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ABSTRACT Real-time identification of the running state is one of the key technologies for a smart rail
vehicle. However, it is a challenge to accurately real-time sense the complex running states of the rail
vehicle on an Internet-of-Things (IoT) edge device. Traditional systems usually upload a large amount of
real-time data from the vehicle to the cloud for identification, which is laborious and inefficient. In this paper,
an intelligent identificationmethod for rail vehicle running state is proposed based on TinyMachine Learning
(TinyML) technology, and an IoT system is developed with small size and low energy consumption. The
system uses a Micro-Electro-Mechanical System (MEMS) sensor to collect acceleration data for machine
learning training. A neural networkmodel for recognizing the running state of rail vehicles is built and trained
by defining a machine learning running state classification model. The trained recognition model is deployed
to the IoT edge device at the vehicle side, and an offset time window method is utilized for real-time state
sensing. In addition, the sensing results are uploaded to the IoT server for visualization. The experiments
on the subway vehicle showed that the system could identify six complex running states in real-time with
over 99% accuracy using only one IoT microcontroller. The model with three axes converges faster than the
model with one. The model recognition accuracy remained above 98% and 95%, under different installation
positions on the rail vehicle and the zero-drift phenomenon of the MEMS acceleration sensor, respectively.
The presented method and system can also be extended to edge-aware applications of equipment such as
automobiles and ships.

18 INDEX TERMS TinyML, IoT, running state, smart rail vehicle, artificial neural network.

I. INTRODUCTION19

Enabling rail vehicles to have self-awareness through sensors20

with low energy consumption is a challenge as the rail vehicle21

industry is rapidly developing towards intelligence and low22

carbonization. Real-time identification of the running state is23

the key technology for realizing the self-awareness of smart24

rail vehicles. However, identifying various complex running25

states with low energy consumption is a difficult task because26

the computing power of edge devices at the vehicle side is low27

and the state data monitored by sensors is complex.28

Currently, state monitoring is mostly focused on the auto-29

motive domain in the existing studies [1], [2], [3], [4], [5],30

[6]. Most state monitoring systems of these researches are31

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Steven Li .

achieved by the real-time acquisition of vehicle-side ECU 32

sensors or GPS data which is sent to the cloud when the 33

vehicle is moving. States results are fed back to the vehicle 34

after using complex algorithms in the cloud to identify the 35

various states of the vehicle. This type of system is not suit- 36

able for smart rail vehicles because of its disadvantages and 37

limitations such as high cost, high power consumption, large 38

size, poor real-time performance, and complicated structure. 39

In contrast, the edge state sensing system with small size, 40

low cost, and low power consumption has high practical and 41

economic value for intelligent rail vehicles. For example, the 42

system can record the running states of each vehicle, and 43

provide accurate and quantitative data for structural health 44

monitoring and condition-based maintenance of rail vehi- 45

cles. In addition, this type of system can provide long-term 46

tracking and monitoring services for rail vehicles (such as 47
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FIGURE 1. Schematic diagram of the Intelligent IoT sensing system for rail vehicle running states based on TinyML.

rail wagons) only using solar power. Therefore, carrying48

out the research on edge identification technology will have49

important theoretical research and engineering application50

significance to the design, manufacture, and maintenance of51

smart rail vehicles.52

With the development of artificial intelligence, some53

researchers have usedmachine learning in automobile vehicle54

intelligence [7], [8]. These studies include autonomous vehi-55

cle driving [9], [10], intelligent vehicle classification [11],56

and intelligent vehicle monitoring [12]. Some researchers57

[13], [14] considered vehicle running safety on vehicle intelli-58

gent classification, which classified and identified the vehicle59

running states. Some researchers have studied the state recog-60

nition methods for various equipment. Lan et al. [15] repre-61

sented a diagnosis strategy based on operating conditions and62

pressure pulsation of the turbine in order to effectively mon-63

itor the operating state of hydraulic turbines. Lu et al. [16]64

proposed a GA-CNNmodel to achieve automatic recognition65

of the rolling bearing running state.66

A number of studies already had been conducted to apply67

machine learning in combination with microcontrollers.68

Adhitya et al. [17] used microcontrollers that read two inputs69

from temperature and humidity sensor data and outputted70

two neurons to control two actuators by a machine learning71

model algorithm. Chand et al. [18] designed a system based72

on monitoring data of ultrasonic sensors and used machine73

learning algorithms to analyze the data and analyze personnel74

behavior. Zhang et al. [19] investigated the deployment of75

convolutional neural networks on an embedded platform to76

implement a target detector. In recent years, edge machine77

learning has developed rapidly and Tiny Machine Learning78

(TinyML) technology becomes an increasing area [20], [21],79

[22]. Prado et al. [23] proposed a TinyML-based method80

to apply a machine vision algorithm to mini-car automatic81

driving.82

So far, the above research literature has studied the creation83

or comparative optimization of automotive and device-84

specific machine learning models. However, in the trail vehi-85

cle field, research on Internet-of-Things (IoT) edge machine86

learning models is still lacking. In particular, research on87

intelligent state recognition based on TinyML technology for88

rail vehicles has not been reported. In addition, the research 89

on which sensor data (such as speed, acceleration, or gyro- 90

scope data) can accurately determine the running state of rail 91

vehicles should be conducted. Since the state data recorded 92

by rail vehicle operation has its uniqueness, it is essential to 93

analyze its characteristics, and study state recognition meth- 94

ods and machine learning models. 95

This paper proposes a novel intelligent monitoring and 96

identification method for rail vehicles’ running states based 97

on TinyML technology. An IoT intelligent sensing system 98

was developed with a small size, low cost, and low energy 99

consumption. Only a miniature IoT edge device was used 100

to identify multiple complex running states. Taking subway 101

vehicle monitoring as an example, the system realized six 102

kinds of real-time running state identification effectively and 103

transmitted the results to the IoT server for visualization. 104

In order to evaluate the system’s reliability and effectiveness, 105

experiments were also conducted with different numbers of 106

acceleration axes, different deployment positions, and zero- 107

drift effects. 108

II. SYSTEM ARCHITECTURE 109

The Intelligent IoT sensing system for rail vehicle running 110

states based on TinyML consists of a data acquisitionmodule, 111

a machine learning module, a real-time state recognition 112

module, and a server module. The system architecture dia- 113

gram is shown in Figure 1. In this paper, acceleration signals 114

are tried to identify and classify the running state of vehicles. 115

A. THE DATA ACQUISITION MODULE 116

The data acquisitionmodule mainly collects acceleration data 117

for machine learning training. Figure 2 illustrates the mod- 118

ule hardware consists of an ESP32 microcontroller, a low- 119

cost Micro-Electro-Mechanical System (MEMS) accelera- 120

tion ADXL345 sensor, a clock module, an SD card memory 121

module, a battery, and a circuit board. Themodule size is only 122

90mm× 28mm× 38mm and the power consumption is only 123

7.26E-3W. When the system is initialized, the ESP32 system 124

time is updated from the Internet or local area network NTP 125

server. The acceleration value and time stamp are recorded on 126

the SD card in the module. 127
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FIGURE 2. The hardware of the data acquisition or the real-time running
state recognition module.

B. THE MACHINE LEARNING MODULE128

The learning module is constructed by an open-source frame-129

work such as Tensorflow. The machine learning framework130

is built with the artificial neural network, and the collected131

acceleration data is used for training. After training, a model132

file to identify the running state features is obtained. The133

model is converted into TinyML model format and deployed134

to the IoT microcontroller.135

C. THE REAL-TIME RUNNING STATE RECOGNITION136

MODULE137

The real-time state monitoringmodule has the same hardware138

configuration as the data acquisition module. But the internal139

software and functions are different. After deploying the140

TinyML model file to the IoT microcontroller on the vehicle141

side, the acceleration values are read from the sensor and the142

vehicle’s running state is identified by the model in real-time.143

D. THE SERVER MODULE144

Using the programmability of the edge device ESP32 micro-145

controller chip, recognition results are sent to the local or146

remote cloud IoT servers, and other data servers through the147

WebSocket protocol. The real-time results are accessed by148

browsers for terminal users.149

III. METHODOLOGICAL STEPS150

The overall workflow diagram of the Intelligent IoT sensing151

system for rail vehicle running states based on TinyML is152

displayed in Figure 3. The specific steps of the proposed153

method are as follows.154

Step 1: Collect the acceleration data of the complete start-155

stop cycles. The data acquisitionmodule collects sufficient X,156

Y, and Z-axis acceleration data of complete start-stop cycles157

from the rail vehicle.158

Step 2: Preprocess the data that has been collected. To gen-159

erate various running state sample sets for machine training,160

FIGURE 3. The workflow chart of the Intelligent IoT sensing system for
rail vehicle running states based on TinyML.

the collected data is segmented, normalized, dimensionally 161

transformed, and labeled with defined values. 162

Step 3: Build a machine learning artificial neural net- 163

work, and generate a model for identifying the running 164

state features. The running state sample set is expanded 165

into one-dimensional data and imported into the input layer. 166

Furthermore, the artificial neural network is constructed by 167

setting proper parameters such as loss function, activation 168

function, and training rounds. After training, a model is 169

generated to identify the running state features. The model 170

prediction accuracy is used as the basis for assessing the 171

model quality. 172

Step 4: Identify the running state in real time. the identi- 173

fication of the running state feature model is converted and 174

deployed to the IoT microcontroller based on TinyML tech- 175

nology. The microcontroller monitors the acceleration in real 176

time as inputs to the TinyMLmodel for inference recognition. 177

The recognition results are sent by the microcontroller to the 178

IoT server. 179

The key technologies of the above steps are addressed in 180

detail below. 181

A. PREPROCESSING OF RUNNING STATE ACCELERATION 182

DATA 183

Step 2 is the preprocessing of acceleration data, including 184

data segmentation, normalization, dimensional transforma- 185

tion, and label definition. 186
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FIGURE 4. The typical one start-stop cycle of the rail vehicle.

1) DATA SEGMENTATION187

Figure 4 shows the acceleration values of a typical rail vehicle188

in one complete start-stop cycle. The X-axis is the longitu-189

dinal direction of the vehicle, while the Y-axis and Z-axis190

are the lateral direction and vertical direction, respectively.191

The vehicle moved along the X-axis direction. The figure192

presents that the X-axis acceleration values of the rail vehicle193

are positive when accelerating, negative when decelerating,194

and steady and close to zero when stationary. According195

to the acceleration values, the running states of some key196

positions in the figure are presented as follows: 1) starting,197

2) accelerating, 3) moving, 4) decelerating, 5) stopping, and198

6) stationary. These running state accelerations have distinct199

characteristics. Taking the X-axis acceleration as an example,200

the acceleration values of the starting state is from small to201

large. The acceleration values of the moving state have a wide202

range of fluctuation around the zero axes. In the decelerating203

state, the acceleration values are negative.204

The acceleration data is divided into sample sections of205

different running state types, and each sample section has206

the same time interval Tg, such as 2 seconds. Each sample207

contains three columns and M rows of data for X, Y, and208

Z-axis accelerations. As shown in Figure 4, section A is209

the accelerating type sample, which has obvious acceleration210

characteristics. The same types of samples are segmented,211

extracted, and combined to form a sample set of Z rows,212

as in Figure 5. Then Z equals M × N , where N is the213

number of samples. Sn(n = 1,2,3. . .) is defined as the name of214

each sample. Add the Z rows sample set with the state label215

name Tn(n = 1,2,3. . .). For example, T1 is the accelerating216

sample set and T2 is the decelerating sample set. To ensure217

the reliability of the machine learningmodel and to determine218

whether the training degree is overfitting or underfitting, the219

neural network dataset is divided into a training set and a220

verification set. The ratio of the training set to the validation221

set is 4:1.222

2) NORMALIZATION223

In the classification algorithm, the classification performance224

of the learning algorithm will be reduced when the attributes225

and different feature information of multiple description226

FIGURE 5. The example of the training set.

objects are fused [24], [25], [26]. To avoid this situation, Eq. 227

(1) normalization is used in machine learning tasks to ensure 228

that each feature magnitude has an equal contribution when 229

fed to the classifier and to eliminate the effect of odd data. 230

After normalization, the data is distributed between 0 and 1, 231

and the optimization of the data is faster and the accuracy is 232

higher during training. 233

x ′i =
xi− xmin

xmax− xmin
(1) 234

where x ′i is normalized data, while xi is collected data, and 235

xmax and xmin represent the maximum value and the minimum 236

value of theM rows of data, respectively. 237

3) DIMENSIONAL TRANSFORMATION 238

To simplify the model training process, the three axes data 239

of the Sn group data are connected end to end to form a one- 240

dimensional neural array L of 3 × M values. This array is 241

used as the input of the neural network. 242

4) LABEL VALUE DEFINITION 243

Since the machine learning model is based on a multi- 244

classification learning algorithm, one-hot code [27] is 245

adopted to identify classification information for different 246

running state data. For example, to identify the three running 247

states of rail vehicles in accelerating, decelerating, and mov- 248

ing, the three labels are defined as 0, 1, and 2. The one-hot 249

encoding forms are [1,0,0], [0,1,0], and [0,0,1]. The reason 250

for using one-hot coding is that it extends the value of discrete 251

features to Euclidean space. 252

B. TINYML RUNNING STATE RECOGNITION MODEL 253

TRAINING 254

In Step 3, running state recognition is implemented using 255

a classification machine algorithm, which is modeled and 256

trained using the sequence model provided by the Keras 257

library of artificial intelligence framework, as displayed in 258

Figure 6. Relevant parameters such as loss function, acti- 259

vation function, and optimization algorithm are adjusted 260

according to the model training condition. The sample set 261
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FIGURE 6. The neural network structure of the running state recognition
model.

processed in subsection A is utilized as the input of the neural262

network. If the model needs to recognize K types of running263

states, the number of output layer units is set to K .264

The vehicle running state model belongs to the multi-265

classificationmachine learning algorithm. The Softmax func-266

tion is chosen for the activation function from the hidden layer267

to the output layer of this model. Its expression is presented268

in Eq. (2).269

softmax (xi) =
exp(xi)∑
j exp(xj)

(2)270

The numerator in equation (4) is the exponential function271

of the signal xi received by the neurons in the output layer,272

and the denominator sums the exponential functions of all the273

output results xj. Each output result of the neural network is274

presented in the form of a probability distribution.275

In a multi-classification problem based on the Softmax276

classifier, the loss function is used to define the effect of277

the neural network model and the goal of optimization. The278

cross-entropy loss function is adopted in this study. The for-279

mula for calculating the cross entropy from the sample output280

of the machine learning model with the actual label values is281

shown in Eq. (3).282

Hy′ (y) = −
∑
i

y′i log(yi) (3)283

where yi is the probability of each result output by the model,284

and y′i represents the category corresponding to the one-hot285

code.286

The Adam optimization algorithm, which combines the287

features of the Adagrad and RMSprop algorithms, is adopted288

in the machine learning of the system.289

The labeled samples from subsection A are used for290

machine learning to determine the ideal values of all weights291

and deviations. When constructing the model, the parameters292

of machine learning need to be determined. Among them, the293

numbers of neurons in the input layer and the output layer294

are determined according to the number of identified running295

states. Other parameters to be determined are the number of296

hidden layers, the number of neurons in the hidden layer, the297

number of training rounds, etc. When the model evaluation298

FIGURE 7. Schematic diagram of vehicle running state data time offset
window.

is completed, the optimal values are selected as the final 299

parameter values. The number of neurons in the hidden layer 300

is decided by Eq. (4). 301

N =
√
Ni(No + 1)+ 1 (4) 302

where N is the number of neurons in the hidden layer, and 303

Ni and No represent the number of neurons in the input 304

and output layers, respectively. If the training result is not 305

satisfactory, adjust the model parameters and retrain. 306

C. PERFORMANCE EVALUATION METHOD FOR RUNNING 307

STATE RECOGNITION MODELS 308

In the training task in Step 3, the machine learning mod- 309

els obtained differ due to the selected parameters. Ideally, 310

the generalization error of all candidate models should be 311

compared to find the optimal model. However, since the 312

generalization error cannot be obtained directly, this paper 313

evaluates the model by its accuracy. 314

For the classification task, the sample error rate and accu- 315

racy rate are defined as (5) and (6). 316

E(f ;D) =
1
m

∑m

i=1

∏
(f (xi) 6= yi) (5) 317

acc(f ;D) =
1
m

∑m

i=1

∏
(f (xi) = yi) = 1− E(f ;D) (6) 318

where D is the sample set and m represents the total number 319

of samples. In addition to the accuracy, the loss function also 320

is used to evaluate the recognition model. 321

D. DEPLOYMENT AND REAL-TIME RECOGNITION OF 322

TINYML MODEL 323

After completing the recognition model training in Step 4, 324

the machine learning model file is compressed as a TinyML 325

model and deployed to the MCU of the IoT edge device in 326

the vehicle. The edge device sensor monitors the running 327

accelerations and transmits them to the TinyML model for 328

real-time discrimination. 329

To prevent the state information from being lost because 330

the intercepted signal misses the characteristic signal, 331
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FIGURE 8. The subway vehicle experiment for testing the Intelligent IoT
sensing system.

this paper presented an offset time window method. Fig-332

ure 7 shows a start-stop cycle of the rail vehicle.When in real-333

time monitoring, the data is segmented and moved forward334

with Tf as the time offset window and Tg as the recognition335

time interval for each acquisition. For example, Tf takes336

0.5 seconds and Tg takes 2 seconds, which means that every337

0.5 seconds, 2 seconds of acceleration data is intercepted for338

identification. As a result, the offset time window method339

will repeatedly recognize the running state. For statistical340

convenience, the results of these consecutive repetitions are341

combined into one. The process described above is an online342

real-time identification method, which is also applicable to343

offline recognition of recorded acceleration data. Through the344

offline method, the accuracy of the recognition model can345

be tested to evaluate the quality of the trained model. The346

recognition result and time stamp will be recorded.347

IV. EXPERIMENTS348

The effectiveness of the constructed model and system was349

verified by a real-time recognition experiment for subway350

running states. The machine learning framework adopted the351

open-source framework TensorFlow. As presented in Fig-352

ure 8, an acquisition module was placed in the front part of353

a subway carriage to acquire acceleration values for training.354

After training, a state recognition module was used for real-355

time recognition.356

A. ACCELERATION DATA ACQUISITION357

A data acquisition module with an acquisition frequency of358

20Hz was used to collect acceleration data from the subway359

vehicle. To ensure sufficient data, the test collected more than360

100,000 rows of three-axis acceleration data. In Figure 9, the361

acceleration data of two start-stop cycles at the head of the362

subway carriage. The subway traveled along the longitudinal363

X-axis direction of the accelerometer. Figure 9a) shows a sig-364

nificant change in acceleration in the direction. The vehicle365

in Figure 9b) also reveals vibration in the Y and Z axes with366

a certain pattern during running.367

B. TRAINING DATA PREPROCESSING368

To identify three running states, the data sets of three running369

states of rail vehicles in accelerating, moving, and deceler-370

ating were extracted from the collected data. The data sets371

FIGURE 9. Acceleration sample data of two start-stop cycles (a) X-axis
acceleration data (b) Y and Z-axis acceleration data.

FIGURE 10. Schematic diagram of X-axis acceleration of three running
states.

were set as T1, T2, and T3 (K equals 3) as training data. 372

Figure 10 is the schematic diagram of the X-axis acceleration 373

of three states for one start-stop cycle without the stationary 374

state. Using M equals 40 and Z equals 100, the collected 375

three-axis acceleration data were preprocessed according to 376

the proposed method. Figure 11 illustrates some collected 377

data. 378

Because the stationary state has a single characteristic and 379

is easily judged programmatically, the three running states 380

do not contain the stationary state. The specific judgment 381

method of the stationary state is that the three-axis acceler- 382

ation values are always less than a small threshold range in 383

the Tg section. 384
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FIGURE 11. Part of the sample set of subway (a) sample set of the
accelerating state (b)sample set of the decelerating state.

TABLE 1. The machine learning model’s parameters for recognizing three
running states.

Based on the method in subsection III, the segmentation385

data was fed into the neural network as input neurons. The386

three-dimensional array of triaxial acceleration Sn with M387

equals 40 was flattened into a 120× 1 one-dimensional array388

as the input to the neural network. After defining the three389

running states as 0, 1, and 2 labels, the data was normalized.390

C. COMPLEX RUNNING STATE RECOGNITION AND391

TRAINING392

The preprocessed sample data set was trained for machine393

learning. The parameters of the machine learning model for394

three running states are listed in Table 1. After training,395

FIGURE 12. Schematic diagram of five different vehicle running states
recognition.

FIGURE 13. Training and recognition results of five vehicle running states
by the model.

the evaluation accuracy of the training set was 100%. The 396

machine learning model was used for offline prediction with 397

4640 rows of acceleration data of the vehicle running for two 398

complete cycles, and the prediction accuracy of the offset 399

time window method was 99.8%. 400

Furthermore, the proposed method was verified with five 401

complex types: (1) starting, (2) accelerating, (3) moving, (4) 402

decelerating, and (5) stopping. Figure 12 presents the X-axis 403

acceleration data for the five running states. The parameters 404

of the machine learning model for five running states are 405

presented in Table 2. After the model training, the accuracy 406

of the training set evaluation is 100%, and the accuracy of the 407

validation set is 99.67%, as shown in Figure 13. 408

The model was used to predict the offline data of three 409

complete cycles. A total of 6520 acceleration data points were 410

predicted 652 times using the offset time window method. 411

The results had seven errors, and the model accuracy was 412

98.9%. Most of the errors were identifying acceleration state 413

features as starting states. The reason for this is that some 414

acceleration data had very similar characteristics of acceler- 415

ating and starting in the Tg time interval. This problem can 416

be eliminated by determining whether the previous state of 417

the current state is stationary or not. If the previous Tg state 418

is stationary, the current running state is starting, and if it is 419

not, it is accelerating. 420
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FIGURE 14. Comparison of accuracy of different activation functions (a)M=5 (b)M=10 (c)M=20 (d)M=40.

TABLE 2. The machine learning model’s parameters for recognizing five
running states.

D. THE TRAINING EFFECT OF VARIOUS ACTIVATION421

FUNCTION MODELS422

The activation function in a neural network can improve the423

nonlinear fitting ability of the model, which is crucial to the424

quality of the trained model. To choose a suitable activation425

function, three common activation functions were compared426

by giving differentM rows of data. Three common activation427

functions were applied to the model for 50 rounds of train-428

ing, and the accuracy of the training results is presented in429

Figure 14.430

Figure 14 reveals that the training results using different431

activation functions are different whenM is used as the vari-432

able. When M equals 5 and 10, all three activation functions433

achieve good learning results. The model training speed is434

faster when using the Relu function as the activation func-435

TABLE 3. Statistics on the training effect of different activation function
models.

tion. When the number of input rows gradually increases (M 436

equals 40), the model training effect of the Relu function and 437

the Tanh function has been greatly reduced. When using the 438

Sigmoid activation function, the accuracy of the model does 439

not decrease with the number of inputM . The model is robust 440

when using the Sigmoid function as the activation function, 441

and the system has a more stable recognition capability. The 442

number of training rounds changes as the number of input 443

rows increases, as shown in Table 3. 444

E. TRAINING EFFECT COMPARISON ON DIFFERENT AXIS 445

NUMBERS 446

Since the vehicle running state features in Figure 9a) are 447

already visible on the X-axis, the effect of comparing one 448

X-axis and three-axis acceleration data as input to the model 449

recognition must be investigated. 450
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FIGURE 15. Comparison of the training effects of different axes with
M=20.

Acceleration data with two different numbers of axes were451

used separately as inputs for model training. WhenM equals452

20, the resultant accuracy and cross-entropy loss values are453

described in Figure 15.454

The same activation function, optimization function, and455

other parameters were chosen for the construction of the two456

machine learning models. The model in figure 15 has been457

trained after 20 iterations when the three-axis acceleration458

data is taken as the model input. In contrast, using the X-axis459

acceleration data as input takes more than 50 training rounds.460

Consequently, the model with three axes converged faster461

with higher accuracy and lower loss value than themodel with462

one axis. Therefore, the system chose three-axis acceleration463

as the input to train the model of the running state.464

F. COMPARISON OF RECOGNITION ACCURACY FOR465

DIFFERENT INSTALLATION POSITION466

The length of a subway carriage is generally long. A typical467

subway carriage is 19 to 23 meters. To test the reliability,468

robustness, and generalization ability of the system, the accu-469

racy influence of different installation positions of the system470

in the vehicle needs to be studied. In the experiments, the471

recognition model was trained with acceleration data from472

the head of the carriage only and without training by the data473

from the rear of the carriage. A sample of the collected data474

from the rear of the subway carriage is shown in Figure 16.475

The figure reveals that the rear acceleration data have the476

same characteristics as the head one in Figure 9.477

Experiments were conducted to identify the three running478

states of accelerating, moving, and decelerating as an exam-479

ple. After splitting and defining the label value, the dataset480

with Z equals 1000 was imported into the model for recogni-481

tion evaluation. The accuracy rate of the evaluation results is482

demonstrated in Figure 17.483

After model identification, the three states were identified484

with 99.8%, 98.2%, and 100% accuracy. The high recogni-485

tion accuracy of the model demonstrated that the installation486

position of the state recognition module in the carriage had487

little effect on the accuracy. Therefore, the state recognition488

FIGURE 16. Comparison of the training effects of different axes with
M=20.

FIGURE 17. Comparison of the accuracy of different monitoring positions.

FIGURE 18. The acceleration data with zero drift.

module can be deployed in different positions in the same 489

carriage. 490

G. COMPARISON OF THE ACCURACY OF ZERO-DRIFT 491

RECOGNITION 492

Since zero drift may occur in low-cost MEMS sensors, it is 493

necessary to analyze the effect of this phenomenon on recog- 494

nition results if zero drift is not removed. 495

As shown in Figure 18, the data with z-axis zero drift (Z 496

equals 1000) was imported into the model for offline identi- 497

fication. The recognition results are presented in Figure 19. 498
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FIGURE 19. Comparison of model evaluation with zero-drift acceleration
data.

The recognition accuracies of accelerating, decelerating, and499

moving states are 99.5%, 99%, and 95.1%. Therefore, the500

recognition model has strong generalization ability and reli-501

ability because it can identify the acceleration data with zero502

drift to a certain extent. On the other hand, it also reveals503

that the zero-drift decreased the identification accuracy and504

had a certain influence on the recognition results. Thus, the505

zero-drift needs to be removed for obtaining better recogni-506

tion results.507

H. REAL-TIME SENSING OF RUNNING STATES FOR THE508

RAIL VEHICLE ONLINE509

The TinyML recognition model was deployed to the IoT510

edge device on the vehicle to sense the vehicle running511

states online. Then, the effectiveness of the system was tested512

by sensing six types of complex motion states: starting,513

accelerating, decelerating, stopping, moving, and stationary.514

Among the six states, the stationary state was identified by the515

method in subsection IV(B), while the rest of the states were516

identified by the machine learning method. Four start-stop517

cycles of the subway were monitored in the experiment. The518

total real-time monitoring time was about 9 minutes. Each519

start-stop cycle had a deceleration time of about 1 minute,520

a stop time of about 1.5 minutes, and an acceleration time of521

about 20 seconds.522

The system used the online offset time window method523

for intelligent identification. To verify the accuracy of the524

recognition results, besides online intelligent recognition,525

the whole test process was also recorded on video for526

offline rechecking. The Tf of the experiment was taken as527

0.5 seconds and Tg was taken as 2 seconds, which means528

that running states were recognized every 0.5 seconds and529

were judged by 2 seconds of acceleration data. A total of530

1108 judgments were made in the whole test. During sensing,531

the recognition results were uploaded to the local IoT server.532

Each complex running state of the vehicle was presented on533

the browser in real time, as shown in Figure 20. After online534

and offline result comparison, the test results revealed that535

the real-time recognition results using the proposed method536

matched with the subway vehicle running status results, and537

FIGURE 20. The web interface of real-time recognition results of running
states.

there were three abnormalities in 1108 times of recognition 538

result data, with an accuracy rate of 99.7%. 539

V. CONCLUSION 540

TinyML technology is an effective way to make rail 541

vehicles intelligent and perceptive. The constructed sys- 542

tem is low-cost, small-sized, and low energy consump- 543

tion. With only one micro IoT edge device on the vehicle 544

side, each carriage can recognize complex running states. 545

The following conclusions are obtained from this paper’s 546

research: 547

(1) The recognition model and system proposed in this 548

paper can identify multiple complex running states in real- 549

time, and the monitoring results are accurate. The recognition 550

model is robust when using the Sigmoid function as the 551

activation function. The subway experiments showed that the 552

system was capable of identify six complex running states 553

in real-time and the identification accuracy was higher than 554

99%. Moreover, the experiment shows that the acceleration 555

data can be used for monitoring data for identifying the 556

running state of smart rail vehicles. 557

(2) Three-axis acceleration data monitoring is better than 558

one-axis monitoring. Using three-axis acceleration data as 559

model input for model training is faster, more accurate, 560

and has lower loss values than using one-axis acceleration 561

data. 562

(3) The sensing system can obtain high accuracy in run- 563

ning state recognition regardless of whether it is installed 564

in the front or rear of the carriage. The experiment on 565

the subway revealed that the recognition accuracy of dif- 566

ferent installation positions was high, reaching more than 567

98%. The model has good reliability and generalization 568

capability. 569

(4) The established model retains some high-running 570

state recognition capability under zero-drift acceleration. The 571

experimental result showed that the recognition accuracy of 572

the model was still high, reaching more than 95%, with- 573

out removing zero drift. Furthermore, it indicated that the 574

zero-drift has a certain influence on the recognition accuracy 575
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and the zero-drift should be removed during monitoring for576

obtaining better results.577

The method proposed in this paper can identify more578

complex running states such as turning, collision, rapid accel-579

eration, slow acceleration, emergency braking, etc. In addi-580

tion, the system is suitable for mass installation on rail581

vehicles. The identification results can provide essential582

data support for structural health monitoring and condition-583

based maintenance. The method and system can also be584

applied to various rail vehicles like high-speed trains, rail-585

way wagons, and intercity trains, as well as other equip-586

ment with TinyML chips such as cars, ships, aircraft, and587

spacecraft.588
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