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ABSTRACT Real-time identification of the running state is one of the key technologies for a smart rail
vehicle. However, it is a challenge to accurately real-time sense the complex running states of the rail
vehicle on an Internet-of-Things (IoT) edge device. Traditional systems usually upload a large amount of
real-time data from the vehicle to the cloud for identification, which is laborious and inefficient. In this paper,
an intelligent identification method for rail vehicle running state is proposed based on Tiny Machine Learning
(TinyML) technology, and an IoT system is developed with small size and low energy consumption. The
system uses a Micro-Electro-Mechanical System (MEMS) sensor to collect acceleration data for machine
learning training. A neural network model for recognizing the running state of rail vehicles is built and trained
by defining a machine learning running state classification model. The trained recognition model is deployed
to the IoT edge device at the vehicle side, and an offset time window method is utilized for real-time state
sensing. In addition, the sensing results are uploaded to the IoT server for visualization. The experiments
on the subway vehicle showed that the system could identify six complex running states in real-time with
over 99% accuracy using only one IoT microcontroller. The model with three axes converges faster than the
model with one. The model recognition accuracy remained above 98% and 95%, under different installation
positions on the rail vehicle and the zero-drift phenomenon of the MEMS acceleration sensor, respectively.
The presented method and system can also be extended to edge-aware applications of equipment such as
automobiles and ships.

INDEX TERMS TinyML, IoT, running state, smart rail vehicle, artificial neural network.

I. INTRODUCTION
Enabling rail vehicles to have self-awareness through sensors
with low energy consumption is a challenge as the rail vehicle
industry is rapidly developing towards intelligence and low
carbonization. Real-time identification of the running state is
the key technology for realizing the self-awareness of smart
rail vehicles. However, identifying various complex running
states with low energy consumption is a difficult task because
the computing power of edge devices at the vehicle side is low
and the state data monitored by sensors is complex.
Currently, state monitoring is mostly focused on the auto-
motive domain in the existing studies [1], [2], [3], [4], [5],
[6]. Most state monitoring systems of these researches are
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achieved by the real-time acquisition of vehicle-side ECU
sensors or GPS data which is sent to the cloud when the
vehicle is moving. States results are fed back to the vehicle
after using complex algorithms in the cloud to identify the
various states of the vehicle. This type of system is not suit-
able for smart rail vehicles because of its disadvantages and
limitations such as high cost, high power consumption, large
size, poor real-time performance, and complicated structure.
In contrast, the edge state sensing system with small size,
low cost, and low power consumption has high practical and
economic value for intelligent rail vehicles. For example, the
system can record the running states of each vehicle, and
provide accurate and quantitative data for structural health
monitoring and condition-based maintenance of rail vehi-
cles. In addition, this type of system can provide long-term
tracking and monitoring services for rail vehicles (such as
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FIGURE 1. Schematic diagram of the Intelligent loT sensing system for rail vehicle running states based on TinyML.

rail wagons) only using solar power. Therefore, carrying
out the research on edge identification technology will have
important theoretical research and engineering application
significance to the design, manufacture, and maintenance of
smart rail vehicles.

With the development of artificial intelligence, some
researchers have used machine learning in automobile vehicle
intelligence [7], [8]. These studies include autonomous vehi-
cle driving [9], [10], intelligent vehicle classification [11],
and intelligent vehicle monitoring [12]. Some researchers
[13], [14] considered vehicle running safety on vehicle intelli-
gent classification, which classified and identified the vehicle
running states. Some researchers have studied the state recog-
nition methods for various equipment. Lan et al. [15] repre-
sented a diagnosis strategy based on operating conditions and
pressure pulsation of the turbine in order to effectively mon-
itor the operating state of hydraulic turbines. Lu et al. [16]
proposed a GA-CNN model to achieve automatic recognition
of the rolling bearing running state.

A number of studies already had been conducted to apply
machine learning in combination with microcontrollers.
Adhitya et al. [17] used microcontrollers that read two inputs
from temperature and humidity sensor data and outputted
two neurons to control two actuators by a machine learning
model algorithm. Chand et al. [18] designed a system based
on monitoring data of ultrasonic sensors and used machine
learning algorithms to analyze the data and analyze personnel
behavior. Zhang et al. [19] investigated the deployment of
convolutional neural networks on an embedded platform to
implement a target detector. In recent years, edge machine
learning has developed rapidly and Tiny Machine Learning
(TinyML) technology becomes an increasing area [20], [21],
[22]. Prado et al. [23] proposed a TinyML-based method
to apply a machine vision algorithm to mini-car automatic
driving.

So far, the above research literature has studied the creation
or comparative optimization of automotive and device-
specific machine learning models. However, in the trail vehi-
cle field, research on Internet-of-Things (IoT) edge machine
learning models is still lacking. In particular, research on
intelligent state recognition based on TinyML technology for

VOLUME 10, 2022

rail vehicles has not been reported. In addition, the research
on which sensor data (such as speed, acceleration, or gyro-
scope data) can accurately determine the running state of rail
vehicles should be conducted. Since the state data recorded
by rail vehicle operation has its uniqueness, it is essential to
analyze its characteristics, and study state recognition meth-
ods and machine learning models.

This paper proposes a novel intelligent monitoring and
identification method for rail vehicles’ running states based
on TinyML technology. An IoT intelligent sensing system
was developed with a small size, low cost, and low energy
consumption. Only a miniature IoT edge device was used
to identify multiple complex running states. Taking subway
vehicle monitoring as an example, the system realized six
kinds of real-time running state identification effectively and
transmitted the results to the IoT server for visualization.
In order to evaluate the system’s reliability and effectiveness,
experiments were also conducted with different numbers of
acceleration axes, different deployment positions, and zero-
drift effects.

Il. SYSTEM ARCHITECTURE

The Intelligent IoT sensing system for rail vehicle running
states based on TinyML consists of a data acquisition module,
a machine learning module, a real-time state recognition
module, and a server module. The system architecture dia-
gram is shown in Figure 1. In this paper, acceleration signals
are tried to identify and classify the running state of vehicles.

A. THE DATA ACQUISITION MODULE

The data acquisition module mainly collects acceleration data
for machine learning training. Figure 2 illustrates the mod-
ule hardware consists of an ESP32 microcontroller, a low-
cost Micro-Electro-Mechanical System (MEMS) accelera-
tion ADXL345 sensor, a clock module, an SD card memory
module, a battery, and a circuit board. The module size is only
90mm x 28 mm x 38 mm and the power consumption is only
7.26E-3W. When the system is initialized, the ESP32 system
time is updated from the Internet or local area network NTP
server. The acceleration value and time stamp are recorded on
the SD card in the module.
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FIGURE 2. The hardware of the data acquisition or the real-time running
state recognition module.

B. THE MACHINE LEARNING MODULE

The learning module is constructed by an open-source frame-
work such as Tensorflow. The machine learning framework
is built with the artificial neural network, and the collected
acceleration data is used for training. After training, a model
file to identify the running state features is obtained. The
model is converted into TinyML model format and deployed
to the IoT microcontroller.

C. THE REAL-TIME RUNNING STATE RECOGNITION
MODULE

The real-time state monitoring module has the same hardware
configuration as the data acquisition module. But the internal
software and functions are different. After deploying the
TinyML model file to the IoT microcontroller on the vehicle
side, the acceleration values are read from the sensor and the
vehicle’s running state is identified by the model in real-time.

D. THE SERVER MODULE

Using the programmability of the edge device ESP32 micro-
controller chip, recognition results are sent to the local or
remote cloud IoT servers, and other data servers through the
WebSocket protocol. The real-time results are accessed by
browsers for terminal users.

ill. METHODOLOGICAL STEPS

The overall workflow diagram of the Intelligent IoT sensing
system for rail vehicle running states based on TinyML is
displayed in Figure 3. The specific steps of the proposed
method are as follows.

Step 1: Collect the acceleration data of the complete start-
stop cycles. The data acquisition module collects sufficient X,
Y, and Z-axis acceleration data of complete start-stop cycles
from the rail vehicle.

Step 2: Preprocess the data that has been collected. To gen-
erate various running state sample sets for machine training,
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FIGURE 3. The workflow chart of the Intelligent loT sensing system for
rail vehicle running states based on TinyML.

the collected data is segmented, normalized, dimensionally
transformed, and labeled with defined values.

Step 3: Build a machine learning artificial neural net-
work, and generate a model for identifying the running
state features. The running state sample set is expanded
into one-dimensional data and imported into the input layer.
Furthermore, the artificial neural network is constructed by
setting proper parameters such as loss function, activation
function, and training rounds. After training, a model is
generated to identify the running state features. The model
prediction accuracy is used as the basis for assessing the
model quality.

Step 4: Identify the running state in real time. the identi-
fication of the running state feature model is converted and
deployed to the IoT microcontroller based on TinyML tech-
nology. The microcontroller monitors the acceleration in real
time as inputs to the TinyML model for inference recognition.
The recognition results are sent by the microcontroller to the
IoT server.

The key technologies of the above steps are addressed in
detail below.

A. PREPROCESSING OF RUNNING STATE ACCELERATION
DATA

Step 2 is the preprocessing of acceleration data, including
data segmentation, normalization, dimensional transforma-
tion, and label definition.
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1) DATA SEGMENTATION

Figure 4 shows the acceleration values of a typical rail vehicle
in one complete start-stop cycle. The X-axis is the longitu-
dinal direction of the vehicle, while the Y-axis and Z-axis
are the lateral direction and vertical direction, respectively.
The vehicle moved along the X-axis direction. The figure
presents that the X-axis acceleration values of the rail vehicle
are positive when accelerating, negative when decelerating,
and steady and close to zero when stationary. According
to the acceleration values, the running states of some key
positions in the figure are presented as follows: 1) starting,
2) accelerating, 3) moving, 4) decelerating, 5) stopping, and
6) stationary. These running state accelerations have distinct
characteristics. Taking the X-axis acceleration as an example,
the acceleration values of the starting state is from small to
large. The acceleration values of the moving state have a wide
range of fluctuation around the zero axes. In the decelerating
state, the acceleration values are negative.

The acceleration data is divided into sample sections of
different running state types, and each sample section has
the same time interval Ty, such as 2 seconds. Each sample
contains three columns and M rows of data for X, Y, and
Z-axis accelerations. As shown in Figure 4, section A is
the accelerating type sample, which has obvious acceleration
characteristics. The same types of samples are segmented,
extracted, and combined to form a sample set of Z rows,
as in Figure 5. Then Z equals M x N, where N is the
number of samples. S, (n = 1,2,3. . .) is defined as the name of
each sample. Add the Z rows sample set with the state label
name T,(n = 1,2,3...). For example, T is the accelerating
sample set and 7> is the decelerating sample set. To ensure
the reliability of the machine learning model and to determine
whether the training degree is overfitting or underfitting, the
neural network dataset is divided into a training set and a
verification set. The ratio of the training set to the validation
setis 4:1.

2) NORMALIZATION

In the classification algorithm, the classification performance
of the learning algorithm will be reduced when the attributes
and different feature information of multiple description
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FIGURE 5. The example of the training set.

objects are fused [24], [25], [26]. To avoid this situation, Eq.
(1) normalization is used in machine learning tasks to ensure
that each feature magnitude has an equal contribution when
fed to the classifier and to eliminate the effect of odd data.
After normalization, the data is distributed between O and 1,
and the optimization of the data is faster and the accuracy is
higher during training.

x,{ _ Xi — Xmin (1

Xmax — *min

where x/ is normalized data, while x; is collected data, and
Xmax and Xp,;, represent the maximum value and the minimum
value of the M rows of data, respectively.

3) DIMENSIONAL TRANSFORMATION

To simplify the model training process, the three axes data
of the S, group data are connected end to end to form a one-
dimensional neural array L of 3 x M values. This array is
used as the input of the neural network.

4) LABEL VALUE DEFINITION

Since the machine learning model is based on a multi-
classification learning algorithm, one-hot code [27] is
adopted to identify classification information for different
running state data. For example, to identify the three running
states of rail vehicles in accelerating, decelerating, and mov-
ing, the three labels are defined as 0, 1, and 2. The one-hot
encoding forms are [1,0,0], [0,1,0], and [0,0,1]. The reason
for using one-hot coding is that it extends the value of discrete
features to Euclidean space.

B. TINYML RUNNING STATE RECOGNITION MODEL
TRAINING

In Step 3, running state recognition is implemented using
a classification machine algorithm, which is modeled and
trained using the sequence model provided by the Keras
library of artificial intelligence framework, as displayed in
Figure 6. Relevant parameters such as loss function, acti-
vation function, and optimization algorithm are adjusted
according to the model training condition. The sample set
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FIGURE 6. The neural network structure of the running state recognition
model.

processed in subsection A is utilized as the input of the neural
network. If the model needs to recognize K types of running
states, the number of output layer units is set to K.

The vehicle running state model belongs to the multi-
classification machine learning algorithm. The Softmax func-
tion is chosen for the activation function from the hidden layer
to the output layer of this model. Its expression is presented
in Eq. (2).

exp(x;)
>, exp(x))

The numerator in equation (4) is the exponential function
of the signal x; received by the neurons in the output layer,
and the denominator sums the exponential functions of all the
output results x;. Each output result of the neural network is
presented in the form of a probability distribution.

In a multi-classification problem based on the Softmax
classifier, the loss function is used to define the effect of
the neural network model and the goal of optimization. The
cross-entropy loss function is adopted in this study. The for-
mula for calculating the cross entropy from the sample output
of the machine learning model with the actual label values is
shown in Eq. (3).

Hy(y) ==Y y;log() 3)

@

softmax (x;) =

where y; is the probability of each result output by the model,
and y; represents the category corresponding to the one-hot
code.

The Adam optimization algorithm, which combines the
features of the Adagrad and RMSprop algorithms, is adopted
in the machine learning of the system.

The labeled samples from subsection A are used for
machine learning to determine the ideal values of all weights
and deviations. When constructing the model, the parameters
of machine learning need to be determined. Among them, the
numbers of neurons in the input layer and the output layer
are determined according to the number of identified running
states. Other parameters to be determined are the number of
hidden layers, the number of neurons in the hidden layer, the
number of training rounds, etc. When the model evaluation
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is completed, the optimal values are selected as the final
parameter values. The number of neurons in the hidden layer
is decided by Eq. (4).

N=N®N,+1)+1 4)

where N is the number of neurons in the hidden layer, and
N; and N, represent the number of neurons in the input
and output layers, respectively. If the training result is not
satisfactory, adjust the model parameters and retrain.

C. PERFORMANCE EVALUATION METHOD FOR RUNNING
STATE RECOGNITION MODELS
In the training task in Step 3, the machine learning mod-
els obtained differ due to the selected parameters. Ideally,
the generalization error of all candidate models should be
compared to find the optimal model. However, since the
generalization error cannot be obtained directly, this paper
evaluates the model by its accuracy.

For the classification task, the sample error rate and accu-
racy rate are defined as (5) and (6).

1 m
EfiDy=—3% [T0e# )

1 m
acef; D)= —3 [T =y =1-E(¢:D) ©)

where D is the sample set and m represents the total number
of samples. In addition to the accuracy, the loss function also
is used to evaluate the recognition model.

D. DEPLOYMENT AND REAL-TIME RECOGNITION OF
TINYML MODEL
After completing the recognition model training in Step 4,
the machine learning model file is compressed as a TinyML
model and deployed to the MCU of the IoT edge device in
the vehicle. The edge device sensor monitors the running
accelerations and transmits them to the TinyML model for
real-time discrimination.

To prevent the state information from being lost because
the intercepted signal misses the characteristic signal,
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FIGURE 8. The subway vehicle experiment for testing the Intelligent loT
sensing system.

this paper presented an offset time window method. Fig-
ure 7 shows a start-stop cycle of the rail vehicle. When in real-
time monitoring, the data is segmented and moved forward
with Ty as the time offset window and T, as the recognition
time interval for each acquisition. For example, 7y takes
0.5 seconds and T takes 2 seconds, which means that every
0.5 seconds, 2 seconds of acceleration data is intercepted for
identification. As a result, the offset time window method
will repeatedly recognize the running state. For statistical
convenience, the results of these consecutive repetitions are
combined into one. The process described above is an online
real-time identification method, which is also applicable to
offline recognition of recorded acceleration data. Through the
offline method, the accuracy of the recognition model can
be tested to evaluate the quality of the trained model. The
recognition result and time stamp will be recorded.

IV. EXPERIMENTS

The effectiveness of the constructed model and system was
verified by a real-time recognition experiment for subway
running states. The machine learning framework adopted the
open-source framework TensorFlow. As presented in Fig-
ure 8, an acquisition module was placed in the front part of
a subway carriage to acquire acceleration values for training.
After training, a state recognition module was used for real-
time recognition.

A. ACCELERATION DATA ACQUISITION

A data acquisition module with an acquisition frequency of
20Hz was used to collect acceleration data from the subway
vehicle. To ensure sufficient data, the test collected more than
100,000 rows of three-axis acceleration data. In Figure 9, the
acceleration data of two start-stop cycles at the head of the
subway carriage. The subway traveled along the longitudinal
X-axis direction of the accelerometer. Figure 9a) shows a sig-
nificant change in acceleration in the direction. The vehicle
in Figure 9b) also reveals vibration in the Y and Z axes with
a certain pattern during running.

B. TRAINING DATA PREPROCESSING

To identify three running states, the data sets of three running
states of rail vehicles in accelerating, moving, and deceler-
ating were extracted from the collected data. The data sets
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were set as 71, T, and T3 (K equals 3) as training data.
Figure 10 is the schematic diagram of the X-axis acceleration
of three states for one start-stop cycle without the stationary
state. Using M equals 40 and Z equals 100, the collected
three-axis acceleration data were preprocessed according to
the proposed method. Figure 11 illustrates some collected
data.

Because the stationary state has a single characteristic and
is easily judged programmatically, the three running states
do not contain the stationary state. The specific judgment
method of the stationary state is that the three-axis acceler-
ation values are always less than a small threshold range in
the T, section.
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TABLE 1. The machine learning model’s parameters for recognizing three
running states.

Parameter Value
Z (Training set of single running state) 10000
M 40
Neurons of the input layer 120
Neurons of the output layer 3
Number of hidden layers 2
Neurons of the hidden layer 16

Total number of parameters to be trained 2259

Based on the method in subsection III, the segmentation
data was fed into the neural network as input neurons. The
three-dimensional array of triaxial acceleration S, with M
equals 40 was flattened into a 120 x 1 one-dimensional array
as the input to the neural network. After defining the three
running states as 0, 1, and 2 labels, the data was normalized.

C. COMPLEX RUNNING STATE RECOGNITION AND
TRAINING

The preprocessed sample data set was trained for machine
learning. The parameters of the machine learning model for
three running states are listed in Table 1. After training,

98866

Acceleration (m/s?)
() —
=

]
—_—
T

0 500 1000 1500 2000 2500

Sample number

FIGURE 12. Schematic diagram of five different vehicle running states
recognition.

— = Loss Accuracy
18 — — Val _loss Val_accuracy
1.6 1.0
1.4
> 1.2 08
Q
£ 1.0 0.6 2
= S
g8 0.8 —
0.4 0.2
0.2 RN
0.0 . - . . 0.0
10 20 30 40 50

Epoch
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by the model.

the evaluation accuracy of the training set was 100%. The
machine learning model was used for offline prediction with
4640 rows of acceleration data of the vehicle running for two
complete cycles, and the prediction accuracy of the offset
time window method was 99.8%.

Furthermore, the proposed method was verified with five
complex types: (1) starting, (2) accelerating, (3) moving, (4)
decelerating, and (5) stopping. Figure 12 presents the X-axis
acceleration data for the five running states. The parameters
of the machine learning model for five running states are
presented in Table 2. After the model training, the accuracy
of the training set evaluation is 100%, and the accuracy of the
validation set is 99.67%, as shown in Figure 13.

The model was used to predict the offline data of three
complete cycles. A total of 6520 acceleration data points were
predicted 652 times using the offset time window method.
The results had seven errors, and the model accuracy was
98.9%. Most of the errors were identifying acceleration state
features as starting states. The reason for this is that some
acceleration data had very similar characteristics of acceler-
ating and starting in the 7, time interval. This problem can
be eliminated by determining whether the previous state of
the current state is stationary or not. If the previous 7, state
is stationary, the current running state is starting, and if it is
not, it is accelerating.
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TABLE 2. The machine learning model’s parameters for recognizing five
running states.

Parameter Value
Z (Training set of single running state) 4000
M 40
Neurons of the input layer 200
Neurons of the output layer 5
Number of hidden layers 2
Neurons of the hidden layer 16
Total number of parameters to be trained 2565

D. THE TRAINING EFFECT OF VARIOUS ACTIVATION
FUNCTION MODELS

The activation function in a neural network can improve the
nonlinear fitting ability of the model, which is crucial to the
quality of the trained model. To choose a suitable activation
function, three common activation functions were compared
by giving different M rows of data. Three common activation
functions were applied to the model for 50 rounds of train-
ing, and the accuracy of the training results is presented in
Figure 14.

Figure 14 reveals that the training results using different
activation functions are different when M is used as the vari-
able. When M equals 5 and 10, all three activation functions
achieve good learning results. The model training speed is
faster when using the Relu function as the activation func-
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TABLE 3. Statistics on the training effect of different activation function
models.

Number of activation function training rounds

M

Relu Sigmoid Tanh
5 10 15 5
10 5 20 15
20 - 30 15
40 - 30 -

tion. When the number of input rows gradually increases (M
equals 40), the model training effect of the Relu function and
the Tanh function has been greatly reduced. When using the
Sigmoid activation function, the accuracy of the model does
not decrease with the number of input M. The model is robust
when using the Sigmoid function as the activation function,
and the system has a more stable recognition capability. The
number of training rounds changes as the number of input
rows increases, as shown in Table 3.

E. TRAINING EFFECT COMPARISON ON DIFFERENT AXIS
NUMBERS

Since the vehicle running state features in Figure 9a) are
already visible on the X-axis, the effect of comparing one
X-axis and three-axis acceleration data as input to the model
recognition must be investigated.
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FIGURE 15. Comparison of the training effects of different axes with
M=20.

Acceleration data with two different numbers of axes were
used separately as inputs for model training. When M equals
20, the resultant accuracy and cross-entropy loss values are
described in Figure 15.

The same activation function, optimization function, and
other parameters were chosen for the construction of the two
machine learning models. The model in figure 15 has been
trained after 20 iterations when the three-axis acceleration
data is taken as the model input. In contrast, using the X-axis
acceleration data as input takes more than 50 training rounds.
Consequently, the model with three axes converged faster
with higher accuracy and lower loss value than the model with
one axis. Therefore, the system chose three-axis acceleration
as the input to train the model of the running state.

F. COMPARISON OF RECOGNITION ACCURACY FOR
DIFFERENT INSTALLATION POSITION

The length of a subway carriage is generally long. A typical
subway carriage is 19 to 23 meters. To test the reliability,
robustness, and generalization ability of the system, the accu-
racy influence of different installation positions of the system
in the vehicle needs to be studied. In the experiments, the
recognition model was trained with acceleration data from
the head of the carriage only and without training by the data
from the rear of the carriage. A sample of the collected data
from the rear of the subway carriage is shown in Figure 16.
The figure reveals that the rear acceleration data have the
same characteristics as the head one in Figure 9.

Experiments were conducted to identify the three running
states of accelerating, moving, and decelerating as an exam-
ple. After splitting and defining the label value, the dataset
with Z equals 1000 was imported into the model for recogni-
tion evaluation. The accuracy rate of the evaluation results is
demonstrated in Figure 17.

After model identification, the three states were identified
with 99.8%, 98.2%, and 100% accuracy. The high recogni-
tion accuracy of the model demonstrated that the installation
position of the state recognition module in the carriage had
little effect on the accuracy. Therefore, the state recognition
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FIGURE 18. The acceleration data with zero drift.

module can be deployed in different positions in the same
carriage.

G. COMPARISON OF THE ACCURACY OF ZERO-DRIFT
RECOGNITION
Since zero drift may occur in low-cost MEMS sensors, it is
necessary to analyze the effect of this phenomenon on recog-
nition results if zero drift is not removed.

As shown in Figure 18, the data with z-axis zero drift (Z
equals 1000) was imported into the model for offline identi-
fication. The recognition results are presented in Figure 19.
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The recognition accuracies of accelerating, decelerating, and
moving states are 99.5%, 99%, and 95.1%. Therefore, the
recognition model has strong generalization ability and reli-
ability because it can identify the acceleration data with zero
drift to a certain extent. On the other hand, it also reveals
that the zero-drift decreased the identification accuracy and
had a certain influence on the recognition results. Thus, the
zero-drift needs to be removed for obtaining better recogni-
tion results.

H. REAL-TIME SENSING OF RUNNING STATES FOR THE
RAIL VEHICLE ONLINE

The TinyML recognition model was deployed to the IoT
edge device on the vehicle to sense the vehicle running
states online. Then, the effectiveness of the system was tested
by sensing six types of complex motion states: starting,
accelerating, decelerating, stopping, moving, and stationary.
Among the six states, the stationary state was identified by the
method in subsection IV(B), while the rest of the states were
identified by the machine learning method. Four start-stop
cycles of the subway were monitored in the experiment. The
total real-time monitoring time was about 9 minutes. Each
start-stop cycle had a deceleration time of about 1 minute,
a stop time of about 1.5 minutes, and an acceleration time of
about 20 seconds.

The system used the online offset time window method
for intelligent identification. To verify the accuracy of the
recognition results, besides online intelligent recognition,
the whole test process was also recorded on video for
offline rechecking. The Ty of the experiment was taken as
0.5 seconds and T, was taken as 2 seconds, which means
that running states were recognized every 0.5 seconds and
were judged by 2 seconds of acceleration data. A total of
1108 judgments were made in the whole test. During sensing,
the recognition results were uploaded to the local IoT server.
Each complex running state of the vehicle was presented on
the browser in real time, as shown in Figure 20. After online
and offline result comparison, the test results revealed that
the real-time recognition results using the proposed method
matched with the subway vehicle running status results, and
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FIGURE 20. The web interface of real-time recognition results of running
states.

there were three abnormalities in 1108 times of recognition
result data, with an accuracy rate of 99.7%.

V. CONCLUSION

TinyML technology is an effective way to make rail
vehicles intelligent and perceptive. The constructed sys-
tem is low-cost, small-sized, and low energy consump-
tion. With only one micro IoT edge device on the vehicle
side, each carriage can recognize complex running states.
The following conclusions are obtained from this paper’s
research:

(1) The recognition model and system proposed in this
paper can identify multiple complex running states in real-
time, and the monitoring results are accurate. The recognition
model is robust when using the Sigmoid function as the
activation function. The subway experiments showed that the
system was capable of identify six complex running states
in real-time and the identification accuracy was higher than
99%. Moreover, the experiment shows that the acceleration
data can be used for monitoring data for identifying the
running state of smart rail vehicles.

(2) Three-axis acceleration data monitoring is better than
one-axis monitoring. Using three-axis acceleration data as
model input for model training is faster, more accurate,
and has lower loss values than using one-axis acceleration
data.

(3) The sensing system can obtain high accuracy in run-
ning state recognition regardless of whether it is installed
in the front or rear of the carriage. The experiment on
the subway revealed that the recognition accuracy of dif-
ferent installation positions was high, reaching more than
98%. The model has good reliability and generalization
capability.

(4) The established model retains some high-running
state recognition capability under zero-drift acceleration. The
experimental result showed that the recognition accuracy of
the model was still high, reaching more than 95%, with-
out removing zero drift. Furthermore, it indicated that the
zero-drift has a certain influence on the recognition accuracy
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and the zero-drift should be removed during monitoring for
obtaining better results.

The method proposed in this paper can identify more
complex running states such as turning, collision, rapid accel-
eration, slow acceleration, emergency braking, etc. In addi-
tion, the system is suitable for mass installation on rail
vehicles. The identification results can provide essential
data support for structural health monitoring and condition-
based maintenance. The method and system can also be
applied to various rail vehicles like high-speed trains, rail-
way wagons, and intercity trains, as well as other equip-
ment with TinyML chips such as cars, ships, aircraft, and
spacecraft.
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