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ABSTRACT With the increasing number of satellites in orbit, traditional scheduling methods can no longer
satisfy the increasing data demands of users. The timeliness of remote sensing images with large data
volumes is poor in the backhaul process through low-earth-orbit (LEO) satellite networks. To address the
above problems, we propose an edge-computing load-balancing method for LEO satellite networks based
on the maximum flow of virtual links. First, the minimum rectangle composed of computing nodes is
determined by the source and destination nodes of the transmission task under the configuration of the
2D-Torus topology of LEO satellite networks. Second, edge computing virtual links are established between
computing nodes and users. Third, the Ford-Fulkerson algorithm is used to obtain the maximum flow of
the topology with virtual links. Finally, a strategy is generated for computing and transmission resource
allocation. The simulation results show that the proposed method can optimize the total capacity of the multi-
node information backhaul in the remote sensing scenario of LEO satellite networks. The effectiveness of
the proposed algorithm is verified in several special scenarios.

INDEX TERMS 2D-torus topology, information backhaul, LEO satellite networks, load balancing, virtual
links.

I. INTRODUCTION users [7], [8]. In the latest 6G non-terrestrial network (NTN)

Satellite communication networks can provide seamless
wireless coverage and global access as supplements to
existing terrestrial communication networks. Low-earth-orbit
(LEO) satellite networks are considered a promising solu-
tion for future wireless network architecture [1], [2], [3],
[4]1, [5], [6]. In the past two decades, the development of
satellite Internet has entered an unprecedented boom. Large-
scale LEO satellite Internet constellations such as Starlink
and Lightspeed have developed rapidly. They have received
considerable attention from industry capitals, operators, and
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proposal, aviation and maritime cases in unserved and under-
served areas were expanded to collect large amounts of
remote sensing data, including large amounts of backhaul
earth observation data [9]. It is important for latency-sensitive
earth observation applications, including emergency commu-
nications and real-time surveillance.

LEO satellite networks are usually deployed in space at
an orbital altitude of 500-2000 km. Compared to other com-
munication systems, LEO satellites are inexpensive to man-
ufacture and launch. Their constellation orbit design was
streamlined and modularized. The satellite node deployment
is flexible. Because the network is closer to the ground, the
link resistance function is better when it is not constrained
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by ground terrain. It also has the advantages of a rela-
tively small round-trip time of approximately 10~25ms and
small channel fading [10], [11]. At present, research on
LEO satellite networks mainly focuses on the optimization
of spectrum resource sensing strategies, enhancement of
beam deployment coverage, and improvement of backhaul
links [12], [13], [14]. However, in next-generation communi-
cation networks, target recognition, efficient video transcod-
ing and distribution, situational awareness, and other tasks
suitable for onboard tasks have high requirements for onboard
processing capabilities and resource allocation. With the
continuous enhancement of onboard processing capability,
edge-computing technology that settles computing and stor-
age resources onboard can enable fast task response for
requests [15]. At the same time, LEO satellite communication
has flexible coverage, which can collect available data for the
aforementioned tasks. It can provide a training model data set
support for intelligent network computing. In addition, mod-
ern satellites can process data onboard, which can improve
remote sensing tasks. It can offload several types of process-
ing data onboard, such as Earth and weather observations.
This can reduce the pressure of the downlink associated with
the data backhaul. In this regard, studies on edge computing
have developed the processing capabilities of satellite seg-
ments. This renders the satellite more than a simple relay
system.

Currently, the existing satellite edge computing research
has mainly focused on three aspects. The first is
architecture-related research. Space-air-ground networks for
edge computing applications have recently been explored to
alleviate the heavy computational tasks of resource-limited,
densely distributed terrestrial terminal devices [16], [17],
[18]. Although satellite-assisted edge computing may have
a higher latency than ground-to-air edge computing, it can
still provide significant latency performance improvements
compared to long-range cloud computing. Various aspects
of space-air-ground edge computing have been studied in
the literature. The second is the research on computational
offloading and resource allocation. Wang et al. [19] intro-
duced computational offloading with bilateral computations
for space-air-ground networks. In particular, according to a
certain threshold mechanism, computing tasks are offloaded
to LEO satellites or terrestrial edge computing where edge
computing servers are deployed. Wang et al. [20] pro-
posed a game-theory-based approach to optimize compu-
tational offloading in satellite edge computing networks.
Wang et al. [21] proposed a joint offloading and resource
allocation method for LEO satellite edge-computing net-
works. Cui et al. [22] studied latency and energy cost
optimization for edge-computing satellite Internet-of-Things
(IoT) networks. Abderrahim [23] considered an integrated
terrestrial space network, in which a traffic offloading scheme
was proposed to offload ultra-reliable low-latency communi-
cation (uURLLC) traffic to the ground segment and enhanced
mobile broadband (eMBB) traffic to the satellite segment.
The third is research on performance evaluation. Kim and
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Choi [24] studied the propagation and queuing delay per-
formance of satellite edge-computing networks under the
uplink/downlink packet error rate. Existing methods are
mainly based on mixed-integer programming, which has
high time-complexity. Satellite networks with high mobility
are different from terrestrial networks. Satellites are in the
process of periodic high-speed motion and must be solved
quickly.

In this paper, we study an edge computing load-balancing
method for LEO-satellite-network backhaul tasks, which has
low time complexity and engineering achievability. The main
contributions of this study are summarized as follows:

« We designed an LEO satellite networks edge-computing
architecture that combines the optimization of transmis-
sion and computing. The architecture models the rela-
tionship between transmission and computing resources.

o We proposed a 2D-Torus network minimum rectangle
computing node selection method. The method selects
the calculation offload of sensing information back to
the ground station.

o We proposed a computational load-balancing algorithm
based on the maximum flow of virtual links. The algo-
rithm determines the size of data processed by each
routing node.

The reminder of this paper is organized as follows.
In Section II, the application scenario, network model,
transmission model, and calculation model are presented.
In Section III, a problem model that needed to be optimized
was formulated. An edge-computing load-balancing method
based on the maximum flow of virtual links is proposed. Sim-
ulation results and discussions are provided in Section IV.
Finally, Section V concludes the paper.

Il. SYSTEM MODEL
For the aforementioned scenario description, a real-time
information acquisition and transmission LEO constellation
with Earth observation, onboard processing and routing is
modeled as follows.

A. CONSTELLATION SCENARIO

We consider an application scenario in which the Earth obser-
vation satellite obtains image information and transmits the
data back to the ground station through LEO satellite net-
works. This scenario is illustrated in FIGURE 1.

The space segment consists of a single-layer Walker con-
stellation. The constellation configuration is Walker-Delta,
where the number of orbital planes is M), and the number
of satellites per orbit is M. It has a relatively stable topology.
The main function of the system is to monitor global disaster.
After the detection information is generated by the Earth
observation satellite, transmission and computing resources
are called within a predetermined time window so that the
detection information is processed and transmitted to a lim-
ited area in real time.

The Walker-Delta constellation configuration is repre-
sented by adjacency matrices Ag,, where the element
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FIGURE 1. The scenario of data backhaul in LEO satellite networks.

aisj?’ € Agy is the capacity of the crosslink from node i to

node Jj at the instant ¢, which can be expressed as

as‘?l — {Cl’ 3 (Vi’vj) s Vi, Vj € Vsar, l?é] )

W 0, Otherwise

where (v;, vj) represents the crosslink where the first item
points to the second item. The capacity of the ISL is given
by the Gaussian channel capacity formula.
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FIGURE 2. Schematic diagram of information flow in LEO satellite
networks.

The transmission of the information flow is shown in
FIGURE 2. The ground segment is the resource manage-
ment center responsible for managing the resource config-
uration of all satellite nodes in constellation networks and
receiving observation data. The centralized controller of the
resource management center obtains the node resource status
through double-layer SDN flooding signaling [25]. It con-
figures node transmission and computing resources through
control signaling.

B. OBSERVATION TASK

We consider the distribution of various geological disasters
to be universal and random. Relevant information may be
collected from all regions of Earth. Therefore, the task dis-
tribution weight model is based on the randomness of the
observation task. Any node has a certain probability of being
connected to a backhaul. To facilitate the description of the
traffic, the data traffic generated in the current snapshot is
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called a task. The ratio between different tasks is called the
weight. It is assumed that all tasks originate from the set of
sending nodes Vr, and the task eventually flows to the set of
receiving nodes in a limited area. This forms the task weight
matrix B € Ny x Np

Bi1 o B

B = @)

By, BN7,Ng

where B;; € B represents the proportion of traffic sent by
the observation node v; € Vys to the ground node v; € Vyp.
The i-th row represents all tasks sent by v;. The j-th column
represents all tasks received by v;, satisfying:

1

— k=1, Vi, j=Jrecv, I #J
,Bi,j =1 Nys J=Jrecvs L #J

0, otherwise

3)

This indicates the Nys number of the transmission satel-
lites that simultaneously access the observation task at the
same time. Binary k = 1 indicates that the node has been
accessed by the observation task.

C. ONBOARD PROCESSING

We consider that the processing of observation information
mainly involves preprocessing a large number of Earth obser-
vation images. Data processing can reduce the size of back-
haul data by extracting feature information from the data.
For the information received by a single satellite node S;,
D; represents the size of the original data and F; represents
the size of the processed data. If the satellite S; performs
edge computing, we define the calculation transfer ratio p; =
(D; — F) /Fl-. At the same time, the decision variable is
defined as the selected calculation mode. /; = 1 indicates that
edge computing processing is performed on the data, whereas
l; = O represents no calculation processing. The data size
of the information generated after the original information
passes through the satellite S; is

Li=LFi+ (1 —-1;)D; =D; (lil_ +d - li)) @

1

The processing time at the satellite S; is

TProc _ Dz (5)
fepu

D. INFORMATION BACKHAUL

In this study, it is assumed that the set of all low-orbit satellites
is § and the set of ground stations is G. The set of all nodes
in the network is called A € N x N.

_|As  Ag
N .

where N = Ng + Ng. The matrix Ag € Ng x Ng represents
the crosslink connectivity matrix of LEO satellite networks.
Ag (i,j) = 1 indicates that there is a connected crosslink
between satellite i and satellite j, otherwise Ag (i, j) = oo.
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Similarly, Ag € Ns x Ng and Ar € Ng x Ns represent the
connected downlink between the satellite and ground station,
and Ag € Ng X Ng represents the connection relationship
between the ground stations.

The channel capacity is the maximum data rate for reliable
transmission. The power and bandwidth-limited Gaussian
channel capacity is given by

C=WwWI 14+ —

= 0

! £ kTW
1 P,

In(2) kT (b/5) 7

C; limits the maximum data rate R; of information trans-
mitted over the channel. Then, the communication delay can
be defined as

n n
=Y e r ) = 30 (EAT) @

i=1 i=1

2

where T is the propagation time between the i-th node
and the (i + 1)-th node.

IlIl. PROBLEM FORMULATION AND PROPOSED
SOLUTION

This section discusses the problem formulation and proposed
solution method. For the task of large data volumes in LEO
satellite networks, it is necessary to study how to maximize
the backhaul throughput by selecting routes and allocating
computing resources while ensuring the balanced utilization
of network computing resources. We propose a computing
load balancing method for low-orbit satellite networks based
on the maximum flow of virtual links.

A. PROBLEM FORMULATION

For the feasibility of the numerical calculation, a discrete
state-space model is adopted. By selecting the sampling
interval At = T / N, the information flow can be divided
into N + 1 time slices. FIGURE 3 shows the spatiotempo-
ral logic diagrams of some nodes in different discrete-time
slices. Satellite nodes perform different behaviors of informa-
tion transmission or information processing in different time
slices. The following constraints must be considered in the
data transmission process:

1) The size of data transmitted or received in the event is
less than or equal to the capacity of links.

2) The size of the data transmitted during the task is less
than or equal to the size of the data available on the satellite
at the instant of the task.

3) All observation data sent through the backhaul are
transmitted through the crosslinks and arrive at the downlink
according to the planned timing.

According to the above objectives and constraints, the opti-
mization problem of transmission and computing resources in
the backhaul can be described by the following optimization
problems:

max Z Cy 9
d

teT
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FIGURE 3. Spatiotemporal logic diagrams of transmission and computing
resources allocation.
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The problem is NP-hard. Optimization 9 indicates that
the optimization goal is to maximize the capacity of the
information backhaul per unit time. Constraint 10 indicates
that the data entering the node are conserved with the data
processed by the node and the data flowing out of it. Con-
straint 11 indicates that the data transmitted or received in
a single task are less than or equal to the data generated by
the task. Constraint 12 indicates that when the task data are
backhauled, the transmission decision variable I, is set to
one. Constraint 13 limits the maximum data capacity that
can be transmitted per unit time in a single link. Constraint
14 limits the data capacity transmitted on a single link for
a single observation task. Constraint 15 indicates that the
difference between the computing resource occupancy of any
two nodes participating in the calculation cannot exceed the
constraint Co.

B. NODE SELECTION

For a single satellite in Walker-Delta LEO satellite networks,
there are four crosslinks with two adjacent satellites in the
same orbital plane and two satellites in adjacent orbits. This
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topological connection can be regarded as a 2D-Torus net-
work topology.

Definition 1: The rectangle formed by the source node and
destination node as the diagonal in the 2D-Torus network
is called the minimum rectangle of network routing. There
are multiple routes with a minimum number of hops in the
minimum rectangle, as shown in FIGURE 4.

Destination

| 1*1::?;{ R —

’
Y Y S J———

Source

FIGURE 4. The minimal rectangle schematic of network routing.

Definition 2: Consider a special case in which the source
and destination nodes are on a straight line. The minimum
rectangle of the route is the line segment. The adjacent nodes
on both sides and the original route node form an expanded
minimum rectangle, as shown in FIGURE 5.

SSP2

——————— D .
/

’
\
———————

Source

FIGURE 5. The extended minimum rectangle schematic of line routing.

We propose a method for selecting routing nodes. First,
LEO satellite networks topology is generated according to
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the constellation position and adjacency relationship per unit
time. Second, the source and destination nodes of the task
are determined. A minimum routing rectangle is generated.
If the minimum rectangle does not exist, the routing neighbor-
hood is adopted to generate the extended minimum rectangle.
Finally, all nodes in the minimum rectangle are selected as
the path nodes for the information backhaul. The specific
algorithm is shown in Algorithm 1.

Algorithm 1 Multiple Shortest-Path Nodes Selection Algo-
rithm

Input: source node position Py,, destination node Py,
network topology T,
Output: set of selected nodes N,
Begin
Calculate the network topology T,
2 Bring in the source node position Py,
destination node Py,

o

3 Find the shortest path Ry, of Py, and Py, on Tp

4 if Ry, is a line segment do

5 Find the extended minimum rectangle R, of Py, and
P4, according to Definition 2

6 elsedo

7 Find the minimum rectangle R, of Py, and P,
according to Definition 1

8 endif

9  Output the set of selected nodes N, in Ry
10 End

C. RESOURCE ALLOCATION

After selecting the routing nodes for the information
backhaul, it is necessary to allocate the computing and trans-
mission resources of each node according to the observation
tasks and resource occupancy. We propose a resource allo-
cation method based on the maximum flow of virtual links.
First, according to the computing nodes and node adjacencies
selected by Algorithm 1, a routing topology of the source
and destination node is generated. Second, according to the
computing resource occupancy of each node, a virtual link
between each node and the user is established. The routing
topology is updated. Third, all routing nodes traverse to the
full-load state in equal proportions using the available com-
puting resources of each node as the independent variable.
A maximum flow search is performed to obtain the maximum
capacity of the network topology that satisfies the constraints.
Finally, the flow result is output as the allocation strategy
for transmission and computing resources. The specific algo-
rithm is shown in Algorithm 2.

The solution of the maximum flow from the source node
to the destination node is based on the Ford-Fulkerson algo-
rithm. The Ford-Fulkerson algorithm aims to find an aug-
mented path to increase the flow. It determines the path with
positive tolerance that can reach the source node. In this
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Algorithm 2 Resources Allocation Algorithm Based on the
Maximum Flow of Virtual Links

Algorithm 3 LEO Satellite Networks Load Balancing Algo-
rithm

Input: set of selected nodes N, task weight matrix B,
minimum rectangle Ryy, the computing difference
constraint Cy

Output: information backhaul throughput Cy4,
resources allocation strategy N

Begin

1 for each node C,, = 1: floor (fcpy /z) do
2 Find occupied computing resource R, in N,
calculate processing rate R, = C, — R,
3 ifR, <0do
4 R, =0
5 else do
6 R, =Cp,—Ry
7 end if
8 Establish the virtual link between the node and the user,
the link capacity is R,
9 Add the virtual link to the minimum rectangle Ry
10 Update the topology Ry
11 Calculate the maximum flow of the topology R, under
task weight matrix B
[flowval, cut, R, F] = Ford-Fulkerson (B, Rgy)
12 fori=1:n,
13 forj=1:n,
14 Calculate CPU occupancy difference AC
between node and node
15 end for
16 end for
17 if VAC < Cp do
18 break
19 else do
20 Cr=Cy+1
21 end if
22 end for
23 Cy < flowval
24 N <R
25 End

process, R is a set of nodes marked as visited, and S is a subset
of R, consisting of nodes marked as searched in R.

It should be emphasized that the above process of selecting
and allocating computing resources is only for a snapshot.
Therefore, a load-balancing algorithm should be applied to all
snapshots generated by all time slices to obtain the capacity
changes over time. Algorithm 3 summarizes all steps of the
LEO satellite networks load balancing method based on the
maximum flow of virtual links.

IV. SIMULATION RESULTS AND DISSCUSION

In this section, we introduce the parameter settings for the
simulation scenario. Second, we adopted the number of
routing nodes contained in different minimum rectangles as
independent variables to compare the performance of always-
transmission, always-computing, and the strategy of this
study. The performance assessment metrics are backhauled
throughput, delay of information backhaul, and average CPU
occupancy rate. Finally, we verified the performance of
the algorithm under different task access probabilities and
resource occupancy.
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Input: constellation ephemeris for ¢ € [0, T'], snapshot
interval At,
Output: resources allocation strategy N
Begin
1  Sample the constellation ephemeris with A¢, generate
T}, snapshots.
2 Determine the type of task weight distribution,
forming the task weight matrix B.
Calculate minimum rectangle Ry, using Algorithm 1
for each snapshot do
Determine the computing difference constraint Cy
Find occupied computing resource R,
Calculate processing rate R,
Calculate Cy4 and ) using Algorithm 2
Cy < flowval
N <R
9 endfor
10 End

LI AW

The parameters of the simulation are set as fol-
lows. Walker-Delta LEO satellite networks composed of
220 satellites are used in the simulation, with a total of
20 orbital planes. Each orbital plane has 11 satellites. The
orbital height is H = 1000km. The orbital inclination angle
is 60°. The sampling interval of the simulation snapshot is 5s.
The simulation time is an orbital period of 105 min. The com-
munication frequency of the crosslinks is 26 GHz. The com-
munication frequency of the downlink is 20 GHz. The link
bandwidth is 500 MHz. The minimum communication angle
of the ground user is 25°.The field of view of the satellite
beam is 120°. The main frequency of the satellite-computing
CPU is 1Ghz. We assume that = onboard processing does
not cause information carried in the image to be lost. The
simulation results under different conditions are the average
of 1000 Monte Carlo experiments.

A. PERFORMANCE ANALYSIS

In this section, the performance of the algorithm is
characterized using three metrics. They are the backhaul
throughput, delay of information backhaul, and average CPU
occupancy rate. The strategy given by the algorithm in this
paper is compared with the always-transmission strategy
and the always-computing strategy. The always-transmission
strategy involves transmitting all the data back to the user
through LEO satellite networks. The always-computing strat-
egy involves sending the processed feature information of
all data to the user. There is no difference in the time com-
plexity of the three methods. In the simulation, it is assumed
that all nodes are in an idle state. After selecting a fixed
source node, we select different destination nodes to verify
the performance of the algorithm under different numbers of
computing nodes. We select a 2D-Torus network topology
ranging from 2 x 2 to 5 x 6. The network is simulated as shown
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FIGURE 6. Routing nodes in different minimum rectangles.

in FIGURE 6. The total size of the data to be backhauled is
100 GB.

We use the information backhaul throughput to represent
the backhaul of the image data per unit time. FIGURE 7
shows the results of the information backhaul throughput with
different numbers of routing nodes. The x-axis represents the
number of routing nodes occupied by the backhaul informa-
tion. The y-axis represents the in backhaul throughput per unit
time. It can be seen that the information backhaul throughput
obtained by our strategy in this study is better than that of
the other two strategies in the same scenario. The backhaul
throughput of our strategy increases with an increase in the
number of routing nodes. When the routing nodes reach
16 satellites, there is an inflection point in the throughput
curve. The backhaul throughput no longer increases. This
is owing to the limited bandwidth of the crosslinks from
the source node. The maximum bandwidth of each crosslink
limits information backhaul throughput. When the source

25

.l MW |

—&A— Always-transmission
0.5 Always-computing

~—&— Our method

Backhaul throughput (Gbps)
G

0 4 6 9 12 16 20 25 30
Number of routing nodes

FIGURE 7. Information backhaul throughput with different number of
routing nodes.
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node is far from the destination node in the topology, a large
number of optional routing nodes can meet the computational
requirements of the task. There is an intersection between
the always-transmission curve and always-computing curve.
In this case, the processing capability of the multi-node
computing network and the downlink of the last hop for
information backhaul have reached a dynamic balance.

300 T T T T T T T

—A— Always-transmission
Always-computing

—&— Our method b

N
a
=]

N
=]
=]
T
L

{.

Delay of information backhaul (s)
@
o

|

0 4 6 9 12 16 20 25 30
Number of routing nodes

FIGURE 8. Delay of information backhaul with different numbers of
routing nodes.

We use the delay of information backhaul to characterize
the time consumption from information generation to the
user acquiring the information. FIGURE 8 shows results of
information backhaul delay for different numbers of routing
nodes. The x-axis represents the number of routing nodes
occupied by information backhaul. The x-axis represents
the delay of information backhaul. It can be seen that the
delay of information backhaul obtained by our strategy in
this study is better than the other two strategies in the
same scenario. Under the condition of a certain amount of
remote sensing image data, the delay of information back-
haul is inversely proportional to the information backhaul
throughput.

We use the CPU average occupancy rate to represent the
computing resource occupancy of routing nodes in a single
task. FIGURE 9 shows the average CPU occupancy rate of
the routing nodes with different numbers of routing nodes.
The x-axis represents the number of routing nodes occupied
by the backhaul information. The y-axis represents the aver-
age CPU occupancy rate. It can be seen that the always-
transmission strategy only needs to perform packet routing
table lookup and forwarding. It requires almost no computing
resources. With an increase in the number of computing
nodes, the curve of our strategy in this study and the curve of
the always-computing strategy both have an inflection point
that decreases from the full load state. Because our strategy
balances the occupancy of the computing resources well, the
drop point appears earlier.
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FIGURE 9. Average CPU occupancy rate with different numbers of routing
nodes.

After comparing the results of the above three strategies,
it can be seen that the strategy proposed in this study is
superior to the other two strategies in terms of throughput
and delay. In the always-transmission strategy, the through-
put bottleneck of the information backhaul is limited by
the downlink bandwidth. The backhaul throughput can only
be improved by increasing the transmission capacity of the
downlink. In the always-computing strategy, computing abil-
ity is limited onboard. The computing ability can satisfy the
requirements of crosslinks of the source node, only when
the computing network composed of routing nodes expands
to a certain extent. This affects the utilization efficiency of
computing resources in LEO satellite networks. Our strategy
in this study balances the occupancy of the node-computing
ability and the downlink bandwidth. This makes the use of
the system more efficient.

B. VERIFICATION

In this section, we verify the performance of the proposed
algorithm in special scenarios. Two special scenarios are
established. The first scenario is the information backhaul
for different task access probabilities. The second scenario
is information backhaul, where the computing resources of
some nodes are occupied.

FIGURE 10 shows the delay of information backhaul
under different task access probabilities with different num-
bers of routing nodes. It can be seen that when the task
access probability is fixed, the conclusion is the same as that
in FIGURE 8. With an increase in task access probability,
the task distribution model presents a mode of aggregated
distribution. The data of all task access nodes are aggregated
to a small number of user nodes. The delay of information
backhaul increases approximately linearly with an increase
in of task access probability.

Considering that the computing resources of all nodes
cannot be fully available at a certain moment in practi-
cal application scenarios, we verify the performance of our
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FIGURE 11. Allocation result of our strategy when computing resources
of some nodes are occupied.

algorithm when the computing resources of some nodes are
occupied. FIGURE 11 shows the resource allocation strategy
for a multi-node information backhaul when the computing
resources of some nodes are occupied. The green nodes are
the source nodes where the tasks are initiated. The orange
node is the destination node for the information backhaul.
The red nodes represent nodes occupied by 30% of the com-
puting resources. The purple nodes are those occupied by
50% of the computing resources. The blue links represent
crosslinks. The yellow link represents the downlink. The
arrow represents the transmission direction of information
flow. The value of R, on the node represents the data pro-
cessing rate of the node per unit time. The value of R; / G
on the link represents the current transmission rate R, of
the link and the maximum available transmission capacity
C; of the link. It can be observed that the algorithm in this
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study can quickly provide an optimal strategy under complex
constraints.

V. CONCLUSION

We study the load-balancing problem of transmission and
computing resources in large-scale remote sensing data back-
haul through LEO satellite networks. Aiming at the prob-
lem of low efficiency of information backhaul in existing
methods, we propose a computing load balancing method for
LEO satellite networks based on the maximum flow of virtual
links. First, based on the particularity of the 2D-Torus topol-
ogy of the low-orbit satellite network, a minimum rectangu-
lar computing node selection method is designed. Second,
according to the onboard edge computing model, the virtual
links of computing nodes in the network are established.
We use the Ford-Fulkerson algorithm to obtain the strategy
for transmission and computing resource allocation. Finally,
the simulation results show that the proposed algorithm effec-
tively balances the transmission bottleneck of the downlink
and limited computing ability onboard. This is a new concept
for improving the application efficiency of LEO satellite
networks.
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