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ABSTRACT Crowd sourcing and human computation has slowly become a mainstay for many application
areas that seek to leverage the crowd in the development of high quality datasets, annotations, and problem
solving beyond the reach of current AI solutions. One of the major challenges to the domain is ensuring
high-quality and diligent work. In response, the literature has seen a large number of quality control
mechanisms each voicing (sometimes domain-specific) benefits and advantages when deployed in largescale
human computation projects. This creates a complex design space for practitioners: it is not always clear
which mechanism(s) to use for maximal quality control. In this article, we argue that this decision is perhaps
overinflated and that provided there is ‘‘some kind’’ of quality control that this obviously known to crowd
workers this is sufficient for ‘‘high-quality’’ solutions. To evidence this, and provide a basis for discussion,
we undertake two experiments where we explore the relationship between task design, task complexity,
quality control and solution quality. We do this with tasks from natural language processing, and image
recognition of varying complexity. We illustrate that minimal quality control is enough to repel constantly
underperforming contributors and that this is constant across tasks of varying complexity and formats. Our
key takeaway: quality control is necessary, but seemingly not how it is implemented.
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INDEX TERMS Quality control, human computation, natural language processing, image recognition,
crowd work.

I. INTRODUCTION17

Human computation such as crowd labour powers the ability18

to access, exploit, and disseminate knowledge at scale. As a19

domain and artificial computational paradigm, it has received20

significant attention from researchers in exploring the ‘‘best’’21

manners to leverage and efficiently utilise large quantities22

of online workers. However, there are still aspects of crowd23

work where many end-users, i.e. employers of crowd work-24

ers, are still in need of structured guidance and best practice25

recommendations. In this article, we focus on just one of these26

key decisions: choosing the ‘‘right’’ mechanism(s) for quality27

control, which is often a key consideration for any large(r)28

project involving human computation [1], [2]. This is because29
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data quality is the cornerstone assumption of information and 30

computer technology [3], [4] and ultimately, crowd workers 31

generate data for use in other systems and contexts. We argue 32

that it is unclear how to select from the many quality control 33

mechanisms discussed throughout the literature and seek to 34

provide guidance for practitioners utilising crowd platforms. 35

Questions around digital work, and specifically quality 36

in digital work, are not without founding. The 2019-2020 37

outbreak of the Coronavirus (COVID-19) pandemic demon- 38

strated the universality of working remotely and from home. 39

More to the point, widespread unemployment has millions 40

scrambling at the margins of the workforce; the value of 41

crowdsourcing is proven in such circumstances as crowd 42

labour has turned from an option to the only option for 43

certain individuals [3]. The lack of working in a physical 44

setting opens up a huge and ready workforce and indeed 45
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crowdsourcing has been leveraged for research and industry,46

such as its use for medical purposes – i.e., [4] – during the47

COVID-19 pandemic.48

The discussion around quality control often emphasises49

several different challenges, and different approaches to qual-50

ity control in crowd work address different combinations51

of these challenges. To portray the complexity in selecting52

appropriate quality control mechanisms, we first need to53

discuss the rationale behind integrating quality control mech-54

anisms into crowd work, i.e., the challenges in crowd work55

they seek to address, and some of the high-level implications56

that accompany different mechanisms.57

The challenge of ‘‘underperforming’’ workers is primary.58

This is what quality control mechanisms are seeking to hin-59

der, discourage, and often punish. In this article, we inten-60

tionally do not refer to these workers as ‘‘spammers’’ or61

‘‘cheats’’ as there is often no means by which to categorise62

their intent [5], i.e. we cannot distinguish between intentional63

low quality work, and a lack of training for the task at64

hand. We discuss common mechanisms for quality control65

in Section-II; broadly speaking, skill tests [6]; pre-set qual-66

ifications and benchmarking against metrics like historical67

solution acceptance [7], [8]; trust-based models [9], [10],68

[11]; disguised gold standard questions [12]; and machine69

learning-driven trackers [13] have all been proposed by70

researchers for quality control. Our objective is not a system-71

atic review of all mechanisms, nor playing one off against72

another, but rather contextualising their impact more holisti-73

cally towards understanding how well, when, and why spe-74

cific quality control mechanisms work [14]. This becomes75

particularly important when contextualised with findings76

like [15] who, against expectations, found that worker quality77

is stable over time.78

Secondly, we must consider the implications that any qual-79

ity control mechanism has. We can categorise these implica-80

tions into the broader areas of 1) respect, 2) relationship, and81

3) ethics. Yet, we also recognise that this is not an exhaus-82

tive categorisation. These categories are important because83

researchers are now recognizing that implemented quality84

controlmechanismsmust not only be effective but also should85

be respectful of the worker [16], [17], [18]. As such, it is not86

just a case of identifying which quality control mechanism(s)87

will maximise specific notions of quality. While the choice of88

mechanism(s) clearly impacts the task design, it also affects89

the relationship between worker and requester, especially if90

the worker perceives the quality control mechanism(s) in use91

to be (overly) strict or unfair. [19] have also noted that some92

quality control methodsmay pose ethical dilemmas. Thus, for93

practitioners, there is not only the question of which quality94

control mechanism is ‘‘right’’ but also the consideration of95

any (in)direct implications.96

Related to this is the proposition that crowd labour remains97

in a ‘‘perpetual beta’’ state [20]. The wealth of approaches98

in the literature makes it clear that much research has been99

conducted to support both workers (in validating their work,100

ensuring they are qualified to do it, etc.) and employers101

(seeking to ensure high-quality solutions). This article there- 102

fore recognizes that there is a wealth of choice for researchers 103

and requesters [21], but that this choice adds complexity 104

to the design and implementation of crowd work. We note 105

that several researchers have highlighted some shortcomings 106

in the literature (see Related Work) that we seek to either 107

address or provide more context experimentally. We do so by 108

proposing the following research questions (RQ): 109

RQ1: what characterisations of response quality can be 110

linked to different quality control mechanisms? 111

RQ2: what impacts of task design have larger effects 112

on response quality then different mechanisms of quality 113

control? 114

In RQ1, the working hypothesis is that the format of the 115

quality control mechanism is critical for achieving specific 116

notions of quality. Building on this, RQ2 attempts to disen- 117

tangle questions surrounding when to inject quality control 118

mechanisms in the task. We seek to experimentally address 119

the impact of differing quality control methods on contrib- 120

utors’ response quality (RQ1). Also, reflecting on [22] we 121

explore the role of task and interface design in the quality 122

and accuracy of the tasks (RQ2). 123

Aligned to the two research questions, we present two 124

factorial design experimental studies (see Study Design). The 125

first, a 3 × 5 design explores 3 different task complexi- 126

ties in language processing using 5 quality control methods. 127

It emphasises the impact of quality control mechanisms vs. 128

task complexity when considering response quality. The sec- 129

ond, a 3× 2× 2 design explores 3 quality control treatments 130

with 2 information highlighting approaches and 2 task order- 131

ing effects within a simple image recognition task. It empha- 132

sises how aspects of task design impact response quality. 133

In undertaking these experiments, we make the following 134

observations (see Results). 135

1) Consistently underperforming workers were repelled 136

by the simple announcement of a quality control mech- 137

anism, regardless of what that mechanism was, or in 138

fact if one was actually present or not. 139

2) There was no statistically significant difference 140

between the quality control mechanisms applied. 141

3) Subtle considerations in the task design (e.g. making 142

key text bold, and the order tasks are performed) are 143

more impactful on quality than the effect associated 144

with a quality control mechanism. 145

Considering these observations, we argue that the wealth 146

of choice for researchers and requesters in achieving qual- 147

ity control [21] only adds complexity to the design and 148

implementation of crowd work. Instead, we provide a set 149

of recommendations for practitioners based on the following 150

contributions (see Discussion and Conclusions): 151

1. Quality control mechanisms: we highlight that in some 152

cases, the presence of a quality control measure alone is 153

sufficient to ensure high(er) quality solutions. This is key 154

for crowd requesters, as Rzeszotarski and Kittur [21] note 155

requesters must make difficult trade-offs depending on the 156

quality control method they use, yet our results illustrate 157
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this may be an over-emphasized issue: we could not observe158

discernible differences between increasingly more sophis-159

ticated measures (RQ1 and experiment 1). Similarly, as160

Difallah et al. [23] suggest, discouraging low quality work (or161

‘‘cheaters’’) is better than controlling the quality of results.162

2. Task design: via RQ2 and experiment 2, we provide163

insights into task design aspects and their relationship with164

observable differences in quality. Newell and Ruths [24] state165

that intertask effects could create a systematic bias (if left166

unchecked), and they note the importance of task design.167

Experiment 2 corroborates this finding, illustrating the impact168

of subtle differences in task framing and feedback. Similarly,169

Cai et al. [25] note the importance of task ordering aligned170

to cognitive load. Experiment 2 explores this aspect of task171

design. Finally, experiment 2 also corroborates the findings172

of Chandler and Kapelner [26] who note the relationship173

between task framing and solution quality. Yet, experiment 2174

further extends these findings by exploring a rich design175

space: clarity of instructions vs. cognitive ordering vs. quality176

control-based feedback mechanisms.177

II. RELATED WORK178

Quality control for crowd platforms is a highly-studied phe-179

nomenon as quality is a major attribute of the crowd [1], [27],180

[28]. Applications outside of industry abound including cre-181

ative endeavours [29], policy and budget deliberations [30],182

[31], [32], open collaboration platforms [33], and the aca-183

demic research community [34]. Literature suggests there are184

several factors that may work quality including worker demo-185

graphics [35] and personality traits [36]. (Under)performance186

can also be linked to the requestor; recent works finds a high187

percentage of workers complain about the task instructions188

being unclear and the language in the task description being189

difficult to understand. Workers see task clarity as playing a190

major role in their performance [37]. Task complexity, while191

being subjective, can be measured by visual appearance and192

language used in task description [38].193

Various measures for assuring quality and authenticity194

have been proposed. Corrigan-Gibbs et al. [39] conducted195

two experiments with student participants and with MTurk196

respectively, testing the difference between honour codes197

and a serious warning message. They found a 50% decrease198

in cheating in both student and MTurk environments when199

replacing a traditional honour code with a strict warning. The200

authors suggest that informing participants of the negative201

consequences of an action in a warning results in a lesser202

tendency of doing it. In a pair of experiments on MTurk,203

Kittur et al. [40] first asked MTurkers to rate Wikipedia204

articles regarding their accuracy, writing quality, neutrality,205

structure, and the overall quality of the article. To verify206

that workers had read the article, they filled in a text box207

with suggesting improvements to the article. Based on the208

five metrics the authors found no correlation between the209

MTurkers ratings and the actual Wikipedia administrators.210

In a subsequent experiment the authors made slight modi-211

fications and added both subjective and objective questions.212

Users were first asked verifiable, quantitative questions and 213

then to rate the article. They also provided 4-6 keywords as a 214

summary for the article. The results of the subsequent experi- 215

ment demonstrated a significant positive correlation between 216

the workers’ ratings and the Wikipedia admin ratings. The 217

combined findings indicate the utility of combining objective 218

and subjective tasking in micro-task markets [40]. 219

A recognised attribute of crowdsourcing platforms is that 220

the platforms do not identify workers nor guarantee the qual- 221

ity of the work, which can contribute to in the unreliability of 222

the system [23], [41]. In their work, Difallah et al. categorized 223

‘cheaters’ a priori and posteriori and discuss anti-adversarial 224

techniques for encountering them. They suggest that sophis- 225

ticated task formulation as a suitable obstacle for cheaters. 226

Requesters’ main goal is receiving high-quality, done work 227

thus discouraging ‘cheaters’ from doing a task in the first 228

place is more goals compatible than controlling the quality 229

of completed tasks. However, more sophisticated or compli- 230

cated task structuring increases the burden on the requester. 231

They propose traditional anti-spamming techniques such as 232

CAPTCHA as sufficient barriers to ‘cheaters’. Several com- 233

mon approaches for quality control exist that are discussed 234

next. 235

A. PRE-SELECTION METHODS 236

Pre-selection mechanisms have two main branches which 237

are differentiated as ‘‘up-front task design’’ and ‘‘post-hoc 238

result analysis’’ [42] to control work quality in a crowdsourc- 239

ing context. Researchers have utilized various techniques to 240

apply pre-selection methods. Crowdsourcing platforms gen- 241

erally provide a mechanism for requesters to pre-select con- 242

tributors based upon specific task requirements or requester 243

preferences. Geiger et al. [43] typify pre-selection as ‘‘a 244

means of ensuring a minimum ex-ante quality level of con- 245

tributions.’’ Otherwise stated, a requester uses a pre-selection 246

process like a test as a risk mitigation technique against poor- 247

quality solutions. Namely requesters screen potential contrib- 248

utors based upon the demonstration of certain knowledge, 249

skills, or attributes via platform-specific process. 250

Pre-selection is typically performed via multiple-choice 251

tests, which Oleson et al. [12] examined and subsequently 252

criticized due to a faulty key assumption: if the contrib- 253

utor passes the test, they will then perform the task well 254

even in the absence of direct or tangible incentives to do 255

so. Likewise, contributors who fail the test may be banned 256

from the task though not necessarily for the right rea- 257

sons. Gadiraju et al. [44] found that identifying workers’ 258

behavioural traces can help with classifying worker in differ- 259

ent types that will then improve the quality of work produced 260

significantly. This improvement was more significant in high 261

complexity tasks. 262

Self-assessments as a pre-selection technique produced 263

promising results in providing a strong indicator for workers’ 264

competence and potential performance [45]. This method is 265

simple to implement and has been found to perform well. 266

Because of additional unremunerated efforts required and the 267
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demonstration in advance of credentials in this design, pre-268

selection via qualification tests also likely acts as a barrier269

to ‘‘spammers’’ [45]. This is however a double-edged sword270

as diligent contributors also may not select the task due to271

increased unremunerated effort or missing credential on their272

part. Answers to qualification tests or generic credentials may273

also be shared amongst users, which reduces effectiveness of274

the QA method [46], [47].275

B. QUALIFICATION TESTS276

Qualification tests can be used to not only determine the abil-277

ities of a contributor but also reveal workers’ basic attributes,278

as this information is often not available in advance [28],279

[48]. Depending on the requirement, qualifications can also280

capture demographic properties of a contributor, for example,281

their geographical location. This does, however, massively282

distort the concept of ‘qualification’ if personal attributes are283

considered.284

Like the notion of qualification tests, initial screening ques-285

tions based on task attentiveness can be employed to mini-286

mize ‘click-through’ behaviours [49]. Such measures aim to287

ensure that contributors dedicate attention to key elements288

of information, like reading and understanding the task’s289

instructions.290

C. IN TASK QUALITY CONTROL291

Ipeirotis et al. [10] and Sheng et al. [50] proposed inferring292

a level of trust in the contributor linked to the accuracy of293

their solutions. Trust, however, quickly becomes a complex294

and nuanced topic highly specific to the context in which it is295

considered. Also, as an inherently intangible and intransitive296

construct trust is challenging to quantitatively establish even297

though a measurement of trust is a key aspect for (automat-298

ically) approximating a contributor’s propensity for reliable299

or diligent work. Thus, Kern et al. [51] propose proxying300

trustworthiness based on prior experience. It is reported that301

worker-requester trust has a positive impact on the reliability302

of the crowd work [19]. The authors suggest that one way303

of enhancing worker-requester trust is to flag and scrutinize304

workers with sub-optimal responses rather than rejecting their305

work and not paying them.306

To provide a basis for comparing and estimating contrib-307

utor reliability Kern et al. [51] redundantly scheduled tasks308

for multiple contributors. While this method demonstrated309

yielding high-quality solutions without careful management310

the method quickly becomes expensive in terms of the direct311

costs of redundantly issuing tasks and indirect costs of addi-312

tional effort needed to assess solution quality. Similarly, with313

respect to ‘‘rejected’’ answers, such methods can have other314

adverse effects with respect to contributors who have acted315

diligently.316

Gold standard questions are frequently used on MTurk317

to assess solution quality and contributor attributes. In their318

approach, Oleson et al. [12] inject known solutions into the319

task as subtasks and contributors receive instant feedback on320

the accuracy of their performance. The presence and quality321

of these subtasks enables the accuracy of a given contributor 322

to be estimated in-task. As it is in-task, it also helps to improve 323

the quality of workers’ solutions by providing an explanation 324

of why the solution is incorrect. The approach, however, 325

is inappropriate for tasks that rely on forms of subjectivity as 326

the design requires a finite set of definite answers. However, 327

such a mechanism also provides a basis to train contributors, 328

enabling self-evaluation of performance through feedback. 329

The latter facilitates an integral element in the definition of 330

competence: the evaluation of self-efficacy. 331

D. THE ROLE OF MOTIVATION 332

Completingmeaningful tasks leads tomotivation in the work- 333

place [52]. Meaningful in this context implies that the worker 334

is both doing work with purpose and receiving acknowledge- 335

ments for accomplishments [53]. Chandler and Kapelner [26] 336

transferred these findings into the crowd environment show- 337

ing an interdependency between how a task is framed and 338

outcome in terms of work output. Motivating task rationale 339

in terms of expressing a purpose and higher goal led to a 340

significantly higher willingness for participation and quantity 341

of output. 342

Quality control is a dimension of Quinn and Bedersen’s 343

human computation classification [54]. They caution that 344

even motivated users might cheat or sabotage the system. 345

We argue that the rationale behind subpar performance is 346

that the motivation typically studies is extrinsic rather than 347

intrinsic motivation [55]. Ke et al. [56] investigated the role of 348

intrinsic motivation in adoption of Enterprise Systems among 349

employees from the lens of self-determination theory. The 350

authors investigated if inducing intrinsic motivation results 351

in better and smoother adoption of Enterprise Systems in an 352

organization. Their findings suggest that individuals’ intrin- 353

sic motivation should be enhanced to adopt or explore new 354

systems. 355

Ryan and Deci [57] define extrinsic motivation as ‘‘the per- 356

formance of an activity in order to attain some separable out- 357

come’’ or the performance of an activity to avoid punishment. 358

Zhao et al. [58] studied the role of extrinsic motivation in 359

having individuals share their knowledge in Q&A sites. They 360

argue that while extrinsic motivation, when used as a reward, 361

could help increase participation and knowledge sharing it 362

might also interact with intrinsic motivation, impacting self- 363

esteem and self-actualization. It is unknown to which degree 364

this interaction between extrinsic motivation and intrinsic 365

motivation impacts quality control, which weighs towards the 366

punishment end of extrinsic motivation, in the crowd. 367

E. SUMMARY OF RESEARCH GAP 368

There is a significant amount of work on both assessing and 369

trying to ensure the quality of crowd work. These approaches 370

typically reside prior to the undertaking of a task (e.g. quali- 371

fication tests), or in-task (e.g. gold standards, redundant task 372

scheduling). Choosing the ‘‘right’’ measure for a given task, 373

however, is challenging, as many researchers have proposed 374

many different quality control / assurance measures [21]. 375
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FIGURE 1. Crowdsourcing interface demonstrating the question
answering task. The basic interface is identical for all tasks. The rating
slider (bottom) is only visible for our Raters when they judge the quality
of a response.

This creates a complex task design space for requesters and376

researchers wishing to leverage crowd platforms. Ultimately,377

they have to find a balance between reducing risks, and378

building trust [59]. However, there is not yet a coherent or379

systematic review of quality control measures in the literature380

to help guide these design choices. In this paper, we shed381

some light on the roles that the exact quality control measure382

has and link this to specific aspects of task, interface, and383

instruction design.384

III. STUDY DESIGN385

This work leverages two studies. The first tests the impact386

of different quality control measures upon worker response387

quality. The second evaluates if there is an effect concerning388

when quality control is in place. We concentrate specifi-389

cally on underperformance, rather than increasing the perfor-390

mance of already-acceptably performing workers. The first391

experiment considers the domain of natural language pro-392

cessing. The second experiment considers Roman numeral393

image recognition and numeracy (basic arithmetic). Themain394

interface for contributors is identical across both experiments395

and all tasks. Figures 1 and 2 show a screenshot of the user396

interface for two conditions of the experiments.397

A. PARTICIPANTS398

We recruited all contributors for the first experiment via399

Crowd Flower. The second experiment was conducted with400

its successor platform – Figure Eight. The reasoning behind401

this is due to a rebranding of Crowd Flower to Figure Eight402

in between the two experiments taking place.403

Contributors were prompted to access the task on our own404

web page. This allows for confounding variable control, per-405

sonalised feedback, and performing our own quality control.406

The website created a unique code that contributors use to407

receive their payment through the Crowd Flower interface408

FIGURE 2. Crowdsourcing interface for the second experiment, here
illustrating that the worker should recognize and then multiply the two
images. Shown is a non-bold verb, control group view.

after completing the task. The user interface (Figure 1 and 409

Figure 2) was identical for all conditions across both exper- 410

iments. The same interface was used for collecting human 411

judges’ quality ratings in experiment 1. 412

We used between-group designs where each task had its 413

own population (groups had no overlap among populations). 414

To ensure this, we used IP-tracking and browser fingerprint- 415

ing to ensure that contributors do not contribute to more than 416

one condition, as well as corresponding constraints specified 417

via the Crowd Flower and Figure Eight platforms. 418

In Figure Eight, 60% of the workers are male, and most 419

of the workers are between the ages 18 and 34 years, aligning 420

with recent assessments of crowd labour participants [58]. For 421

this study, we did not collect demographic information as it 422

did not serve the aim of the experiments. Only hashes of IP’s 423

and browser fingerprints were stored to maintain participant 424

privacy. Table 1 and Table 2 display contributor distribution 425

of the experiments in this study. 426

B. EXPERIMENT 1 427

1) DIFFERENTIATED QUALITY CONTROL MECHANISMS 428

Our first experiment investigates three tasks of varying com- 429

plexity using a three (task complexities) by five (quality 430

control methods) factorial, between-group design. Following 431

the experimental design of [1], the effort for completing each 432

task is as high or higher than for cheating, which should 433

disincentivize constant underperformance. We hypothesize 434

the levels of complexity to be semantic similarity (least com- 435

plex); question answering (more complex); and text transla- 436

tion (most complex). 437

Each task is repeated five times with one of five dif- 438

ferent quality control methods: none, fake, intro, auto, and 439

wizard. First, in level (none) we performed no quality con- 440

trol. We announced very prominently in the task description 441

that we use introductory quizzes to check the contributors’ 442

VOLUME 10, 2022 99713



M. Hall et al.: What Quality Control Mechanisms do We Need for High-Quality Crowd Work?

qualifications, yet contributors did not actually undertake a443

test for the (fake) level. The third level (intro) announced an444

introductory quiz and required contributors to complete the445

quiz with 80% accuracy which is akin to many qualification446

tests (cf. ‘Qualification Tests’).447

In the fourth level (auto) we added a basicmachine learning448

(ML) system to estimate the quality of response. TheML sys-449

tem uses a three-level scale: good, acceptable, unacceptable.450

This estimate was reported to contributors making it akin to451

in-task quality control measures. Runge et al. have shown452

that in some natural language tasks response quality can453

be high accurately estimated by combining the time needed454

to complete a single request and the number of characters455

typed [60]. Although the values of both variables and their456

meaning differ from task to task, an ML classifier can learn457

the relationship between the two features and subsequently458

the response quality with minimal training data.459

In the auto level, responses were classified into good,460

acceptable, and unacceptable levels using a random forest461

classifier [61]. A random forest classifier was chosen, as tree-462

based classifiers are less sensitive to outliers or unbalanced463

sample sets [62]. Classifiers such as support vector machines464

are more sensitive to such outliers. In the given tasks, outliers465

are likely i.e., a contributor may open the task and then leave466

their workstation. Our classifier generated ten random trees467

using Gini impurity [63] as the split criterion using the python468

sklearn package [64]. To create the necessary labelled train-469

ing data for a supervised classifier we classified 90 responses470

of each task by hand. Responses were selected randomly from471

the full set and were classified into the three classes until472

there were 30 samples per class.We stratified the training data473

randomly, selecting exactly 30 samples per class.474

Finally, in the fifth level (wizard) we replaced the ML475

system with a human observer who determines the response476

quality using a scale identical to the one used by the ML477

system. Our objective with this measure is to replicate an478

expert panel that reviews each solution.479

When the classifier or human judge estimates the response480

quality to be unacceptable a general warning appears that the481

response might need revision. If the response was acceptable,482

we did not show amessage. For responses assessed as ‘good’,483

a message stating that the response was of good quality is484

shown. These messages appeared as a red text immediately485

after a contributor responded to a request.486

2) MEASUREMENTS487

We consider two independent variables (quality control488

method and task complexity) and one dependent variable:489

perceived response quality. Two human judges with no over-490

lap across judges between tasks rated each response on a scale491

from 0.0 (low quality) to 1.0 (high quality) in ten increments492

to measure perceived response quality. We ensured that the493

process was blind. Judges were recruited offline, and were494

not involved in training data generation for the automated495

feedback nor did they participate in the wizard conditions.496

All judges were not informed about the details of the 497

experiment but had experience in crowdsourcing. Judges saw 498

the initial request, answer, and additionally had a slider to 499

rate the response quality (Figure 1) which was not shown on 500

the contributor interface. Responses from all conditions were 501

randomly selected and judges were not informed of which 502

condition a response came from. They were asked to judge 503

performance based on the description of the task as shown to 504

the contributors. 505

We measure and report the agreement between judges 506

using Krippendorff’s Alpha [68]. [66] and [67] illustrate 507

that in a scenario of ten equi-distributed classes with a tar- 508

get Alpha value of 0.8 or higher, a sample size of 293 is 509

sufficient to judge this Alpha level with a p-value < 0.05. 510

As we collected more than 1000 samples, our expected 511

p-value is < 0.005 for an Alpha level of 0.8, which accord- 512

ing to Krippendorff is substantial. As illustrated below the 513

provided description was adequate as the observed agreement 514

between judges was substantial with a p-value < 0.05. 515

We calculated the average perceived response quality for 516

each contributor as our quality measurement. We consider 517

contributors with an average perceived response quality of 518

40% unacceptable responses, or below 0.6, as constantly 519

underperforming. The value of 0.6 was chosen regard- 520

ing the ability to recover high quality answers from noise 521

input. A commonly used method for recovering high quality 522

responses from noise human input data is Expectation Max- 523

imization. As [65] showed with five raters with an average 524

consistent performance of 0.6 or above a final Cohen’s Kappa 525

of 0.9 can be achieved. 526

Additionally, we measure the correlation between our 527

ML-systems prediction and our human judges. As our data 528

violates the assumptions of the Pearson Product-Moment 529

correlation we use Spearman’s ρ. Ground truth data was 530

acquired from the human judgement data. We selected only 531

the samples on which judges achieved full agreement on and 532

selected 30 samples per class. Classifier showed a Cohen’s 533

Kappa of> 0.75 in unbalanced test sets resulting in accuracy 534

levels of 0.8 – 0.92 for class balanced test sets. These results 535

are consistent with [61]. 536

In line with [37] and [38], instruction clarity and contribu- 537

tor satisfaction were tested using the built-in metrics provided 538

by Crowd Flower for all three tasks. Upon completion of a 539

task, contributors could opt into a satisfaction survey. Con- 540

tributors score the task on a 0-5 scale for overall satisfaction, 541

instruction clarity, fairness of test questions, payment, and 542

ease of job. Results of these surveys are reported with each 543

task. 544

C. EXPERIMENT 2 545

1) TIME DIFFERENTIATED QUALITY CONTROL 546

Our second experiment had a one (task difficulty) by 547

three (quality control treatments) by two (information high- 548

lighting), by two (ordering), between-group design. The 549

experiment investigated one task of 2 × 20 arithmetic 550
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calculations based upon an image recognition exercise that551

used the MNIST [70] handwritten character dataset. Workers552

were requested to either add or multiply the values contained553

within two images (Figure 2 shows the control group). When554

quality control mechanisms were in place, an additional line555

to the instructions explicitly announced this.556

To select the images from the 42,000 images available557

within the MNIST dataset, we trained a support vector558

machine (SVM) offline and prior to the experiment to classify559

the images. Each image was 28×28 grayscale pixels. To train560

the SVM a 25% (10,500 images) stratified sample was taken561

and a principal components analysis was undertaken. The562

first 30 principal components (representing 83.97% variance)563

were selected and used to transform the remaining 75% test564

sample of 31,500 images. The SVMuses a Radial Basis Func-565

tion kernel (with hyperparameters cost=5, epsilon=0.01),566

and achieves an accuracy of 97.1% on the test set. Although567

approaches such as Neural Networks can achieve higher568

accuracies, our objective here was not to build an optimal569

machine learning model but select images which are ‘‘easy’’570

to recognize, i.e. ones where the ML model is very confident571

in its classification and correspondingly should also be easy572

for crowd workers. As such, we ranked the classification573

probabilities for each image in the test set, selecting the ten574

highest for each digit. The mean probabilities for each set of575

ten images are as follows: 0: 0.99998; 1: 0.99979; 2: 1.00000;576

3: 1.00000; 4: 0.99998; 5: 1.00000; 6: 1.00000; 7: 1.00000;577

8: 1.00000; 9: 0.99992. In selecting images in this manner,578

we sought to reduce the likelihood of ambiguous images579

in the experiment. Each image was randomly paired with580

another, giving 50 pairs of images, and we derived the result581

of addition and multiplication for each pair to facilitate real-582

time quality assessment and feedback.583

Unlike the first experiment, the effort for completing the584

task is higher than providing some arbitrary response and585

thus incentivizes underperformance. To neutralize the effects586

of asking a harder set of questions first (multiplication vs.587

addition) we controlled the ordering of the task such that half588

of the workers received addition first, and half multiplication589

first. Similarly, we also emphasized which arithmetic opera-590

tor should be performed for half of the workers by making the591

verb multiply or add (first word of bullet point 1 in Figure 2)592

bold. To prevent workers from commencing tasks prior to593

reading the instructions that change only subtly between each594

half of task they must have acknowledged having read and595

understood the instructions to reveal the image pairs.596

2) AUTOMATED FEEDBACK597

The automated feedback system for the second experi-598

ment is a variable of interest that represents the quality599

control scenario. Here, we applied three levels of quality600

control-based feedback corresponding to three QA treatment601

groups: 1) feedback disabled (control group) to identify a602

baseline of quality; 2) automated feedback enabled only in603

the first part of the task, with it disabled in the second part604

(initial feedback group); 3) automated feedback enabled only605

TABLE 1. Distribution of contributors in the first experiment across 15
conditions.

in the second half of the task, with it disabled in the first half 606

(final feedback group). 607

Upon completing a micro-task, workers received standard- 608

ized feedback responses: ‘‘Response recorded’’ when feed- 609

back was disabled. When feedback was enabled a correct 610

solution would reveal ‘‘Your answer is fine’’, and an incorrect 611

solution ‘‘Other workers have disagreed with your response’’. 612

Where the latter response aims to indicate that the answer was 613

not known a priori. To further increase the potential effects 614

of quality control-based feedback, workers were not able to 615

edit their answer once it was committed to the system, thus 616

encouraging later solutions to be cognizant of any feedback 617

received. 618

We classified responses as either correct or incorrect, 619

resulting in dichotomous quality representation.We refrained 620

from notions of partial correctness in this experiment, 621

as firstly, this is captured in the first experiment, and secondly 622

it is difficult to define a meaningful representation of partial 623

quality without additional contextual information, such as 624

whether the worker misread the image, performed the wrong 625

arithmetic operation, inadvertently struck the wrong key or 626

pressed enter too early etc. vs. having insufficient interest 627

in providing a valid answer. Yet, two aspects are consistent 628

among these examples: (un)intentional human error, and due 629

care and attention to detail, which the provision of feedback 630

will highlight to the worker. Many of these scenarios can also 631

be accommodated in the analysis of the experimental data. 632

3) MEASUREMENTS 633

We considered three independent variables: the feedback sce- 634

nario (control, initial feedback, and final feedback), whether 635

the instruction verb (add/multiply) is bold or not, and whether 636

the worker started with addition or multiplication as well as 637

one dependent variable: mean response quality. 638

IV. EXPERIMENTAL PROCEDURES 639

In all conditions for the first experiment, contributors were 640

shown three examples of correctly solved tasks and a descrip- 641

tion of the task, in the second, only a task description was 642

shown. Table 1 shows the distribution of our contributors 643

by level of quality control method and task complexity for 644

the first experiment. Table 2 shows the distribution of our 645

contributors by treatment group, whether the key instruction 646

verb was bold and whether the task started with addition or 647

multiplication 648

A. EXPERIMENT 1 WORD-BASED SEMANTIC SIMILARITY 649

Humans are better than algorithms at rating semantic sim- 650

ilarity between two words [6]. Semantic similarity plays 651
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TABLE 2. Distribution of contributors in the second experiment over all
12 conditions (in parentheses the number of image pairs evaluated).

an important role for many natural language processing652

tasks, especially word sense disambiguation and information653

retrieval [69], [70]. Different algorithmic approaches do exist654

[71], [72], [73] but are not yet able to reproduce human655

level results [74]. Involving paid online contributors can656

reduce costs for such tasks, but consistent response quality657

is harder to assure than for algorithmic solutions because658

constantly under-performing contributors remain an issue for659

such tasks [11].660

The task issued in the semantic similarity treatment is661

itself not very complex, only requiring a good command of662

English. To ensure this, we restricted contributor’s origin to663

be in the US, UK, or Canada. We further restricted the task664

using a standard dataset [75] consisting of 353 word pairs.665

In experiment 1, we recruited 90 contributors and collected666

∼9,500 responses on the 353 word pairs.667

1) QUESTION ANSWERING668

Understanding natural language is still a challenging field for669

artificial systems [76]. Answering questions given in natural670

language or finding relevant search results to these questions671

are, despite the recent success of systems such as IBM Wat-672

son [77], unsolved challenges [78], [79]. As standard-use673

datasets for question answering are corruptible for human674

annotators with access to the internet, we designed a set of675

50 questions so that using the question as a search string will676

not reveal the correct answer right away.677

We randomly selected 10 questions to be test questions for678

conditions with an introductory test (Intro, Auto, Wizard).679

We designed sets of possible answers to these 10 test ques-680

tions by hand. Each answer set had∼10 answers from at least681

three different people. Answers were collected offline from682

students and members of our research group. The response683

quality of a contributor was estimated by the semantic simi-684

larity between the contributor’s response and our exemplary685

answers. We took the highest similarity value as an estimate686

of quality. The method is calibrated by testing each of the687

handmade answers against the remaining answers in each set.688

The average similarity of answers on a scale from 0.0 (no689

similarity) to 1.0 (perfect similarity) was 0.65 (SD: 0.25).690

Responses within a margin of one standard deviation were691

considered acceptable.692

Each contributor could answer up to 80 questions. We col-693

lected 5,089 responses (57 on average) from 89 contributors694

on Crowd Flower. We collected 1,017 responses on average 695

for each control level. 696

2) TEXT TRANSLATION 697

Text translation is a demanding task even for humans as in- 698

depth knowledge of two different domains, the target and 699

the source language, is required. Various approaches exist; 700

applying crowdsourcing to translation targeted paraphras- 701

ing [80] and iterative collaboration between monolingual 702

users [81] are two examples. Other common approaches 703

utilize mono- or bilingual speakers to proofread and correct 704

machine translation results [82]. For our experiment, we use 705

respectively a popular Wikipedia article in German and Viet- 706

namese. Native speakers of German andVietnamese prepared 707

a set of sentences from this article. For the set, we took 708

the first 150 sentences from the respective article. Headlines, 709

incomplete sentences, and sentences that contained words in 710

a strong dialect were removed. We requested translations for 711

the remaining sentences from contributors via Crowd Flower. 712

As the target language was English, we used the same quality 713

prediction method for conditions that included a pre-test 714

as for the question answering task. Each contributor could 715

translate up to 100 sentences. We collected 2,119 translations 716

for the Vietnamese set and 2,002 translations for the German 717

set (total 4,121) from 90 contributors (46 on average).We col- 718

lected 825 sentences on average in each control condition. 719

B. EXPERIMENT 2 IMAGE PROCESSING 720

As high-capacity supervised machine learning methods have 721

emerged (most notably the advent of deep neural networks) 722

the ability for researchers to handle complex (unstructured) 723

image and video data has significantly accelerated the state- 724

of-the-art in image recognition [83]. Yet, modern models 725

require extremely large (often human labelled) datasets for 726

training [84]. Even with the development of transfer learn- 727

ing [85] here a dataset potentially from a different domain 728

entirely is used to build and preconfigure an initial machine 729

learning model as form of a model bootstrapping, and the 730

existence of many platforms and repositories for labelled 731

(image) data (e.g. [86], openml.org etc.) many researchers 732

still need to resort to some amount of crowd-coding for 733

their domain [87]. Where a prime example is fine-grained 734

recognition (e.g. distinguishing between breeds animals, i.e. 735

categorising dog breeds as opposed to classifying dogs in 736

general [88]. 737

In this experiment, we recruited 492 contributors each 738

recognizing and adding the values of 20 pairs of images 739

and multiplying a different 20 pairs. Thus, each contributor 740

sees 40 distinct image pairs of the 50 we selected for the 741

experiment resulting in 19,680 responses (Table 2 shows the 742

break-down across the 12 conditions). 743

V. RESULTS 744

Before we can contextualize results, we must first establish 745

that indeed task complexity influences response quality and 746

that we measure response quality reliably. 747
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TABLE 3. Results of the self-assessment; it is not possible to calculate SD
as Crowd Flower only offers aggregated data. From left to right the
columns refer to overall satisfaction, instruction clarity, test question
fairness, payment, and ease of job.

FIGURE 3. Task complexity affects response quality. The most complex
task text translation (right) has a significantly lower average response
quality than the more simplistic semantic similarity task (left) and the
question answering task (middle). The figure shows a violin plot
combining a boxplot and a kernel density plot. Thick dark lines indicate
1st and 3rd quartiles the red lines population means.

A. TASK COMPLEXITY AFFECTS RESPONSE QUALITY748

Weanalyse effects for each level of the task complexity factor,749

assuming that the average response quality deteriorates with750

higher complexity tasks. As seen in Table 3 and Figure 3751

this assumption holds. Although this may seem obvious,752

it substantiates the initial assumption on task complexity.753

The Pearson m Product-Moment correlation is 1.0 with an754

associated p < 0.001. This is in line with the self-assessment755

of contributors’ satisfaction survey.We found that Ease of Job756

negatively correlates with our presumed complexity ranking.757

Table 3 shows the results of the satisfaction survey: from left758

to right the columns refer to overall satisfaction, instruction759

clearness, test question fairness, payment, and ease of job. It is760

not possible to calculate a SD as Crowd Flower only offers761

aggregated data.762

B. JUDGES AGREE ON QUALITY763

Then we ensure that our metric is reasonable. Perceived764

quality is used as this measure allows investigating quality765

over different tasks. Table 4 shows that our judges have a766

substantial agreement on quality throughout all tasks.767

Before testing our results for significance, we ensured768

that our data is suitable for parametric tests. We used769

the Shapiro-Wilk test for normality [91] for each condi-770

tion and did not find significant differences from a normal771

distribution.772

TABLE 4. Inter-rater agreement on perceived response quality. The
results are homogenous for all three tasks and indicate a substantial
agreement between our judges.

TABLE 5. Anova results of main and interaction effects. The first row
shows the effect of the quality control method. The second effect of the
task. The third their interaction effect.

TABLE 6. Welch two sample t-tests with Holm correction comparing all
levels of the quality control factor.

C. QUALITY CONTROL AND TASK COMPLEXITY INTERACT 773

As we have different numbers of contributors in our condi- 774

tions, we also verified that our conditions have equal variance 775

for the dependent variable prior to executing an analysis of 776

variance (ANOVA). As the distributions do not differ signif- 777

icantly from normal distributions we use Bartlett’s test for 778

homoscedasticity (equal variance) [89]. We found that the 779

variance does not differ significantly between our conditions 780

t(4) = 2.764, p = 0.598. As our data does not hold evidence 781

that it violates the assumptions of the ANOVA, we anal- 782

yse main and interaction effects with a two-way ANOVA 783

to compare the effect of quality control and task complex- 784

ity on the independent variable perceived response quality. 785

Table 5 shows these results. 786

From the ANOVA results, we conclude that task com- 787

plexity as well as the used quality control method have 788

a significant influence on the perceived response quality. 789
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TABLE 7. Results of Welch two sample t-tests with Holm correction. Line
1 compares level semantic to level question of the task complexity factor.
Line 2 compares level semantic translation and the line three question to
translation.

FIGURE 4. Quality control affects response quality only if there is no
quality control at all. The differences in means between quality control
methods are not significant.

TABLE 8. Means and standard deviations for perceived quality. Rows
contain the five different quality control methods and columns the
different tasks.

Furthermore, we found a significant interaction between790

both factors. We use Welch Two Sample t-test with Holm-791

Bonferroni correction as our post hoc comparison method.792

Table 6 presents differences in levels of the control factor.793

D. ONLY COMPLETE ABSENCE OF QUALITY CONTROL794

AFFECTS RESPONSE QUALITY795

The results indicate that there is a significant difference796

between the levels ‘‘none of control and the other four lev-797

els. The resulting p-values are below the 0.001 alpha-level798

as seen in Table 7. Other levels do not differ significantly.799

Table 8 shows means and standard deviations between all800

levels of our two factors. Figure 4 further illustrates that the801

finding is constant for all tested tasks.802

We also investigated the proportion of constantly under-803

performing contributors (a contributor below a quality level804

of 0.6). We found that in all no-quality control conditions 805

we had a substantial number of contributors (N = 22) with 806

an average response quality below 0.6. In all other condi- 807

tions combined, we found 11 contributors under this thresh- 808

old. The proportion of underperforming contributors in the 809

none conditions is 0.42. Compared to the other conditions 810

with a proportion of only 0.05 this is value is extremely 811

high [68]. 812

In the auto level of the quality control factor, an 813

ML-System predicted the response quality of contributors 814

based on two features (number of characters typed and 815

time needed to complete a request). To estimate the qual- 816

ity of this prediction we calculated the correlation between 817

our ML-systems prediction and the average perceived qual- 818

ity. The ML-system rated responses on a scale with three 819

ordered values (unacceptable (1); acceptable (2); good (3)). 820

As this scale is ordinal and violates the assumptions of Pear- 821

son’s Product-Moment correlation we analysed the correla- 822

tion using Spearman’s ρ. We found a substantial correlation 823

between the predictions and the average perceived quality 824

of our human judges ρ (937020) = 0.71, p < 0.001. The 825

correlation between the two human judges in comparison is ρ 826

(463061)= 0.85, p<0.001. In contrast, the human raters who 827

replaced the ML-system in our wizard condition achieved a 828

correlation of ρ (705574) = 0.78, p<0.001. 829

E. QUALITY IS ALMOST INDEPENDENT OF THE TYPE OF 830

QUALITY CONTROL USED 831

In our second experiment we investigated three main effects 832

1) quality control through the treatment variable (QA 833

Treatment), the task itself either addition or multiplication 834

(add/multiply) and increase in attention through bolding 835

action words in the task description (Bold). We also inves- 836

tigated possible interaction effects between the significant 837

effects. The QA Treatment variable does not show a sig- 838

nificant overall impact on the data set (see Table 9). The 839

Task variable encoded which task the user executed either 840

addition or multiplication had a significant effect as well as 841

the bolding of the verbs (add/multiply) in the task description. 842

Finally, showing the addition task before the multiplication 843

task (Addition first) also influenced the quality outcome. 844

Table 9 shows an analysis of variance to test for potentially 845

interesting effects and interactions. 846

As in the first experiment, the second experiment (image 847

recognition) again shows only minimal non-significant qual- 848

ity differences between the three different quality control 849

conditions (QA Treatment). Table 10 shows the results of our 850

linear model for the three conditions. 851

A strong contributor to response quality was the task itself. 852

Contributor performance was significantly lower when com- 853

pleting the addition task compared to the multiplication. The 854

reasons for this effect will be discussed in the conclusion 855

section in detail, but the primary reason was the (provoked) 856

misunderstanding of the task description [37], [38]. The 857

addition task has a ∼7% higher error rate than the multi- 858

plication task (see Figure 5 and Table 11, which illustrated 859
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TABLE 9. The QA Treatment variable does not show a significant overall
impact on the data set. The Task variable encoded which task the user
executed either addition or multiplication had a significant effect as well
as the bolding of the verbs (add/multiply) in the task description. Finally,
showing the addition task before the multiplication task (Addition first)
also influenced the quality outcome.

TABLE 10. Feedback disabled (control group/intercept), QA Treatment
1) automated feedback enabled only in the first half of the task QA
Treatment 2) automated feedback enabled only in the second half of the
task.

TABLE 11. The addition task shows significantly lower response quality.
The reason is a misinterpretation of the term ‘‘add’’ in the task
description. Contributors were putting both numbers in sequence instead
of adding the number. A 2 and 0 would be interpreted as 20 rather than 2.

that addition tasks are incorrect more often, but multiplication860

tasks have a higher degree of error). It’s interesting to note861

that when comparing the individual task success rates, i.e.,862

proportion of contributors correctly solving the addition task863

versus the multiplication task on the same image pair the864

success rates are not correlated (control: ρ = −0.019, p =865

0.897; initial feedback: ρ = −0.174 p = 0.008; final feed-866

back: ρ = 0.141 p= 0.326; all treatment groups: ρ = 0.072,867

p = 0.380). This further suggests a misunderstanding of the868

task, and not an issue of contributors recognizing the image869

pair. However, the mean degree with which the contributor870

is incorrect is slightly positively correlated when feedback is871

provided, and in general across all treatment groups, but not872

in the control group (control: ρ = 0.114, p = 0.428; initial873

feed-back: ρ = 0.273 p = 0.056; final feedback: ρ = 0.241874

p = 0.092; all treatment groups: ρ = 0.215, p = 0.008).875

FIGURE 5. Violin plots illustrating Task Success Rate (top) and Degree of
Error (bottom) by treatment group. In each violin, the black circle
indicates the mean.

TABLE 12. Whether the contributor was asked to complete the addition,
or the multiplication task first had a significant impact on the overall
response quality of a contributor. The misconception from the addition
task seems to carry over to the multiplication task in some cases.

TABLE 13. The bolding of the verbs (add/multiply) in the task description
had a significantly positive impact on worker performance.

This observation is related to another significant effect in 876

the data. If the addition task is shown as the first task group, 877

the negative effect from the wording is carried through to the 878

multiplication task. The overall quality is reduced by ∼4% 879

when the addition task is shown first. This can also be seen in 880

Figure 6 (top), where when addition is shown first the success 881

rate of addition tasks is lower. Conversely, this is not present 882

in multiplication tasks. Table 12 displays the results of this 883

analysis. 884

F. HIGHLIGHTING ACTION WORDS SIGNIFICANTLY 885

INCREASES RESPONSE QUALITY 886

Using typeset Bold on the verbs (add/multiply) in the task 887

description did increase response quality for both task types 888

(see Figure 6 (bottom)). It also increased the response quality 889

equally for the order of tasks. The carried negative effect 890

of the addition was mitigated by the bolding of verbs. The 891

bolding increases the average performance by >6%. The 892

increase in quality is consistent across all other variables and 893

can be observed with almost the same effect size in all QA 894
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FIGURE 6. Violin plots illustrating Task success rates according to
whether addition or multiplication tasks were first (top) and whether
keywords ‘‘Add’’ and ‘‘Multiple’’ were bold in the instructions or not
(bottom). In both plots, the left two violins illustrate the general
distribution for Add and Mult, and the black circle, the mean.

Treatment conditions and across all other factors. Table 13895

illustrates these results.896

VI. DISCUSSION AND CONCLUSION897

In this article, we have explored two experimental scenarios898

to shed light on the relationships between quality control, ele-899

ments of task design, and response quality structured as two900

research questions: RQ1: what characterisations of response901

quality can be linked to different quality control mechanisms?902

and RQ2: what impacts of task design have larger effects903

on response quality then different mechanisms of quality904

control?905

The first experiment sought to highlight the impact of906

varying degrees of sophistication in the design of the qual-907

ity control mechanism vs. the complexity of the task to be908

performed. We saw that more complicated tasks (text trans-909

lation) were not in need of more complex (e.g., human-based910

or machine learning-based) quality control mechanisms.911

In fact, we observed no statistically significant improvement912

in response quality across the quality control mechanisms913

applied. We did, however, observe a structural difference in914

response quality between no quality control and some kind915

of quality control. Even in the presence of ‘‘faking’’ the916

quality control, i.e., announcing quality control mechanisms,917

but in fact doing nothing the response quality and number of918

underperforming contributors improved.919

Our second experiment sought to build on and refine920

these observations. We contrasted the effects of quality con-921

trol methods with the effects of subtle changes in the task922

description and ordering of tasks. We again observed that 923

the presence of a feedback-based quality control mechanism 924

increases output quality in the image recognition and reason- 925

ing tasks. We also observed the effects of very subtle changes 926

in the task description (boldening parts of the description 927

(add/multiply) or the ordering of the two different tasks (addi- 928

tion first vs. multiplication first). We found that these subtle 929

changes in the task description and presentation have more 930

impact on response quality (7% and 4%) than the absence 931

of a control-based QA-Treatment (2% and 1.5%). This illus- 932

trates that it is more effective to interact with constantly 933

underperforming contributors to understand the reason for 934

their actions rather than treating them as mere computational 935

elements; otherwise said, to support their intrinsic motivation 936

rather than enforce extrinsic motivation. The goal of quality 937

assurance measures should foremost be to understand possi- 938

ble misconceptions rather than control of contributors. The 939

effects introduced by poor task design and task descriptions 940

do outweigh the impact of so-called ‘‘cheaters’’. In con- 941

trast, interacting with these underperforming contributors can 942

enhance quality and satisfaction on both sides. 943

Returning to RQ1, we observed that only minimal non- 944

significant differences between different quality control 945

mechanisms on response quality. We observed this in both 946

experiments, which capture a wide range of crowd tasks 947

(in NLP, and image recognition / processing). Similarly, 948

we observed that the number of underperforming workers 949

increases in the absence of any quality control announcement. 950

This is not surprising, however, in the case where quality 951

control is announced, but not performed, there was also 952

minimal non-significant differences to technically advanced 953

mechanisms of quality control. 954

For RQ2, we can (perhaps not surprisingly) note that task 955

complexity has an impact on response quality. Yet, it is sur- 956

prising that increasing the level of sophistication in the quality 957

control mechanism for more complex tasks is less impactful 958

than the increase in task complexity itself. We also observed 959

that contributor performance was tightly linked to simple 960

design aspects of the task: making key words bold, task 961

ordering, and a small (yet still significant) impact based upon 962

when in the task quality control feedback occurs; we observed 963

a slightly reduced rate of error in tasks when feedback was 964

provided earlier in the task design. 965

From these findings, we propose the following suggestions 966

on how practitioners and the research domain can apply 967

quality control to reduce underperforming contributors with 968

a goal towards increasing response quality: 969

1) Mention quality control: The mention of a required 970

(qualification) test or similarly appropriate mechanism 971

(i.e., the fake level in experiment 1) is sufficient to deter 972

‘‘poor’’ contributors. Using this alone, we observed an 973

increase of more than 25% in response quality. 974

2) Keep quality control simple and practical: Imple- 975

menting basic quality control and feedback is sufficient 976

to foster diligent work. We would not advocate only 977

faking the quality control approach: contributors would 978
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realise, as they often share task information amongst979

themselves [41], [46]. As a pragmatic solution, we have980

shown that machine learning methods can provide a981

suitably automated method for quality control (in line982

with [79]). Or in other words, ML can be leveraged to983

predict response quality on the fly.984

3) Focus on a clear task description: Significant care985

is needed to make sure that key elements of the task986

are very clear [37], [38]. We observed how just bolding987

specific parts of the task description can have a more988

significant effect on response quality than implement-989

ing quality control mechanisms. This could be as sim-990

ple as directing focus of the contributor to key parts of991

task description [90].992

4) Consider contributor training: whilst not explored993

in this article, it would be worthwhile to investigate994

tangible incentives for contributors to upskill towards995

improving their ability to reliably contribute to addi-996

tional or high(er) complexity tasks (see e.g., [91], [92],997

[93], [94], [95]).998

In terms of training, we argue that the most basic way to999

promote this in task learning is the interaction between con-1000

tributors and requesters. Rather than seeing underperforming1001

contributors as a nuisance, they might very well be a valuable1002

contributor who is acting diligently yet regardless underper-1003

forming. As we have demonstrated, even small and subtle1004

changes in the task description can have a more dominant1005

impact on response quality than even sophisticated control-1006

based QAmethods. Yet, even so we also know that it is harder1007

to achieve high response quality in high complexity tasks.1008

Thus, our suggestion is that instead of investing in complex,1009

resource demand mechanisms for quality control (this is not1010

a dismissal of research into mechanisms for quality control),1011

we should rather seek to develop approaches to improve con-1012

tributor training and skill development to globally improve1013

quality [1], [8], [17], [18], [90], [96]. One possibility here1014

is to establish a means to certify training and development1015

for crowd contributors. Not only would this foster better1016

contributors over time, but also help securing contributors’1017

rights in crowd labour markets [1], [8], [18]. Thus, key future1018

work building on our results should focus on how to opera-1019

tionalise viable training regimes and appropriately incentivise1020

contributors to engage with such programmes.1021
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