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ABSTRACT The modeling and control issues for distributed parameter systems (DPSs) have received a
great deal of attention. Because linear model order reduction (MOR) methods may ignore the nonlinear
dynamics and lose some details, it is difficult to describe DPS accurately by common modeling methods.
To effectively model such systems, a sparse stacked auto-encoder and gated recurrent unit (SSAE-GRU)
model is proposed in this paper. Under the time/space separation theory, it is the mainstream way to perform
MOR and identification of time series respectively. In the SSAE-GRU model, this practice is still adhered to
but joint learning is recommended. SSAE can be used as an excellent MOR technique. A sparse activation
strategy that is introduced makes its model space simple and easy to train. GRU has the ability to represent
such complex temporal properties because the information stored by previous neurons can be transmitted
to the current moment selectively. The joint training method allows them to be responsible and consider the
connection between adjacent moments and spatial energy transfer overall. Then, we use L2 regularization
in back-propagation to reduce the difficulty of model optimization and prevent overfitting. The modeling
scheme is simulated on two typical chemical thermal processes. This article demonstrates the effectiveness
of the proposed method as well as outstanding performance compared to existing methods.

INDEX TERMS Distributed parameter systems, model order reduction, sparse stacked auto-encoder, gated
recurrent unit, joint learning.

I. INTRODUCTION complex spatiotemporal distributed nature are commonly
A. BACKGROUND referred to as distributed parameter systems (DPSs). Model-
Intelligent manufacturing is the combination of advanced  ing and controlling issues for DPSs are a challenging task [4].
sensing, detection, control, and process optimization tech- Model order reduction (MOR) techniques are essential
nologies and practices that fuse information and the manufac- for modeling DPSs [5]. It transforms the origin DPSs
turing environment to enable precise management of energy, described by infinite-dimensional partial differential equa-
production efficiency, and costs in factories [1]. The snap cur- tions (PDEs) into finite-dimensional lump parameter systems

ing oven during chip packaging [2], the thermal monitoring of (LPSs) described by ordinary differential equations (ODEs).
lithium-ion battery charge and discharge experiments [3], and Although spatiotemporal discretization methods such as the

the thermal management of chemical engineering reactors finite difference technique and the finite element method

are all topics of intelligent manufacturing research. They ~ (FEM) can be used for general DPSs with irregular bound-

have infinite-dimensional properties described by partial dif- aries, the high reduction orders impose a huge computing

ferential equations (PDEs). These industrial processes with load on subsequent control applications. We are accustomed

to simplifying the systems before controller design. The

The associate editor coordinating the review of this manuscript and low-dimensional representation of parabolic systems can be
approving it for publication was Gang Mei . produced using spatiotemporal decomposition theory [6].
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B. lITERATURE REVIEW

Due to the lack of in-depth information on the physicochem-
ical backdrop, data-driven approaches are frequently used in
the modeling of unknown DPSs. The spatiotemporal dataset
can be gathered using a large number of spatial sensors,
which are subsequently processed using data-based linear
and nonlinear MOR algorithms to yield low-dimensional
time series [7]. Principal component analysis (PCA) [8],
also called Karhunen-Loeve decomposition (KLD) [9] or
proper orthogonal decomposition (POD) [9], is one of the
most famous linear algorithms applied to MOR for DPSs.
PCA is a global linear projection method [10]. It uses a
linear approximation for the nonlinear problem that would
not ensure the minor components never contain the important
information [6]. Since linear MOR algorithms cannot pre-
serve the nonlinear spatial structure of the complex system,
a range of measures have been created to enhance MOR
performance. By splitting the original dataset into tractable
subsets, a novel multimode spatiotemporal modeling tech-
nique based on the locally weighted PCA (LW-PCA) method
is created for large-scale highly nonlinear DPSs with param-
eter fluctuations [11]. By incorporating information entropy,
adaptive PCA adjusts the weight matrixes of reconstructing
error [12]. Both of them enhance boosting linear PCA accu-
racy to a certain extent. In addition, nonlinear approaches
such as isometric mapping (ISOMAP) [13] and kernel sup-
port vector machine (SVM) [14] have been employed for
DPSs. Nonlinear MOR techniques including locally linear
embedding (LLE) [15] have greatly enriched the practice of
DPS modeling issues. These algorithms are shallow learning
networks with a single hidden layer structural model. As we
all know, shallow networks are prone to fall into local opti-
mum and have poor generalization ability.

In recent years, multi-layer deep networks are more effi-
cient at extracting features from high-dimensional data [16].
A MOR framework for DPSs was designed to utilize a
deep auto-encoder (AE) embedded in Restricted Boltzmann
Machine (RBM) with a layer-wise pre-trained learning strat-
egy [17]. A multi-layer AE architecture with direct train-
ing for DPSs has been developed [18]. Although the deep
networks-based MOR techniques mentioned above have
shown significant promise in improving the reduced models’
performance, there are still several specific constraints such
as being cumbersome or difficult to converge. These deep
network-based DPS modeling techniques rely on multiple
training epochs on the dataset to increase the modeling capac-
ity, and there is still room for improvement.

Additionally, numerous identification techniques, such as
extreme learning machine (ELM) [19], least-squares sup-
port vector machine (LS-SVM) [20], have been applied to
the related low-dimensional time-series obtained by MOR.
A Dual ELM model is developed for the two nonlineari-
ties embedded in industrial thermal processes [21]. A spa-
tiotemporal LS-SVM model is designed to compensate for
modeling errors due to truncation and unknown nonlinear
dynamics [22]. A modified High-Order SVD that takes into
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account the interaction across several spatial modes is applied
to model DPSs [23]. A fast incremental learning-based mod-
eling approach for thermal process modeling of lithium bat-
teries is developed [24]. A finite sensing optimization tech-
nique with recursive temperature field estimation for pouch
cells is devised [25]. For time series identification in wireless
sensor networks, a distributed spatiotemporal Volterra model
(DS-Volterra) with enhanced Wiener is used [26], [27], [28].
A reduced model via multilayer perceptron and long short
term memory (MLP-LSTM) is proposed to approximate the
DPS situation of two coupled nonlinear dynamics [29].

We note that some new networks, for instance,
Alexnet [30] with rectified linear units (ReLLU) [31] achieved
a low test error rate of image classification. ReLU with
L1 regularization trick [32] has been proved that sparsity
operating in a deep neural network is more biologically plau-
sible. Gated recurrent unit (GRU) [33], which is an elaborate
recurrent neural network (RNN), is designed to model time
series. It has comparable accuracy with the long short term
memory (LSTM) [34], and meanwhile, the parameters that
need to be trained are less by one-fourth.

In this paper, a novel SSAE-GRU-based modeling
approach is presented for the nonlinear DPSs. The intrin-
sic features are extracted using sparse stacked auto-encode
(SSAE) approach with the sparse activation functions. The
SSAE can fit networks without pre-training. Considering
practicality and ease of implementation, the sparsity con-
straints by L2 penalty and exponential linear unit (ELU) acti-
vation function are applied. Then, the proper evolution law of
low-dimensional representation and control signal are estab-
lish by GRUs. The capacity of time-series prediction to gener-
alize has been aided through regularization. Finally, the pro-
posed model adopts a joint learning approach. Unlike existing
methods, the proposed method only requires optimization
for one objective function because we are most interested in
high-dimensional reconstruction. It has the potential to lower
modeling errors. The main contributions and novelty of this
paper are summarized as follows:

1) A sparse form of stacked auto-encoder is introduced
to resolve the MOR issue of DPSs. Sparse representation is
closer to the system reality, which alleviates computationally
intensive, makes the network easier to train, and ultimately
improves the performance of modeling.

2) Considering the features of DPSs are related between
the time and space dimensions, a joint learning approach is
adopted. MOR and time series prediction are performed in
one step for gathering a model with higher accuracy.

3) Simulations on two representative chemical ther-
mal processes verify the effectiveness of the proposed
method.

The rest of the paper is structured as follows. The problem
description is in Sections II. In Section III, the SSAE-GRU
algorithm is presented. Section IV gives the experiment result
of two typical chemical thermal processes to confirm the
effectiveness of the proposed method. A summary is given
in Section V.
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FIGURE 1. Schematic representation of the spatiotemporal modeling.

Il. RELATED WORK

A. MATHEMATICAL FOUNDATION OF DPS

Consider a general DPS can be described by the following
nonlinear PDEs:

Y (x, 1) Y (x, 1)

Y (x, 1)
- g Y 5 t 5 LI t
a1 (e 0, = gy ) T )
(H
subject to the boundary condition:
Y (x, ¢ "y (x, ¢
2(Y(x, 1), cn T Ye )) =0 ()
ox 9ty X=X(,X=Xp
and the initial condition:

Y(x,0) = Yp(x). 3)

where, ¢ is the time variable, x € €2 is the spatial variable,
and € is the spatial domain, Y (x, ) is the controlled output
variable, u(t) is the control input variable, ., , and 2 are
the continuous differentiable functions in Hilbert space 7.
It includes two nonlinear time law: a block is from system
Y (-, t) and the other is from u(¢). The basic steps of DPS
spatiotemporal modeling are shown in Fig. 1.

System (1) is applicable to model a variety of physical and
biochemical processes, such as catalytic reaction rods, steel
casting, and the tubular reactor. To obtain accurate informa-
tion about such a system, a sufficient number of sensors need
to be placed along with the spatial location. Only a small num-
ber of actuators are allowed to be mounted for observing the
state in actual physical conditions. The input-output datasets
are obtained from the actual production process under ran-
dom signal excitation. The modeling al%/orithm is developed
in two stages: the output {Y (x,, tn)}%;l’nzl excited by the
input {u(t,,)}lnv=1 is used by the SSAE to reduce the dimen-
sionality of the approximate model. M, N, and K are the num-
ber of the sensors, the sampling duration, and the actuators,
respectively.

B. SPATIOTEMPORAL DECOMPOSITION THEORY
According to spatiotemporal decomposition theory [5], the
variables of DPSs which is controlled by PDE can be
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FIGURE 2. Schematic representation of the low-order time evolution law.

expanded as:

Y (e, t) =) si(t) ¢i(x) )

i=1

The spatiotemporal variables can be decomposed into two
parts: a set of low-dimension representations ¢; (x) and a tem-
poral model s; (¢). To reduce the Y (x, ¢) to s; (¢), a number of
MOR techniques are listed in literature review.

si(t) = Te (Y(x, 1)) &)

where T, denotes the dimensionality reduction function.

C. ESTABLISH LOW-ORDER TEMPORAL SERIES

It is critical to create an appropriate representation and iden-
tify the corresponding time series. Some scholars have sci-
entifically proven that time series is decomposed into two
nonlinear units with different regularities s; () [21], [35].
This law has depicted in Fig. 2.

§i (1) = o' (s: (1) + 1 (ui (1)) (©6)

where the o' (-) and 7' (-) are nonlinear modules. §; (¢) is
temporal prediction value.

D. SPATIOTEMPORAL INTEGRATION
The system prediction outputs can be acquired by spatiotem-
poral integration.

Y(x, 1) = Ta(Gi(t)) 7

where 5;(¢), Ty, Y (x, t) are forecasted temporal series, integral
function, spatiotemporal integration predictions, respectively.

Though conventional modeling methods have an accept-
able accuracy on nonlinear processes, there are still some
practices required to improve, which can be summarized as
follow:

1) DPSs are nonlinear and spatiotemporal-varying. Linear
projections ignore nonlinear variation among the data. Shal-
low networks are deficient in learning ability, decreasing their
effectiveness in nonlinear DPS modeling.

2) The randomness of system inputs makes it difficult to
identify temporal dynamics.

3) Considering the ease of implementation and practice,
some reported methods have high calculation costs thus need
to make a balance between accuracy and time-consuming.
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IIl. SSAE-GRU SPATIOTEMPORAL MODEL

A. THE FRAMEWORK OF THE PROPOSED MODEL

To solve the above problem, the framework of the proposed
model will be described in detail as follow:

1) The SSAE technique is applied for extracting
low-dimensional features and forming an essential represen-
tation to characterize high-dimensional PDEs. Details of the
SSAE technique can be found in Section III.B.

2) GRU which is multivariable time series forecasting
algorithm is set up to build the temporal dynamics and deal
with nonlinearities. Details of the GRU are presented in
Section III.C.

3) According to spatiotemporal reconstruction, the high
dimensional temperature distribution model can be con-
stituted. Details of spatiotemporal reconstruction and joint
learning are presented in Section III.D.

B. SSAE MOR TECHNIQUE

By training a multilayer neural network with a small
bottleneck layer to reconstruct high-dimensional input vec-
tors, high-dimensional data can be transformed into low-
dimensional codes. The essential features of the system are
acquired from the bottleneck layer by stacked auto-encoder
(SAE).

SAE has the composition of an encoding function 7,
and a decoding function 7. The encoder is created using
a multiple-layer neural network. At each discretized time
step, the vector Y = [Y1, Y2, ...,YP]T € R’ represents
the p input. k is the encoder network layer. The encoder
projects Y from the input layer to low order representation
y = [v1,y2,...,v1" € RC. Decoder function T; has a
symmetrical structure with 7,. Hence, the input-output of the
SAE can be expressed as follows:

Yy () =T (Y (1))

=oWr...oW1Y(C,0)+b1)...4+br) (8)
Y(.0) =T (1)

:<p(w{...<p(w,{y(t)+bk)...+b1) )

where ¢ (-) are nonlinear activation functions that act
element-wise on its inputs, which have many different forms
such as step function, sigmoid and tanh, etc. W are p x
¢ matrixs. b € R are the bias vectors. The superscript
T means matrix transposition. Fig. 3 is a normal, flexi-
ble and adjustable architecture of SAE. Though SAE can
achieve high precision since Hinton trained networks by
layer-wise pre-training. We may discover interesting struc-
tures, by imposing other constraints and tricks on the network.

A neuron is defined to be “active” if its output value is
close to 1, or to be “inactive” if its output value is close to
0. The sparse function in this study constraints the neurons
to be inactive for most of the sampling time. A Sparsity
constraint imposes on the hidden units, mainly by changing
the activation strategy.

ELU which is chosen as the activation function has the
characteristics of unilateral inhibition and fast convergence.
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FIGURE 3. Schematic representation of the SAE.

It combines the advantages of sigmoid and ReLU. The left
side has soft saturation like a sigmoid and the right side
has no saturation like ReLU. Thus the neurons involved in a
calculation have limited activation. ELU has negative values
which allow it to push mean unit activation closer to zero.
It achieves sparsity in a low-cost way to speed up learning.
X
ELU (x) = {(e — x<0 (10)
X x>0
Our model is activated by ELU. It endows network with
the ability to fit nonlinearity. ELU also allows the network to
limit the activity of neurons during error back-propagation so
that the gradient does not explode or vanish.

C. GRU SERIES FORECASTING MODEL

RNN can be used in many works in natural language process-
ing (NLP) successfully. Long Short Term Memory (LSTM)
is designed to overcome the limitations of long-term depen-
dency. However, LSTMs have a rather complex design with
three multiplicative gates, which might impair their efficient
implementation. An attempt to simplify LSTMs has recently
led to Gated Recurrent Units (GRUs), which are based on
just two multiplicative gates. Just a while ago, the Minimal
RNN is suggested. Its accuracy is not as good as LSTM and
GRU though it is simple and trained easily. The GRU has two
control gates, each of them is activated by a sigmoid. The
gates receive a weighted sum of current input x; and previous
output h;_; as the total input. The update gate z; and reset
gate r; can be expressed as:

2t =0 (Wig-xp + big + Wiz - i1 + bp) (11
re = 0 (Wi - Xt + bir + Wpy - he—1 + bpy) (12)

where W;; and W), are the weight matrixes of update gate;
bi, and by, are the biases of update gate; W;. and Wp, are
the weight matrixes of reset gate; b; and by, are the biases of
update gate. z; controls the amount of information needs to be
forgotten from the /;_1. r; controls the amount of information
needs to be reserved from the /;_.

VOLUME 10, 2022



L. Ai et al.: SSAE and GRU Based Joint Modeling for Nonlinear Distributed Parameter Systems

IEEE Access

} o o tanh

| T |

: w. w. W,
e

GRU also has two states, which are called candidate hidden
state n; and current output state /;, respectively.

ny = tanh (Winx; + bin + 11 © Wpphi—1 + bpp))  (13)
h=0-2)0n+2z Ol (14)

Similarly, W and b are the weight and bias of the candidate
hidden state. © is the Hadamard product. o is sigmoid func-
tion. In conclusion, 4; determines the final output according
to the information of the gates and candidate state. Under the
problem of time series forecasting, the GRU process can be
regarded as:

X =h =¢(x) 15)

where ¢ () is GRU. x; is current input. X; is current output,
namely, the input of next time. Fig. 4 illustrates the architec-
ture of GRU.

The full operation of the GRU temporal model is listed as
follows:

Step 1: Prepare the input data that comes from control
inputs u (¢) and spatial low dimensional representation y (¢).

Step 2: Establish the relationship between the control input
u (t) and temporal prediction y (#) by GRU.

Step 3: Employ GRU to identify time dynamics between
y (¢) and the prediction y (7).

Step 4: Build dual GRU time series model.

D. SPATIOTEMPORAL INTEGRATION AND JOINT
LEARNING

Measured output data Y (x, ) and random inputs u(t) are
taken for representations learning and model identification.
First, SSAE compresses data collected by spatially dis-
tributed sensors as:

y=T.(Y) (16)
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FIGURE 5. Schematic representation of the SSAE-GRU workflow.

Considering the timing rules of the external input and the
system itself are completely different, we use two GRUs
to learn separately. In the forward propagation of the GRU
network, to simplify the mathematical description, the rela-
tionship refers to equation (6) between the future state y(z),
its present state y(¢), and the systematic excitation u(¢) can be
constructed as:

YO =aly@®)+nw®) 7)

Recombining the prediction of time variables with the spa-
tial variables, high-level system predictions consistent with
the original dimension can be derived as follow:

Y =Ty (9) (18)

where y is low dimensional representations of system. T, Ty
are encoder, decoder function. Both « and 7 are temporal
identification model. The overflow diagram of this work is
shown in Fig. 5.

In this study, both SSAE and GRU are trained in a single
stage. Two subtasks of MOR and series prediction they repre-
sent are integrated into one learning process. Both temporal
and spatial variables are connected by a final loss function,
which is more in line with the time/space coupling charac-
teristics of DPS. To fight against overfitting, we add the L2
regularization term into the cost function. Regularization is
also one of the sources of sparsity. Before modeling, data
preprocessing is a necessary step. Here, a Min-Max Scaler
method is applied to scale the data to a range of [0,1].

Based on the spatiotemporal data, considering modeling
errors both in time and space, the objective function of the
SSAE-GRU joint model is constructed as follows:

JO.Y,7) = Hf/(@) — YH2 (19)

where J(0; Y, Y) is 2-norm loss function which need to be
optimized. The definition of ¥ and Y is the same as before.
6, is the set that consists of all weights and biases which
influence the error at present. The gradient back-propagation
includes four parts. Details are presented as follow:
1) Gradient of the objective function: From (19), the gra-
dient g; of all the samples at the ¢-th time step is derived
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as follow:
& = VJi (0i—1) + 16, (20)

where A is the regularization hyperparameter which
restrained the model fit.

2) Calculate first moment vector: According to (20), m; is
determined and is also controlled by decay coefficient B; as
follow:

my =1 -m—1+ (1 —B1) - & 2D

The initial value of m; is zero. 1 = 0.9.

3) Calculate second moment vector: With respect to (20),
V; can be decided and decay coefficient B, also have an
influence as follow:

vi=B2-vio1 + (1 — Bo) g (22)

where v, is initialized as zero. 8, = 0.999.
4) Update parameters: As aresult, the latest values is given
by:

91+1 = 91 - i./viit
t
zel_é“'(ﬂl~mz71+(1—,31)'gt) 23)

JBr v+ (- ) g2

Here learning rate ¢ = 0.001. gt2 indicates the
element-wise square g; © g;. The above-mentioned hyperpa-
rameters set as constants are all referenced in [36] and [37].

E. COMPUTATIONAL COMPLEXITY

In deep learning, the index of floating-point operations
(FLOPs) is often used to measure the computational com-
plexity. The key to obtain FLOPs is to find out the trainable
parameters. As mentioned before, M is the number of sensors,
k is the encoder layer number. There are k1 neurons in the
first layer. According to equations (9) and (9), total trainable
parameters of the encoder and decoder are 2 x [(M x k; +
k) +ky xky+ky)+. ..+ (ky—1 Xk, +k,)]. GRU has three
layers like a normal neural network. Each layer is linked by
three sets of weight matrixes and bias vectors, corresponding
to two gates and the candidate state. The number of neurons in
the hidden layer is determined by k,,. According to (11), (12),
(13), (17), temporal model has 4 x (3 x k,f + k,,) variables
need to be trained. For the proposed algorithm, all trainable
variables have 2 x [(M x k1 + ki) + (ki x ko + k) + ... +
(kp—1 x ky +k,)]+4x(3x k,% + k). Although the advanced
regularization and activation strategies in this method can
reduced the computation of gradient back-propagation to a
certain extent, they do not change the order of magnitude of
FLOPs overall. Using Big O notation to describe the time
complexity is O(n?).

IV. EXPERIMENT

In this section, to evaluate the proposed model’s effective-
ness, two chemical industrial processes: catalytic rod reaction
and tubular reactor with recycling are set. The numerical
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Algorithm 1 SSAE-GRU Based Modeling for Nonlinear
DPSs
Input: Measured data Y (x, t), control inputs u(t)
Output: Spatiotemporal model and its parameters 6 and
prediction Y (x,1)
1: Normalize Y (x, t) into range [0, 1]; split data into train
set and test set
2: Randomly initialize encoder [W,, b.] and decoder
[Wy, bg] within [0,1], Aw = Ab =0
3: Initialize GRU’s weights and biases from U/ (—\/% , \/E),
where k = 1, h,_1 =0
4: Set max iteration I/, GRU’s neuron P
5: fori=1:1do
6: Update the parameters with (9) to calculated y(¢):
W, <~ W, + Aw, b, < b, + Ab
7: forp=1:Pdo

8: Zp < Yp, hp—1 by (11)

9: p <= Yp, hp—1 by (12)

10: ny < yp, hp—1, rp by (13)
11: hy < zp, hp, hy—1 by (14)
12: end for

13: a @) < hy

14: Initial GRU’s parameter and repeat steps 7-12:

15: n(u@) < hy

16 () < a@®)+nw) )

17: Update the parameters with (9) to calculated Y (x, t):
Wg < Wi+ Aw, by < by + Ab

18: Calculated loss J(0) by (19)

19: Fine-tuning the parameters with back-propagation by
(20), (21), (22) and (23)

20: save all the trainable parameters 6 in memory

21: if loss < best loss then

22: update 6

23: end if

24: end for

experiments are configured on a computer with: Intel i5
6300HQ CPU, 12GB RAM, Nvidia GTX 960M GPU, Win-
dows 10, and Pytorch 1.7. The following indexes are given for
comparison among traditionally statistical learning methods,
the proposed method, and the same type of deep learning
methods.

Root of mean squared error:

L
RMSE = 1% Z 3 (Y (x, 1) — ¥ (x, t)>2 (24)

i=1 t=1

Spatiotemporal prediction error:
e(x,n)=Y (x,1) =Y (x,1) (25)

Principally, the total spatiotemporal error situation of all
sensors over all periods is described by RMSE. SPE indicates
the error between the whole prediction process and the sam-
pling process of each sensor at each time. The computation
time required for each model is also given.
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FIGURE 6. Simplified physical diagram of a catalytic rod.

A. CATALYTIC ROD

The catalytic rod reaction [38] is a benchmark experiment
for testing the effectiveness of the time-space prediction
model. A long thin rod in a reactor as shown in Fig. 6 is a
typical transport-reaction process in the chemical industry.
The reactor is fed with pure species A and a zeroth order
exothermic catalytic reaction of the form A — B takes place
in the rod. With the settings of constant density and heat
capacity of the rod, constant conductivity of the rod, constant
temperature at both sides of the rod, and excess of species A
in the furnace, the mathematical expression, which interprets
the spatiotemporal-varying of the rod temperature, has the
following parabolic PDE:

Y (x,1)  02Y(x,1)
ar  ox2

+ Br (e—y/(lm _ e—y)

+ u (b0 u0) = Y(x,1))  (26)
subject to the boundary and initial condition:

Y0,1)=0, Y(m,t)=0, Y(x,0=Yx) (27

where Y (x, 1), u(t), b(x), Br, Bu and y denote the tem-
perature in the reactor, the manipulated input (temperature
of the cooling medium), the actuator distribution, the heat
of reaction, the heat transfer coefficient and the activa-
tion energy, respectively. The process parameters are set as:
Br = 50, B, = 2, y = 4. As the first step for the
model identification, suitable input signals is very impor-
tant for gathering informative data. Four actuators: u(¢t) =
(1 (1), u2(t), u3(2), us(t)]* are employed to excite the nonlin-
earity of process.

R A VAT
b,(x)—H<x— 2 ) H(x 4), ie|l,4]
(28)

H () is the standard Heaviside function. More specifically,
the temporal input
wi(t) = 1.1+ (6- 1)/ sin(50 - 1/7 + 2.5 - 1)
—0.4-e706n(50 -t +25-1)(=1,...,4)
(29)
where 7 is a uniform distributed random function on [0,1].
Twenty sensors are placed to be distributed along the rod,

the sampling interval is designed as 0.01 and total simulation
time is 7.5s. 750 samples are collected as the original data.
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FIGURE 7. Measured outputs of catalytic rod.

The first 500 sample are used as training samples, and remain-
ing 250 sample are testing data. Fig. 7 illustrates the measured
outputs of spatiotemporal dynamics in catalytic rod.

SSAE is designed to achieve nonlinear projection and
reconstruction learning. Existing research case selected 2 as
the proper dimension of the systems. The whole structure of
SSAE with bottleneck layer is confirmed as 20-10-2-10-20.
Reduced order time series y1 (), y2(¢) computed from original
system measurements {Y (X, tn)}moéafgzl are used as the true
value (solid line in Fig. 8) to train and test the sequence model.

Two GRUs identify the temporal law based on the input
signal {u,-(tn)}?!ls’g:l and time series {y,-(t)}l.z’=715’2=1. The num-
ber of hidden layer nodes of each GRU is set as 2. Then,
the overall network is optimized. The calculation process
and hyperparameter selection of the optimizer are shown in
Section III.D. The max iterations are set as 1500. While the
spatiotemporal model of whole reaction process is obtained,
temperature predicted by the temporal model under the
manipulated input conditions are compared with the actual
measured temperature at the specified times to validate the
proposed model. As indicated in Fig. 8, the predictions (dot-
ted line) given by GRU model can track the tendency of true
value.

After spatiotemporal integration, the prediction of
high-dimensional temperature distribution is shown in Fig. 9.
Comparing the predicted temperature with the original value,
the maximum deviation does not exceed 0.1°C, that is, the
error is less than 1%. The SSAE-GRU model is qualified to
reflect the spatiotemporal dynamics of the original system.

In order to quantify the average error of the overall sample,
the RMSE criterion is introduced. Table 1 compares the
RMSE values of PCA-RBF, NL-PCA-RBF [6], DS-Volterra
[27], AE-RNN [18] and the proposed method in the catalytic
rod case. PCA-RBF is used as a benchmark method. Note
that the proposed method is executed 20 times using ran-
domly initialized weights. The mean and standard deviation
of RMSE values in training and testing are listed, respec-
tively. The prediction errors given by SSAE-GRU are the
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FIGURE 9. SPE of the proposed model in catalytic rod example.

TABLE 1. Comparison of RMSE in catalytic rod.

Methods RMSE_tr RMSE _te
PCA-RBF 0.1040 0.0956
NL-PCA-RBF [6]  0.0570 0.0591
DS-Volterra [27] 0.0510 0.0514
AE-RNN [18] 0.0452 0.0456
SSAE-GRU 0.0387 0.0389

smallest among all these models. It is 35.8% more accu-
rate than the statistical-based NL-PCA-RBF model. When
contrasted to DS-Volterra, the accuracy of SSAE-GRU is
29.5% increased. Compared with AE-RNN, which is the
same type of deep learning method, the accuracy is improved
by 18.3%. The results illustrate the predictive stability of the
proposed method. Table 2 shows the training time of models.
SSAE-GRU spends 14.3764s in training, which is close to
DS-Volterra 13.5385s, far less than the training time of
AE-RNN 65.1983s and NL-PCA-RBF 102.7345s.

B. TUBULAR REACTORS WITH RECYCLE

Tubular reactors are widely used for the production of a vari-
ety of industrial products and are characterized by a strong
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TABLE 2. Comparison of modeling time in catalytic rod.

Methods Training Time
PCA-RBF 1.5632s
NL-PCA-RBF [6]  102.7345s
DS-Volterra [27] 13.5385s
AE-RNN [18] 65.1983s
SSAE-GRU 14.3764s
u () uy (t) us () uy (1)

Fresh Product
4 E ® ® j 5 o
[ ) [ )
us (1) g (1) ur (1) ug (1)

Recycle

FIGURE 10. Simplified physical diagram of a tubular with recycle.

coupling of diffusive, convective, and reactive mechanisms.
In tubular reactors where highly, exothermic reactions take
place. To reduce the ‘hot spot’, a recycle loop around the
reactor was used to return the unreacted reactant to the reac-
tor. We considered a non-isothermal tubular reactor without
catalyst packing, shown in Fig. 10, where an irreversible
first-order reaction of the form A — B took place. Tubular
reactors with recycle can be modeled by the systems of
parabolic PDE [39]. Data with a small number of degrees of
freedom can describe the main feature of these systems. MOR
techniques incredibly reduce the complexity of the internal
complex dynamical systems while maintaining the accuracy
of its input and output behavior, thereby significantly saving
simulation time [40]. The spatiotemporal dynamic of the
tubular reactor was expressed by the following formulas:

aC aC 1 92%C
S L o 4 30
ot 8x+PeC8x2 Fe.y) (30)
Yy 9y 1 8%y
a  x P, dx?

+Byf(C.Y) + By (b(x)u(r) = Y) 3D

where C and Y are the dimensionless reactant concentration
and temperature, respectively. f(C,Y) = BcCe?Y/U+1)
is the reaction term. B¢ and By denote a dimensionless
pre-exponential factor and a dimensionless heat of a reaction,
respectively. y and By are a dimensionless activation energy
and a dimensionless heat transfer coefficient. A recycle is
used here to return part of the reactants in the output stream
to the feed stream at a ratio . The parameters used are P, =
7.0,P,, =70,Bc = 0.1, By =25,y =100, r = 0.5,
and By = 2.0 [18], [41]. The boundary conditions for the
concentration and temperature at x = 0 are as follows:

% = —Pq [(1—=r)(14+Co) +rC,1)—C(, 0] (32)
% = Py (1= 1) (14 Yo) 4+ 7Y ) — Y, 0] (33)
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FIGURE 11. Measured outputs of tubular reactor with recycle.

The boundary conditions at x = 1 are dC/dx = 0 and
dY /dx = 0, u(t) are jacket temperature zones (actuators)
and b (x) is the actuator distribution function. Under these
circumstances, each control input snapshot u (f) consists
of eight manipulated inputs u;(f) = [u1(0), ..., ug(O))F
located based on the spatial distribution function b(x) =
[61(2), ..., bg()]T [42] given by the following expression:

bix)=Hx —(i—1)/8) —H(x —i/8) (34)
The manipulated inputs u; (¢) is designed as follow:

ui(t) = 0.15 + (0.2 4+ 0.057) exp(—i/10) sin(2t + 0.27)
—0.02exp(—i/20)sin(10T + 0.27)  (35)

The system is detected by 16 sensors and sampled at
time interval At = 0.01. Each temperature snapshot Y; is
collected from 16 heat exchanges of the equal surface. The
total simulation time is 15s and the first 300 snapshots were
discarded because the exothermic reaction raised the temper-
ature quickly after + = [0, 2] along the entire reactor. Our
modeling method focus on forming long-term monitoring
of chemical systems after stabilization. Fig. 11 shows the
steady-state of the reactor. 600 snapshots are chosen as the
training data while the remaining 600 snapshots are tested.

The construction of SSAE in this condition uses
a 16-8-2-8-16 with bottleneck layers architecture. Control
inputs are fed into the GRU through a two-layers 8-2 architec-
ture. The other GRU has a 2-2 architecture. Two-layer GRU
structure is more attractive for learning the evolution law in
the time dimension. Other parameter settings are the same as
in the catalytic rod reaction case.

The low dimensional time series models predicted by two
GRUs have excellent performance and captured the time
relationship of the low dimensional model and control inputs
as indicated in Fig. 12. The SPE distribution of proposed
method is illustrated in Fig. 13. The maximum does not
exceed 4 x 10_3°C, 0.5%. It is satisfactory to achieve a
high level of prediction accuracy. Table 3 shows the RMSE
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FIGURE 13. SPE distribution in tubular reactor with recycle.

TABLE 3. Comparison of RMSE in tubular with recycle.

Methods RMSE_tr RMSE te
K-L decomposition ~ 0.079 0.078
DS-Volterra [27] 0.0084 0.0085
AE-RNN [18] 0.0070 0.0074
SSAE-GRU 0.0063 0.0064

using the nonlinear methods is only one tenth than that using
the K-L decomposition. The RMSE of the proposed method
is 0.0064, and the best results are obtained again in the
second chemical numerical experiment. Table 3 provides that
SSAE-GRU is improved compared to DS-Volterra 24.7%
and AE-RNN 14.8% respectively. Table 4 shows that the
consuming time of training SSAE-GRU is 15.6413s, which
is 77.2% less than that of AE-RNN, 67.4932s.

C. ANALYSIS AND COMPARISON

Compared with linear dimensionality reduction approaches,
such as K-L decomposition, the nonlinear dimensional-
ity reduction approaches with stronger representation abil-
ity have more advantages in dealing with DPSs with
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TABLE 4. Comparison of modeling time in tubular with recycle.

Methods Training time
K-L decomposition ~ 2.0105s
DS-Volterra [27] 14.8231s
AE-RNN [18] 67.4932s
SSAE-GRU 15.6413s

complex nonlinear parameters and boundary conditions. Due
to its deep network structure, deep learning technique has
stronger nonlinear representation ability than other nonlin-
ear approaches. Although DS-Volterra model ensures good
modeling efficiency and reduces the occupation of commu-
nication resources, the multi-layer SSAE can achieve better
performance with the similar amount of computation.

Although the calculation of GRU is more complicated than
vanilla RNN and some simplified versions, we use GRU
because we believe that prediction accuracy is supposed to
consider a higher priority. Thanks to ELU and L2 regular-
ization, neurons in the model have the property of sparse
activation. The proposed method is superior to AE-RNN
in model execution time. Successful training of AE-RNN
requires tens of thousands of iterations. Compared with this,
the proposed method only needs about 1/10, which is an
important reason for the training time advantage. SSAE-GRU
stacked with multi-layers of neurons means that it is imprac-
tical to compete with the linear method of computing cost.
However, the key to modeling DPSs is accuracy, and then
consider the calculation time under this premise. Therefore,
the proposed method helps to overcome this challenge and is
meaningful.

V. CONCLUSION

In this work, a novel data-driven model named SSAE-GRU
is proposed for modeling of spatiotemporal-varying DPSs.
By introducing deep learning, the body of knowledge on
accurate modeling of DPSs is expanded. This deep learning
technology-based model is trained using a jointly modular
learning approach. In this way, the spatiotemporal model is
inherited and updated in a relatively simple way through-
out the training process. From the perspective of modeling
accuracy, the proposed model is based on the precise SSAE
dimensionality reduction technique and the GRU time series
prediction technique to solve the long-term dependency prob-
lem. Therefore, it study the intrinsic parameters of the phys-
ical equation from the data extremely, which is close to the
actual application in the manufactures. From the perspective
of modeling efficiency, the introduction of sparse nature and
the joint learning strategy can lead to a simple structure,
simplify the model training process, and accelerate learning.
Thus, this method is applied to a class of time/space coupled
DPSs and is a excellent black-box model. Experiments on
catalytic rods and circulating tubular reactors demonstrate the
efficiency and feasibility of the proposed model. In our future
study, we will focus on the following three aspects.
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1) From the perspective of simulation results and DPSs
itself, there is a dramatic change at the boundary. And
the accuracy of low-dimensional representations may be
affected. How to reduce the influence of this phenomenon on
the design of MOR techniques is a key problem we need to
solve.

2) Theoretically, deep networks’ representational ability is
stronger. We will extend the application of proposed method
to other types of industrial processes represented by DPSs.

3) We will also consider incorporating low-order models
into the field of predictive control.
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