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ABSTRACT The modeling and control issues for distributed parameter systems (DPSs) have received a
great deal of attention. Because linear model order reduction (MOR) methods may ignore the nonlinear
dynamics and lose some details, it is difficult to describe DPS accurately by common modeling methods.
To effectively model such systems, a sparse stacked auto-encoder and gated recurrent unit (SSAE-GRU)
model is proposed in this paper. Under the time/space separation theory, it is the mainstream way to perform
MOR and identification of time series respectively. In the SSAE-GRU model, this practice is still adhered to
but joint learning is recommended. SSAE can be used as an excellent MOR technique. A sparse activation
strategy that is introduced makes its model space simple and easy to train. GRU has the ability to represent
such complex temporal properties because the information stored by previous neurons can be transmitted
to the current moment selectively. The joint training method allows them to be responsible and consider the
connection between adjacent moments and spatial energy transfer overall. Then, we use L2 regularization
in back-propagation to reduce the difficulty of model optimization and prevent overfitting. The modeling
scheme is simulated on two typical chemical thermal processes. This article demonstrates the effectiveness
of the proposed method as well as outstanding performance compared to existing methods.
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INDEX TERMS Distributed parameter systems, model order reduction, sparse stacked auto-encoder, gated
recurrent unit, joint learning.

I. INTRODUCTION17

A. BACKGROUND18

Intelligent manufacturing is the combination of advanced19

sensing, detection, control, and process optimization tech-20

nologies and practices that fuse information and the manufac-21

turing environment to enable precise management of energy,22

production efficiency, and costs in factories [1]. The snap cur-23

ing oven during chip packaging [2], the thermal monitoring of24

lithium-ion battery charge and discharge experiments [3], and25

the thermal management of chemical engineering reactors26

are all topics of intelligent manufacturing research. They27

have infinite-dimensional properties described by partial dif-28

ferential equations (PDEs). These industrial processes with29

The associate editor coordinating the review of this manuscript and
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complex spatiotemporal distributed nature are commonly 30

referred to as distributed parameter systems (DPSs). Model- 31

ing and controlling issues for DPSs are a challenging task [4]. 32

Model order reduction (MOR) techniques are essential 33

for modeling DPSs [5]. It transforms the origin DPSs 34

described by infinite-dimensional partial differential equa- 35

tions (PDEs) into finite-dimensional lump parameter systems 36

(LPSs) described by ordinary differential equations (ODEs). 37

Although spatiotemporal discretization methods such as the 38

finite difference technique and the finite element method 39

(FEM) can be used for general DPSs with irregular bound- 40

aries, the high reduction orders impose a huge computing 41

load on subsequent control applications. We are accustomed 42

to simplifying the systems before controller design. The 43

low-dimensional representation of parabolic systems can be 44

produced using spatiotemporal decomposition theory [6]. 45
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B. lITERATURE REVIEW46

Due to the lack of in-depth information on the physicochem-47

ical backdrop, data-driven approaches are frequently used in48

the modeling of unknown DPSs. The spatiotemporal dataset49

can be gathered using a large number of spatial sensors,50

which are subsequently processed using data-based linear51

and nonlinear MOR algorithms to yield low-dimensional52

time series [7]. Principal component analysis (PCA) [8],53

also called Karhunen-Loeve decomposition (KLD) [9] or54

proper orthogonal decomposition (POD) [9], is one of the55

most famous linear algorithms applied to MOR for DPSs.56

PCA is a global linear projection method [10]. It uses a57

linear approximation for the nonlinear problem that would58

not ensure the minor components never contain the important59

information [6]. Since linear MOR algorithms cannot pre-60

serve the nonlinear spatial structure of the complex system,61

a range of measures have been created to enhance MOR62

performance. By splitting the original dataset into tractable63

subsets, a novel multimode spatiotemporal modeling tech-64

nique based on the locally weighted PCA (LW-PCA) method65

is created for large-scale highly nonlinear DPSs with param-66

eter fluctuations [11]. By incorporating information entropy,67

adaptive PCA adjusts the weight matrixes of reconstructing68

error [12]. Both of them enhance boosting linear PCA accu-69

racy to a certain extent. In addition, nonlinear approaches70

such as isometric mapping (ISOMAP) [13] and kernel sup-71

port vector machine (SVM) [14] have been employed for72

DPSs. Nonlinear MOR techniques including locally linear73

embedding (LLE) [15] have greatly enriched the practice of74

DPS modeling issues. These algorithms are shallow learning75

networks with a single hidden layer structural model. As we76

all know, shallow networks are prone to fall into local opti-77

mum and have poor generalization ability.78

In recent years, multi-layer deep networks are more effi-79

cient at extracting features from high-dimensional data [16].80

A MOR framework for DPSs was designed to utilize a81

deep auto-encoder (AE) embedded in Restricted Boltzmann82

Machine (RBM) with a layer-wise pre-trained learning strat-83

egy [17]. A multi-layer AE architecture with direct train-84

ing for DPSs has been developed [18]. Although the deep85

networks-based MOR techniques mentioned above have86

shown significant promise in improving the reduced models’87

performance, there are still several specific constraints such88

as being cumbersome or difficult to converge. These deep89

network-based DPS modeling techniques rely on multiple90

training epochs on the dataset to increase the modeling capac-91

ity, and there is still room for improvement.92

Additionally, numerous identification techniques, such as93

extreme learning machine (ELM) [19], least-squares sup-94

port vector machine (LS-SVM) [20], have been applied to95

the related low-dimensional time-series obtained by MOR.96

A Dual ELM model is developed for the two nonlineari-97

ties embedded in industrial thermal processes [21]. A spa-98

tiotemporal LS-SVM model is designed to compensate for99

modeling errors due to truncation and unknown nonlinear100

dynamics [22]. A modified High-Order SVD that takes into101

account the interaction across several spatial modes is applied 102

to model DPSs [23]. A fast incremental learning-based mod- 103

eling approach for thermal process modeling of lithium bat- 104

teries is developed [24]. A finite sensing optimization tech- 105

nique with recursive temperature field estimation for pouch 106

cells is devised [25]. For time series identification in wireless 107

sensor networks, a distributed spatiotemporal Volterra model 108

(DS-Volterra) with enhanced Wiener is used [26], [27], [28]. 109

A reduced model via multilayer perceptron and long short 110

term memory (MLP-LSTM) is proposed to approximate the 111

DPS situation of two coupled nonlinear dynamics [29]. 112

We note that some new networks, for instance, 113

Alexnet [30] with rectified linear units (ReLU) [31] achieved 114

a low test error rate of image classification. ReLU with 115

L1 regularization trick [32] has been proved that sparsity 116

operating in a deep neural network is more biologically plau- 117

sible. Gated recurrent unit (GRU) [33], which is an elaborate 118

recurrent neural network (RNN), is designed to model time 119

series. It has comparable accuracy with the long short term 120

memory (LSTM) [34], and meanwhile, the parameters that 121

need to be trained are less by one-fourth. 122

In this paper, a novel SSAE-GRU-based modeling 123

approach is presented for the nonlinear DPSs. The intrin- 124

sic features are extracted using sparse stacked auto-encode 125

(SSAE) approach with the sparse activation functions. The 126

SSAE can fit networks without pre-training. Considering 127

practicality and ease of implementation, the sparsity con- 128

straints by L2 penalty and exponential linear unit (ELU) acti- 129

vation function are applied. Then, the proper evolution law of 130

low-dimensional representation and control signal are estab- 131

lish byGRUs. The capacity of time-series prediction to gener- 132

alize has been aided through regularization. Finally, the pro- 133

posedmodel adopts a joint learning approach. Unlike existing 134

methods, the proposed method only requires optimization 135

for one objective function because we are most interested in 136

high-dimensional reconstruction. It has the potential to lower 137

modeling errors. The main contributions and novelty of this 138

paper are summarized as follows: 139

1) A sparse form of stacked auto-encoder is introduced 140

to resolve the MOR issue of DPSs. Sparse representation is 141

closer to the system reality, which alleviates computationally 142

intensive, makes the network easier to train, and ultimately 143

improves the performance of modeling. 144

2) Considering the features of DPSs are related between 145

the time and space dimensions, a joint learning approach is 146

adopted. MOR and time series prediction are performed in 147

one step for gathering a model with higher accuracy. 148

3) Simulations on two representative chemical ther- 149

mal processes verify the effectiveness of the proposed 150

method. 151

The rest of the paper is structured as follows. The problem 152

description is in Sections II. In Section III, the SSAE-GRU 153

algorithm is presented. Section IV gives the experiment result 154

of two typical chemical thermal processes to confirm the 155

effectiveness of the proposed method. A summary is given 156

in Section V. 157
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FIGURE 1. Schematic representation of the spatiotemporal modeling.

II. RELATED WORK158

A. MATHEMATICAL FOUNDATION OF DPS159

Consider a general DPS can be described by the following160

nonlinear PDEs:161

∂Y (x, t)
∂t

= L
(
Y (x, t),

∂Y (x, t)
∂x

, . . . ,
∂nY (x, t)
∂nx

)
+
(
u(t)

)
162

(1)163

subject to the boundary condition:164

Q
(
Y (x, t),

∂Y (x, t)
∂x

, . . . ,
∂n−1Y (x, t)
∂n−1x

)∣∣∣∣
x=x0,x=xn

= 0 (2)165

and the initial condition:166

Y (x, 0) = Y0(x). (3)167

where, t is the time variable, x ∈ � is the spatial variable,168

and � is the spatial domain, Y (x, t) is the controlled output169

variable, u(t) is the control input variable, L , , and Q are170

the continuous differentiable functions in Hilbert space H .171

It includes two nonlinear time law: a block is from system172

Y (·, t) and the other is from u(t). The basic steps of DPS173

spatiotemporal modeling are shown in Fig. 1.174

System (1) is applicable to model a variety of physical and175

biochemical processes, such as catalytic reaction rods, steel176

casting, and the tubular reactor. To obtain accurate informa-177

tion about such a system, a sufficient number of sensors need178

to be placed alongwith the spatial location. Only a small num-179

ber of actuators are allowed to be mounted for observing the180

state in actual physical conditions. The input-output datasets181

are obtained from the actual production process under ran-182

dom signal excitation. The modeling algorithm is developed183

in two stages: the output {Y (xm, tn)}
M ,N
m=1,n=1 excited by the184

input {u(tn)}Nn=1 is used by the SSAE to reduce the dimen-185

sionality of the approximatemodel.M ,N , andK are the num-186

ber of the sensors, the sampling duration, and the actuators,187

respectively.188

B. SPATIOTEMPORAL DECOMPOSITION THEORY189

According to spatiotemporal decomposition theory [5], the190

variables of DPSs which is controlled by PDE can be191

FIGURE 2. Schematic representation of the low-order time evolution law.

expanded as: 192

Y (x, t) =
n∑
i=1

si (t) · φi (x) (4) 193

The spatiotemporal variables can be decomposed into two 194

parts: a set of low-dimension representations φi (x) and a tem- 195

poral model si (t). To reduce the Y (x, t) to si (t), a number of 196

MOR techniques are listed in literature review. 197

si(t) = Te (Y (x, t)) (5) 198

where Te denotes the dimensionality reduction function. 199

C. ESTABLISH LOW-ORDER TEMPORAL SERIES 200

It is critical to create an appropriate representation and iden- 201

tify the corresponding time series. Some scholars have sci- 202

entifically proven that time series is decomposed into two 203

nonlinear units with different regularities si (t) [21], [35]. 204

This law has depicted in Fig. 2. 205

ŝi (t) = αi (si (t))+ ηi (ui (t)) (6) 206

where the αi (·) and ηi (·) are nonlinear modules. ŝi (t) is 207

temporal prediction value. 208

D. SPATIOTEMPORAL INTEGRATION 209

The system prediction outputs can be acquired by spatiotem- 210

poral integration. 211

Ỹ (x, t) = Td (ŝi(t)) (7) 212

where ŝi(t), Td , Ỹ (x, t) are forecasted temporal series, integral 213

function, spatiotemporal integration predictions, respectively. 214

Though conventional modeling methods have an accept- 215

able accuracy on nonlinear processes, there are still some 216

practices required to improve, which can be summarized as 217

follow: 218

1) DPSs are nonlinear and spatiotemporal-varying. Linear 219

projections ignore nonlinear variation among the data. Shal- 220

low networks are deficient in learning ability, decreasing their 221

effectiveness in nonlinear DPS modeling. 222

2) The randomness of system inputs makes it difficult to 223

identify temporal dynamics. 224

3) Considering the ease of implementation and practice, 225

some reported methods have high calculation costs thus need 226

to make a balance between accuracy and time-consuming. 227
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III. SSAE-GRU SPATIOTEMPORAL MODEL228

A. THE FRAMEWORK OF THE PROPOSED MODEL229

To solve the above problem, the framework of the proposed230

model will be described in detail as follow:231

1) The SSAE technique is applied for extracting232

low-dimensional features and forming an essential represen-233

tation to characterize high-dimensional PDEs. Details of the234

SSAE technique can be found in Section III.B.235

2) GRU which is multivariable time series forecasting236

algorithm is set up to build the temporal dynamics and deal237

with nonlinearities. Details of the GRU are presented in238

Section III.C.239

3) According to spatiotemporal reconstruction, the high240

dimensional temperature distribution model can be con-241

stituted. Details of spatiotemporal reconstruction and joint242

learning are presented in Section III.D.243

B. SSAE MOR TECHNIQUE244

By training a multilayer neural network with a small245

bottleneck layer to reconstruct high-dimensional input vec-246

tors, high-dimensional data can be transformed into low-247

dimensional codes. The essential features of the system are248

acquired from the bottleneck layer by stacked auto-encoder249

(SAE).250

SAE has the composition of an encoding function Te251

and a decoding function Td . The encoder is created using252

a multiple-layer neural network. At each discretized time253

step, the vector Y =
[
Y1,Y2, . . . ,Yp

]T
∈ Rp represents254

the p input. k is the encoder network layer. The encoder255

projects Y from the input layer to low order representation256

y = [y1, y2, . . . , yc]T ∈ Rc. Decoder function Td has a257

symmetrical structure with Te. Hence, the input-output of the258

SAE can be expressed as follows:259

y (t) = Te (Y (·, t))260

= ϕ (Wk . . . ϕ (W1Y (·, t)+ b1) . . .+ bk) (8)261

Ỹ (·, t) = Td (y (t))262

= ϕ
(
WT

1 . . . ϕ
(
WT

k y (t)+ bk
)
. . .+ b1

)
(9)263

where ϕ (·) are nonlinear activation functions that act264

element-wise on its inputs, which have many different forms265

such as step function, sigmoid and tanh, etc. W are p ×266

c matrixs. b ∈ Rc are the bias vectors. The superscript267

T means matrix transposition. Fig. 3 is a normal, flexi-268

ble and adjustable architecture of SAE. Though SAE can269

achieve high precision since Hinton trained networks by270

layer-wise pre-training. We may discover interesting struc-271

tures, by imposing other constraints and tricks on the network.272

A neuron is defined to be ‘‘active’’ if its output value is273

close to 1, or to be ‘‘inactive’’ if its output value is close to274

0. The sparse function in this study constraints the neurons275

to be inactive for most of the sampling time. A Sparsity276

constraint imposes on the hidden units, mainly by changing277

the activation strategy.278

ELU which is chosen as the activation function has the279

characteristics of unilateral inhibition and fast convergence.280

FIGURE 3. Schematic representation of the SAE.

It combines the advantages of sigmoid and ReLU. The left 281

side has soft saturation like a sigmoid and the right side 282

has no saturation like ReLU. Thus the neurons involved in a 283

calculation have limited activation. ELU has negative values 284

which allow it to push mean unit activation closer to zero. 285

It achieves sparsity in a low-cost way to speed up learning. 286

ELU (x) =

{
(ex − 1) x < 0
x x ≥ 0

(10) 287

Our model is activated by ELU. It endows network with 288

the ability to fit nonlinearity. ELU also allows the network to 289

limit the activity of neurons during error back-propagation so 290

that the gradient does not explode or vanish. 291

C. GRU SERIES FORECASTING MODEL 292

RNN can be used in many works in natural language process- 293

ing (NLP) successfully. Long Short Term Memory (LSTM) 294

is designed to overcome the limitations of long-term depen- 295

dency. However, LSTMs have a rather complex design with 296

three multiplicative gates, which might impair their efficient 297

implementation. An attempt to simplify LSTMs has recently 298

led to Gated Recurrent Units (GRUs), which are based on 299

just two multiplicative gates. Just a while ago, the Minimal 300

RNN is suggested. Its accuracy is not as good as LSTM and 301

GRU though it is simple and trained easily. The GRU has two 302

control gates, each of them is activated by a sigmoid. The 303

gates receive a weighted sum of current input xt and previous 304

output ht−1 as the total input. The update gate zt and reset 305

gate rt can be expressed as: 306

zt = σ (Wiz · xt + biz +Whz · ht−1 + bhz) (11) 307

rt = σ (Wir · xt + bir +Whr · ht−1 + bhr ) (12) 308

where Wiz and Whz are the weight matrixes of update gate; 309

biz and bhz are the biases of update gate; Wir and Whr are 310

the weight matrixes of reset gate; bir and bhr are the biases of 311

update gate. zt controls the amount of information needs to be 312

forgotten from the ht−1. rt controls the amount of information 313

needs to be reserved from the ht−1. 314
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FIGURE 4. Schematic representation of the GRU.

GRU also has two states, which are called candidate hidden315

state nt and current output state ht , respectively.316

nt = tanh (Winxt + bin + rt � (Whnht−1 + bhn)) (13)317

ht = (1− zt)� nt + zt � ht−1 (14)318

Similarly,W and b are the weight and bias of the candidate319

hidden state. � is the Hadamard product. σ is sigmoid func-320

tion. In conclusion, ht determines the final output according321

to the information of the gates and candidate state. Under the322

problem of time series forecasting, the GRU process can be323

regarded as:324

x̂t = ht = ς (xt) (15)325

where ς (·) is GRU. xt is current input. x̂t is current output,326

namely, the input of next time. Fig. 4 illustrates the architec-327

ture of GRU.328

The full operation of the GRU temporal model is listed as329

follows:330

Step 1: Prepare the input data that comes from control331

inputs u (t) and spatial low dimensional representation y (t).332

Step 2: Establish the relationship between the control input333

u (t) and temporal prediction ŷ (t) by GRU.334

Step 3: Employ GRU to identify time dynamics between335

y (t) and the prediction ŷ (t).336

Step 4: Build dual GRU time series model.337

D. SPATIOTEMPORAL INTEGRATION AND JOINT338

LEARNING339

Measured output data Y (x, t) and random inputs u(t) are340

taken for representations learning and model identification.341

First, SSAE compresses data collected by spatially dis-342

tributed sensors as:343

y = Te (Y ) (16)344

FIGURE 5. Schematic representation of the SSAE-GRU workflow.

Considering the timing rules of the external input and the 345

system itself are completely different, we use two GRUs 346

to learn separately. In the forward propagation of the GRU 347

network, to simplify the mathematical description, the rela- 348

tionship refers to equation (6) between the future state ŷ(t), 349

its present state y(t), and the systematic excitation u(t) can be 350

constructed as: 351

ŷ (t) = α (y (t))+ η (u (t)) (17) 352

Recombining the prediction of time variables with the spa- 353

tial variables, high-level system predictions consistent with 354

the original dimension can be derived as follow: 355

Ỹ = Td
(
ŷ
)

(18) 356

where y is low dimensional representations of system. Te, Td 357

are encoder, decoder function. Both α and η are temporal 358

identification model. The overflow diagram of this work is 359

shown in Fig. 5. 360

In this study, both SSAE and GRU are trained in a single 361

stage. Two subtasks of MOR and series prediction they repre- 362

sent are integrated into one learning process. Both temporal 363

and spatial variables are connected by a final loss function, 364

which is more in line with the time/space coupling charac- 365

teristics of DPS. To fight against overfitting, we add the L2 366

regularization term into the cost function. Regularization is 367

also one of the sources of sparsity. Before modeling, data 368

preprocessing is a necessary step. Here, a Min-Max Scaler 369

method is applied to scale the data to a range of [0,1]. 370

Based on the spatiotemporal data, considering modeling 371

errors both in time and space, the objective function of the 372

SSAE-GRU joint model is constructed as follows: 373

J (θ;Y , Ỹ ) =
∥∥∥Ỹ (θ )− Y∥∥∥

2
(19) 374

where J (θ;Y , Ỹ ) is 2-norm loss function which need to be 375

optimized. The definition of Y and Ỹ is the same as before. 376

θt is the set that consists of all weights and biases which 377

influence the error at present. The gradient back-propagation 378

includes four parts. Details are presented as follow: 379

1) Gradient of the objective function: From (19), the gra- 380

dient gt of all the samples at the t-th time step is derived 381
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as follow:382

gt = ∇Jt (θt−1)+ λθt−1 (20)383

where λ is the regularization hyperparameter which384

restrained the model fit.385

2) Calculate first moment vector: According to (20), mt is386

determined and is also controlled by decay coefficient β1 as387

follow:388

mt = β1 · mt−1 + (1− β1) · gt (21)389

The initial value of mt is zero. β1 = 0.9.390

3) Calculate second moment vector:With respect to (20),391

Vt can be decided and decay coefficient β2 also have an392

influence as follow:393

vt = β2 · vt−1 + (1− β2) g2t (22)394

where vt is initialized as zero. β2 = 0.999.395

4)Update parameters:As a result, the latest values is given396

by:397

θt+1 = θt −
ζ · mt
√
vt

398

= θt −
ζ · (β1 · mt−1 + (1− β1) · gt)√

β2 · vt−1 + (1− β2) g2t

(23)399

Here learning rate ζ = 0.001. g2t indicates the400

element-wise square gt � gt . The above-mentioned hyperpa-401

rameters set as constants are all referenced in [36] and [37].402

E. COMPUTATIONAL COMPLEXITY403

In deep learning, the index of floating-point operations404

(FLOPs) is often used to measure the computational com-405

plexity. The key to obtain FLOPs is to find out the trainable406

parameters. Asmentioned before,M is the number of sensors,407

k is the encoder layer number. There are k1 neurons in the408

first layer. According to equations (9) and (9), total trainable409

parameters of the encoder and decoder are 2 × [(M × k1 +410

k1)+ (k1× k2+ k2)+ . . .+ (kn−1× kn+ kn)]. GRU has three411

layers like a normal neural network. Each layer is linked by412

three sets of weight matrixes and bias vectors, corresponding413

to two gates and the candidate state. The number of neurons in414

the hidden layer is determined by kn. According to (11), (12),415

(13), (17), temporal model has 4 × (3 × k2n + kn) variables416

need to be trained. For the proposed algorithm, all trainable417

variables have 2× [(M × k1 + k1)+ (k1 × k2 + k2)+ . . .+418

(kn−1× kn+ kn)]+4× (3× k2n + kn). Although the advanced419

regularization and activation strategies in this method can420

reduced the computation of gradient back-propagation to a421

certain extent, they do not change the order of magnitude of422

FLOPs overall. Using Big O notation to describe the time423

complexity is O(n2).424

IV. EXPERIMENT425

In this section, to evaluate the proposed model’s effective-426

ness, two chemical industrial processes: catalytic rod reaction427

and tubular reactor with recycling are set. The numerical428

Algorithm 1 SSAE-GRU Based Modeling for Nonlinear
DPSs
Input: Measured data Y (x, t), control inputs u(t)
Output: Spatiotemporal model and its parameters θ and

prediction Ỹ (x, t)
1: Normalize Y (x, t) into range [0, 1]; split data into train

set and test set
2: Randomly initialize encoder [We, be] and decoder

[Wd , bd ] within [0,1], ∆w = ∆b = 0
3: Initialize GRU’s weights and biases from U(−

√
k,
√
k),

where k = 1
2 , hp−1 = 0

4: Set max iteration I , GRU’s neuron P
5: for i = 1 : I do
6: Update the parameters with (9) to calculated y(t):

We← We +∆w, be← be +∆b
7: for p = 1 : P do
8: zp← yp, hp−1 by (11)
9: rp← yp, hp−1 by (12)
10: np← yp, hp−1, rp by (13)
11: hp← zp, np, hp−1 by (14)
12: end for
13: α (y (t))← hp
14: Initial GRU’s parameter and repeat steps 7-12:
15: η (u (t))← hp
16: ŷ (t)← α (y (t))+ η (u (t))
17: Update the parameters with (9) to calculated Ỹ (x, t):

Wd ← Wd +∆w, bd ← bd +∆b
18: Calculated loss J (θ ) by (19)
19: Fine-tuning the parameters with back-propagation by

(20), (21), (22) and (23)
20: save all the trainable parameters θ in memory
21: if loss < best loss then
22: update θ
23: end if
24: end for

experiments are configured on a computer with: Intel i5 429

6300HQ CPU, 12GB RAM, Nvidia GTX 960M GPU, Win- 430

dows 10, and Pytorch 1.7. The following indexes are given for 431

comparison among traditionally statistical learning methods, 432

the proposed method, and the same type of deep learning 433

methods. 434

Root of mean squared error: 435

RMSE =

√√√√ 1
NL

N∑
i=1

L∑
t=1

(
Y (x, t)− Ỹ (x, t)

)2
(24) 436

Spatiotemporal prediction error: 437

e (x, t) = Y (x, t)− Ỹ (x, t) (25) 438

Principally, the total spatiotemporal error situation of all 439

sensors over all periods is described by RMSE. SPE indicates 440

the error between the whole prediction process and the sam- 441

pling process of each sensor at each time. The computation 442

time required for each model is also given. 443
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FIGURE 6. Simplified physical diagram of a catalytic rod.

A. CATALYTIC ROD444

The catalytic rod reaction [38] is a benchmark experiment445

for testing the effectiveness of the time-space prediction446

model. A long thin rod in a reactor as shown in Fig. 6 is a447

typical transport-reaction process in the chemical industry.448

The reactor is fed with pure species A and a zeroth order449

exothermic catalytic reaction of the form A→ B takes place450

in the rod. With the settings of constant density and heat451

capacity of the rod, constant conductivity of the rod, constant452

temperature at both sides of the rod, and excess of species A453

in the furnace, the mathematical expression, which interprets454

the spatiotemporal-varying of the rod temperature, has the455

following parabolic PDE:456

∂Y (x, t)
∂t

=
∂2Y (x, t)
∂x2

+ βT

(
e−γ /(1+Y ) − e−γ

)
457

+βu

(
b(x)Tu(t)− Y (x, t)

)
(26)458

subject to the boundary and initial condition:459

Y (0, t) = 0, Y (π, t) = 0, Y (x, 0) = Y0(x) (27)460

where Y (x, t), u (t), b (x), βT , βu and γ denote the tem-461

perature in the reactor, the manipulated input (temperature462

of the cooling medium), the actuator distribution, the heat463

of reaction, the heat transfer coefficient and the activa-464

tion energy, respectively. The process parameters are set as:465

βT = 50, βu = 2, γ = 4. As the first step for the466

model identification, suitable input signals is very impor-467

tant for gathering informative data. Four actuators: u(t) =468

[u1(t), u2(t), u3(t), u4(t)]T are employed to excite the nonlin-469

earity of process.470

bi(x) = H
(
x −

(i− 1)π
4

)
− H

(
x −

iπ
4

)
, i ∈ [1, 4]471

(28)472

H (·) is the standard Heaviside function. More specifically,473

the temporal input474

ui(t) = 1.1+ (6 · τ )e(−i/5) sin(50 · t/7+ 2.5 · τ )475

− 0.4 · e(−i/20) sin(50 · t + 2.5 · τ ) (i = 1, . . . , 4)476

(29)477

where τ is a uniform distributed random function on [0,1].478

Twenty sensors are placed to be distributed along the rod,479

the sampling interval is designed as 0.01 and total simulation480

time is 7.5s. 750 samples are collected as the original data.481

FIGURE 7. Measured outputs of catalytic rod.

The first 500 sample are used as training samples, and remain- 482

ing 250 sample are testing data. Fig. 7 illustrates themeasured 483

outputs of spatiotemporal dynamics in catalytic rod. 484

SSAE is designed to achieve nonlinear projection and 485

reconstruction learning. Existing research case selected 2 as 486

the proper dimension of the systems. The whole structure of 487

SSAE with bottleneck layer is confirmed as 20-10-2-10-20. 488

Reduced order time series y1(t), y2(t) computed from original 489

system measurements {Y (xm, tn)}
20,750
m=1,n=1 are used as the true 490

value (solid line in Fig. 8) to train and test the sequencemodel. 491

Two GRUs identify the temporal law based on the input 492

signal {ui(tn)}
4,750
i=1,n=1 and time series {yi(t)}

2,750
i=1,n=1. The num- 493

ber of hidden layer nodes of each GRU is set as 2. Then, 494

the overall network is optimized. The calculation process 495

and hyperparameter selection of the optimizer are shown in 496

Section III.D. The max iterations are set as 1500. While the 497

spatiotemporal model of whole reaction process is obtained, 498

temperature predicted by the temporal model under the 499

manipulated input conditions are compared with the actual 500

measured temperature at the specified times to validate the 501

proposed model. As indicated in Fig. 8, the predictions (dot- 502

ted line) given by GRU model can track the tendency of true 503

value. 504

After spatiotemporal integration, the prediction of 505

high-dimensional temperature distribution is shown in Fig. 9. 506

Comparing the predicted temperature with the original value, 507

the maximum deviation does not exceed 0.1◦C , that is, the 508

error is less than 1%. The SSAE-GRU model is qualified to 509

reflect the spatiotemporal dynamics of the original system. 510

In order to quantify the average error of the overall sample, 511

the RMSE criterion is introduced. Table 1 compares the 512

RMSE values of PCA-RBF, NL-PCA-RBF [6], DS-Volterra 513

[27], AE-RNN [18] and the proposed method in the catalytic 514

rod case. PCA-RBF is used as a benchmark method. Note 515

that the proposed method is executed 20 times using ran- 516

domly initialized weights. The mean and standard deviation 517

of RMSE values in training and testing are listed, respec- 518

tively. The prediction errors given by SSAE-GRU are the 519
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FIGURE 8. Comparison of the true value and predicted value.

FIGURE 9. SPE of the proposed model in catalytic rod example.

TABLE 1. Comparison of RMSE in catalytic rod.

smallest among all these models. It is 35.8% more accu-520

rate than the statistical-based NL-PCA-RBF model. When521

contrasted to DS-Volterra, the accuracy of SSAE-GRU is522

29.5% increased. Compared with AE-RNN, which is the523

same type of deep learning method, the accuracy is improved524

by 18.3%. The results illustrate the predictive stability of the525

proposed method. Table 2 shows the training time of models.526

SSAE-GRU spends 14.3764s in training, which is close to527

DS-Volterra 13.5385s, far less than the training time of528

AE-RNN 65.1983s and NL-PCA-RBF 102.7345s.529

B. TUBULAR REACTORS WITH RECYCLE530

Tubular reactors are widely used for the production of a vari-531

ety of industrial products and are characterized by a strong532

TABLE 2. Comparison of modeling time in catalytic rod.

FIGURE 10. Simplified physical diagram of a tubular with recycle.

coupling of diffusive, convective, and reactive mechanisms. 533

In tubular reactors where highly, exothermic reactions take 534

place. To reduce the ‘hot spot’, a recycle loop around the 535

reactor was used to return the unreacted reactant to the reac- 536

tor. We considered a non-isothermal tubular reactor without 537

catalyst packing, shown in Fig. 10, where an irreversible 538

first-order reaction of the form A → B took place. Tubular 539

reactors with recycle can be modeled by the systems of 540

parabolic PDE [39]. Data with a small number of degrees of 541

freedom can describe themain feature of these systems.MOR 542

techniques incredibly reduce the complexity of the internal 543

complex dynamical systems while maintaining the accuracy 544

of its input and output behavior, thereby significantly saving 545

simulation time [40]. The spatiotemporal dynamic of the 546

tubular reactor was expressed by the following formulas: 547

∂C
∂t
= −

∂C
∂x
+

1
PeC

∂2C
∂x2
− f (C,Y ) (30) 548

∂Y
∂t
= −

∂Y
∂x
+

1
PeY

∂2Y
∂x2

549

+BY f (C,Y )+ βY (b(x)u(t)− Y ) (31) 550

where C and Y are the dimensionless reactant concentration 551

and temperature, respectively. f (C,Y ) = BCCeγY/(1+Y ) 552

is the reaction term. BC and BY denote a dimensionless 553

pre-exponential factor and a dimensionless heat of a reaction, 554

respectively. γ and βY are a dimensionless activation energy 555

and a dimensionless heat transfer coefficient. A recycle is 556

used here to return part of the reactants in the output stream 557

to the feed stream at a ratio r . The parameters used are PeC = 558

7.0, PeY = 7.0, BC = 0.1, BY = 2.5, γ = 10.0, r = 0.5, 559

and βY = 2.0 [18], [41]. The boundary conditions for the 560

concentration and temperature at x = 0 are as follows: 561

∂C
∂x
= −PeC [(1− r) (1+ C0)+ rC(t, 1)− C(t, 0)] (32) 562

∂Y
∂x
= −PeY [(1− r) (1+ Y0)+ rY (t, 1)− Y (t, 0)] (33) 563
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FIGURE 11. Measured outputs of tubular reactor with recycle.

The boundary conditions at x = 1 are dC/dx = 0 and564

dY/dx = 0, u(t) are jacket temperature zones (actuators)565

and b (x) is the actuator distribution function. Under these566

circumstances, each control input snapshot u (t) consists567

of eight manipulated inputs ui(t) = [u1(t), . . . , u8(t)]T568

located based on the spatial distribution function b(x) =569

[b1(z), . . . , b8(x)]T [42] given by the following expression:570

bi(x) = H (x − (i− 1)/8)− H (x − i/8) (34)571

The manipulated inputs ui (t) is designed as follow:572

ui(t) = 0.15+ (0.2+ 0.05τ ) exp(−i/10) sin(2τ + 0.2τ )573

− 0.02 exp(−i/20) sin(10τ + 0.2τ ) (35)574

The system is detected by 16 sensors and sampled at575

time interval 1t = 0.01. Each temperature snapshot Yt is576

collected from 16 heat exchanges of the equal surface. The577

total simulation time is 15s and the first 300 snapshots were578

discarded because the exothermic reaction raised the temper-579

ature quickly after t = [0, 2] along the entire reactor. Our580

modeling method focus on forming long-term monitoring581

of chemical systems after stabilization. Fig. 11 shows the582

steady-state of the reactor. 600 snapshots are chosen as the583

training data while the remaining 600 snapshots are tested.584

The construction of SSAE in this condition uses585

a 16-8-2-8-16 with bottleneck layers architecture. Control586

inputs are fed into the GRU through a two-layers 8-2 architec-587

ture. The other GRU has a 2-2 architecture. Two-layer GRU588

structure is more attractive for learning the evolution law in589

the time dimension. Other parameter settings are the same as590

in the catalytic rod reaction case.591

The low dimensional time series models predicted by two592

GRUs have excellent performance and captured the time593

relationship of the low dimensional model and control inputs594

as indicated in Fig. 12. The SPE distribution of proposed595

method is illustrated in Fig. 13. The maximum does not596

exceed 4 × 10−3
◦
C , 0.5%. It is satisfactory to achieve a597

high level of prediction accuracy. Table 3 shows the RMSE598

FIGURE 12. Comparison of the true value and predicted value.

FIGURE 13. SPE distribution in tubular reactor with recycle.

TABLE 3. Comparison of RMSE in tubular with recycle.

using the nonlinear methods is only one tenth than that using 599

the K-L decomposition. The RMSE of the proposed method 600

is 0.0064, and the best results are obtained again in the 601

second chemical numerical experiment. Table 3 provides that 602

SSAE-GRU is improved compared to DS-Volterra 24.7% 603

and AE-RNN 14.8% respectively. Table 4 shows that the 604

consuming time of training SSAE-GRU is 15.6413s, which 605

is 77.2% less than that of AE-RNN, 67.4932s. 606

C. ANALYSIS AND COMPARISON 607

Compared with linear dimensionality reduction approaches, 608

such as K-L decomposition, the nonlinear dimensional- 609

ity reduction approaches with stronger representation abil- 610

ity have more advantages in dealing with DPSs with 611
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TABLE 4. Comparison of modeling time in tubular with recycle.

complex nonlinear parameters and boundary conditions. Due612

to its deep network structure, deep learning technique has613

stronger nonlinear representation ability than other nonlin-614

ear approaches. Although DS-Volterra model ensures good615

modeling efficiency and reduces the occupation of commu-616

nication resources, the multi-layer SSAE can achieve better617

performance with the similar amount of computation.618

Although the calculation of GRU is more complicated than619

vanilla RNN and some simplified versions, we use GRU620

because we believe that prediction accuracy is supposed to621

consider a higher priority. Thanks to ELU and L2 regular-622

ization, neurons in the model have the property of sparse623

activation. The proposed method is superior to AE-RNN624

in model execution time. Successful training of AE-RNN625

requires tens of thousands of iterations. Compared with this,626

the proposed method only needs about 1/10, which is an627

important reason for the training time advantage. SSAE-GRU628

stacked with multi-layers of neurons means that it is imprac-629

tical to compete with the linear method of computing cost.630

However, the key to modeling DPSs is accuracy, and then631

consider the calculation time under this premise. Therefore,632

the proposed method helps to overcome this challenge and is633

meaningful.634

V. CONCLUSION635

In this work, a novel data-driven model named SSAE-GRU636

is proposed for modeling of spatiotemporal-varying DPSs.637

By introducing deep learning, the body of knowledge on638

accurate modeling of DPSs is expanded. This deep learning639

technology-based model is trained using a jointly modular640

learning approach. In this way, the spatiotemporal model is641

inherited and updated in a relatively simple way through-642

out the training process. From the perspective of modeling643

accuracy, the proposed model is based on the precise SSAE644

dimensionality reduction technique and the GRU time series645

prediction technique to solve the long-term dependency prob-646

lem. Therefore, it study the intrinsic parameters of the phys-647

ical equation from the data extremely, which is close to the648

actual application in the manufactures. From the perspective649

of modeling efficiency, the introduction of sparse nature and650

the joint learning strategy can lead to a simple structure,651

simplify the model training process, and accelerate learning.652

Thus, this method is applied to a class of time/space coupled653

DPSs and is a excellent black-box model. Experiments on654

catalytic rods and circulating tubular reactors demonstrate the655

efficiency and feasibility of the proposed model. In our future656

study, we will focus on the following three aspects.657

1) From the perspective of simulation results and DPSs 658

itself, there is a dramatic change at the boundary. And 659

the accuracy of low-dimensional representations may be 660

affected. How to reduce the influence of this phenomenon on 661

the design of MOR techniques is a key problem we need to 662

solve. 663

2) Theoretically, deep networks’ representational ability is 664

stronger. We will extend the application of proposed method 665

to other types of industrial processes represented by DPSs. 666

3) We will also consider incorporating low-order models 667

into the field of predictive control. 668
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