unprecedented boom. Large-22

scale LEO satellite Internet constellations such as Starlink23

and Lightspeed have developed rapidly. They have received24

considerable attention from industry capitals, operators, and25

The associate editor coordinating the review of this manuscript and

approving it for publication was Vittorio Camarchia .

users [7], [8]. In the latest 6G non-terrestrial network (NTN) 26

proposal, aviation and maritime cases in unserved and under- 27

served areas were expanded to collect large amounts of 28

remote sensing data, including large amounts of backhaul 29

earth observation data [9]. It is important for latency-sensitive 30

earth observation applications, including emergency commu- 31

nications and real-time surveillance. 32

LEO satellite networks are usually deployed in space at 33

an orbital altitude of 500-2000 km. Compared to other com- 34

munication systems, LEO satellites are inexpensive to man- 35

ufacture and launch. Their constellation orbit design was 36

streamlined and modularized. The satellite node deployment 37

is flexible. Because the network is closer to the ground, the 38

link resistance function is better when it is not constrained 39
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by ground terrain. It also has the advantages of a rela-40

tively small round-trip time of approximately 10∼25ms and41

small channel fading [10], [11]. At present, research on42

LEO satellite networks mainly focuses on the optimization43

of spectrum resource sensing strategies, enhancement of44

beam deployment coverage, and improvement of backhaul45

links [12], [13], [14]. However, in next-generation communi-46

cation networks, target recognition, efficient video transcod-47

ing and distribution, situational awareness, and other tasks48

suitable for onboard tasks have high requirements for onboard49

processing capabilities and resource allocation. With the50

continuous enhancement of onboard processing capability,51

edge-computing technology that settles computing and stor-52

age resources onboard can enable fast task response for53

requests [15]. At the same time, LEO satellite communication54

has flexible coverage, which can collect available data for the55

aforementioned tasks. It can provide a training model data set56

support for intelligent network computing. In addition, mod-57

ern satellites can process data onboard, which can improve58

remote sensing tasks. It can offload several types of process-59

ing data onboard, such as Earth and weather observations.60

This can reduce the pressure of the downlink associated with61

the data backhaul. In this regard, studies on edge computing62

have developed the processing capabilities of satellite seg-63

ments. This renders the satellite more than a simple relay64

system.65

Currently, the existing satellite edge computing research66

has mainly focused on three aspects. The first is67

architecture-related research. Space-air-ground networks for68

edge computing applications have recently been explored to69

alleviate the heavy computational tasks of resource-limited,70

densely distributed terrestrial terminal devices [16], [17],71

[18]. Although satellite-assisted edge computing may have72

a higher latency than ground-to-air edge computing, it can73

still provide significant latency performance improvements74

compared to long-range cloud computing. Various aspects75

of space-air-ground edge computing have been studied in76

the literature. The second is the research on computational77

offloading and resource allocation. Wang et al. [19] intro-78

duced computational offloading with bilateral computations79

for space-air-ground networks. In particular, according to a80

certain threshold mechanism, computing tasks are offloaded81

to LEO satellites or terrestrial edge computing where edge82

computing servers are deployed. Wang et al. [20] pro-83

posed a game-theory-based approach to optimize compu-84

tational offloading in satellite edge computing networks.85

Wang et al. [21] proposed a joint offloading and resource86

allocation method for LEO satellite edge-computing net-87

works. Cui et al. [22] studied latency and energy cost88

optimization for edge-computing satellite Internet-of-Things89

(IoT) networks. Abderrahim [23] considered an integrated90

terrestrial space network, in which a traffic offloading scheme91

was proposed to offload ultra-reliable low-latency communi-92

cation (uRLLC) traffic to the ground segment and enhanced93

mobile broadband (eMBB) traffic to the satellite segment.94

The third is research on performance evaluation. Kim and95

Choi [24] studied the propagation and queuing delay per- 96

formance of satellite edge-computing networks under the 97

uplink/downlink packet error rate. Existing methods are 98

mainly based on mixed-integer programming, which has 99

high time-complexity. Satellite networks with high mobility 100

are different from terrestrial networks. Satellites are in the 101

process of periodic high-speed motion and must be solved 102

quickly. 103

In this paper, we study an edge computing load-balancing 104

method for LEO-satellite-network backhaul tasks, which has 105

low time complexity and engineering achievability. The main 106

contributions of this study are summarized as follows: 107

• We designed an LEO satellite networks edge-computing 108

architecture that combines the optimization of transmis- 109

sion and computing. The architecture models the rela- 110

tionship between transmission and computing resources. 111

• We proposed a 2D-Torus network minimum rectangle 112

computing node selection method. The method selects 113

the calculation offload of sensing information back to 114

the ground station. 115

• We proposed a computational load-balancing algorithm 116

based on the maximum flow of virtual links. The algo- 117

rithm determines the size of data processed by each 118

routing node. 119

The reminder of this paper is organized as follows. 120

In Section II, the application scenario, network model, 121

transmission model, and calculation model are presented. 122

In Section III, a problem model that needed to be optimized 123

was formulated. An edge-computing load-balancing method 124

based on the maximum flow of virtual links is proposed. Sim- 125

ulation results and discussions are provided in Section IV. 126

Finally, Section V concludes the paper. 127

II. SYSTEM MODEL 128

For the aforementioned scenario description, a real-time 129

information acquisition and transmission LEO constellation 130

with Earth observation, onboard processing and routing is 131

modeled as follows. 132

A. CONSTELLATION SCENARIO 133

We consider an application scenario in which the Earth obser- 134

vation satellite obtains image information and transmits the 135

data back to the ground station through LEO satellite net- 136

works. This scenario is illustrated in FIGURE 1. 137

The space segment consists of a single-layer Walker con- 138

stellation. The constellation configuration is Walker-Delta, 139

where the number of orbital planes is Mp, and the number 140

of satellites per orbit isMs. It has a relatively stable topology. 141

The main function of the system is to monitor global disaster. 142

After the detection information is generated by the Earth 143

observation satellite, transmission and computing resources 144

are called within a predetermined time window so that the 145

detection information is processed and transmitted to a lim- 146

ited area in real time. 147

The Walker-Delta constellation configuration is repre- 148

sented by adjacency matrices ASat , where the element 149
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FIGURE 1. The scenario of data backhaul in LEO satellite networks.

aSati,j ∈ ASat is the capacity of the crosslink from node i to150

node j at the instant t , which can be expressed as151

aSati,j =

{
Cl, ∃

(
vi, vj

)
, ∀vi, vj ∈ VSat , i 6= j

0, Otherwise
(1)152

where
(
vi, vj

)
represents the crosslink where the first item153

points to the second item. The capacity of the ISL is given154

by the Gaussian channel capacity formula.155

FIGURE 2. Schematic diagram of information flow in LEO satellite
networks.

The transmission of the information flow is shown in156

FIGURE 2. The ground segment is the resource manage-157

ment center responsible for managing the resource config-158

uration of all satellite nodes in constellation networks and159

receiving observation data. The centralized controller of the160

resource management center obtains the node resource status161

through double-layer SDN flooding signaling [25]. It con-162

figures node transmission and computing resources through163

control signaling.164

B. OBSERVATION TASK165

We consider the distribution of various geological disasters166

to be universal and random. Relevant information may be167

collected from all regions of Earth. Therefore, the task dis-168

tribution weight model is based on the randomness of the169

observation task. Any node has a certain probability of being170

connected to a backhaul. To facilitate the description of the171

traffic, the data traffic generated in the current snapshot is172

called a task. The ratio between different tasks is called the 173

weight. It is assumed that all tasks originate from the set of 174

sending nodes VT , and the task eventually flows to the set of 175

receiving nodes in a limited area. This forms the task weight 176

matrix B ∈ NT × NR 177

B =

 β1,1 · · · β1,NR
...

. . .
...

βNT ,1 · · · βNT ,NR

 (2) 178

where βi,j ∈ B represents the proportion of traffic sent by 179

the observation node vi ∈ VUS to the ground node vj ∈ VUD. 180

The i-th row represents all tasks sent by vi. The j-th column 181

represents all tasks received by vj, satisfying: 182

βi,j =


1
NUS

, k = 1, ∀i, j = jrecv, i 6= j

0, otherwise
(3) 183

This indicates the NUS number of the transmission satel- 184

lites that simultaneously access the observation task at the 185

same time. Binary k = 1 indicates that the node has been 186

accessed by the observation task. 187

C. ONBOARD PROCESSING 188

We consider that the processing of observation information 189

mainly involves preprocessing a large number of Earth obser- 190

vation images. Data processing can reduce the size of back- 191

haul data by extracting feature information from the data. 192

For the information received by a single satellite node Si, 193

Di represents the size of the original data and Fi represents 194

the size of the processed data. If the satellite Si performs 195

edge computing, we define the calculation transfer ratio ρi = 196

(Di − Fi)
/
Fi. At the same time, the decision variable is 197

defined as the selected calculation mode. li = 1 indicates that 198

edge computing processing is performed on the data, whereas 199

li = 0 represents no calculation processing. The data size 200

of the information generated after the original information 201

passes through the satellite Si is 202

Li = liFi + (1− li)Di = Di

(
li
1
ρi
+ (1− li)

)
(4) 203

The processing time at the satellite Si is 204

T proci =
Diz
fCPU

(5) 205

D. INFORMATION BACKHAUL 206

In this study, it is assumed that the set of all low-orbit satellites 207

is S and the set of ground stations is G. The set of all nodes 208

in the network is called A ∈ N × N . 209

A =
[
AS AR
AT AG

]
(6) 210

where N = NS + NG. The matrix AS ∈ NS × NS represents 211

the crosslink connectivity matrix of LEO satellite networks. 212

AS (i, j) = 1 indicates that there is a connected crosslink 213

between satellite i and satellite j, otherwise AS (i, j) = ∞. 214
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Similarly, AR ∈ NS × NG and AT ∈ NG × NS represent the215

connected downlink between the satellite and ground station,216

and AG ∈ NG × NG represents the connection relationship217

between the ground stations.218

The channel capacity is the maximum data rate for reliable219

transmission. The power and bandwidth-limited Gaussian220

channel capacity is given by221

Cl = W log2

(
1+

Pr
kTW

)
222

≈
1

ln (2)
Pr
kT

(
b
/
s
)

(7)223

Cl limits the maximum data rate Ri of information trans-224

mitted over the channel. Then, the communication delay can225

be defined as226

TDLn =
n∑
i=1

(
T commi + T propi

)
=

n∑
i=1

(
Ln
Ri
+ T propi

)
(8)227

where T commi is the propagation time between the i-th node228

and the (i+ 1)-th node.229

III. PROBLEM FORMULATION AND PROPOSED230

SOLUTION231

This section discusses the problem formulation and proposed232

solution method. For the task of large data volumes in LEO233

satellite networks, it is necessary to study how to maximize234

the backhaul throughput by selecting routes and allocating235

computing resources while ensuring the balanced utilization236

of network computing resources. We propose a computing237

load balancing method for low-orbit satellite networks based238

on the maximum flow of virtual links.239

A. PROBLEM FORMULATION240

For the feasibility of the numerical calculation, a discrete241

state-space model is adopted. By selecting the sampling242

interval 1τ = T
/
N , the information flow can be divided243

into N + 1 time slices. FIGURE 3 shows the spatiotempo-244

ral logic diagrams of some nodes in different discrete-time245

slices. Satellite nodes perform different behaviors of informa-246

tion transmission or information processing in different time247

slices. The following constraints must be considered in the248

data transmission process:249

1) The size of data transmitted or received in the event is250

less than or equal to the capacity of links.251

2) The size of the data transmitted during the task is less252

than or equal to the size of the data available on the satellite253

at the instant of the task.254

3) All observation data sent through the backhaul are255

transmitted through the crosslinks and arrive at the downlink256

according to the planned timing.257

According to the above objectives and constraints, the opti-258

mization problem of transmission and computing resources in259

the backhaul can be described by the following optimization260

problems:261

max
t∈T

∑
d

Cd (9)262

FIGURE 3. Spatiotemporal logic diagrams of transmission and computing
resources allocation.

s.t. Cs,o,t =
∑

τ∈T |τ<t

∑
l∈Lo,τ

(
µsl · Cl,o

)+ Cs
p, 263

∀p ∈ P, ∀s ∈ S (10) 264

Ca ≤ Da, ∀a ∈ A (11) 265

Ia ≥
Ca
Da
, ∀a ∈ A, Ia ∈ {0, 1} (12) 266

Cl ≥
∑
o∈Ol

(
Cl,o

)
, ∀l ∈ L (13) 267

Cl,o ≤ Co, ∀l ∈ L, ∀o ∈ O (14) 268∣∣∣C i
p − C

j
p

∣∣∣ ≤ C0, ∀p ∈ P, ∀i, j ∈ S (15) 269

The problem is NP-hard. Optimization 9 indicates that 270

the optimization goal is to maximize the capacity of the 271

information backhaul per unit time. Constraint 10 indicates 272

that the data entering the node are conserved with the data 273

processed by the node and the data flowing out of it. Con- 274

straint 11 indicates that the data transmitted or received in 275

a single task are less than or equal to the data generated by 276

the task. Constraint 12 indicates that when the task data are 277

backhauled, the transmission decision variable Ia is set to 278

one. Constraint 13 limits the maximum data capacity that 279

can be transmitted per unit time in a single link. Constraint 280

14 limits the data capacity transmitted on a single link for 281

a single observation task. Constraint 15 indicates that the 282

difference between the computing resource occupancy of any 283

two nodes participating in the calculation cannot exceed the 284

constraint C0. 285

B. NODE SELECTION 286

For a single satellite in Walker-Delta LEO satellite networks, 287

there are four crosslinks with two adjacent satellites in the 288

same orbital plane and two satellites in adjacent orbits. This 289
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topological connection can be regarded as a 2D-Torus net-290

work topology.291

Definition 1: The rectangle formed by the source node and292

destination node as the diagonal in the 2D-Torus network293

is called the minimum rectangle of network routing. There294

are multiple routes with a minimum number of hops in the295

minimum rectangle, as shown in FIGURE 4.296

FIGURE 4. The minimal rectangle schematic of network routing.

Definition 2: Consider a special case in which the source297

and destination nodes are on a straight line. The minimum298

rectangle of the route is the line segment. The adjacent nodes299

on both sides and the original route node form an expanded300

minimum rectangle, as shown in FIGURE 5.301

FIGURE 5. The extended minimum rectangle schematic of line routing.

We propose a method for selecting routing nodes. First,302

LEO satellite networks topology is generated according to303

the constellation position and adjacency relationship per unit 304

time. Second, the source and destination nodes of the task 305

are determined. A minimum routing rectangle is generated. 306

If theminimum rectangle does not exist, the routing neighbor- 307

hood is adopted to generate the extended minimum rectangle. 308

Finally, all nodes in the minimum rectangle are selected as 309

the path nodes for the information backhaul. The specific 310

algorithm is shown in Algorithm 1. 311

Algorithm 1 Multiple Shortest-Path Nodes Selection Algo-
rithm

Input: source node position Psn, destination node Pdn,
network topology TL
Output: set of selected nodes Nr
Begin

1 Calculate the network topology TL
2 Bring in the source node position Psn,

destination node Pdn
3 Find the shortest path Rsp of Psn and Pdn on TL
4 if Rsp is a line segment do
5 Find the extendedminimum rectangleRsd ofPsn and

Pdn according to Definition 2
6 else do
7 Find the minimum rectangle Rsd of Psn and Pdn

according to Definition 1
8 end if
9 Output the set of selected nodes Nr in Rsd
10 End

C. RESOURCE ALLOCATION 312

After selecting the routing nodes for the information 313

backhaul, it is necessary to allocate the computing and trans- 314

mission resources of each node according to the observation 315

tasks and resource occupancy. We propose a resource allo- 316

cation method based on the maximum flow of virtual links. 317

First, according to the computing nodes and node adjacencies 318

selected by Algorithm 1, a routing topology of the source 319

and destination node is generated. Second, according to the 320

computing resource occupancy of each node, a virtual link 321

between each node and the user is established. The routing 322

topology is updated. Third, all routing nodes traverse to the 323

full-load state in equal proportions using the available com- 324

puting resources of each node as the independent variable. 325

Amaximumflow search is performed to obtain the maximum 326

capacity of the network topology that satisfies the constraints. 327

Finally, the flow result is output as the allocation strategy 328

for transmission and computing resources. The specific algo- 329

rithm is shown in Algorithm 2. 330

The solution of the maximum flow from the source node 331

to the destination node is based on the Ford-Fulkerson algo- 332

rithm. The Ford-Fulkerson algorithm aims to find an aug- 333

mented path to increase the flow. It determines the path with 334

positive tolerance that can reach the source node. In this 335
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Algorithm 2 Resources Allocation Algorithm Based on the
Maximum Flow of Virtual Links

Input: set of selected nodes Nr , task weight matrix B,
minimum rectangle Rsd , the computing difference
constraint C0
Output: information backhaul throughput Cd ,
resources allocation strategy <
Begin

1 for each node Cp = 1: floor
(
fCPU

/
z
)
do

2 Find occupied computing resource Ru in Nr ,
calculate processing rate Rp = Cp − Ru

3 if Rp < 0 do
4 Rp = 0
5 else do
6 Rp = Cp − Ru
7 end if
8 Establish the virtual link between the node and the user,

the link capacity is Rp
9 Add the virtual link to the minimum rectangle Rsd
10 Update the topology Rsd
11 Calculate the maximum flow of the topology Rsd under

task weight matrix B
[flowval, cut, R, F] = Ford-Fulkerson (B, Rsd )

12 for i = 1 : nc
13 for j = 1 : nv
14 Calculate CPU occupancy difference 1C

between node and node
15 end for
16 end for
17 if ∀1C < C0 do
18 break
19 else do
20 Cp = Cp + 1
21 end if
22 end for
23 Cd ⇐ flowval
24 < ⇐ R
25 End

process, R is a set of nodes marked as visited, and S is a subset336

of R, consisting of nodes marked as searched in R.337

It should be emphasized that the above process of selecting338

and allocating computing resources is only for a snapshot.339

Therefore, a load-balancing algorithm should be applied to all340

snapshots generated by all time slices to obtain the capacity341

changes over time. Algorithm 3 summarizes all steps of the342

LEO satellite networks load balancing method based on the343

maximum flow of virtual links.344

IV. SIMULATION RESULTS AND DISSCUSION345

In this section, we introduce the parameter settings for the346

simulation scenario. Second, we adopted the number of347

routing nodes contained in different minimum rectangles as348

independent variables to compare the performance of always-349

transmission, always-computing, and the strategy of this350

study. The performance assessment metrics are backhauled351

throughput, delay of information backhaul, and average CPU352

occupancy rate. Finally, we verified the performance of353

the algorithm under different task access probabilities and354

resource occupancy.355

Algorithm 3 LEO Satellite Networks Load Balancing Algo-
rithm

Input: constellation ephemeris for t ∈ [0,T ], snapshot
interval 1t ,
Output: resources allocation strategy <
Begin

1 Sample the constellation ephemeris with 1t , generate
TL snapshots.

2 Determine the type of task weight distribution,
forming the task weight matrix B.

3 Calculate minimum rectangle Rsd using Algorithm 1
4 for each snapshot do
5 Determine the computing difference constraint C0
6 Find occupied computing resource Ru
7 Calculate processing rate Rp
8 Calculate Cd and < using Algorithm 2

Cd ⇐ flowval
< ⇐ R

9 end for
10 End

The parameters of the simulation are set as fol- 356

lows. Walker-Delta LEO satellite networks composed of 357

220 satellites are used in the simulation, with a total of 358

20 orbital planes. Each orbital plane has 11 satellites. The 359

orbital height is H = 1000km. The orbital inclination angle 360

is 60◦. The sampling interval of the simulation snapshot is 5s. 361

The simulation time is an orbital period of 105 min. The com- 362

munication frequency of the crosslinks is 26 GHz. The com- 363

munication frequency of the downlink is 20 GHz. The link 364

bandwidth is 500 MHz. The minimum communication angle 365

of the ground user is 25◦.The field of view of the satellite 366

beam is 120◦. The main frequency of the satellite-computing 367

CPU is 1Ghz. We assume that = onboard processing does 368

not cause information carried in the image to be lost. The 369

simulation results under different conditions are the average 370

of 1000 Monte Carlo experiments. 371

A. PERFORMANCE ANALYSIS 372

In this section, the performance of the algorithm is 373

characterized using three metrics. They are the backhaul 374

throughput, delay of information backhaul, and average CPU 375

occupancy rate. The strategy given by the algorithm in this 376

paper is compared with the always-transmission strategy 377

and the always-computing strategy. The always-transmission 378

strategy involves transmitting all the data back to the user 379

through LEO satellite networks. The always-computing strat- 380

egy involves sending the processed feature information of 381

all data to the user. There is no difference in the time com- 382

plexity of the three methods. In the simulation, it is assumed 383

that all nodes are in an idle state. After selecting a fixed 384

source node, we select different destination nodes to verify 385

the performance of the algorithm under different numbers of 386

computing nodes. We select a 2D-Torus network topology 387

ranging from 2×2 to 5×6. The network is simulated as shown 388
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FIGURE 6. Routing nodes in different minimum rectangles.

in FIGURE 6. The total size of the data to be backhauled is389

100 GB.390

We use the information backhaul throughput to represent391

the backhaul of the image data per unit time. FIGURE 7392

shows the results of the information backhaul throughput with393

different numbers of routing nodes. The x-axis represents the394

number of routing nodes occupied by the backhaul informa-395

tion. The y-axis represents the in backhaul throughput per unit396

time. It can be seen that the information backhaul throughput397

obtained by our strategy in this study is better than that of398

the other two strategies in the same scenario. The backhaul399

throughput of our strategy increases with an increase in the400

number of routing nodes. When the routing nodes reach401

16 satellites, there is an inflection point in the throughput402

curve. The backhaul throughput no longer increases. This403

is owing to the limited bandwidth of the crosslinks from404

the source node. The maximum bandwidth of each crosslink405

limits information backhaul throughput. When the source406

FIGURE 7. Information backhaul throughput with different number of
routing nodes.

node is far from the destination node in the topology, a large 407

number of optional routing nodes can meet the computational 408

requirements of the task. There is an intersection between 409

the always-transmission curve and always-computing curve. 410

In this case, the processing capability of the multi-node 411

computing network and the downlink of the last hop for 412

information backhaul have reached a dynamic balance. 413

FIGURE 8. Delay of information backhaul with different numbers of
routing nodes.

We use the delay of information backhaul to characterize 414

the time consumption from information generation to the 415

user acquiring the information. FIGURE 8 shows results of 416

information backhaul delay for different numbers of routing 417

nodes. The x-axis represents the number of routing nodes 418

occupied by information backhaul. The x-axis represents 419

the delay of information backhaul. It can be seen that the 420

delay of information backhaul obtained by our strategy in 421

this study is better than the other two strategies in the 422

same scenario. Under the condition of a certain amount of 423

remote sensing image data, the delay of information back- 424

haul is inversely proportional to the information backhaul 425

throughput. 426

We use the CPU average occupancy rate to represent the 427

computing resource occupancy of routing nodes in a single 428

task. FIGURE 9 shows the average CPU occupancy rate of 429

the routing nodes with different numbers of routing nodes. 430

The x-axis represents the number of routing nodes occupied 431

by the backhaul information. The y-axis represents the aver- 432

age CPU occupancy rate. It can be seen that the always- 433

transmission strategy only needs to perform packet routing 434

table lookup and forwarding. It requires almost no computing 435

resources. With an increase in the number of computing 436

nodes, the curve of our strategy in this study and the curve of 437

the always-computing strategy both have an inflection point 438

that decreases from the full load state. Because our strategy 439

balances the occupancy of the computing resources well, the 440

drop point appears earlier. 441
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FIGURE 9. Average CPU occupancy rate with different numbers of routing
nodes.

After comparing the results of the above three strategies,442

it can be seen that the strategy proposed in this study is443

superior to the other two strategies in terms of throughput444

and delay. In the always-transmission strategy, the through-445

put bottleneck of the information backhaul is limited by446

the downlink bandwidth. The backhaul throughput can only447

be improved by increasing the transmission capacity of the448

downlink. In the always-computing strategy, computing abil-449

ity is limited onboard. The computing ability can satisfy the450

requirements of crosslinks of the source node, only when451

the computing network composed of routing nodes expands452

to a certain extent. This affects the utilization efficiency of453

computing resources in LEO satellite networks. Our strategy454

in this study balances the occupancy of the node-computing455

ability and the downlink bandwidth. This makes the use of456

the system more efficient.457

B. VERIFICATION458

In this section, we verify the performance of the proposed459

algorithm in special scenarios. Two special scenarios are460

established. The first scenario is the information backhaul461

for different task access probabilities. The second scenario462

is information backhaul, where the computing resources of463

some nodes are occupied.464

FIGURE 10 shows the delay of information backhaul465

under different task access probabilities with different num-466

bers of routing nodes. It can be seen that when the task467

access probability is fixed, the conclusion is the same as that468

in FIGURE 8. With an increase in task access probability,469

the task distribution model presents a mode of aggregated470

distribution. The data of all task access nodes are aggregated471

to a small number of user nodes. The delay of information472

backhaul increases approximately linearly with an increase473

in of task access probability.474

Considering that the computing resources of all nodes475

cannot be fully available at a certain moment in practi-476

cal application scenarios, we verify the performance of our477

FIGURE 10. Delay of information backhaul under different task access
probabilities with different numbers of routing nodes.

FIGURE 11. Allocation result of our strategy when computing resources
of some nodes are occupied.

algorithm when the computing resources of some nodes are 478

occupied. FIGURE 11 shows the resource allocation strategy 479

for a multi-node information backhaul when the computing 480

resources of some nodes are occupied. The green nodes are 481

the source nodes where the tasks are initiated. The orange 482

node is the destination node for the information backhaul. 483

The red nodes represent nodes occupied by 30% of the com- 484

puting resources. The purple nodes are those occupied by 485

50% of the computing resources. The blue links represent 486

crosslinks. The yellow link represents the downlink. The 487

arrow represents the transmission direction of information 488

flow. The value of Rp on the node represents the data pro- 489

cessing rate of the node per unit time. The value of Rt
/
Cl 490

on the link represents the current transmission rate Rt of 491

the link and the maximum available transmission capacity 492

Cl of the link. It can be observed that the algorithm in this 493
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study can quickly provide an optimal strategy under complex494

constraints.495

V. CONCLUSION496

We study the load-balancing problem of transmission and497

computing resources in large-scale remote sensing data back-498

haul through LEO satellite networks. Aiming at the prob-499

lem of low efficiency of information backhaul in existing500

methods, we propose a computing load balancing method for501

LEO satellite networks based on the maximumflow of virtual502

links. First, based on the particularity of the 2D-Torus topol-503

ogy of the low-orbit satellite network, a minimum rectangu-504

lar computing node selection method is designed. Second,505

according to the onboard edge computing model, the virtual506

links of computing nodes in the network are established.507

We use the Ford-Fulkerson algorithm to obtain the strategy508

for transmission and computing resource allocation. Finally,509

the simulation results show that the proposed algorithm effec-510

tively balances the transmission bottleneck of the downlink511

and limited computing ability onboard. This is a new concept512

for improving the application efficiency of LEO satellite513

networks.514
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