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ABSTRACT In this paper, we present a novel collaborative bidirectional style transfer network based on
generative adversarial network (GAN) for cross modal facial image synthesis, possibly with large modality
gap. We think that representation decomposed into content and style can be effectively exploited for cross
modal facial image synthesis. However, we have observed that unidirectional application of decomposed
representation based style transfer in case of large modality gap does not work well for this purpose. Unlike
existing image synthesis methods that typically formulate image synthesis as an unidirectional feed forward
mapping, our network utilizes mutual interaction between two opposite mappings in a collaborative way
to address complex image synthesis problem with large modality gap. The proposed bidirectional network
aligns shape content from two modalities and exchanges their appearance styles using feature maps of the
layers in the encoder space. This allows us to effectively retain the shape content and transfer style details
for synthesizing each modality. Focusing on facial images, we consider facial photo, sketch, and color-coded
semantic segmentation as different modalities. The bidirectional synthesis results for the pairs of these
modalities show the effectiveness of the proposed approach. We further apply our network to style-content
manipulation to generate multiple photo images with various appearance styles for a same content shape.
The proposed method can be adopted for solving other cross modal image synthesis tasks. The dataset and
source code are available at https://github.com/kamranjaved/Bidirectional-style-transfer-network.
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INDEX TERMS Generative adversarial network, image synthesis, unidirectional style transfer network,
bidirectional style transfer network, collaborative learning.

I. INTRODUCTION19

The goal of this research is to synthesize realistic cross modal20

face images while retaining the input face identity. We inter-21

pret facial images of a person from different modalities as22

facial images with the same shape content and different23

appearance styles. We have also observed that decomposed24

representation into content and style can bring great advan-25

tage to cross modal image synthesis [2]. On the other hand,26

as can be seen in Fig. 1, directly employing style transfer as27

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

unidirectional feed forward mapping for cross modal image 28

synthesis does not work well in case of large modality gap. 29

Based on our interpretation and observation, we aim to 30

develop a novel bidirectional synthesis network that effec- 31

tively employs style transfer schemes to achieve our goal. 32

We could effectively align the shape content from the two 33

modalities and exchange their appearance styles by exploiting 34

mutual interaction between two opposite mappings. In this 35

work, we consider facial photo, sketch, and color-coded 36

semantic segmentation as different modalities. 37

Generative adversarial networks (GANs) [3] have achieved 38

significantly advanced image synthesis performance with 39
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phenomenal quality and realism. Conditional GAN (cGAN)40

[4] took GAN into another direction by providing con-41

trol over the generation of desired outputs. Most notably,42

Pix2Pix [5] adopted supervised learning as a general-purpose43

solution to translate a source image into a target image.44

Zhu et al. [6] presented an unsupervised approach to translate45

an image from one domain to another. Recently, Style-46

GAN [7], [8] proposed a novel style-based generator archi-47

tecture which provides the generator with more control and48

representational capabilities to create images with high visual49

quality and realism. Numerous image synthesis works [9],50

[10], [11] fine-tuned this work to attain meaningful perfor-51

mances. Park et al. [12] proposed spatially-adaptive normal-52

ization layer for synthesizing photo realistic images from53

color-coded segmentation map. Most of the GAN-based54

photo-sketch synthesis models [13], [14], [15] formulated55

the mapping as unidirectional feed forward mapping. Thus,56

utilization of mutual interaction between two opposite map-57

pings is found lacking. To better utilize the mutual informa-58

tion between opposite mappings, Col-cGAN [16] proposed a59

bi-directional cGAN based framework in which an interme-60

diate image domain between photo and sketch is learned to61

enhance the synthesis performance. However, their method62

yields blurred effects and great deformation over various63

facial components without decomposing representation into64

content and style.65

On the other hand, style transfer networks [1], [17], [18],66

[19] factored image representation into content and style67

components. These methods produced impressive artistic68

style results by transferring content from one image and style69

from others. However, as mentioned earlier, utilizing style70

transfer schemes as unidirectional feed forward mapping for71

image synthesis with large modality gap does not yield sat-72

isfactory performance. Chen et al. [20] synthesized sketches73

in a cascade manner by first generating the shape of face and74

then adding style details. However, they failed to preserve75

finer appearance style such as pencil lines and shading.76

Unlike most image synthesis methods that typically for-77

mulate synthesis mapping as an unidirectional feed forward78

mapping, we propose a simple yet effective bidirectional style79

transfer network to exploit a mutual interaction between two80

opposite mappings for better coping with large modality gap.81

In the layers of the encoder space, we align the shape content82

from the two modalities and exchange their appearance styles83

by employing an AdaIN [1] based style-transfer unit called84

Bidirectional Style Transfer Module (BSTM) between their85

feature maps. This allows us to successfully synthesize visu-86

ally plausible cross modal facial images with large domain87

gap.88

We even view facial sketch and color-coded semantic seg-89

mentation as a facialmodality and present bidirectional image90

synthesis between them although their modality gap is large.91

We further demonstrate our network for content-style manip-92

ulated synthesis. In this task, we generate multiple photo93

images from a single segmentation map via conditioning94

on photos with different styles. The bidirectional synthesis95

results for the pairs of facial photo, sketch, and color-coded 96

semantic segmentation shows that the proposed methodology 97

can be adapted for solving other cross modal image synthesis 98

tasks. 99

The main contributions of this work are as follows. 100

• We have presented a style-transfer based bidirectional 101

synthesis network to effectively exploit mutual inter- 102

action between two opposite mapping to address cross 103

modal image synthesis with large modality gap. 104

• We demonstrate on challenging bidirectional synthesis 105

from face sketch to semantic segmentation and semantic 106

segmentation to face sketch. 107

• Our network is capable of generating multiple photo 108

images with various appearance styles from a single 109

segmentationmap by conditioning on photo images with 110

different styles. 111

II. RELATED WORK 112

A. IMAGE-TO-IMAGE TRANSLATION 113

Image-to-image (I2I) translation techniques aim to transfer 114

images from a source domain to a corresponding images of 115

a target domain. Pix2Pix [5] first uses a conditional GAN 116

model to translate an image from one domain to another. 117

Since then, their work has been extended for many sce- 118

narios: text-to-image synthesis [21], high-resolution syn- 119

thesis [22], object removal [23], multi-style image synthe- 120

sis [24] and face de-occlusion [25]. Despite promising per- 121

formances, they have not utilized mutual interaction between 122

two opposite mappings. In contrast, the proposed network 123

effectively takes advantage of the mutual content informa- 124

tion of cross modalities through a bidirectional synthesis 125

framework. 126

Many studies have investigated face photo-to-sketch and 127

face sketch-to-photo synthesis tasks as an image-to-image 128

translation problem using GANs in their models [13], [14]. 129

However, their methods are unable to effectively deal with 130

the large domain gap between photo and sketch. For the last 131

few years, great progress has been made in developing meth- 132

ods specifically designed for photo-sketch synthesis tasks. 133

Yu et al. [26] incorporate facial composition information into 134

their GAN based face photo-sketch synthesis. PS2-MAN [15] 135

takes an approach of gradually learning low-resolution to 136

high-resolution images using multi-adversarial networks. 137

Although these methods formulate photo-sketch transforma- 138

tion through end-to-end mapping, they do not utilize the 139

mutual interaction between two modalities. To effectively 140

reduce the modality gap for photo-sketch synthesis task, Col- 141

cGAN [16] learns an intermediate modality between photo 142

and sketch by utilizing the mutual interaction of the two 143

oppositemapping. CUT [27]maximize themutual interaction 144

between different modalities based on contrastive learning 145

of corresponding patches. StarGAN v2 [28] learns mapping 146

between multiple modalities by utilizing a style encoder 147

and mapping network. These approaches produce plausi- 148

ble results when the domain gap is small but struggles in 149

cases where the domain gap is large. On the other hand, 150
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Bae et al. [29] exploited a bidirectional synthesis network for151

face photo-sketch recognition.152

B. USING DECOMPOSED IMAGE REPRESENTATION153

The separation of an image into content and style com-154

ponents has widely been studied for artistic style trans-155

fer [1], [17], [30], [31]. Image synthesis can be achieved156

through image style transfer. Gatys et al. [17] showed that157

the feature statistics of a convolutional neural network could158

effectively capture the style information of an image. In par-159

ticular, AdaIN [1] demonstrated impressive stylized outputs160

by simply aligning the channel-wise mean and variance161

of content input features to those of style input features.162

StyleGAN [7] used AdaIN operation at each convolution163

layer in their generative network to adjust the style of the164

image. Richardson et al. [10] introduced an encoder architec-165

ture built upon a pre-trained StyleGAN network. It directly166

generates a series of style vectors to solve image-to-image167

translation tasks, yielding impressive results. MUNIT [2]168

decomposed image representation into content and style169

codes. They recombined content code with random style170

code sampled from the style space of the target domain171

to produce cross domain outputs. SEAN [32] manipulated172

the style of an image via given style images and seman-173

tic masks. Chen et al. [20] subdivided the test photo into174

non-overlapping patches and tried to find the best matching175

photo from data samples to estimate the target style for176

photo-sketch synthesis task. Peng et al. [33] translated photo177

image into the style of the entire training sketch collection178

when training photos are unavailable. Although these meth-179

ods give plausible results, they are unable to well preserve180

the structure of the transferred samples and often produce181

stylized results with messy texture.182

III. PROPOSED METHOD183

A. OVERVIEW184

The overall architecture of our method is illustrated in Fig. 2.185

Our network consists of encoders EA, EB, BSTM (Bidirec-186

tional Style Transfer Module) units, two generators GA→B,187

GB→A and two discriminators DA→B, DB→A. A, B denote188

two different modalities and A→ B, B→ A represent the189

transformation from A to B and from B to A, respectively.190

The encoders consist of two main blocks, where each block191

consists of multiple layers. The encoders in each block first192

extract the individual features, FA and FB. The BSTM unit193

then decomposes each feature FA, FB into content and style194

components, denoted as CA, CB and SA, SB, respectively195

as shown in Fig. 2 (b). The cross style transferred features196

FA→B, FB→A are obtained by exchanging the style com-197

ponents using AdaIN layer [1]. These transferred features198

FA→B,FB→A are fed into the next block of the encoder and the199

same process is repeated. The two generators GA→B, GB→A200

then alternatively map the original features FA, FB and the201

style-transferred feature FA→B, FB→A into the desired output202

image space IA→B, and IB→A, respectively. Two discrimina-203

tors DA→B, DB→A are used to distinguish generated images204

from real sample by imposing the adversarial loss [3] on both 205

modalities. 206

B. BIDIRECTIONAL STYLE TRANSFER MODULE (BSTM) 207

As stated earlier, a synthesis method that decomposes repre- 208

sentation into content and style can bring great advantages 209

to cross modal image synthesis [2]. In BSTM, the network 210

learns individual domain characteristics and adopts the cross 211

domain style by incorporating the transferred style factor into 212

the content factor. 213

As shown in Fig. 2 (b), we first extract features FA, FB for 214

images IA, IB in the first block of the encoders EA and EB, 215

respectively. 216

FA = E1(IA),FB = E2(IB). (1) 217

These features FA, FB ∈ RC×H×W , whereW and H indicates 218

spatial dimensions, and C the number of channels, are fed 219

into a BSTM unit and are decomposed into content and style 220

components. Channel-wise mean and standard deviation rep- 221

resent image style while normalized feature map represents 222

content or shape in an image. We obtain style and content 223

components as follows: 224

µ (FA) =
1
HW

H∑
h=1

W∑
w=1

FAhw , (2) 225

σ (FA) =

√√√√ 1
HW

H∑
h=1

W∑
w=1

(FAhw − µ(FA))2 + ε, (3) 226

SA = < µ (FA) , σ (FA) >, CA =
FA − µ (FA)
σ (FA)

. (4) 227

For simplicity, we show here only the style and content 228

component computation for modality A. The style and con- 229

tent representations, SB, CB for modality B is computed in 230

the same manner. This decomposed representation is then 231

used to transfer the style components across modalities by 232

simply scaling and shifting the content component of one 233

modality with channel-wise mean (µ) and standard devi- 234

ation σ , of the other modality. This produces the feature 235

maps, FA→B and FB→A that contain the shape content of one 236

modality with the appearance style of the other modality as 237

follows: 238

FA→B = µ (FB) · CA + σ (FB) , (5) 239

FB→A = µ (FA) · CB + σ (FA) . (6) 240

Alongwith style transfer, we also align the shape contents,CA 241

and CB from the two modalities by computing the l1 distance 242

between them. This process is repeated in the next block of 243

the encoder. 244

C. ARCHITECTURE DETAILS 245

1) ENCODERS 246

The architecture of the proposed encoders is shown in 247

Fig. 3 (a). The encoders consists of two main blocks. The 248

first blocks consist of two convolution layers while the second 249
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FIGURE 1. Unidirectional style transfer by AdaIN [1] vs. collaborative bidirectional style transfer proposed for cross modal facial image synthesis.
We have observed that unidirectional application of style transfer in case of large modality gap does not work well. In order to warrant better synthesis
quality, our network utilizes mutual interaction between two opposite mappings in a collaborative way. The three columns for each transformation
problem shows the input (first column), the result for the unidirectional style transfer (second column), and the result for the proposed collaborative
bidirectional transfer (third column).

FIGURE 2. An overview of the proposed network. (a) The proposed network involves two encoders EA, EB, BSTM (Bidirectional Style Transfer Module)
units, and two generators GA→B, GB→A. The images IA, IB from the modality A, modality B are the input and the cross modal synthesized images IA→B,
IB→A are the outputs. (b) Detailed picture of the proposed BSTM in (a).

blocks are composed of one convolution layer and residual250

blocks [34]. The first blocks of the encoders share their251

weights. We apply Batch Instance Normalization (BIN) [35]252

to all the layers in the encoders.253

2) GENERATORS254

The architecture of the generator is a mirror copy of the255

encoders except that convolution is replaced by deconvo-256

lution layers as shown in Fig. 3 (a). The last layer of the257

generators uses tanh activation function.258

3) DISCRIMINATORS 259

The architecture of both discriminators follows the one used 260

in the pix2pix [5]. We use a patch-level discriminator that 261

discriminates the image structure at the patch scale of 70 × 262

70. The details of the discriminator architecture is given in 263

Fig. 3 (b). 264

D. TRAINING LOSS 265

We train our bidirectional network using the joint loss func- 266

tion in Eq. 7 which is a weighted combination of multiple 267
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FIGURE 3. The proposed model architecture. (a) The encoders and generators consist of a series of convolution layers and residual blocks.
For example, 7× 7-s1-Conv-64 denotes a 7-by-7 convolution layer of stride one with convolution filters 64. BIN indicates the batch instance
normalization. Res and DConv denote Residual block and Deconvolution layer, respectively. (b) Our discriminator architecture largely
follows the pix2pix [5] discriminator architecture. It takes the concatenation of the generated image and real image as input image and
classifies it as real or fake at the patch level of 70× 70.

FIGURE 4. Comparison of photo � segmentation synthesis results on the CelebA-HQ dataset. Top two rows show results for
segmentation-to-photo synthesis while bottom two rows present photo-to-segmentation synthesis results. From left to right: (a) Input,
(b) Pix2Pix [5], (c) SPADE [12], (d) Col-cGAN [16], (e) CUT [27], (f) StarGAN v2 [28], (g) Ours, and (h) ground truth.

objectives.268

L = λGANLGAN + λsLs + λcLc. (7)269

To generate real and natural looking synthetic outputs,270

we trained the bidirectional network using GAN loss func-271

tion, LGAN [3], along with the similarity loss, Ls. The simi-272

larity loss, Ls, measures pixel-wise l1 distance and structural 273

similarity (SSIM) between synthetic and real images. This 274

similarity loss for both modalities is as follows: 275

Ls(A) = Ll1 (A)+ Lssim(A), 276

Ls(B) = Ll1 (B)+ Lssim(B). (8) 277
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TABLE 1. Quantitative comparison of our method to the other
state-of-the-art representative methods for photo � segmentation
synthesis task. The best result are boldfaced.

TABLE 2. Quantitative comparison of our method to the other
state-of-the-art representative methods for photo � sketch synthesis
task. The best result are boldfaced.

TABLE 3. Quantitative comparison of our method to the other
state-of-the-art representative methods for sketch � segmentation
synthesis task. The best result are boldfaced.

Ll1 loss is the pixel difference between the generated image278

and the ground truth as:279

Ll1 (A) = Ea,b [‖IA→B − IB‖] ,280

Ll1 (B) = Ea,b [‖IB→A − IA‖] . (9)281

SSIM measures the structural similarity between the gener-282

ated and real samples and its corresponding loss function is283

written as:284

Lssim(A) = 1− SSIM (IA→B − IB),285

Lssim(B) = 1− SSIM (IB→A − IA). (10)286

We also introduce a collaborative loss, Lc, that minimizes287

l1 distance betweenCA andCB of the same identity. This helps288

enforcing and regularizing the same content distribution for289

modality A, and modality B, in the content feature space.290

λGAN , λs, and λc in Eq. (7) are the weight coefficients291

used to control the relative importance of each loss function.292

We have empirically found that λGAN = 1, λs = 10, and λc =293

0.25 produce best results in our experiments.294

E. IMPLEMENTATION AND TRAINING DETAILS295

For the task of segmentation� photo synthesis in Sec. IV-A,296

we use the CelebAMask-HQ dataset [36] that has the total297

of 30,000 pairs of face photo and corresponding segmenta-298

tion mask. Out of these, we use 25,000 paired samples for299

training and the rest of the samples for inference. We use the300

photo/sketch paired CUFS dataset [37] for photo � sketch301

synthesis task in Sec. IV-B. This dataset contains 168 samples 302

for training and 142 for test. For the sketch � segmentation 303

synthesis task in Sec. IV-C, we have constructed our own 304

dataset as there are no currently available public datasets 305

for colored segmentation map with corresponding sketches. 306

More details about this dataset is described in Sec. IV-C. For 307

all experiments, we use images of size 272 × 272, which 308

are randomly cropped to 256 × 256 for training. We train 309

our model for 5,000 epochs for photo � sketch in Sec. IV-B 310

and sketch� segmentation synthesis tasks in Sec. IV-C, and 311

for 200 epochs for photo � segmentation synthesis task in 312

Sec. IV-A. 313

We train our model in three steps. For one third of the 314

iterations, we first train the part of the network for one direc- 315

tional synthesis with the synthesis in the opposite direction 316

fixed. We then train the network for another one third of 317

the iterations for the synthesis in the opposite direction with 318

the already trained part fixed. For the remaining iterations, 319

we train the network for the bidirectional synthesis with the 320

BSTM units on. Our model alternatively uses BSTM units. 321

For example, in one epoch we train our network using BSTM, 322

while in the next epoch we do not use BSTM. However, 323

we apply shape content alignment throughout the training 324

epochs. This training scheme helps our model overcoming 325

the problem of directly utilizing style transfer technique for 326

image synthesis and producing results with correct structure 327

and stylized results with smooth texture. In inference time, 328

we do not use the BSTM module for our results except 329

content-style manipulated image synthesis. 330

IV. APPLICATION AND EXPERIMENTS 331

We give the performance evaluation of our method of bidi- 332

rectional cross modal facial image synthesis for photo � 333

segmentation in Sec. IV-A, photo� sketch in Sec. IV-B and 334

sketch � segmentation in Sec. IV-C, respectively. We train 335

all the methods to be compared, except Col-cGAN [16], 336

in two opposite directions separately as they do not support 337

bidirectional synthesis. 338

A. PHOTO � SEGMENTATION SYNTHESIS 339

For this task, the collaborative loss weightage is kept small, 340

λc = 0.1. We do this because photos in the training data 341

contain background information while no background infor- 342

mation is available in the segmentation images. Otherwise, 343

a large value of λc sometimes produces photo images with 344

messy background. 345

Results:We compare the performance of our method with 346

that of Pix2Pix [5], SPADE [12], Col-cGAN [16], CUT [27], 347

and StarGAN v2 [28] on the CelebAMask-HQ dataset [36]. 348

Top two rows in Fig. 4 compare the results for synthe- 349

sized segmentation map from photo images and bottom two 350

rows for synthesized photo images from segmentation map, 351

respectively. As can be seen in the first two rows of Fig. 4, 352

synthesized photos produced by Pix2pix and SPADE contain 353

deformation for complex face semantics. Moreover, Pix2pix 354

also yields noise and messy face texture. Col-cGAN gives 355
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FIGURE 5. Comparison of photo � sketch synthesis results on the CUFS dataset. Top two rows show results for sketch-to-photo synthesis while bottom
two rows present photo-to-sketch synthesis results. From left to right: (a) Input, (b) Pix2Pix [5], (c) PS2-MAN [15], (d) Col-cGAN [16], (e) CUT [27],
(f) StarGAN v2 [28], (g) Ours, and (h) ground truth.

FIGURE 6. Comparison of sketch � segmentation synthesis results. Top two rows show results for sketch-to-segmentation synthesis while bottom two
rows presents segmentation-to-sketch synthesis results. From left to right: (a) Input, (b) Pix2Pix [5], (c) SPADE [12], (d) Col-cGAN [16], (e) CUT [27],
(f) StarGAN v2 [28], (g) Ours, and (h) ground truth.

better results compared to Pix2Pix and SPADE, but still pro-356

duces blurred effects and dotted artifacts. CUT and StarGAN357

v2 fail to produce complex region of the face, e. g., the eye358

region is severely distorted. In contrast, our method generates359

sharp photo images with finer details. For synthesizing seg-360

mentation map from photo, SPADE and CUT do not provide361

plausible output. StarGAN v2 not only changes the identity, 362

but also fails to produce the correct segmentation map for 363

the hair region. Pix2Pix and Col-cGAN generate plausible 364

results, however, they still cannot preserve the finer details, 365

e. g., the earrings and the strap on the neck in the third row of 366

Fig. 4. 367
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We also provide quantitative comparisons in Table 1.368

We use Structural SIMilarity (SSIM) and Peak Signal to369

Noise Ratio (PSNR) for segmentation→photo and mean370

Intersection-over-Union (mIoU) for photo→segmentation.371

Table 1 indicates that our method outperforms the other meth-372

ods in terms of PSNR and mIoU, but SPADE gives the best373

SSIM score.374

We have additionally experimented on the FFHQ-Aging375

dataset [38] for photo � segmentation synthesis. The376

FFHQ-Aging dataset is built based on the FFHQ face photo377

dataset [7] to be used for face aging related tasks. The seg-378

mentation maps in the FFHQ-Aging dataset are generated379

through a pre-trained Deeplab v3 network [39]. However,380

they contain many inaccurate and mislabeled segmentation381

maps which prevent proper training of the network for photo382

� segmentation synthesis. We think that the performance383

evaluation on this dataset is not informative. For reference,384

we have included the experimental results on this dataset in385

the supplementary material.386

B. PHOTO � SKETCH SYNTHESIS387

Photo � sketch synthesis is a challenging task due to large388

modality gap between the two modality and lack of suffi-389

cient paired training data. We compare the performance of390

our method with those of Pix2Pix [5], PS2-MAN [15], Col-391

cGAN [16], CUT [27], and StarGAN v2 [28] on the CUFS392

database [37].393

Results: Fig. 5 shows qualitative comparison for synthe-394

sized photos and sketches. Top two rows of Fig. 5 show results395

for sketch-to-photo synthesis while bottom two rows present396

photo-to-sketch synthesis results. In top two rows, we can see397

that the Pix2Pix, PS2-MAN and Col-cGAN not only yield398

blurred effects but also contain prominent dotted artifacts.399

Unsupervised approaches such as CUT and StarGAN v2 do400

not yield plausible photos from sketch. CUT generates photos401

with unnatural skin color while StarGAN v2 fails to maintain402

the identity of the input sketch. Also, sketches generated403

by those methods are unable to well preserve the artistic404

appearance such as sketch-line texture. For example, PS2-405

MAN and CUT are not capable of producing those pencil406

lines while Pix2Pix and Col-cGAN blend those pencil line407

shadows. In contrast, our method not only retains the face408

identity but also produces sharp and realistic sketches, i. e.,409

sketch-like texture on hair region and pencil line shadows.410

Table 2 shows quantitative comparisons using SSIM and411

PSNR. Our method achieves the best performance for both412

tasks.413

C. SKETCH � SEGMENTATION SYNTHESIS414

Synthesizing sketch images from color-coded segmentation415

map is a very challenging task. To the best of our knowledge,416

there are no research works that presented results on this417

task. Although a color coded semantic segmentationmap pro-418

vides enough information about face semantics, it contains no419

information about artistic appearance of face. Sketches add420

more complexity as the artistic appearance are very minute,421

TABLE 4. A user preference study. The numbers indicate user preference
percentage for the proposed method over those of the compared
methods. The best result are boldfaced. Note: Seg. denotes color coded
segmentation map.

e. g., pencil lines on the face in CUFS database [37]. However, 422

we think that some state-of-the-art image synthesis frame- 423

works such as Pix2Pix [5], SPADE [12], Col-cGAN [16], 424

CUT [27], and StarGAN v2 [28] can be used to synthesize 425

sketches from segmentation and segmentation from sketch 426

samples. For this, we have trained all those methods with our 427

constructed dataset. 428

1) DATASET CONSTRUCTION 429

Currently, there are no publicly available datasets to train 430

sketch� segmentation synthesis task in a supervisedmanner. 431

For this, we have created a dataset for color coded seg- 432

mentation map and their corresponding sketches using the 433

publicly available photo/sketch paired dataset (CUFS) [37]. 434

To achieve this, we use the model trained for the photo � 435

segmentation synthesis task. We translate all photos from 436

the CUFS dataset into segmentation map and use those syn- 437

thesized segmentation maps along with the corresponding 438

sketches as paired segmentation/sketch samples. Fig. 7 shows 439

examples of pairs we have created for this task. 440

2) RESULTS 441

Results for sketch � segmentation synthesis are illustrated 442

in Fig. 6. Pix2Pix, SPADE, Col-cGAN, CUT, and StarGAN 443

v2 obtain almost equivalent results for segmentation outputs 444

from a given sketch. However, they are unable to produce 445

plausible sketches from a segmentation map. As can be seen 446

in the last two rows of Fig. 6, SPADE and CUT fail to pro- 447

duce plausible sketches from segmentation map. Col-cGAN 448

outputs are blurred and totally ignore sketch-like appearance 449

styles in hair region and pencil line shadows. Also, they 450

show artifacts on hair texture. StarGANv2 produces plausible 451

results, but fails to synthesize hair region with finer details. 452

Pix2Pix blends the pencil line shadows and does not give 453

plausible face semantics, e. g., ears in the third row of Fig. 6. 454

In contrast, our method not only produces visually pleasing 455

results, but also obtains more diverse outputs that better retain 456

finer details, especially in segmentation-to-sketch synthesis. 457

We also provide quantitative comparisons in Table 3 458

using SSIM and PSNR for segmentation→sketch and mIoU 459

for sketch→segmentation. Our method achieves the best 460

SSIM and PSNR scores for segmentation→sketch. For 461

sketch→segmentation, Pix2Pix, Col-cGAN, and our method 462

yield equivalent performance. 463
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FIGURE 7. Examples of paired data (a) and (c) from our constructed dataset for sketch � segmentation synthesis task. (a) The input photo
image from the CUFS dataset [37]. (b) Syntheszied segmentation map of (a) generated from photo � segmentation synthesis task by our
method. (c) The corresponding sketches for the input photo image in the CUFS dataset in (a). The red dotted box shows the constructed
segmentation/sketch paired dataset we used for sketch � segmentation synthesis task.

FIGURE 8. Style/content manipulated image synthesis results from segmentation maps. The results display the capability of our network that
synthesizes outputs with diverse appearance style for the same content shape.

D. STYLE/CONTENT MANIPULATED IMAGE SYNTHESIS464

Style/content manipulated image synthesis aims at gener-465

ating multiple photo-realistic images for the same shape466

content with various appearance styles. To achieve this,467

we use the model trained for photo � segmentation syn- 468

thesis in Sec. IV-A. Unlike the other synthesis tasks in 469

Sec. IV-A ∼ IV-C, we exploit BSTM units in inference time. 470

For the same input segmentation map, we use different photo 471
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image inputs from the test dataset to generate photo images472

with the appearance style of the selected photo. Our model473

extracts the shape content information from the segmentation474

map and style information from photo images using the475

BSTM units. This results in outputs containing the shape476

content similar to that of the input segmentation map and477

appearance style similar to that of the input photo image.478

Fig. 8 demonstrates that our model is capable of generat-479

ing multiple high-quality photo realistic images for a same480

identity. More results are included in the supplementary481

material.482

V. USER STUDY483

We have additionally performed a pilot user study to evaluate484

our results using perceptual assessment of people. We have485

asked fifty two participants to select which output looks more486

realistic and natural. Each participant is given the total of487

twenty four questions, four questions for each synthesis task.488

For every test sample, participants are shown input image489

along with six images synthesized by different methods for490

the given input. Table 4 shows that our method significantly491

outperforms the other representative methods in all three492

bidirectional synthesis tasks.493

We think that for performance comparison, a user study494

like ours can give better performance evaluation because495

except for segmentation, there is no perfect quantitative eval-496

uation metric that quantifies the quality of generated image.497

VI. CONCLUSION498

This research features a novel collaborative bidirectional style499

transfer network for cross modal image synthesis. In our500

method, we effectively exploit mutual interaction between501

two opposite mappings to align the content from two modal-502

ities and exchange their appearance styles for cross modal503

facial image synthesis. Extensive evaluation demonstrates504

the effectiveness of our model for bidirectional synthesis,505

between segmentation and photo, between photo and sketch,506

and between sketch and segmentation. Moreover, the pro-507

posed methodology can be adapted for solving other cross508

modal image synthesis tasks. We also think that our method509

can be applied to generative methods for cross modal image510

matching because better synthesis results are very likely to511

lead to better matching accuracy.512
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