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ABSTRACT In this paper, we present a novel collaborative bidirectional style transfer network based on
generative adversarial network (GAN) for cross modal facial image synthesis, possibly with large modality
gap. We think that representation decomposed into content and style can be effectively exploited for cross
modal facial image synthesis. However, we have observed that unidirectional application of decomposed
representation based style transfer in case of large modality gap does not work well for this purpose. Unlike
existing image synthesis methods that typically formulate image synthesis as an unidirectional feed forward
mapping, our network utilizes mutual interaction between two opposite mappings in a collaborative way
to address complex image synthesis problem with large modality gap. The proposed bidirectional network
aligns shape content from two modalities and exchanges their appearance styles using feature maps of the
layers in the encoder space. This allows us to effectively retain the shape content and transfer style details
for synthesizing each modality. Focusing on facial images, we consider facial photo, sketch, and color-coded
semantic segmentation as different modalities. The bidirectional synthesis results for the pairs of these
modalities show the effectiveness of the proposed approach. We further apply our network to style-content
manipulation to generate multiple photo images with various appearance styles for a same content shape.
The proposed method can be adopted for solving other cross modal image synthesis tasks. The dataset and
source code are available at https://github.com/kamranjaved/Bidirectional-style-transfer-network.

INDEX TERMS Generative adversarial network, image synthesis, unidirectional style transfer network,
bidirectional style transfer network, collaborative learning.

I. INTRODUCTION

The goal of this research is to synthesize realistic cross modal
face images while retaining the input face identity. We inter-
pret facial images of a person from different modalities as
facial images with the same shape content and different
appearance styles. We have also observed that decomposed
representation into content and style can bring great advan-
tage to cross modal image synthesis [2]. On the other hand,
as can be seen in Fig. 1, directly employing style transfer as
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unidirectional feed forward mapping for cross modal image
synthesis does not work well in case of large modality gap.

Based on our interpretation and observation, we aim to
develop a novel bidirectional synthesis network that effec-
tively employs style transfer schemes to achieve our goal.
We could effectively align the shape content from the two
modalities and exchange their appearance styles by exploiting
mutual interaction between two opposite mappings. In this
work, we consider facial photo, sketch, and color-coded
semantic segmentation as different modalities.

Generative adversarial networks (GANSs) [3] have achieved
significantly advanced image synthesis performance with
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phenomenal quality and realism. Conditional GAN (cGAN)
[4] took GAN into another direction by providing con-
trol over the generation of desired outputs. Most notably,
Pix2Pix [5] adopted supervised learning as a general-purpose
solution to translate a source image into a target image.
Zhu et al. [6] presented an unsupervised approach to translate
an image from one domain to another. Recently, Style-
GAN [7], [8] proposed a novel style-based generator archi-
tecture which provides the generator with more control and
representational capabilities to create images with high visual
quality and realism. Numerous image synthesis works [9],
[10], [11] fine-tuned this work to attain meaningful perfor-
mances. Park et al. [12] proposed spatially-adaptive normal-
ization layer for synthesizing photo realistic images from
color-coded segmentation map. Most of the GAN-based
photo-sketch synthesis models [13], [14], [15] formulated
the mapping as unidirectional feed forward mapping. Thus,
utilization of mutual interaction between two opposite map-
pings is found lacking. To better utilize the mutual informa-
tion between opposite mappings, Col-cGAN [16] proposed a
bi-directional cGAN based framework in which an interme-
diate image domain between photo and sketch is learned to
enhance the synthesis performance. However, their method
yields blurred effects and great deformation over various
facial components without decomposing representation into
content and style.

On the other hand, style transfer networks [1], [17], [18],
[19] factored image representation into content and style
components. These methods produced impressive artistic
style results by transferring content from one image and style
from others. However, as mentioned earlier, utilizing style
transfer schemes as unidirectional feed forward mapping for
image synthesis with large modality gap does not yield sat-
isfactory performance. Chen et al. [20] synthesized sketches
in a cascade manner by first generating the shape of face and
then adding style details. However, they failed to preserve
finer appearance style such as pencil lines and shading.

Unlike most image synthesis methods that typically for-
mulate synthesis mapping as an unidirectional feed forward
mapping, we propose a simple yet effective bidirectional style
transfer network to exploit a mutual interaction between two
opposite mappings for better coping with large modality gap.
In the layers of the encoder space, we align the shape content
from the two modalities and exchange their appearance styles
by employing an AdalN [1] based style-transfer unit called
Bidirectional Style Transfer Module (BSTM) between their
feature maps. This allows us to successfully synthesize visu-
ally plausible cross modal facial images with large domain
gap.

We even view facial sketch and color-coded semantic seg-
mentation as a facial modality and present bidirectional image
synthesis between them although their modality gap is large.
We further demonstrate our network for content-style manip-
ulated synthesis. In this task, we generate multiple photo
images from a single segmentation map via conditioning
on photos with different styles. The bidirectional synthesis
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results for the pairs of facial photo, sketch, and color-coded
semantic segmentation shows that the proposed methodology
can be adapted for solving other cross modal image synthesis
tasks.

The main contributions of this work are as follows.

« We have presented a style-transfer based bidirectional
synthesis network to effectively exploit mutual inter-
action between two opposite mapping to address cross
modal image synthesis with large modality gap.

« We demonstrate on challenging bidirectional synthesis
from face sketch to semantic segmentation and semantic
segmentation to face sketch.

o Our network is capable of generating multiple photo
images with various appearance styles from a single
segmentation map by conditioning on photo images with
different styles.

Il. RELATED WORK

A. IMAGE-TO-IMAGE TRANSLATION

Image-to-image (I2I) translation techniques aim to transfer
images from a source domain to a corresponding images of
a target domain. Pix2Pix [5] first uses a conditional GAN
model to translate an image from one domain to another.
Since then, their work has been extended for many sce-
narios: text-to-image synthesis [21], high-resolution syn-
thesis [22], object removal [23], multi-style image synthe-
sis [24] and face de-occlusion [25]. Despite promising per-
formances, they have not utilized mutual interaction between
two opposite mappings. In contrast, the proposed network
effectively takes advantage of the mutual content informa-
tion of cross modalities through a bidirectional synthesis
framework.

Many studies have investigated face photo-to-sketch and
face sketch-to-photo synthesis tasks as an image-to-image
translation problem using GANs in their models [13], [14].
However, their methods are unable to effectively deal with
the large domain gap between photo and sketch. For the last
few years, great progress has been made in developing meth-
ods specifically designed for photo-sketch synthesis tasks.
Yu et al. [26] incorporate facial composition information into
their GAN based face photo-sketch synthesis. PS2-MAN [15]
takes an approach of gradually learning low-resolution to
high-resolution images using multi-adversarial networks.
Although these methods formulate photo-sketch transforma-
tion through end-to-end mapping, they do not utilize the
mutual interaction between two modalities. To effectively
reduce the modality gap for photo-sketch synthesis task, Col-
cGAN [16] learns an intermediate modality between photo
and sketch by utilizing the mutual interaction of the two
opposite mapping. CUT [27] maximize the mutual interaction
between different modalities based on contrastive learning
of corresponding patches. StarGAN v2 [28] learns mapping
between multiple modalities by utilizing a style encoder
and mapping network. These approaches produce plausi-
ble results when the domain gap is small but struggles in
cases where the domain gap is large. On the other hand,
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Bae et al. [29] exploited a bidirectional synthesis network for
face photo-sketch recognition.

B. USING DECOMPOSED IMAGE REPRESENTATION

The separation of an image into content and style com-
ponents has widely been studied for artistic style trans-
fer [1], [17], [30], [31]. Image synthesis can be achieved
through image style transfer. Gatys et al. [17] showed that
the feature statistics of a convolutional neural network could
effectively capture the style information of an image. In par-
ticular, AdaIN [1] demonstrated impressive stylized outputs
by simply aligning the channel-wise mean and variance
of content input features to those of style input features.
StyleGAN [7] used AdaIN operation at each convolution
layer in their generative network to adjust the style of the
image. Richardson et al. [10] introduced an encoder architec-
ture built upon a pre-trained StyleGAN network. It directly
generates a series of style vectors to solve image-to-image
translation tasks, yielding impressive results. MUNIT [2]
decomposed image representation into content and style
codes. They recombined content code with random style
code sampled from the style space of the target domain
to produce cross domain outputs. SEAN [32] manipulated
the style of an image via given style images and seman-
tic masks. Chen et al. [20] subdivided the test photo into
non-overlapping patches and tried to find the best matching
photo from data samples to estimate the target style for
photo-sketch synthesis task. Peng er al. [33] translated photo
image into the style of the entire training sketch collection
when training photos are unavailable. Although these meth-
ods give plausible results, they are unable to well preserve
the structure of the transferred samples and often produce
stylized results with messy texture.

lll. PROPOSED METHOD

A. OVERVIEW

The overall architecture of our method is illustrated in Fig. 2.
Our network consists of encoders E4, Ep, BSTM (Bidirec-
tional Style Transfer Module) units, two generators G4_.p,
Gp_.4 and two discriminators D4_. g, Dp_.4. A, B denote
two different modalities and A — B, B — A represent the
transformation from A to B and from B to A, respectively.
The encoders consist of two main blocks, where each block
consists of multiple layers. The encoders in each block first
extract the individual features, F4 and Fg. The BSTM unit
then decomposes each feature F4, Fp into content and style
components, denoted as C4, Cp and Su, Sp, respectively
as shown in Fig. 2 (b). The cross style transferred features
Fa_p, Fp_.4 are obtained by exchanging the style com-
ponents using AdalN layer [1]. These transferred features
F4_ g, Fp_ 4 are fed into the next block of the encoder and the
same process is repeated. The two generators G4—.p, Gp—4
then alternatively map the original features F4, Fp and the
style-transferred feature F4_, g, Fp— 4 into the desired output
image space I4—, g, and Ip_, 4, respectively. Two discrimina-
tors Da_.p, Dp_.4 are used to distinguish generated images
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from real sample by imposing the adversarial loss [3] on both
modalities.

B. BIDIRECTIONAL STYLE TRANSFER MODULE (BSTM)
As stated earlier, a synthesis method that decomposes repre-
sentation into content and style can bring great advantages
to cross modal image synthesis [2]. In BSTM, the network
learns individual domain characteristics and adopts the cross
domain style by incorporating the transferred style factor into
the content factor.

As shown in Fig. 2 (b), we first extract features F4, Fp for
images I4, I in the first block of the encoders E4 and Ep,
respectively.

Fp = E\(I4), Fp = Ex(Ip). (D

These features Fa, Fg € RE*H*W where W and H indicates

spatial dimensions, and C the number of channels, are fed
into a BSTM unit and are decomposed into content and style
components. Channel-wise mean and standard deviation rep-
resent image style while normalized feature map represents
content or shape in an image. We obtain style and content
components as follows:

1 H W
w(FD) = ;;FA )
1 H W
o (Fa) = |0 }; ;mhw — w(Fa)? + ¢, 3)
Sp = < W (Fa) .o (Fa) >, Cp= TAZIED gy
o (Fa)

For simplicity, we show here only the style and content
component computation for modality A. The style and con-
tent representations, Sp, Cp for modality B is computed in
the same manner. This decomposed representation is then
used to transfer the style components across modalities by
simply scaling and shifting the content component of one
modality with channel-wise mean (1) and standard devi-
ation o, of the other modality. This produces the feature
maps, F4—.p and Fp_, 4 that contain the shape content of one
modality with the appearance style of the other modality as
follows:

Fap=u(Fp)-Ca+o (Fp), (5)
Fgsa = w(Fa) -Cp+o (Fa). (6)

Along with style transfer, we also align the shape contents, Cq
and Cp from the two modalities by computing the /; distance
between them. This process is repeated in the next block of
the encoder.

C. ARCHITECTURE DETAILS

1) ENCODERS

The architecture of the proposed encoders is shown in
Fig. 3 (a). The encoders consists of two main blocks. The
first blocks consist of two convolution layers while the second
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Segmentation > Photo Sketch > Segmentation

Sketch > Photo

FIGURE 1. Unidirectional style transfer by AdalN [1] vs. collaborative bidirectional style transfer proposed for cross modal facial image synthesis.
We have observed that unidirectional application of style transfer in case of large modality gap does not work well. In order to warrant better synthesis
quality, our network utilizes mutual interaction between two opposite mappings in a collaborative way. The three columns for each transformation

problem shows the input (first column), the result for the unidirectional style transfer (second column), and the result for the proposed collaborative
bidirectional transfer (third column).
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(a) The proposed network architecture (b) BSTM unit in (a)

FIGURE 2. An overview of the proposed network. (a) The proposed network involves two encoders E,, Eg, BSTM (Bidirectional Style Transfer Module)

units, and two generators G,_, g, Gg_, 4. The images I, I from the modality A, modality B are the input and the cross modal synthesized images I,_, g,
Ig_, 4 are the outputs. (b) Detailed picture of the proposed BSTM in (a).

blocks are composed of one convolution layer and residual
blocks [34]. The first blocks of the encoders share their

weights. We apply Batch Instance Normalization (BIN) [35]
to all the layers in the encoders.

3) DISCRIMINATORS

The architecture of both discriminators follows the one used
in the pix2pix [5]. We use a patch-level discriminator that
discriminates the image structure at the patch scale of 70 x

70. The details of the discriminator architecture is given in

2) GENERATORS Fig. 3 (b).

The architecture of the generator is a mirror copy of the
encoders except that convolution is replaced by deconvo-

lution layers as shown in Fig. 3 (a). The last layer of the
generators uses fanh activation function.

D. TRAINING LOSS

We train our bidirectional network using the joint loss func-
tion in Eq. 7 which is a weighted combination of multiple
99080 VOLUME 10, 2022
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(a) Generator architecture (b) Discriminator architecture

FIGURE 3. The proposed model architecture. (a) The encoders and generators consist of a series of convolution layers and residual blocks.
For example, 7 x 7-s1-Conv-64 denotes a 7-by-7 convolution layer of stride one with convolution filters 64. BIN indicates the batch instance
normalization. Res and DConv denote Residual block and Deconvolution layer, respectively. (b) Our discriminator architecture largely
follows the pix2pix [5] discriminator architecture. It takes the concatenation of the generated image and real image as input image and

classifies it as real or fake at the patch level of 70 x 70.
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FIGURE 4. Comparison of photo = segmentation synthesis results on the CelebA-HQ dataset. Top two rows show results for
segmentation-to-photo synthesis while bottom two rows present photo-to-segmentation synthesis results. From left to right: (a) Input,
(b) Pix2Pix [5], (c) SPADE [12], (d) Col-cGAN [16], (e) CUT [27], (f) StarGAN v2 [28], (g) Ours, and (h) ground truth.

objectives.

L = AGanLGaN + AsLs + AcLe.

larity loss, Ly, measures pixel-wise /1 distance and structural
similarity (SSIM) between synthetic and real images. This
similarity loss for both modalities is as follows:

)

To generate real and natural looking synthetic outputs,
we trained the bidirectional network using GAN loss func- Ls(A) = Ly, (A) + Lssim(A),

tion, Lgan [3], along with the similarity loss, Ls. The simi-
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LS(B) = Lll (B) + Lssim(B)~ (8)
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TABLE 1. Quantitative comparison of our method to the other
state-of-the-art representative methods for photo = segmentation
synthesis task. The best result are boldfaced.

Segmentation — Photo | Photo — Segmentation

Method SSIM PSNR mloU
Pix2Pix [5] 0.229 9.291 0.686
SPADE [12] 0.558 13514 0.500

Col-cGAN[16] | 0.460 12714 0711
CUT 271 0351 10.801 0.142
StarGAN v2 [28] | 0.303 9.688 0.169
Ours 0519 13.726 0.734

TABLE 2. Quantitative comparison of our method to the other
state-of-the-art representative methods for photo = sketch synthesis
task. The best result are boldfaced.

Sketch — Photo

Photo — Sketch

Method SSIM | PSNR | SSIM | PSNR
Pix2Pix [3] 0512 | 10.824 | 0451 | 9.762
PSTMAN [15] | 0558 | 9.624 | 0575 | 9.7205
Col-cGAN [16] | 0.692 | 18533 | 0.583 | 14.085
CUT 27] 0616 | 10533 | 0533 | 9.084
StarGAN v2 [28] | 0536 | 10.620 | 0443 | 9.494
Ours 0.694 | 18.689 | 0.642 | 17.771

TABLE 3. Quantitative comparison of our method to the other
state-of-the-art representative methods for sketch = segmentation
synthesis task. The best result are boldfaced.

Segmentation — Sketch | Sketch — Segmentation

Method SSIM PSNR mloU
PIx2Pix [5] 0.429 9.750 0.469
SPADE[12] | 0558 12.899 0434

ColcGAN [16] | 0.579 4479 0.470
CUT [27] 0.507 2417 0372
StarGAN v2 [28] | 0.467 9.645 0257
Ours 0.597 15.263 0.460

Ly, loss is the pixel difference between the generated image
and the ground truth as:

Liy(A) = Eqp [IHa—B — I8ll1,
Lyy(B) = Eap [I1p—a — 1all] - ©))

SSIM measures the structural similarity between the gener-
ated and real samples and its corresponding loss function is
written as:

Lysim(A) = 1 — SSIM (Ip— — IB),
Lssim(B) =1- SSIMUB—)A - IA)~ (10)

We also introduce a collaborative loss, L., that minimizes
11 distance between C4 and Cp of the same identity. This helps
enforcing and regularizing the same content distribution for
modality A, and modality B, in the content feature space.

AGAN, As, and A, in Eq. (7) are the weight coefficients
used to control the relative importance of each loss function.
We have empirically found that Agay = 1, Ay = 10, and A, =
0.25 produce best results in our experiments.

E. IMPLEMENTATION AND TRAINING DETAILS

For the task of segmentation == photo synthesis in Sec. IV-A,
we use the CelebAMask-HQ dataset [36] that has the total
of 30,000 pairs of face photo and corresponding segmenta-
tion mask. Out of these, we use 25,000 paired samples for
training and the rest of the samples for inference. We use the
photo/sketch paired CUFS dataset [37] for photo = sketch
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synthesis task in Sec. IV-B. This dataset contains 168 samples
for training and 142 for test. For the sketch = segmentation
synthesis task in Sec. IV-C, we have constructed our own
dataset as there are no currently available public datasets
for colored segmentation map with corresponding sketches.
More details about this dataset is described in Sec. I'V-C. For
all experiments, we use images of size 272 x 272, which
are randomly cropped to 256 x 256 for training. We train
our model for 5,000 epochs for photo < sketch in Sec. IV-B
and sketch =2 segmentation synthesis tasks in Sec. IV-C, and
for 200 epochs for photo = segmentation synthesis task in
Sec. IV-A.

We train our model in three steps. For one third of the
iterations, we first train the part of the network for one direc-
tional synthesis with the synthesis in the opposite direction
fixed. We then train the network for another one third of
the iterations for the synthesis in the opposite direction with
the already trained part fixed. For the remaining iterations,
we train the network for the bidirectional synthesis with the
BSTM units on. Our model alternatively uses BSTM units.
For example, in one epoch we train our network using BSTM,
while in the next epoch we do not use BSTM. However,
we apply shape content alignment throughout the training
epochs. This training scheme helps our model overcoming
the problem of directly utilizing style transfer technique for
image synthesis and producing results with correct structure
and stylized results with smooth texture. In inference time,
we do not use the BSTM module for our results except
content-style manipulated image synthesis.

IV. APPLICATION AND EXPERIMENTS

We give the performance evaluation of our method of bidi-
rectional cross modal facial image synthesis for photo &
segmentation in Sec. IV-A, photo = sketch in Sec. IV-B and
sketch = segmentation in Sec. IV-C, respectively. We train
all the methods to be compared, except Col-cGAN [16],
in two opposite directions separately as they do not support
bidirectional synthesis.

A. PHOTO = SEGMENTATION SYNTHESIS

For this task, the collaborative loss weightage is kept small,
Ae = 0.1. We do this because photos in the training data
contain background information while no background infor-
mation is available in the segmentation images. Otherwise,
a large value of A, sometimes produces photo images with
messy background.

Results: We compare the performance of our method with
that of Pix2Pix [5], SPADE [12], Col-cGAN [16], CUT [27],
and StarGAN v2 [28] on the CelebAMask-HQ dataset [36].
Top two rows in Fig. 4 compare the results for synthe-
sized segmentation map from photo images and bottom two
rows for synthesized photo images from segmentation map,
respectively. As can be seen in the first two rows of Fig. 4,
synthesized photos produced by Pix2pix and SPADE contain
deformation for complex face semantics. Moreover, Pix2pix
also yields noise and messy face texture. Col-cGAN gives
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FIGURE 5. Comparison of photo = sketch synthesis results on the CUFS dataset. Top two rows show results for sketch-to-photo synthesis while bottom
two rows present photo-to-sketch synthesis results. From left to right: (a) Input, (b) Pix2Pix [5], (c) PS2-MAN [15], (d) Col-cGAN [16], (e) CUT [27],

(f) StarGAN v2 [28], (g) Ours, and (h) ground truth.
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FIGURE 6. Comparison of sketch = segmentation synthesis results. Top two rows show results for sketch-to-segmentation synthesis while bottom two
rows presents segmentation-to-sketch synthesis results. From left to right: (a) Input, (b) Pix2Pix [5], (c) SPADE [12], (d) Col-cGAN [16], (e) CUT [27],

(f) StarGAN v2 [28], (g) Ours, and (h) ground truth.

better results compared to Pix2Pix and SPADE, but still pro-
duces blurred effects and dotted artifacts. CUT and StarGAN
v2 fail to produce complex region of the face, e. g., the eye
region is severely distorted. In contrast, our method generates
sharp photo images with finer details. For synthesizing seg-
mentation map from photo, SPADE and CUT do not provide

VOLUME 10, 2022

plausible output. StarGAN v2 not only changes the identity,
but also fails to produce the correct segmentation map for
the hair region. Pix2Pix and Col-cGAN generate plausible
results, however, they still cannot preserve the finer details,
e. g., the earrings and the strap on the neck in the third row of
Fig. 4.
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We also provide quantitative comparisons in Table 1.
We use Structural SIMilarity (SSIM) and Peak Signal to
Noise Ratio (PSNR) for segmentation—photo and mean
Intersection-over-Union (mloU) for photo— segmentation.
Table 1 indicates that our method outperforms the other meth-
ods in terms of PSNR and mloU, but SPADE gives the best
SSIM score.

We have additionally experimented on the FFHQ-Aging
dataset [38] for photo & segmentation synthesis. The
FFHQ-Aging dataset is built based on the FFHQ face photo
dataset [7] to be used for face aging related tasks. The seg-
mentation maps in the FFHQ-Aging dataset are generated
through a pre-trained Deeplab v3 network [39]. However,
they contain many inaccurate and mislabeled segmentation
maps which prevent proper training of the network for photo
— segmentation synthesis. We think that the performance
evaluation on this dataset is not informative. For reference,
we have included the experimental results on this dataset in
the supplementary material.

B. PHOTO = SKETCH SYNTHESIS

Photo & sketch synthesis is a challenging task due to large
modality gap between the two modality and lack of suffi-
cient paired training data. We compare the performance of
our method with those of Pix2Pix [5], PS2-MAN [15], Col-
cGAN [16], CUT [27], and StarGAN v2 [28] on the CUFS
database [37].

Results: Fig. 5 shows qualitative comparison for synthe-
sized photos and sketches. Top two rows of Fig. 5 show results
for sketch-to-photo synthesis while bottom two rows present
photo-to-sketch synthesis results. In top two rows, we can see
that the Pix2Pix, PS>-MAN and Col-cGAN not only yield
blurred effects but also contain prominent dotted artifacts.
Unsupervised approaches such as CUT and StarGAN v2 do
not yield plausible photos from sketch. CUT generates photos
with unnatural skin color while StarGAN v?2 fails to maintain
the identity of the input sketch. Also, sketches generated
by those methods are unable to well preserve the artistic
appearance such as sketch-line texture. For example, PS2-
MAN and CUT are not capable of producing those pencil
lines while Pix2Pix and Col-cGAN blend those pencil line
shadows. In contrast, our method not only retains the face
identity but also produces sharp and realistic sketches, i. e.,
sketch-like texture on hair region and pencil line shadows.

Table 2 shows quantitative comparisons using SSIM and
PSNR. Our method achieves the best performance for both
tasks.

C. SKETCH — SEGMENTATION SYNTHESIS

Synthesizing sketch images from color-coded segmentation
map is a very challenging task. To the best of our knowledge,
there are no research works that presented results on this
task. Although a color coded semantic segmentation map pro-
vides enough information about face semantics, it contains no
information about artistic appearance of face. Sketches add
more complexity as the artistic appearance are very minute,
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TABLE 4. A user preference study. The numbers indicate user preference
percentage for the proposed method over those of the compared
methods. The best result are boldfaced. Note: Seg. denotes color coded
segmentation map.

Method Photo = Sketch Photo = Seg. Sketch = Seg.
Photo | Sketch | Photo Seg. Sketch Seg.
Pix2Pix [5] 13.23 17.67 4.42 8.85 8.35 24.50
PSZ-MAN [15] 18.62 8.35 NA NA NA NA
Col-cGAN [16] 11.77 24.50 7.42 1322 | 21.15 18.50
SPADE [12] NA NA 3.95 2.45 2.45 17.75
CUT [27] 6.40 11.27 0.50 0.98 0.50 5.5
StarGAN v2 [28] 0.00 0.00 0.00 0.50 2.00 0.75
Ours 49.98 | 38.20 | 83.71 | 74.00 | 65.55 | 33.00

e. g., pencil lines on the face in CUFS database [37]. However,
we think that some state-of-the-art image synthesis frame-
works such as Pix2Pix [5], SPADE [12], Col-cGAN [16],
CUT [27], and StarGAN v2 [28] can be used to synthesize
sketches from segmentation and segmentation from sketch
samples. For this, we have trained all those methods with our
constructed dataset.

1) DATASET CONSTRUCTION

Currently, there are no publicly available datasets to train
sketch =2 segmentation synthesis task in a supervised manner.
For this, we have created a dataset for color coded seg-
mentation map and their corresponding sketches using the
publicly available photo/sketch paired dataset (CUFS) [37].
To achieve this, we use the model trained for the photo =
segmentation synthesis task. We translate all photos from
the CUFS dataset into segmentation map and use those syn-
thesized segmentation maps along with the corresponding
sketches as paired segmentation/sketch samples. Fig. 7 shows
examples of pairs we have created for this task.

2) RESULTS
Results for sketch = segmentation synthesis are illustrated
in Fig. 6. Pix2Pix, SPADE, Col-cGAN, CUT, and StarGAN
v2 obtain almost equivalent results for segmentation outputs
from a given sketch. However, they are unable to produce
plausible sketches from a segmentation map. As can be seen
in the last two rows of Fig. 6, SPADE and CUT fail to pro-
duce plausible sketches from segmentation map. Col-cGAN
outputs are blurred and totally ignore sketch-like appearance
styles in hair region and pencil line shadows. Also, they
show artifacts on hair texture. StarGAN v2 produces plausible
results, but fails to synthesize hair region with finer details.
Pix2Pix blends the pencil line shadows and does not give
plausible face semantics, e. g., ears in the third row of Fig. 6.
In contrast, our method not only produces visually pleasing
results, but also obtains more diverse outputs that better retain
finer details, especially in segmentation-to-sketch synthesis.
We also provide quantitative comparisons in Table 3
using SSIM and PSNR for segmentation— sketch and mIoU
for sketch— segmentation. Our method achieves the best
SSIM and PSNR scores for segmentation— sketch. For
sketch— segmentation, Pix2Pix, Col-cGAN, and our method
yield equivalent performance.
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(b)

©

FIGURE 7. Examples of paired data (a) and (c) from our constructed dataset for sketch = segmentation synthesis task. (a) The input photo
image from the CUFS dataset [37]. (b) Syntheszied segmentation map of (a) generated from photo — segmentation synthesis task by our
method. (c) The corresponding sketches for the input photo image in the CUFS dataset in (a). The red dotted box shows the constructed
segmentation/sketch paired dataset we used for sketch = segmentation synthesis task.
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Content manipulation using segmentation map input
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FIGURE 8. Style/content manipulated image synthesis results from segmentation maps. The results display the capability of our network that
synthesizes outputs with diverse appearance style for the same content shape.

D. STYLE/CONTENT MANIPULATED IMAGE SYNTHESIS we use the model trained for photo <= segmentation syn-
Style/content manipulated image synthesis aims at gener- thesis in Sec. IV-A. Unlike the other synthesis tasks in
ating multiple photo-realistic images for the same shape Sec. IV-A ~ IV-C, we exploit BSTM units in inference time.
content with various appearance styles. To achieve this, For the same input segmentation map, we use different photo
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image inputs from the test dataset to generate photo images
with the appearance style of the selected photo. Our model
extracts the shape content information from the segmentation
map and style information from photo images using the
BSTM units. This results in outputs containing the shape
content similar to that of the input segmentation map and
appearance style similar to that of the input photo image.
Fig. 8 demonstrates that our model is capable of generat-
ing multiple high-quality photo realistic images for a same
identity. More results are included in the supplementary
material.

V. USER STUDY

We have additionally performed a pilot user study to evaluate
our results using perceptual assessment of people. We have
asked fifty two participants to select which output looks more
realistic and natural. Each participant is given the total of
twenty four questions, four questions for each synthesis task.
For every test sample, participants are shown input image
along with six images synthesized by different methods for
the given input. Table 4 shows that our method significantly
outperforms the other representative methods in all three
bidirectional synthesis tasks.

We think that for performance comparison, a user study
like ours can give better performance evaluation because
except for segmentation, there is no perfect quantitative eval-
uation metric that quantifies the quality of generated image.

VI. CONCLUSION

This research features a novel collaborative bidirectional style
transfer network for cross modal image synthesis. In our
method, we effectively exploit mutual interaction between
two opposite mappings to align the content from two modal-
ities and exchange their appearance styles for cross modal
facial image synthesis. Extensive evaluation demonstrates
the effectiveness of our model for bidirectional synthesis,
between segmentation and photo, between photo and sketch,
and between sketch and segmentation. Moreover, the pro-
posed methodology can be adapted for solving other cross
modal image synthesis tasks. We also think that our method
can be applied to generative methods for cross modal image
matching because better synthesis results are very likely to
lead to better matching accuracy.
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