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ABSTRACT Due to privacy issues and limited amount of publicly available labeled datasets in the domain
of medical imaging, we propose an image generation pipeline to synthesize 3D echocardiographic images
with corresponding ground truth labels, to alleviate the need for data collection and for laborious and
error-prone human labeling of images for subsequent Deep Learning (DL) tasks. The proposed method
utilizes detailed anatomical segmentations of the heart as ground truth label sources. This initial dataset
is combined with a second dataset made up of real 3D echocardiographic images to train a Generative
Adversarial Network (GAN) to synthesize realistic 3D cardiovascular Ultrasound images paired with ground
truth labels. To generate the synthetic 3D dataset, the trained GAN uses high resolution anatomical models
from Computed Tomography (CT) as input. A qualitative analysis of the synthesized images showed that the
main structures of the heart are well delineated and closely follow the labels obtained from the anatomical
models. To assess the usability of these synthetic images for DL tasks, segmentation algorithms were trained
to delineate the left ventricle, left atrium, and myocardium. A quantitative analysis of the 3D segmentations
given by the models trained with the synthetic images indicated the potential use of this GAN approach to
generate 3D synthetic data, use the data to train DL models for different clinical tasks, and therefore tackle
the problem of scarcity of 3D labeled echocardiography datasets.
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INDEX TERMS 3-D image generation, data augmentation, deep learning, echocardiography, generative
adversarial networks, segmentation.

I. INTRODUCTION18

Medical imaging plays a crucial role in optimizing treat-19

ment pathways. Saving time when it comes to diagnosis and20

treatment planning enables the clinicians to focus on more21

complicated cases.22

Many modalities are used to image the heart, such as23

Computed Tomography (CT), Magnetic Resonance (MR),24

and Ultrasound imaging, enabling several structural and25

functional parameters related to the organ’s performance to be26

The associate editor coordinating the review of this manuscript and

approving it for publication was Janmenjoy Nayak .

estimated. Such parameters are the basis of clinical guidelines 27

for diagnosis and treatment planning. 28

Echocardiography is the specific use of ultrasound to 29

image the heart. This imaging modality is widely used given 30

its advantages of being portable, relatively low-cost, and the 31

fact that the use of ionizing radiation is not required. 32

Deep Learning (DL), and specifically Convolutional Neu- 33

ral Networks (CNNs), have become extensively applied in 34

medical image analysis because they facilitate the automation 35

of many tedious clinical tasks and workflows such as esti- 36

mation of ejection fraction, for example. These algorithms 37

are capable of approaching human-level performance [1], 38
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thus potentially saving clinicians’ time without decreasing39

the quality of care for patients. In fact, clinicians agree that40

using DL algorithms in the clinical workflow also improves41

patient access to disease diagnoses, increasing the final diag-42

nosis confidence levels [2]. DL models can be developed to43

perform numerousmedical tasks such as image classification,44

segmentation and even region/structure detection [3].45

Echocardiography images can be acquired both in 2D and46

3D. Time can also be taken into account, generating videos.47

3D echocardiography images can be more difficult to assess48

than 2D images. However, for some specific application49

cases, 3D image acquisition brings great advantages since50

it can offer more accurate and reproducible measurements.51

One such case is ventricle and atrium volumes [4]. Amongst52

the causes of lack of annotated 3D echocardiography datasets53

are the higher complexity to acquire 3D echocardiography54

images and the fact that 3D is still not part of all echocar-55

diography routine exams. Also, even when 3D images are56

recorded, delineating the structures in them is a challenging,57

time consuming, and user dependent task. Taken together and58

adding the fact that privacy regulations to access medical59

data are becoming stricter, these can explain why there is a60

lack of publicly available datasets of such type of images.61

Therefore, having an approach able to address this image62

scarcity is necessary. This current lack of 3D medical data63

and the great need of high quality annotated data required by64

the DL models impacts the development of such algorithms65

and therefore the scientific and technological development of66

the 3Dmedical imaging field. Synthetic generation of labeled67

3D echocardiography images is a DL based approach that68

provides a solution for this problem.69

Synthetic data can help in the development of DL models70

for image analysis [5] and accurate labeling of these images.71

Furthermore, this approach works as a data augmentation72

strategy by generating additional data. It is known that creat-73

ing datasets with a combination of real and synthetic images74

and use them to train algorithms that tackle medical chal-75

lenges represents a successful solution to the image scarcity76

[6] problem. Such type of synthetic images even increase77

the heterogeneity present on these datasets, facilitating a78

more efficient performance of the trained models as they are79

exposed to a larger variety of images.80

Generative Adversarial Networks (GANs) are specific DL81

architectures that create models capable of generating med-82

ical images closely resembling real images acquired from83

patients. These deep generative models rely on a generator84

and a discriminator. While the straightforward GAN discrim-85

inator distinguishes between real and fake, i.e., generated,86

images, the generator not only attempts to deceive the dis-87

criminator but also tries to minimize the difference between88

the generated image and the ground truth.89

The generated synthetic images can even be associ-90

ated with labels facilitating the acquisition of large labeled91

datasets, eliminating the need for manual annotation, and92

therefore the variabilities associated with the observer [7],93

which largely influences the final output [8]. 3D heart models94

are a great source of anatomical labels since they cap- 95

ture accurate information about the organ’s structures [9]. 96

Different types of models can be used for this purpose, such 97

as animated models, biophysical models, or even anatomical 98

models obtained from different imagingmodalities [10], [11]. 99

Recently, CT models were used as label sources to gener- 100

ate 2D echocardiography [12] and cardiac MR images [13], 101

proving the utility of GANs for this task. 102

Developing a pipeline to generate synthetic data using 103

GANs to create labeled datasets addresses the immense need 104

for the large volume of data that DL algorithms require during 105

training to perform an image analysis task, eliminates the 106

need to acquire the images from subjects, and saves time 107

of experienced professionals when annotating them, as the 108

anatomical labels can be extracted from anatomical models. 109

Usually, when developing such generative models, imaging 110

artifacts are present and visible on the synthetically generated 111

images. This widely common GAN performance drawback 112

is addressed by applying some image post-processing opera- 113

tions [14] on the synthetically generated 3D echocardiogra- 114

phy images. 115

In practice synthetic images can be used to train DLmodels 116

because they represent a good data augmentation strategy 117

[15]. For instance, 3D medical image segmentation is the 118

most common example of a medical task to which DL can 119

turn out to be a good application. Labeled datasets made 120

of real images combined with synthetic ones, which even 121

include the respective anatomical labels, become the training 122

dataset for 3D DL models, addressing the problem of sparse 123

3D medical data availability [16]. 124

A. STATE OF THE ART 125

DL has become widely used in medical imaging due to its 126

potential in image segmentation, classification, reconstruc- 127

tion, and synthesis across all imaging modalities. Image 128

synthesis has been a research topic for a few decades now, 129

where some of the more conventional approaches use human- 130

defined rules and assumptions like shape priors, for example 131

[17]. Also, these image synthesis techniques depend on the 132

imaging modality being considered to perform certain tasks. 133

To tackle these shortcomings, CNNs are now becoming a 134

widely used approach for image synthesis across many med- 135

ical imaging modalities. 136

Many reasons motivate medical image generation, both 2D 137

and 3D. Generative algorithms can perform domain transla- 138

tion, with a large applicability when converting images from 139

one imaging modality to a different one, as Uzunova et al. 140

[18] showed in their work converting 3D MR and CT brain 141

images. GANs can also be used to generate a ground truth 142

for a given input, as these DL models can be trained in a 143

cyclic way, as is the case of the CycleGAN [19], for exam- 144

ple. Additionally, generation of synthetic data used for DL 145

algorithms also motivates the application and development 146

of GAN architectures. Several research groups were able to 147

generate medical images using this methodology as a data 148

augmentation tool, even though most of themwere developed 149
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under a 2D scenario and focused on a few imagingmodalities,150

mainly MRI and CT. These imaging modalities raise less151

challenges when compared with Ultrasound due to the nature152

of the physics behind the acquisition process.153

Ultrasound images have an inherent and characteristic154

speckle pattern and their quality is largely influenced by the155

scanner, the sonographer, and the patient anatomy. When156

it comes to generating 3D Ultrasound images a few more157

challenges arise, with the speckle pattern having to be con-158

sistent throughout the whole volume being the main one. The159

anatomical information present in the generated volume also160

has to hold this consistency feature.161

Huo et al. [20] trained a 2D GAN model, SynSegNet,162

on CT images and unpaired MR labels using a CycleGAN.163

Similarly, Gilbert et al. [12] proposed an approach to164

synthesize labeled 2D echocardiography images, using165

anatomical models and a CycleGAN as well. The CycleGAN166

was proposed by Zhu et al. [19] and works under an unpaired167

scenario: the images from one training domain do not have168

to be related with the images belonging to the other domain.169

This GAN learns how to map the images from one to another170

and vice-versa. The paired version of this GAN is called171

Pix2pix. Isola et al. [21] proposed this image synthesis172

methodwhich generates images from one domain to the other,173

and vice-versa, however the images belonging to the training174

domains are paired.175

As mentioned, 3D echocardiographic data is sparser,176

but these images can be generated using GANs, and then177

used to train new algorithms. Both Gilbert et al. [12] and178

Amirrajab et al. [22] investigated the potential use of GAN179

synthesized datasets to train CNNs to segment different car-180

diac structures on different imaging modalities, but these181

methods were limited to 2D.182

Hu et al. [23] attempted to generate 2D fetal Ultrasound183

scan images at certain 3D spatial locations. They con-184

cluded that common GAN training problems such as mode185

collapse occur. Abbasi-Sureshjani et al. [24] developed a186

method to generate 3D labeled Cardiac MR images relying187

on CT anatomical models to obtain labels for the synthe-188

sized images, using a SPADE GAN [25]. More recently,189

Cirillo et al. [26] adapted the original Pix2pix model to gen-190

erate 3D brain tumor segmentations.191

When dealing with medical images, U-Net [27] is a widely192

used CNN model to perform image segmentation, for exam-193

ple, since it provides accurate delineation of several structures194

on these images. More recently, Isensee et al. [28] proposed195

nnU-Net (‘‘no new net’’), which automatically adapts to any196

new datasets and enables accurate segmentations. nnU-Net197

can be trained on a 3D scenario and optimizes its performance198

to new unseen datasets and different segmentation tasks,199

requiring no human intervention.200

Existingwork to address the challenges of automatic image201

recognition, segmentation, and tracking in echocardiography202

has been mostly focused on 2D imaging. In particular, recent203

work indicates the potential for applying DL approaches204

to accurately perform measurements in echocardiography205

images. Alsharqi et al. [29] and Østvik et al. [30] used a 206

DL algorithm to segment the myocardium in 2D echocardio- 207

graphic images, from which the regional motion, and from 208

this the strain, were measured. They showed that motion 209

estimation using CNNs is applicable to echocardiography, 210

even when the networks are trained with synthetic data. This 211

work supports the hypothesis that similar approaches could 212

also work for 3D synthetic data. 213

A large amount of work has been carried out on medical 214

imaging generation and it still represents a challenge for 215

the research community. To the best of our knowledge, the 216

challenge of synthesizing 3D echocardiography images using 217

GANs did not produce any reproducible results, therefore we 218

propose a framework able to address this need. 219

B. CONTRIBUTIONS 220

We propose an approach for synthesizing 3D echocardiog- 221

raphy images paired with corresponding anatomical labels 222

suitable as input for training DL image analysis tasks. Thus, 223

the main contributions of the proposed pipeline beyond the 224

state of the art include: 225

1) The extension of Gilbert et al. [12] work from 2D to 226

3D, adapting it from an unpaired to a paired framework (3D 227

Pix2pix) and proposing an automatic pipeline to generate any 228

number of 3D echocardiography images, tackling the lack 229

of public 3D echocardiography datasets and corresponding 230

labels. 231

2) The creation of a blueprint of heart models and post- 232

processing methods for optimal generation of 3D synthetic 233

data, creating a generic data augmentation tool, this way 234

addressing the lack of 3D data generation works in echocar- 235

diography, since it significantly varies from 2D. 236

3) The demonstration of the usability of these synthetic 237

datasets for training segmentation models that achieve high 238

performance when applied to real images. 239

II. METHODOLOGY 240

The proposed pipeline is summarized in Fig. 1 and described 241

in the following sections. Section II-A describes the prepro- 242

cessing stage of annotation of the GAN training images to 243

create anatomical labels for these. The training and inference 244

stages are addressed in Section II-B describing how the GAN 245

model was trained and used to synthesize 3D echocardiogra- 246

phy images from CT-based anatomical labels and how differ- 247

ent post-processing approaches, as described in Section II-C, 248

were applied to these synthetic images. Next, on Section II-D, 249

details regarding the creation of several synthetic datasets 250

used to train 3D segmentation models are given, followed by 251

Section II-E where the influence of adding real images to the 252

synthetic datasets to train segmentation models is assessed. 253

A. DATA COLLECTION 254

To train the 3D image synthetization model, an annotated 255

dataset was needed since this GAN set up works under a 256

supervised scenario where two sets of images are used for 257

training: a set containing real 3D echocardiography images 258

VOLUME 10, 2022 98805



C. Tiago et al.: Data Augmentation Pipeline to Generate Synthetic Labeled Datasets

FIGURE 1. 3D echocardiography image generation pipeline and inference results. Step 1: during the preprocessing stage, a set of 15 3D heart volumes
were labeled by a cardiologist and anatomical labels for the LV, LA and MYO were generated. To train the 3D Pix2pix GAN model, the anatomical labels
are paired together with the corresponding real 3D images. Step 2: at inference time, the GAN model generates one 3D image. An example obtained
during this stage is shown. The proposed method is able to generate physiologically realistic images, giving correct structural features and image details.
Step 3: to show the utility of the synthetic datasets, 3D segmentation models were trained using these GAN generated images (black arrow), but other DL
tasks can be addressed.

and a second set with the correspondent anatomical labels259

manually performed by a cardiologist (see Fig.1, training260

stage).261

To create the dataset of real 3D echocardiography images,262

these were acquired during one time point of the cardiac cycle263

of normal subjects, end-diastole in this work, when the left264

ventricle (LV) volume is at its largest value. Using GE Vivid265

Ultrasound scanners 15 heart volumes were acquired.266

The second set of images was made up of the anatomical267

labels corresponding to each of the 3D real images included268

in the set previously described. Each anatomical label image269

contains the label for the LV, left atrium (LA), and the270

myocardium (MYO).271

To annotate the 3D echocardiography images a certified272

member of the American National Board of Echocardiogra-273

phy cardiologist, with more than 10 years of experience, used274

the V7 annotation tool [31] and contoured the three aforemen-275

tioned structures (Fig. 1, preprocessing stage) on each of the276

volumes. These contours were then post-processed, applying277

a spline function to the contour points and resampling it,278

in order to generate gray scale labeled images. All the 3D279

images present on each training dataset were sized to 256 ×280

256 × 32.281

B. 3D GAN TRAINING282

The Pix2pix model was proposed by Isola et al. [21] as a solu-283

tion to image-to-image translation across different imaging284

domains. This model is capable of generating an output image285

for each input image by learning a cyclic mapping function286

across both training domains. The Pix2pix model works as287

a conditional paired GAN: given two training domains con- 288

taining paired images, it learns how to generate new instances 289

of each domain. The loss function was kept the same as 290

presented in the original work – a combination of conditional 291

GAN loss and the L1 distance. This way it is conditioning the 292

GAN performance, assuring the information on the generated 293

output image matches the information provided by the input. 294

This original work was constructed under a 2D scenario, 295

but in this proposed work an extension to 3D was per- 296

formed by changing the original architecture of the Pix2pix 297

model. 298

We considered different architectures for the GAN gener- 299

ator and a 3D U-Net [32] was used to create a 3D version of 300

the Pix2pix model. The discriminator architecture was kept 301

the same, replacing only 2D layers with the correspondent 302

3D ones. During training of the GAN, data augmentation 303

operations, including blurring and rotation, were performed 304

on the fly, increasing the amount of 3D volumes used without 305

the memory burden of having to save these. The 3D Pix2pix 306

model used here was built using PyTorch [33] and its training 307

was performed over 200 epochs accounting for the images 308

size and computational memory constraints, considering an 309

initial learning rate of 0.0002 and the Adam optimizer. 310

At inference time, a common problem among image syn- 311

thesis is the presence of checkerboard artifacts on the gen- 312

erated images. To tackle this problem, which decreases the 313

quality of the synthesized images, we changed the generator 314

architecture as suggested in [34] by replacing the transposed 315

convolutions in the upsampling layers of the 3D U-Net with 316

linear upsampling ones. 317
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FIGURE 2. Overview of all the created datasets and trained models in this work. The generative model, 3D Pix2pix, was trained in order to be used to
generate synthetic 3D echocardiography datasets. This dataset, DSyntehtic, was post-processed applying different transformations and 3 other datasets
were created – DWavelet, DCone, and DWaveletCone. A fifth dataset completely made of real images, DReal, was created and to it, synthetic images from
DSynthetic were added creating D17Real10Augmented and D17Real20Augmented. All these 7 datasets were used to train 7 3D segmentation models –
MSynthetic, MWavelet, MCone, MWaveletCone, MReal, M17Real10Augmented, and M17Real20Augmented.

In order to generate synthetic echocardiography images for318

each of the inference cases, i.e., 3D CT-based heart mod-319

els, the generator part of the GAN, which translates images320

from the anatomical labels domain to the echocardiography321

looking images domain, was used. Anatomical models of322

the heart [35] obtained from CT were used to create the323

inference gray scale labeled images, containing anatomical324

information about the LV, LA, and MYO. The main objective325

of this work was then accomplished by using the GAN as a326

data augmentation tool to generate synthetic datasets of 3D327

echocardiography images of size 256 × 256 × 32 from these328

inference images, augmenting the quantity of 3D echocardio-329

graphic image data.330

C. SYNTHETIC DATA POST-PROCESSING331

During the post-processing stage of the synthetic images332

generated by the GAN, two different algorithms were exper-333

imented. The synthesized images were (a) filtered using334

the discrete wavelet transform, following Yadav et al. [36]335

work and (b) masked with an Ultrasound cone. The wavelet336

denoising operation uses wavelets that localize features in337

the data, preserving important image features while removing338

unwanted noise, such as checkerboard artifacts. An image339

mask representing the Ultrasound cone shape was applied to340

all synthesized images in order to match true Ultrasound data.341

D. 3D SEGMENTATION342

The GAN pipeline was able to generate labeled instances343

of 3D echocardiography images, as the model is capable of344

performing paired domain translation operations. To investi-345

gate the utility of the synthetic images, four 3D segmentation346

models were trained using the generated synthetic images as347

training set.348

The trained model architecture for the 3D segmentation 349

task was the 3D nnU-Net [28]. This network architecture was 350

proposed as a self-adapting framework for medical image 351

segmentation. This DL model adapts its training scheme, 352

such as the loss function or slight variations on the model 353

architecture, to the dataset being used and to the segmentation 354

task being performed. It automates necessary adaptations to 355

the dataset such as preprocessing, patch and batch size, and 356

inference settings without the need of user intervention. 357

To train the first of four 3D segmentation models, 358

MSynthetic, described in this section, a labeled dataset made 359

of 27 synthetically generated 3D echocardiography images 360

(256 × 256 × 32), DSynthetic, was used. This dataset was 361

obtained from the proposed 3D GAN pipeline at inference 362

time, using anatomical labels from 27 CT 3D anatomical 363

models. 364

To evaluate the effect of the post-processing operations on 365

the synthesized images, three other datasets were created – 366

DWavelet, DCone, and DWaveletCone – and three additional seg- 367

mentationmodels were trained using these –MWavelet, MCone, 368

and MWaveletCone, respectively (Fig. 2). DWavelet was made of 369

the original synthetic images from the DSynthetic dataset but 370

where the wavelet denoising post-processing algorithm was 371

applied, and DCone, was composed by the original synthetic 372

images with the cone reshaping post-processing operation. 373

Finally, a fourth dataset where both post-processing trans- 374

formations – wavelet denoising and cone reshaping – were 375

applied to the original synthetic images, DWaveletCone, was 376

created. All four datasets contained 27 3D echocardiography 377

images with corresponding anatomical labels for the LV, 378

LA and MYO. 379

All four 3D segmentation models, MSynthetic, MWavelet, 380

MCone, and MWaveletCone, using nnU-Net, were trained on a 381
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5-fold cross validation scenario during 800 epochs. The initial382

learning rate was 0.01 and the segmentation models were also383

built using PyTorch [33]. The loss functionwas a combination384

of dice and cross-entropy losses, as described in the original385

work by Isensee et al. [28].386

Dice scoreswere used to assess the quality of the segmenta-387

tions. This score measures the overlap between the predicted388

segmentation and the ground truth label extracted from the389

CT anatomical models. For each segmented structure the390

Dice score obtained at validation time is a value between391

0 and 1, where the latter represents a perfect overlap between392

the prediction and the ground truth.393

E. REAL DATA COMBINED WITH SYNTHETIC—DATA394

AUGMENTATION395

In their work, Lustermans et al. [16] showed that adding real396

data to GAN-generated synthetic datasets can help improve397

DL models train.398

To facilitate a clearer analysis of the influence of using399

synthetic data to train DL models and the utility of this GAN400

as a data augmentation tool, three other segmentation models401

were trained on the datasets DReal, D17Real10Augmented, and402

D17Real20Augmented. DReal contained 17 real 3D echocardiog-403

raphy volumes acquired with GE Vivid Ultrasound scanners404

and labeled by a cardiologist.405

D17Real10Augmented and D17Real20Augmented were made up of406

the same 17 real volumes just described together with 10 and407

20 synthetic GAN-generated 3D echocardiography images,408

respectively. Thus allowing to assess the influence of using409

such type of images during DL models training (Fig. 2).410

The 3D segmentation models trained on these datasets411

were MReal, M17Real10Augmented, and M17Real20Augmented,412

respectively. All models used the nnU-Net architecture imple-413

mented with Pytorch. Similar to the ones described on414

Section II-D, they were trained for 800 epochs on a 5-fold415

cross validation scenario, with the same learning rate and loss416

function.417

At inference time, a test set including real 3D echocardio-418

graphy images was segmented by the three aforementioned419

models. To compare the segmentation results with the ones420

obtained from a cardiologist, Dice scores and Volume Simi-421

larity (VS) were calculated and used as comparison metrics.422

VS is calculated as the size of the segmented structures and is423

of high relevance in a 3D scenario since Dice score presents424

some limitations. Similarly to the Dice score, this evaluation425

metric takes values between 0 and 1 but is not overlap-based.426

Instead, it is a volume based parameter where the absolute427

volume of a region in one segmentation is compared with the428

corresponding region volume in the other segmentation [37].429

III. RESULTS430

This work’s results are presented as follows: Section III-A431

focuses on the GAN training, architectural modifications432

performed on the 3D Pix2pix model and their influence433

on the synthesized images. In Section III-B the influence434

of post-processing the synthetic images is shown. Finally,435

FIGURE 3. Influence of architectural changes on the GAN generator to
remove checkerboard artifacts. At inference time, a 3D anatomical model
was used to extract the anatomical labels. The first column shows 2
different slices of this volume at different rotation angles. The middle
column shows that synthesizing images using a GAN with upsampling
layers smoothens the checkerboard artifacts but introduces blurring,
which is not visible on the images when using a GAN with deconvolution
layers (right column). Deconvolution layers are preferred to upsampling
ones.

Sections III-C and III-D show the segmentation predictions 436

from several models trained on different 3D echocardiogra- 437

phy datasets (Fig. 2), as described in Sections II-C and II-D. 438

A. GAN ARCHITECTURE AND TRAINING 439

The chosen GAN architecture influenced the final results. 440

3D U-Net was chosen as the generator architecture due to its 441

good performance in the medical image domain. The model 442

was trained on a NVIDIA GeForce RTX 2080 Ti GPU and 443

training took five days. 444

After applying the architectural changes described in 445

Section II-B to remove the checkerboard artifacts, it seemed 446

like these became less visible or even disappeared. However, 447

this correction created some unwanted blurring on the 448

generated images (Fig. 3), therefore the deconvolution lay- 449

ers were used instead of upsampling, and the synthesized 450

images were post-processed to remove the checkerboard 451

artifacts. 452

B. SYNTHETIC DATA POST-PROCESSING 453

After training the 3D GAN model and generating syn- 454

thetic images corresponding to the input anatomical models, 455

as described in Section II-C, the obtained 3D echocardiog- 456

raphy images were post-processed in order to remove the 457

aforementioned checkerboard artifacts. 458

The cone edges were slightly wavy in some cases and 459

checkerboard artifacts were sometimes present. The post- 460

processing experiment, where different transformations were 461

applied to the synthesized images, showed that applying 462

these can give a more realistic aspect to the GAN-generated 463

images, ensuring that the anatomical information remained 464

intact. 465

Performing these operations allowed to give a more realis- 466

tic look to the generated echocardiography images (Fig. 4). 467
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FIGURE 4. 3D Pix2pix model inference results and post-processing step. At inference time, the anatomical labels were extracted from a 3D heart model.
The first column shows 3 different rotation planes of this volume at different rotation angles. After generating the correspondent synthetic ultrasound
image (second column) for this inference case, it was post-processed applying a wavelet denoising transformation to eliminate the checkerboard artifacts
(third column) and also a cone reshaping step to smooth the wavy edges of the ultrasound cone (fourth column). Post-processing operations give a more
realistic look to the synthesized images as indicated by the enlarged areas framed in red and green (wavelet denoise) and the white arrows (cone
reshape).

C. SEGMENTATION FROM SYNTHETIC DATASETS468

Anatomical models were used in order to synthesize 27469

3D echocardiography images. These were then used to470

create the synthetic datasets that were used to train 3D471

segmentation algorithms, as described in section II-D. Post-472

processing operations were performed on these images473

to create the DWavelet, DCone, and DWaveletCone datasets.474

Table 1 shows the average Dice scores (average ± standard475

deviation) of each segmented structure (LV, LA, and MYO)476

for each trained model – MSynthetic, MWavelet, MCone, and477

MWaveletCone, obtained from the validation dataset. Training478

took around five days for each fold using a NVIDIA GeForce479

RTX 2080 GPU, for all epochs. The complete table with all480

the Dice scores obtained for each training fold of each model481

can be found in Appendix – Table 5.482

Adding to the Dice scores and to sustain the usabil-483

ity of synthetic images to train segmentation algorithms,484

Fig. 5 shows the 3D segmentation for an inference 3D485

echocardiography image acquired from a real subject. Each486

trained segmentation model was tested on real cases, at infer-487

ence time.488

D. SEGMENTATION FROM COMBINED DATASETS489

In Table 2 one can see the average Dice scores (average ±490

standard deviation), obtained at validation time, of each seg-491

mented structure (LV, LA, and MYO) for each trained model492

on the combined datasets: MReal, M17Real10Augmented, and493

M17Real20Augmented. In Appendix – Table 4 the complete table494

with all the Dice scores for each trained fold of all three495

models can be found.496

TABLE 1. Average validation dice scores (average ± standard deviation)
of each segmented structure (LV, LA, and MYO) for each trained model on
completely synthetic datasets – Msynthetic, Mwavelet, Mcone, and
Mwaveletcone. The best scores are highlighted.

Fig. 6 shows the predicted segmentations given by these 497

trained models, next to the ground truth segmentation pro- 498

vided by a cardiologist. The models were tested on a test set 499

made of 3D echocardiography images from real subjects. 500

To compare the output segmentation from the DL mod- 501

els, the Dice scores and VS were calculated based on the 502

predicted segmentations and the anatomical labels from a 503

cardiologist and the results are in Table 3. 504

IV. DISCUSSION 505

In this work we built a pipeline to generate synthetic 3D 506

labeled echocardiography images using a GANmodel. These 507

realistic-looking synthetic datasets were used to train 3D DL 508

models to segment the LV, LA, and MYO. 509

Moreover, combined datasets including synthetic and real 510

3D images were created, with the VS metric supporting that 511

generated 3D echocardiography images can be used to train 512
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TABLE 2. Average validation dice scores (average ± standard deviation)
of each segmented structure (LV, LA, and MYO) for each trained model on
combined datasets – MReal, M17Real10Augmented, and
M17Real20Augmented. The best scores are highlighted.

TABLE 3. Average test set dice scores (average ± standard deviation) of
each segmented structure (LV, LA, and MYO) and Volume Similarity of the
segmented volume for the MReal, M17Real10Augmented, and
M17Real20Augmented models. The best scores are highlighted.

DL models, as data augmentation. Segmentation tasks were513

considered to exemplify the utility of the synthesized data,514

however the pipeline is generic and could be applied to gener-515

ate other imaging data and train any DL tasks with anatomical516

labels as input, as further discussed in this section.517

Abrief discussion on future applications andmodifications518

of this approach is also presented.519

A. 3D Pix2pix GAN—QUALITATIVE ANALYSIS520

The pipeline synthesizes 3D echocardiographic datasets with521

corresponding labels delineating different structures in the522

images.523

After training the 3D Pix2pix GAN model, a qualitative524

analysis of the synthesized images indicated that the main525

structures of the heart were well delineated in the generated526

images (Fig. 1, inference stage).Moreover, image details such527

as the cone, noise, and speckle patterns are also present and528

are continuous throughout each volume.529

B. POST-PROCESSING AND 3D530

SEGMENTATION—SYNTHETIC DATASETS531

To evaluate the utilization of synthetic images for research532

purposes and the extent to which the post-processing transfor-533

mations affected the final results, four segmentation models534

were trained using four different datasets, as described earlier535

in Section III-C.536

Despite the very small differences in the Dice scores537

shown in Table 1 and in Appendix – Table 5, the inference538

segmentations (Fig. 5) support the idea that the model 539

trained on the dataset whose images were not post-processed, 540

MSynthetic, provided the best segmentation prediction. 541

The results regarding the influence of the post-processing 542

step on the synthetically generated images supported the fact 543

that applying a wavelet denoising transformation or cone 544

reshaping, or even both transformations together, to these, 545

in order to make the synthetic images look even more realis- 546

tic, does not necessarily lead to better results when segment- 547

ing the LV, LA, and MYO (Fig. 5). This result shows some 548

dependence on the DL task being performed. We segmented 549

large volumes of the 3D image, comparing to its whole 550

content. For this reason, the subtle differences in the voxels 551

intensities that create the checkerboard artifacts do not seem 552

to affect the prediction of the segmentation model. 553

To create the used synthetic datasets, CT acquired 3D 554

anatomical models of the heart were used to extract the 555

anatomical labels and create the input cases to the 3D GAN. 556

The segmentation results and the echocardiography-looking 557

aspect of the synthetic images pointed towards the generaliza- 558

tion of this pipeline, as it can synthesize 3D echocardiography 559

images, having as labels source different types of 3D models 560

of the heart. The methodology to generate synthetic datasets 561

can be generalized to other modalities, diseases, organs, 562

as well as structures within the same organ (sub-regions of 563

the heart, for example). 564

Shin et al. [5] and Shorten and Khoshgoftaar [38] showed 565

that GANs can be widely used to perform data augmentation 566

of medical image datasets. The work from these authors, 567

together with the presented results, encourage the main con- 568

tributions of this work stating that GANs can be used to 569

generate synthetic images with labels, working as a data 570

augmentation strategy, and tackling the concern of scarcity 571

of 3D echocardiography labeled datasets, especially if there 572

are underrepresented data samples within the available real 573

datasets. 574

C. 3D SEGMENTATION—COMBINED DATASETS 575

Further results on the usage of synthetic datasets were 576

explored and presented in Section III-D. Here, three datasets 577

made of GAN generated and real 3D images were used 578

to train more segmentation models and further evaluate the 579

influence of the presence of real data in these datasets, 580

as demonstrated in [16]. 581

Fig. 6 a), b), and c) showed the anatomical segmen- 582

tations of the LV, LA, and MYO predicted by the best 583

trained fold of each model – MReal, M17Real10Augmented, and 584

M17Real20Augmented. From the qualitative analysis, the seg- 585

mentations delineate well the anatomical structures in consid- 586

eration throughout the whole volume. At the same time, and 587

similarly to what was discussed on Section IV-B, the average 588

Dice scores presented in Table 2 led to the conclusion that 589

having a dataset of real images combined with synthetic ones 590

leads to more accurate final segmentations. 591

From the obtained results is also possible to assess 592

the influence of using combined datasets with different 593

98810 VOLUME 10, 2022



C. Tiago et al.: Data Augmentation Pipeline to Generate Synthetic Labeled Datasets

FIGURE 5. Inference segmentation results from each trained model on synthetic datasets. On the left is shown a
schematic representation of the heart and 2 cutting planes correspondent to a real 3D echocardiography image
from the test set: the 4-chamber (CH), with blue frame, and the 2-CH, with red frame. On the right, the LV, LA, and
MYO segmentation results provided by each of the 4 segmentation models: a) MSynthetic, b) MWavelet, c) MCone,
and d) MWaveletCone follow. A qualitative analysis of the segmentation results from each of the models, shows that
the one where the training data was not post-processed, MSynthetic, gives the best output due to a smoother
segmentation of the relevant structures.

FIGURE 6. Inference segmentation results from the trained models on augmented datasets with synthetic images.
On the left is shown a schematic representation of the heart and 2 cutting planes correspondent to a real 3D
echocardiography image from the test set: the 4-CH, with blue frame, and the 2-CH, with red frame. On the right,
the LV, LA, and MYO segmentation results provided by the following 3 segmentation models: a) MReal,
b) M17Real10Augmented, and c) M17Real20Augmented, follow. To allow comparison and measure the Dice score and VS,
d) shows the ground truth segmentation performed by a cardiologist. A qualitative analysis of the segmentation
results from each of the models, shows that combining synthetic with real data improves the segmentation output
due to a more accurate segmentation of the relevant structures.

percentages of synthetic data. Table 2 and Table 3 show594

that adding synthetic data to the initial real dataset595

improves the 3D segmentation of real 3D echocardiogra- 596

phy images. They also show that adding larger amounts 597
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of synthetic data does not improve the results to a large598

extent.599

Fig. 6 d) showed the ground truth inference case segmen-600

tation performed by a cardiologist. From these ground truth601

segmentations available for all the cases in the test set, the602

Dice scores and the VS in Table 3 were calculated.603

Given the 3D nature of the task and due to the Dice604

metric limitations, the VS was additionally calculated and605

used as comparison metric. In particular, M17Real10Augmented606

showed to perform better at segmenting when the Dice score607

was considered as performance metric. On the other hand,608

M17Real20Augmented performed better in terms of VS metric.609

These results showed that the models trained on the combined610

datasets, i.e., with real and synthetic images, provided more611

accurate segmentation outputs (the 3D volume), relatively612

to the model trained with only real data, MReal. The613

results support the previous work done by [16], confirm-614

ing that including synthetic data on datasets made of real615

data improves and helps the final outcome of the DL616

models.617

Additionally, this result reinforces that the proposed618

pipeline, relying on a 3D GAN model, can be used as a data619

augmentation tool. This framework arises as a solution to the620

lack of publicly available medical labeled datasets.621

D. FURTHER APPLICATIONS622

The presented pipeline has the potential to be further623

explored. As the demand for medical images is increasing,624

the proposed approach can be extended to synthesize images625

from other imaging modalities other than Ultrasound, such as626

MR or CT. It can also generate images where other organs are627

represented or even fetuses [13].628

Another extension of this work would be to use different629

types of 3D models from which ground truth anatomical630

labels could be extracted. Besides anatomical models, ani-631

mated or biophysical models represent other options that632

can be considered. The usage of anatomical models of633

pathological hearts are another possible extension, in order to634

generate pathological 3D echocardiography scans. Depend-635

ing on the type of 3D model being considered, different636

annotations can be extracted, increasing the amount of clin-637

ically relevant tasks where these synthetic datasets can be638

used.639

The generated 3D echocardiography images illustrated a640

heart volume during one time step of the whole cardiac cycle641

(end-diastole). It would be of great interest to generate 3D642

images of the heart during other cardiac cycle events and643

even to generate a beating volume throughout time, as high644

temporal resolution is one of themain strengths of Ultrasound645

imaging. On the other hand, a limitation to the Ultrasound646

images generation is that different scanning probe combina-647

tions lead to the acquisition of images with different quality648

levels. This large variability makes the GAN learning process649

more complex.650

In this work we explored, to an extent, the effects that651

architectural changes of the GAN model have on the final652

synthesized images. We used different architectures for the 653

GAN generator but more 3D CNNs exist and are showing 654

up every day. These can be used to train the generative 655

models, since DL strategies are becoming extremely common 656

to use as medical image synthesis and analysis tools. Once 657

the images were synthesized, we used wavelet denoising and 658

an in-house developed algorithm to fix the Ultrasound cone 659

edges. However, there are other denoising transformations 660

and cone reshaping algorithms that can be experimented to 661

post-process the images. 662

We trained several DLmodels to perform 3D segmentation 663

to show that synthesized images can be used as input to 664

train DL models. Nevertheless, the pipeline is generic and 665

could be applied to other DL tasks that automatically assign 666

anatomical labels to images, e.g., structure/feature recogni- 667

tion or automatic structural measurements. Furthermore, the 668

GAN-generated labeled datasets are not only useful as input 669

to train DL models but also could be used to train researchers 670

and clinicians on image analysis. 671

Finally, during this pipeline development, computational 672

memory constraints were present, mainly due to the large 673

size of 3D volumes, complicating the process of developing 674

a framework adapted to these. Future work will include study 675

strategies to overcome these limitations. 676

V. CONCLUSION 677

An automatic data augmentation pipeline to create 3D 678

echocardiography images and corresponding anatomical 679

labels using a 3D GAN model was proposed. DL models 680

are becoming widely used in clinical workflows and large 681

volumes of medical data is a fundamental requirement to 682

develop such algorithms with high accuracy. Generating syn- 683

thetic data that could be used for the purpose of training 684

DL models is of utmost importance since this generative 685

model can become a widely used tool to address the existent 686

lack of publicly available data and increasing challenges 687

with moving data due to privacy regulations. Furthermore, 688

the proposed methodology not only generates synthetic 3D 689

echocardiography images but also associates labels to these 690

synthetic images, eliminating the need for experienced pro- 691

fessionals to do so, and without adding potential bias in the 692

labels. 693

The proposed GAN model shows a generalization compo- 694

nent since it can generate synthetic echocardiography images 695

using 3D anatomical models of the heart obtained for imaging 696

modalities other than from Ultrasound. 697

The obtained results in this work indicate that synthetic 698

datasets made up of GAN-generated 3D echocardiography 699

images, and respective labels, are a good data augmentation 700

resource to train and develop DL models that can be used 701

to perform different medical tasks in the cardiac imaging 702

domain, such as heart segmentation, where real patients’ data 703

is analyzed. 704

APPENDIX 705

See Table 4 and Table 5. 706
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TABLE 4. Validation dice scores of each segmented structure (LV, LA, and MYO) for each trained model on combined datasets—MReal, M17Real10Augmented,
and M17Real20Augmented. The higher the score, the better the agreement between the model prediction and the ground truth segmentation. The best
training fold of each model is highlighted.

TABLE 5. Validation dice scores of each segmented structure (LV, LA, and MYO) for each trained model on completely synthetic datasets – MSynthetic,
MWavelet, MCone, and MWaveletCone. The higher the score, the better the agreement between the model prediction and the ground truth segmentation.
The best training fold of each model is highlighted.

REFERENCES707

[1] F. M. Asch, N. Poilvert, T. Abraham, M. Jankowski, J. Cleve, M. Adams,708

N. Romano, H. Hong, V. Mor-Avi, R. P. Martin, and R. M. Lang, ‘‘Auto-709

mated echocardiographic quantification of left ventricular ejection fraction710

without volume measurements using a machine learning algorithm mim-711

icking a human expert,’’ Circulat., Cardiovascular Imag., vol. 12, no. 9,712

Sep. 2019, Art. no. e009303, doi: 10.1161/CIRCIMAGING.119.009303.713

[2] J. Scheetz, P. Rothschild, M. McGuinness, X. Hadoux, H. P. Soyer,714

M. Janda, J. J. J. Condon, L. Oakden-Rayner, L. J. Palmer, S. Keel, and715

P. van Wijngaarden, ‘‘A survey of clinicians on the use of artificial intelli-716

gence in ophthalmology, dermatology, radiology and radiation oncology,’’717

Sci. Rep., vol. 11, no. 1, Mar. 2021, Art. no. 1, doi: 10.1038/s41598-021-718

84698-5.719

[3] A. Aljuaid and M. Anwar, ‘‘Survey of supervised learning for medical720

image processing,’’ Social Netw. Comput. Sci., vol. 3, no. 4, p. 292,721

May 2022, doi: 10.1007/s42979-022-01166-1.722

[4] L. P. de Isla, D. V. Balcones, C. Fernández-Golfín, P. Marcos-Alberca,723

C. Almería, J. L. Rodrigo, C. Macaya, and J. Zamorano, ‘‘Three-724

dimensional-wall motion tracking: A new and faster tool for myocardial725

strain assessment: Comparison with two-dimensional-wall motion track-726

ing,’’ J. Amer. Soc. Echocardiogr., vol. 22, no. 4, pp. 325–330, Apr. 2009,727

doi: 10.1016/j.echo.2009.01.001.728

[5] H.-C. Shin, N. A. Tenenholtz, J. K. Rogers, C. G. Schwarz, M. L. Senjem,729

J. L. Gunter, K. P. Andriole, and M. Michalski, ‘‘Medical image synthe-730

sis for data augmentation and anonymization using generative adversar-731

ial networks,’’ in Simulation and Synthesis in Medical Imaging, Cham,732

Switzerland: Springer, 2018, pp. 1–11, doi: 10.1007/978-3-030-00536-733

8_1.734

[6] R. J. Chen, M. Y. Lu, T. Y. Chen, D. F. K. Williamson, and F. Mahmood,735

‘‘Synthetic data in machine learning for medicine and healthcare,’’ Nature736

Biomed. Eng., vol. 5, no. 6, pp. 493–497, Jun. 2021, doi: 10.1038/s41551-737

021-00751-8.738

[7] M. J. M. Chuquicusma, S. Hussein, J. Burt, and U. Bagci, ‘‘How739

to fool radiologists with generative adversarial networks? A visual740

Turing test for lung cancer diagnosis,’’ in Proc. IEEE 15th Int. Symp.741

Biomed. Imag. (ISBI), Apr. 2018, pp. 240–244, doi: 10.1109/ISBI.2018.742

8363564.743

[8] A. Thorstensen, H. Dalen, B. H. Amundsen, S. A. Aase, and A. Stoylen,744

‘‘Reproducibility in echocardiographic assessment of the left ventricular745

global and regional function, the HUNT study,’’ Eur. J. Echocar-746

diogr., vol. 11, no. 2, pp. 149–156, Mar. 2010, doi: 10.1093/ejechocard/747

jep188.748

[9] I. Banerjee, C. E. Catalano, G. Patané, and M. Spagnuolo, ‘‘Semantic 749

annotation of 3D anatomical models to support diagnosis and follow-up 750

analysis of musculoskeletal pathologies,’’ Int. J. Comput. Assist. Radiol. 751

Surgery, vol. 11, no. 5, pp. 707–720, May 2016, doi: 10.1007/s11548-015- 752

1327-6. 753

[10] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W. Tsui, 754

‘‘4D XCAT phantom for multimodality imaging research,’’ Med. Phys., 755

vol. 37, no. 9, pp. 4902–4915, Sep. 2010, doi: 10.1118/1.3480985. 756

[11] W. Kainz, E. Neufeld, W. E. Bolch, C. G. Graff, C. H. Kim, N. Kuster, 757

B. Lloyd, T. Morrison, P. Segars, Y. S. Yeom, M. Zankl, X. G. Xu, 758

and B. M. W. Tsui, ‘‘Advances in computational human phantoms and 759

their applications in biomedical engineering—A topical review,’’ IEEE 760

Trans. Radiat. Plasma Med. Sci., vol. 3, no. 1, pp. 1–23, Jan. 2019, doi: 761

10.1109/TRPMS.2018.2883437. 762

[12] A. Gilbert, M. Marciniak, C. Rodero, P. Lamata, E. Samset, and 763

K. Mcleod, ‘‘Generating synthetic labeled data from existing anatomi- 764

cal models: An example with echocardiography segmentation,’’ IEEE 765

Trans. Med. Imag., vol. 40, no. 10, pp. 2783–2794, Oct. 2021, doi: 766

10.1109/TMI.2021.3051806. 767

[13] C. W. Roy, D. Marini, W. P. Segars, M. Seed, and C. K. Macgowan, ‘‘Fetal 768

XCMR: A numerical phantom for fetal cardiovascular magnetic resonance 769

imaging,’’ J. CardiovascularMagn. Reson., vol. 21, no. 1, p. 29,May 2019, 770

doi: 10.1186/s12968-019-0539-2. 771

[14] A. Perperidis, ‘‘Postprocessing approaches for the improvement of car- 772

diac ultrasound B-mode images: A review,’’ IEEE Trans. Ultrason., Fer- 773

roelectr., Freq. Control, vol. 63, no. 3, pp. 470–485, Mar. 2016, doi: 774

10.1109/TUFFC.2016.2526670. 775

[15] L. Chai, J.-Y. Zhu, E. Shechtman, P. Isola, and R. Zhang, ‘‘Ensembling 776

with deep generative views,’’ 2021, arXiv:2104.14551. 777

[16] D. R. P. R. M. Lustermans, S. Amirrajab, M. Veta, M. Breeuwer, and 778

C. M. Scannell, ‘‘Optimized automated cardiac MR scar quantification 779

with GAN-based data augmentation,’’ 2021, arXiv:2109.12940. 780

[17] J. Pedrosa, S. Queiróós, O. Bernard, J. Engvall, T. Edvardsen, E. Nagel, 781

and J. D’hooge, ‘‘Fast and fully automatic left ventricular segmentation 782

and tracking in echocardiography using shape-based b-spline explicit 783

active surfaces,’’ IEEE Trans. Med. Imag., vol. 36, no. 11, pp. 2287–2296, 784

Nov. 2017, doi: 10.1109/TMI.2017.2734959. 785

[18] H. Uzunova, J. Ehrhardt, and H. Handels, ‘‘Memory-efficient GAN- 786

based domain translation of high resolution 3D medical images,’’ Com- 787

puterized Med. Imag. Graph., vol. 86, Dec. 2020, Art. no. 101801, doi: 788

10.1016/j.compmedimag.2020.101801. 789

VOLUME 10, 2022 98813

http://dx.doi.org/10.1161/CIRCIMAGING.119.009303
http://dx.doi.org/10.1038/s41598-021-84698-5
http://dx.doi.org/10.1038/s41598-021-84698-5
http://dx.doi.org/10.1038/s41598-021-84698-5
http://dx.doi.org/10.1007/s42979-022-01166-1
http://dx.doi.org/10.1016/j.echo.2009.01.001
http://dx.doi.org/10.1007/978-3-030-00536-8_1
http://dx.doi.org/10.1007/978-3-030-00536-8_1
http://dx.doi.org/10.1007/978-3-030-00536-8_1
http://dx.doi.org/10.1038/s41551-021-00751-8
http://dx.doi.org/10.1038/s41551-021-00751-8
http://dx.doi.org/10.1038/s41551-021-00751-8
http://dx.doi.org/10.1109/ISBI.2018.8363564
http://dx.doi.org/10.1109/ISBI.2018.8363564
http://dx.doi.org/10.1109/ISBI.2018.8363564
http://dx.doi.org/10.1093/ejechocard/jep188
http://dx.doi.org/10.1093/ejechocard/jep188
http://dx.doi.org/10.1093/ejechocard/jep188
http://dx.doi.org/10.1007/s11548-015-1327-6
http://dx.doi.org/10.1007/s11548-015-1327-6
http://dx.doi.org/10.1007/s11548-015-1327-6
http://dx.doi.org/10.1118/1.3480985
http://dx.doi.org/10.1109/TRPMS.2018.2883437
http://dx.doi.org/10.1109/TMI.2021.3051806
http://dx.doi.org/10.1186/s12968-019-0539-2
http://dx.doi.org/10.1109/TUFFC.2016.2526670
http://dx.doi.org/10.1109/TMI.2017.2734959
http://dx.doi.org/10.1016/j.compmedimag.2020.101801


C. Tiago et al.: Data Augmentation Pipeline to Generate Synthetic Labeled Datasets

[19] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-790

image translation using cycle-consistent adversarial networks,’’ 2017,791

arXiv:1703.10593.792

[20] Y. Huo, Z. Xu, H. Moon, S. Bao, A. Assad, T. K. Moyo,793

M. R. Savona, R. G. Abramson, and B. A. Landman, ‘‘SynSeg-Net:794

Synthetic segmentation without target modality ground truth,’’ IEEE795

Trans. Med. Imag., vol. 38, no. 4, pp. 1016–1025, Apr. 2019, doi:796

10.1109/TMI.2018.2876633.797

[21] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation798

with conditional adversarial networks,’’ 2016, arXiv:1611.07004.799

[22] S. Amirrajab, S. Abbasi-Sureshjani, Y. A. Khalil, C. Lorenz, J. Weese,800

J. Pluim, and M. Breeuwer, ‘‘XCAT-GAN for synthesizing 3D consistent801

labeled cardiac MR images on anatomically variable XCAT phantoms,’’802

2020, arXiv:2007.13408.803

[23] Y. Hu, E. Gibson, L.-L. Lee, W. Xie, D. C. Barratt, T. Vercauteren,804

and J. A. Noble, ‘‘Freehand ultrasound image simulation with spatially-805

conditioned generative adversarial networks,’’ in Molecular Imaging,806

Reconstruction and Analysis of Moving Body Organs, and Stroke Imag-807

ing and Treatment, vol. 10555, M. J. Cardoso et al., Eds. Cham,808

Switzerland: Springer, 2017, pp. 105–115, doi: 10.1007/978-3-319-67564-809

0_11.810

[24] S. Abbasi-Sureshjani, S. Amirrajab, C. Lorenz, J. Weese, J. Pluim, and811

M. Breeuwer, ‘‘4D semantic cardiac magnetic resonance image synthesis812

on XCAT anatomical model,’’ 2020, arXiv:2002.07089.813

[25] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, ‘‘Semantic image814

synthesis with spatially-adaptive normalization,’’ 2019, arXiv:1903.815

07291.816

[26] M. D. Cirillo, D. Abramian, and A. Eklund, ‘‘Vox2Vox: 3D-GAN for brain817

tumour segmentation,’’ 2020, arXiv:2003.13653.818

[27] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks819

for biomedical image segmentation,’’ 2015, arXiv:1505.04597.820

[28] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein,821

‘‘nnU-Net: A self-configuring method for deep learning-based biomedi-822

cal image segmentation,’’ Nature Methods, vol. 18, no. 2, pp. 203–211,823

Feb. 2021, doi: 10.1038/s41592-020-01008-z.824

[29] M. Alsharqi, W. J. Woodward, J. A. Mumith, D. C. Markham, R. Upton,825

and P. Leeson, ‘‘Artificial intelligence and echocardiography,’’ Echo Res.826

Pract., vol. 5, no. 4, pp. R115–R125, Dec. 2018, doi: 10.1530/ERP-18-827

0056.828

[30] A. Østvik, E. Smistad, T. Espeland, E. A. R. Berg, and L. Lovstakken,829

‘‘Automatic myocardial strain imaging in echocardiography using deep830

learning,’’ in Deep Learning in Medical Image Analysis and Multimodal831

Learning for Clinical Decision Support. Cham, Switzerland: Springer,832

2018, pp. 309–316, doi: 10.1007/978-3-030-00889-5_35.833

[31] V7 Ltd. V7—AI Data Platform for ML Teams. Accessed: Feb. 25, 2022.834

[Online]. Available: https://www.v7labs.com/835

[32] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,836

‘‘3D U-Net: Learning dense volumetric segmentation from sparse annota-837

tion,’’ 2016, arXiv:1606.06650.838

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,839

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, and A. Desmaison, ‘‘PyTorch:840

An imperative style, high-performance deep learning library,’’ 2019,841

arXiv:1912.01703.842

[34] A. Odena, V. Dumoulin, and C. Olah, ‘‘Deconvolution and checker-843

board artifacts,’’ Distill, vol. 1, no. 10, p. e3, Oct. 2016, doi: 10.23915/844

distill.00003.845

[35] C. Rodero, M. Strocchi, M. Marciniak, S. Longobardi, J. Whitaker,846

M. D. O’Neill, K. Gillette, C. Augustin, G. Plank, E. J. Vigmond,847

P. Lamata, and S. A. Niederer, ‘‘Linking statistical shape models and848

simulated function in the healthy adult human heart,’’ PLOS Comput.849

Biol., vol. 17, no. 4, Apr. 2021, Art. no. e1008851, doi: 10.1371/850

journal.pcbi.1008851.851

[36] A. K. Yadav, R. Roy, A. P. Kumar, C. S. Kumar, and S. K. Dhakad,852

‘‘De-noising of ultrasound image using discrete wavelet transform853

by symlet wavelet and filters,’’ in Proc. Int. Conf. Adv. Com-854

put., Commun. Informat. (ICACCI), Aug. 2015, pp. 1204–1208, doi:855

10.1109/ICACCI.2015.7275776.856

[37] A. A. Taha and A. Hanbury, ‘‘Metrics for evaluating 3D medical image857

segmentation: analysis, selection, and tool,’’ BMC Med. Imag., vol. 15,858

no. 1, p. 29, Aug. 2015, doi: 10.1186/s12880-015-0068-x.859

[38] C. Shorten and T.M. Khoshgoftaar, ‘‘A survey on image data augmentation860

for deep learning,’’ J. Big Data, vol. 6, no. 1, p. 60, Jul. 2019, doi:861

10.1186/s40537-019-0197-0.862

CRISTIANA TIAGO (Member, IEEE) was born 863

in Portugal, in 1995. She graduated in biomedical 864

engineering and biophysics from the University 865

of Lisbon, in 2016. She received the master’s 866

degree in biomedical engineering and biophysics 867

from the University of Lisbon, in 2018; with a 868

specialization on clinical engineering and med- 869

ical instrumentation after spending one year at 870

the Eindhoven University of Technology, closely 871

with Philips Research, working on deep learning 872

algorithms for cardiac magnetic resonance images analysis. She joined GE 873

Healthcare and the MARCIUS Marie Curie Ph.D. Programme, in March 874

2020, as an ESR 4. 875

ANDREW GILBERT was born in Utah, USA, 876

in 1994. He received the B.S. degree in electrical 877

engineering from the University of Utah, in 2016, 878

the M.S. degree in electrical engineering from 879

Stanford University, in 2018, and the Ph.D. 880

degree from the University of Oslo, working 881

on automating echocardiography analysis through 882

deep learning, in 2021. 883

He is currently a Data Scientist with the 884

Cardiovascular Ultrasound Research andDevelop- 885

ment Team, GE Healthcare, working to develop machine learning solutions 886

for robust extraction of anatomical and pathophysiological features from 887

echocardiography images. He has worked on multiple automated measure- 888

ment and classification systems deployed in GE’s line of Vivid ultrasound 889

scanners. 890

AHMED SALEM BEELA was born in Egypt, 891

in 1986. He graduated from the Faculty of 892

Medicine, Suez Canal University, Egypt, in 2008. 893

He received the master’s degree in cardiovascu- 894

lar diseases from Suez Canal University, in 2014, 895

and the Diploma of Advanced Master’s degree in 896

medical imaging from the University of Leuven, 897

Leuven, Belgium, in 2017. 898

He was a Clinical Research Fellow with 899

the Medical Imaging Research Center (MIRC), 900

Leuven, Belgium, from 2016 to 2018. He is a Non-Invasive Cardiologist 901

currently enrolled in the MARCIUSMarie Curie Ph.D. Programme focusing 902

on preparing and curate the needed clinical database for training artificial 903

learning algorithms in addition to validating the developed tools. 904

SVEIN ARNE AASE was born in Oslo, Norway, 905

in 1978. He received the M.Sc. degree in com- 906

puter science from the Norwegian University of 907

Science and Technology, Trondheim, Norway, 908

in 2003, and the Ph.D. degree from the Department 909

of Circulation and Medical Imaging, Faculty of 910

Medicine, Norwegian University of Science and 911

Technology, in 2008. 912

He spent a period as a Postdoctoral Researcher 913

with the Department of Circulation and Medi- 914

cal Imaging, Norwegian University of Science and Technology, and was 915

employed by GE Vingmed Ultrasound, Horten, Norway, in 2010. Since 916

2017, his main fields of interests has been deep learning applications in 917

echocardiography. 918

98814 VOLUME 10, 2022

http://dx.doi.org/10.1109/TMI.2018.2876633
http://dx.doi.org/10.1007/978-3-319-67564-0_11
http://dx.doi.org/10.1007/978-3-319-67564-0_11
http://dx.doi.org/10.1007/978-3-319-67564-0_11
http://dx.doi.org/10.1038/s41592-020-01008-z
http://dx.doi.org/10.1530/ERP-18-0056
http://dx.doi.org/10.1530/ERP-18-0056
http://dx.doi.org/10.1530/ERP-18-0056
http://dx.doi.org/10.1007/978-3-030-00889-5_35
http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.1371/journal.pcbi.1008851
http://dx.doi.org/10.1371/journal.pcbi.1008851
http://dx.doi.org/10.1371/journal.pcbi.1008851
http://dx.doi.org/10.1109/ICACCI.2015.7275776
http://dx.doi.org/10.1186/s12880-015-0068-x
http://dx.doi.org/10.1186/s40537-019-0197-0


C. Tiago et al.: Data Augmentation Pipeline to Generate Synthetic Labeled Datasets

STEN ROAR SNARE was born in Kongsvinger,919

Norway, in 1981. He received the M.Sc. degree in920

engineering cybernetics and the Ph.D. degree in921

medical technology from the Norwegian Univer-922

sity of Science and Technology (NTNU).923

He worked with the Department of Circulation924

and Medical Imaging, NTNU, until Fall 2011,925

when he was hired at GE. His research interests926

include medical ultrasound technology, in particu-927

lar image analysis for automated quantification of928

physiological parameters from ultrasound images.929

JURICA ŠPREM was born in Zagreb, Croatia,930

in 1989. He received the B.Sc. degree in com-931

puting from the Faculty of Electrical Engineering932

and Computing, University of Zagreb, Croatia,933

in 2012, the master’s degree in ICT with a focus on934

signal processing from the University of Zagreb,935

in 2014, and the Ph.D. degree from UMC Utrecht,936

in 2019, on the topic of enhanced cardiovascular937

risk prediction by machine learning.938

He joined GE Healthcare, in 2019, as an AI939

Tech Lead, with a focus on combining AI with cardiac ultrasound where940

he continues to support research activities.941

KRISTIN MCLEOD was born in New Zealand, 942

in 1986. She received the B.A. degree in mathe- 943

matics and psychology and the B.Sc. (Hons.) and 944

M.Sc. degrees in mathematics from Massey Uni- 945

versity, New Zealand, in 2008, 2009 and 2010, 946

respectively, and the Ph.D. degree in artificial 947

intelligence for medical image analysis from the 948

Université Côte d’Azur, France, in 2013. 949

She continued her academic career at Simula 950

Research Laboratory, Norway, as a Postdoctoral 951

Research Fellow, from 2013 to 2017, focusing on the development of 952

automatic tools for supporting diagnosis and therapy planning for cardiac 953

diseases through the use of artificial intelligence. In 2017, she joined the GE 954

Vingmed Ultrasound Department, GE Healthcare, Norway, as a Data Scien- 955

tist, before transitioning to the role of Digital Manager. Through the role of 956

Digital Manager, she has been working at the intersection of research and 957

development, playing the role of the coordinator and principal investigator 958

for national and EU research programs, as well as the strategic lead of the 959

development of AI features and app ecosystem initiatives at GE Vingmed 960

Ultrasound. 961

962

VOLUME 10, 2022 98815


