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ABSTRACT Aiming at the problems of complex urban road network, low efficiency of logistics distribution,
and the difficulty of large-scale logistics distribution area division and routing planning, this paper proposes
a two-stage logistics distribution vehicle routing optimization (VRP) method based on the establishment
of a multi-factor complex road network constrained logistics distribution mathematical model. Considering
the complex traffic elements and road network topological structure in logistics and distribution, in the first
stage, a heuristic simulated annealing (HSA) distribution region partitioning algorithm is proposed with the
objective of balancing vehicle task load to divide the urban logistics distribution network under complex road
networks, so as to reduce the region scale and path search cost. In the second stage of route decision making,
aiming at minimizing the total cost of logistics distribution, combining the VRP problem with complex road
network conditions, a heuristic path search method combined with complex road network model constraints
is proposed. In this stage, a hybrid genetic beam search(HGBS) algorithm is used to plan the path nodes,
reduce the randomness of the model in the initial search for paths by heuristic genetic algorithms, then
combine with Beam Search methods to reduce the space and time used for the search, and use optimization
algorithms to improve the accuracy of independent sub-region routing optimization and the rationality of
overall physical distribution route selection. Finally, the proposed method is validated in this paper with two
practical cases. The experimental results show that the two-stage decision-making algorithm proposed in
this paper has certain advantages in partitioning schemes, minimizing total cost and iteration times. Through
comparison, the optimization ability of this method for logistics distribution networks is proved.

INDEX TERMS Vehicle routing optimization, complex road network, two-stage algorithm, heuristic
simulated annealing, hybrid genetic beam search.

I. INTRODUCTION

With the rapid development of online shopping and the
modern logistics industry, logistics distribution has become
an important link connecting producers and consumers, and
it plays an increasingly important role in the whole sup-
ply chain. Optimizing the vehicle routing of urban logistics
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distribution is of great significance to reduce logistics opera-
tion costs and improve customer service satisfaction. There-
fore, the research of vehicle routing optimization (VRP) for
multi-factor complex road network constraints has been paid
more and more attention.

Since Dantzig and Ramser [1] proposed the truck schedul-
ing problem, researchers have been studying the relationship
between vehicle routing planning and delivery planning. It is
considered a typical case of VRP, involving the distribution
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of goods from central warehouses to geographically dis-
persed customers. By planning a reasonable driving route,
the cost (such as the shortest distance and the least time)
can be minimized. At this period, some scholars have studied
many external factors that affect vehicle routing planning in
logistics distribution. In the study of constraints related to
vehicle routing planning, Wagner [2] studied the relation-
ship between logistics region partitioning and transportation
through empirical analysis in the case of a whole logistics
area in Hamburg, Germany, and concluded that traffic flow
would affect the distribution of the logistics region. This kind
of direct path planning for the entire logistics network can be
called level-1-based VRP.

Logistics distribution can also divide the entire logis-
tics distribution network into several smaller sub regions,
and further study the vehicle routing problem in each sub
region. This method can be called two-level VRP, where,
Christofides [3] meshed the distribution region into square
areas of unequal sizes and aggregated each square area into
distribution units according to the historical path connec-
tion frequency of different square areas, so as to divide
the distribution area and optimize the vehicle path in each
area. Besides, Wang et al. [4] proposed a hybrid algo-
rithm based on extended particle swarm optimization and
genetic algorithm (EPSO-GA). By establishing a two-level
logistics distribution system, the efficient urban logistics
distribution can be realized under the minimization of logis-
tics distribution cost. Based on the above research, it can
be seen that traffic flow, regional scale, distribution cost,
and other factors have become the key factors affecting the
quality of vehicle routing planning, which directly affect
the efficiency, cost, capacity, and service level of logistics
distribution. In addition, the traffic elements and topological
structure of urban roads also affect the operation of the entire
logistics distribution system. Because it is very complex to
establish a VRP mathematical model considering the com-
plex road network, there are fewer studies considering the
impact of the complexity of urban roads on urban logistics
distribution.

The partitioning of logistics distribution region is a combi-
natorial optimization problem with multiple constraints and
multi-objective decision. In recent years, research on solving
the optimal vehicle routing method is emerging in endlessly.
Most of the methods need to establish mathematical models
to complete the vehicle path optimization by defining dif-
ferent types of variables, constraint functions and objective
functions. The commonly used methods mainly include exact
algorithms and heuristics [5], [6], [7], [8], [9]. Among them,
exact search algorithms mainly focus on the branch and
bound method, the branch cutting method, sequence gener-
ation method and dynamic programming method etc [10],
[11]. Because VRP is a NP-hard problem, it will consume
too much computing power and storage space when using
exact algorithms to optimize, which limits the accuracy of
the optimal vehicle path. This method can only be applied to
small-scale VRP solution.
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With the gradual increase of the problem scale, some
scholars propose to use heuristic search algorithm to solve
the vehicle path planning problem. General computational
intelligence heuristic search algorithms are divided into ten
types: biological based, social based, chemical based, phys-
ical based, music based, mathematics based, sports based,
population-based, plant-based and water based [8], [9]. The
heuristic algorithm is based on the optimization algorithm.
Its basic idea is to give a feasible solution to the combi-
natorial optimization problem within an acceptable range.
In the VRP Problem, the heuristic search algorithms mainly
used in VRP problems include evolutionary algorithm [12],
particle swarm optimization algorithm [13], ant colony algo-
rithm [14], genetic algorithm [15], intelligent water drop, tabu
search [7] and their improvement types [16], [17], [18]. Com-
pared with the exact search algorithm, the heuristic search
algorithm has better robustness and feasibility when dealing
with large-scale VRP problems.

Based on the existing research, both exact search algorithm
and intelligent heuristic search algorithm can be used to
solve VRP and related problems. Exact algorithms can find
the optimal solution for the problem. However, it is highly
dependent on the solution space, the number of constraints
and the number of decision variables in the problem model,
and cannot provide a general solution strategy for different
types of variables, objectives and constraints [7], [9]. How-
ever, when the scale of the problem becomes larger, there
will be a “combination explosion” phenomenon in exact
algorithm that will consume too much computing power and
storage space. By designing the heuristic function, heuristic
algorithms can get the optimal solution to a search problem
in a very short time. For the NP problem, it can also get
a better solution in polynomial time. Heuristic algorithms
can further improve the accuracy of vehicle routing. The
classification and advantages and disadvantages of vehicle
routing optimization methods for logistics distribution are
shown in Table 1.

At present, there are three kinds of data used in VRP
research The first is the standard Solomon data-set [19],
which is limited to dozens of points. However, in the actual
distribution process, especially in industries closely related
to daily life, such as garbage collection, milk collection
and distribution, cigarette distribution, and so on, the cus-
tomer group consists of residents or retailers distributed in
all corners of the city, and the scale of the problem to be
solved is often in the order of 100 or 1000. Whether exact
algorithms or heuristic algorithms are directly used to solve
large-scale problems, they have limitations. The second is
the data set based on experimental simulation. Compared
with the standard data set, the scale of this kind of data
will expand. For example, Li et al. [21], Mester and Briysy
[22], and Accorsi and Vigo [23] obtained a large-scale CVRP
example with 1200 customer points according to the example
generator designed by themselves, and designed effective
solution algorithms such as simulated annealing and variable
neighborhood search. Duhamel et al. [24] presented a VRP

99647



IEEE Access

Q. Sun et al.: Two-Stage Vehicle Routing Optimization for Logistics Distribution Based on HSA-HGBS Algorithm

example using a two-stage algorithm to deal with large-scale
and multi-vehicle models. Vonolfen et al. [25] gave an exam-
ple of VRP with a time window processing of 1000 points.
However, the scale of these computer-generated experimental
simulation examples was still less than that of the actual
distribution cases, and the constraints caused by the com-
plex geographical environment and special industrial require-
ments that the actual distribution needs to face cannot be
reflected in the standard examples. In this regard, Wasil [26]
and Cheong et al. [27] studied the distribution problem of the
beverage industry and combined it with the two-stage algo-
rithm to realize the distribution path optimization. Beasley
and Christofides [28] studied the example of a large mail
order company in the UK that accepts orders by telephone
or mail and then delivers them to customers’ homes. They all
adopted the customer region partition method based on postal
code, and realized the distribution route selection through
the customer region partition based on postal code. These
studies put forward many effective strategies for standard
examples, simulation examples, and practical cases, which
have important guiding significance for the study of large-
scale VRP in actual distribution.

The urban road network has complexity, which is mainly
reflected in detailed and complex traffic elements and com-
plex topology (see Section 2.3). Complex traffic elements
mainly include traffic lights, accidents, peak hours, etc.,
as well as the restrictions of urban road intersections and
road sections. The complex urban road network topology
is mainly reflected in the connection path between two
points, including multiple choices. This road network struc-
ture affects the operation of the whole logistics distribution
system. At present, in a logistics distribution system, the
location and quantity of logistics centers are usually deter-
mined. Therefore, the two most important links in large-scale
urban logistics distribution under the condition of a complex
road network are the reasonable partitioning of distribution
regions and the optimization of vehicle routing. The parti-
tioning of logistics distribution regions can reduce the burden
of large-scale logistics distribution and provide convenience
for urban logistics planning. Vehicle routing optimization
can alleviate urban congestion, improve mobility, and reduce
pollution. Based on previous studies, it is of great practical
significance to solve the vehicle routing optimization prob-
lem of large-scale logistics distribution facing the constraints
of multi-factors and complex road networks. The main con-
tributions to this paper are as follows:

(1) Aiming at the problem of complex road network com-
posed of detailed and complex traffic elements and the
topological structure of road network in urban logistics
distribution, the mathematical model of urban complex
road network is established.

(2) Aiming at the vehicle routing optimization prob-
lem considering complex road networks, a two-stage
decision-making algorithm is established to improve
the accuracy and timeliness of vehicle routing in
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logistics distribution. In the first stage, aiming at bal-
ancing the vehicle task load, the overall distribution
region is divided into independent sub-regions by sim-
ulated annealing algorithms, so as to reduce the region
scale and path optimization range, reduce the path
search cost, and improve the path search effect.

(3) In the second stage of route decision-making, aiming
at minimizing the total cost of logistics distribution
and considering the complex road network constraints
in each sub-regions after the partition of the regional
road network, a hybrid genetic beam search algorithm
is proposed to realize vehicle routing optimization and
enhance the accuracy of independent sub-region rout-
ing optimization and the rationality of overall physical
allocation routing selection.

Il. VRP MATHEMATICAL MODEL CONSIDERING
COMPLEX ROAD NETWORK

A. THE DIFFERENCE BETWEEN VRP CONSIDERING
COMPLEX ROAD NETWORK AND TRADITIONAL
PROBLEMS

Traditional VRP can be defined as [1]: (1) Multiple customers
need transportation services at the same time, and multiple
vehicles are required to solve customer demand problems.
(2) Each customer can only be visited once by one vehicle.
(3) All vehicles start from the depots and finally return to the
depots. (4) All vehicles must meet the loading capacity con-
straints. Under the above constraints, reasonably arrange the
distribution lines to minimize the total distribution distance
and shorten the distribution time.

The precondition for solving the traditional VRP is that
the location of the logistics distribution center, the location
of the customer point, and the shortest path between any
two customer points are known. On this basis, the customer
is assigned to different vehicles, and the customer access
sequence is arranged for each vehicle, so as to determine the
problem solution.

The search traversal network graph of traditional VRP is
relatively simple, which is an undirected graph with cus-
tomers as nodes and the shortest known path as the edge.
The search network graph of the VRP model considering
complex road networks is a directed graph composed of path
nodes(refers to the intersection of two roads) [27], customer
nodes, and paths, with additional consideration of actual road
traffic restrictions (such as one-way driving and motor vehi-
cles). Therefore, the VRP model considering complex road
networks is more practical.

B. ROAD NETWORK CONSTRAINTS AND CUSTOMER
DEMAND CONSTRUCTION

In logistics distribution, urban road conditions (mainly
reflected in the complexity of urban road networks) affect
the operation of the whole distribution system. The complex
road network basically reflects the road network structure
of the real city. Its complexity is mainly reflected in the
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TABLE 1. Classification of exact search algorithm and heuristic search algorithm.

Classification VRP solution algorithms

Advantages

Disadvantages

Applicable scale

branch and bound method

sequence generation
method
Exact search
algorithm
dynamic programming
method

The optimal solution can be found
without evaluating all possible
feasible solutions.

It can solve large-scale linear
programming problems with high
speed.

Practical knowledge and experience
can be used to improve the solution
speed.

The solution speed is slow and the
applicability is poor.

Only linear relaxation problems can
be solved, and the solving speed of
subproblems is slow.

There is no unified standard model
and numerical method, and there is a
dimension disaster when solving the

problem.

Small scale
VRP

Relatively
large-scale

Small scale

PSO

ACO

GA

It is easy to realize and the
convergence speed is fast.

It has strong robustness and inherent
parallelism.

Taking the objective function value as
the search information directly has
the characteristics of group search.

As the number of iterations increases,

the diversity of particles is gradually

lost, resulting in the algorithm easily
falling into local extremum.

Slow convergence speed, easy to fall
into local optimization, and lack of
initial pheromones

The crossover and mutation have
randomness, and the algorithm is
prone to slow convergence.

Large scale

Large scale

Large scale

Heuristic search

algorithm
Tabu Search

water based

Fast search speed and strong local
search ability.

It has good robustness and strong
global optimization ability.

Large scale

The global searching ability is weak. VRP

The movement of water droplets is
prone to stagnation and blockage, and
it is easy to fall into local extremum
and converge slowly.

Large scale

detailed and complex traffic elements and complex topology.
Specifically, there may be many connection paths between
two points. The traffic network data in the process of logistics
distribution and transportation belongs to spatial information.
Before modeling, it is necessary to grid the urban logistics
distribution region according to the road network.

The model of the urban complex road network can be
expressed as:

G = (V(G), A(G), P(G)) ()
V(G) ={vi,va, en.... , Vil 2)
A(G) = {R(vi, v)IR(vi,v)) =1, i,j=1,2,3,...,n}

(€)]

Vi=j, Rv,v)=0 “

vi = vi(x,y) (%)
P(G) = {P(v;, v))|P(vi, vj)) = (P x Up)/(P2 x Uy)

and (vi,v)) =1,i,j=1,2,3,...,n} (6)

Formula (1) represents the road network G consists of
point set V(G), directed path set A(G) and road congestion
information P(G). In formula (2), V(G) is the set of all path
nodes, v; is the ith path node, and » is the number of path
nodes. Formula (3) represents that the elements of A(G) are
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composed of path matrix R(v;, v;). Formula (4) represents that
for the path node itself R(v;, v;) = 0. Formula (5) represents
the coordinate of path node of v;. Formula (6) is the descrip-
tion of road congestion: The impact of natural conditions
and road grade on road capacity is evaluated, import formula
P = (P1 x Uy)/(P> x Uy), (P1 and U are the average fuel
consumption and speed of national roads in plain regions. P>
and U, are the corresponding parameters of a certain class
of highway in a certain place), and then, in formula (6),
P(G) indicates that when path nodes v; to v; are passable,
road congestion information P(v;, v;) including all path nodes
exists.

The demand information of the customer distribution cen-
ter can be described as:

C ={c1,¢2,¢3,...,¢4,...,Cs} 7)

cqg = cqg(x,y, Rvy, vp), qa) (8)
S

Q=) |a ©)

J={,JJ3, ... ,Js) (10)

In formula (7), the customer distribution center demand is
represented by set C, where, ¢4 is the demand information
of the d* customer distribution node J4, and S is the total
number of customer distribution points, d = 1,2,3,...,S.
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In formula (8), X and yrepresents the coordinate of the d”
customer distribution node J4, where R(v,,v,) = 1 also
indicates that the customer distribution node J; is on the
traffic side where v, points to v, (that is, there is a path
between any two path nodes). g4 represents the distribution
and delivery demand of all customers at the d customer
distribution node J;. v, represents the average speed of all
path nodes. Formula (9) represents the sum of the demand
of all customers for distribution and delivery. Formula (10)
represents the set of customer distribution nodes.

This paper uses a two-stage decision-making method to
solve the problems of distribution region partitioning and
vehicle distribution path planning. In the first stage, the prob-
lem of vehicle distribution region partitioning is solved first.
Customers are scattered throughout the city, and the location
of the distribution center is generally fixed. Customers are
mainly clustered around the distribution center as the central
point in logistics distribution. In addition, due to the insuf-
ficient utilization of vehicle load capacity caused by uneven
vehicle task load and the increase in maintenance cost caused
by vehicle selection differences caused by uneven task load,
the goal of balancing vehicle task load is adopted in the first
stage decision-making:

min G=Y""_(Qu— 07 (a1

where, O = Q/N represents the average of vehicle capacity,
QO is the freight volume of vehicle m. Equation (10) repre-
sents minimizing the vehicle operating variance during region
partitioning, where Q represents the sum of the demand of all
customers for distribution and delivery, N represents the total
number of vehicles.

In the second stage of decision-making, a better heuristic
algorithm is used for path planning. Through actual examples
to prove the proposed algorithm has the ability of path opti-
mization and can reduce the total distribution cost. On the
whole, the two-stage decision-making takes into account the
optimization of distribution costs and benefits on the premise
of ensuring that customers are served.

C. MAPPING DESCRIPTION OF COMPLEX ROAD
NETWORK

(1) When the customer distribution point is mapped to the
road network node: When the customer distribution node ¢y
coincides with the road network node v;, then the path search
to the customer distribution node ¢, is equivalent to the path
search to the road network node v;.

(2) When the customer distribution center is a certain
distance from the main road (e.g. in the inner center of the
community), it is processed according to the actual path from
the trunk road to the customer distribution point. A path node
is added at the point where the trunk road enters the customer
point. The distance from the customer to the trunk road is the
distance from the customer to the path node, which is closer
to the actual situation.

99650

(3) When the customer distribution center is just beside
the street, it is necessary to consider that the two customer
distribution centers are distributed on different sides of the
two-way traffic road and there is an isolation belt in the center
of the road. At this time, the ideal shortest distance between
the two customer distribution centers should be the driving
distance of the vehicle entering the node of the road network
first and then turning back to the customer distribution center
on the other side.

(4) Vehicle transportation path description: the vehicle
transportation path is described by the arrangement of path
nodes and customer distribution points, indicating the path
nodes and customer distribution points that the vehicle passes
through in turn.

IIl. DISTRIBUTION REGION PARTITIONING

The partitioning of the logistics distribution region is a com-
plex and comprehensive problem that needs to consider many
factors. For many years, it has been a research hotspot for
scholars, involving logistics regional segmentation, vehicle
scheduling, vehicle optimal combination, facility scale, dis-
tribution time, and distribution cost. These problems will
directly affect the efficiency, cost, capacity, and service level
of logistics distribution regional planning.

The problem of logistics distribution region partitioning is
to determine a set of large and small car distribution schemes
and then determine the selection of transfer stations and the
attribution division of distribution units, so as to minimize the
total cost of the objective function. The schematic diagram
before and after region partitioning is shown in Figure 1.

The logistics distribution partitioning considering of com-
plex road network can more easily deal with all links of
logistics distribution, and carry out effective management and
decision-making analysis on the problems involved, so as to
meet the requirements of modern logistics and help logis-
tics distribution enterprises make effective use of existing
resources, reduce consumption and improve efficiency.

In the first stage, the heuristic simulated annealing algo-
rithm is used to divide the vehicle distribution region. Firstly,
the heuristic simulated annealing algorithm is used to gen-
erate the initial partition decomposition: In the first stage,
heuristic simulated annealing algorithm is used to divide the
vehicle distribution region. First, the heuristic SA algorithm
is used to generate the initial partition decomposition:

(1) Set initial value: m = 0, kn = 0, set safe radius
sr = J(max(x) — min(x)? + (max(y) — min(y)?), where,
kn represents the number of iterations, max(x) represents the
maximum value of abscissa of all customer distribution points
¢, and other meanings are similar, turn to (2).

(2) Whether m is less than or equal to the limited number of
vehicles N, if so, proceed to (3); Otherwise, it indicates that
the division is completed, the algorithm ends, and turn to (6)
to evaluate the solution.

(3) Randomly generate the center coordinate AC,,, (X, Yim)
of the distribution region of vehicle m. x,, = rand x (max(x)—
min(x)), rand represents a random number between (0, 1),
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(a) Before distribution region partitioning

]

(b) After distribution region partitioning

Distribution center or transfer
station

O Customer point

Attributive relational
FIGURE 1. Distribution region partitioning.

Ym = rand x(max(y)—min(y)),if m = 1, turnto (4),ifm > 1,
then turn to (5).

(4) From m’ = 1 to m — 1, verifying whether the center
distance from the distribution region center of the m vehicle
to the first m — 1 vehicle is greater than or equal to the safety
radius sr. if so, m = m + 1, turn to step (2). If not, turn to
step (5).

(5) Record the number of repeated calculations kn =
kn + 1, if kn is less than the iteration limit value KN, return
to step (3) to regenerate the random center. If kn = KN,
it indicates that the algorithm may stagnate, and return to
step (1) for recalculation.

(6) Cluster the coordinates of all customer points to each
AC point according to the principle of minimum Euler dis-
tance, and calculate the G value from Equation (11).

Simulated annealing algorithm has been reported in VRP
for the generation of specific distribution paths. In this paper,
the simulated annealing algorithm is used to divide the dis-
tribution region of vehicles [28], [29], [30]. The flow of
simulated annealing algorithm is shown in Figure 2.
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Start the program and read in the
customer distribution point matrix C
2

set Ty, T,,a,k,,In

v

Call heuristic algorithm to generate
random initial solution GO

|
&

m'= m'+1, construct neighborho od solution G,

v

Calculate AG=G,,. -G,

Y o

| calculate exp(—AG /T,), generate € € (0,1) |

letm'=0,T, =T, -a,m=m+1

m

N

The program ends and
NC’ is output.

FIGURE 2. Flow chart of simulated annealing algorithm.

The logistics distribution model considering the complex
road network constructed in the previous stage is taken as
the input of the first stage decision-making, the distribution
region NC,, of divided N vehicles is taken as the output, and
transmitted to the second stage decision-making as the input.

IV. HEURISTIC PATH SEARCH ALGORITHM

After the first stage decision is completed, the distribution
task set NC’ of N vehicles will be output. For the second stage
of decision-making, a heuristic hybrid genetic-beam search
algorithm is proposed in this paper.

A. LOGISTICS DISTRIBUTION CONSTRAINTS AND
OBJECTIVE FUNCTION CONSTRUCTION CONSTERING
COMPLEX ROAD NETWORK

Considering the vehicle routing problems of complex road
networks, in the actual distribution line, railways, rivers,
and other traffic obstacles cannot be crossed directly. If the
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distribution line passes through the above obstacles, vehicles
need to bypass them, resulting in detour costs. The obstacles
that the bypass cost exceeds the scope of distribution must be
avoided in the route planning.

The total cost of vehicle distribution considering the com-
plex road networks can be expressed as:

GD = min( Z Z ny:V./xz»de

k’eM vi,vjeD
+ D F ) a, D (12)
k'eM  JgeV’

PRl

mM
=1

G
R I I e e
k'eM JgeS Z |Jd| Z |Jd|
d=1 d=1
(13)
S xﬂ‘;,Jd, =1, VeV (14)
k'eM JyeV’
-/d Vp Z ‘Id’ vj = ’ VVP € V/v vk/ eM
JaeVvV Jyev
(15)
Z Z xz,Jd,Qd <Q, VkeM (16)
JyeV'JgeD
xZ,Jd/ €(0,1), VJg,JyeD, VK eM (17)
Z de Iy = 0, Qy;,v; e NC (18)

k'eM

Equation (12) is the total vehicle operation cost, which is
composed of the driving cost, vehicle fixed cost, and time
delay cost. Equation (13) is the time delay cost, where, w rep-
resents the time delay cost corresponding to the unit distance.
Zzzl | /4| represents the number of all customer points in all
urban logistics distribution regions. The time delay cost [ is
directly proportional to the sum of the distances from all cus-
tomers in the line to the geographical center. The time delay
cost here is only used to compare the advantages and disad-
vantages of schemes, and the value of a single scheme has
no practical operational significance. Equations (14) and (15)
ensure that a customer distribution center is visited only once,
and the incoming vehicles must drive out. Equation (16) is
to ensure that the loading capacity of each vehicle meets
the limit of rated loading capacity. In equation (17), XZ Iy
represents the decision variable, when x}‘; Iy = 1,it means
that the k'-th vehicle accesses the customer distribution node
J g after visiting the customer distribution node J,;, otherwise,
it takes 0. Equation (18) ensures that the traffic obstacles that
must be avoided do not appear in the distribution line.

Input parameters:
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J: A set of customer distribution nodes,
J={1,J2J3...... ,Js)

C: set of customer distribution point
requirements

S: Total number of customer distribution
points,d =1,2,3,...,S

c4: Demand information of the d* customer

distribution node J;

(x,y): Coordinate of the d™ customer distribu-
tion node Jy

F: Vehicle fixed cost

I: Time delay cost

vo: Distribution Centre

M: set of vehicles, M =
1,2,...,k,....,m,...,N)

w: Time delay cost corresponding to unit
distance

D: set of distribution centers and customers

V' = D\{vwo}: s customer distribution nodes

FY: Cost matrix, cost fy,;,; € FY corre-
sponding to each path a,;,; € A

vi = vi(x,y):  Coordinates of path node v;

0: Loading capacity of the vehicles

A: The set of paths is composed of the
shortest paths between any two points
in D. The traffic fault paths that must
be avoided in A are put into the set
NC,NC € A

N The number of distribution regions, §' <
S

B. VEHICLE ROUTING OPTIMIZATION

According to the distribution task set NC' of N vehicles
output after the completion of the first stage decision. When
using genetic algorithm to plan the vehicle path, because the
algorithm has a certain dependence on the selection of the ini-
tial population [31], [32], [33], and has a certain randomness
when searching the path, it can be improved in combination
with some heuristic algorithms.

Beam search algorithm [34], [35], [36], [37] is a heuris-
tic graph search algorithm, which is usually used when the
solution space of the graph is relatively large. In order to
reduce the space and time occupied by the search, some
nodes with poor quality are cut off and some nodes with high
quality are retained during each step of depth expansion. This
reduces space consumption and improves time efficiency.In
the second stage, the hybrid genetic-beam search (HGBS)
algorithm is used to plan the path nodes.

The algorithm flow is shown in Figure 3. The algorithm
takes the customer node as the starting point of initialization
and the path search minimization cost as the output. The
specific steps are as follows:

(1) Chromosome coding [34]

The route information and distribution information are
chromosome coded, and the two-dimensional chromosome
coding method is adopted.
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FIGURE 3. Flow chart of HGBS algorithm.

The first dimension is the natural number sequence:
1,2,3,...,5, 8 the number of distribution regions.

The second dimension is the position of the chromosome.
The chromosomes encoded are illustrated in Table 2. For
example, [1,(3,1)] represents in the sub-region 1, the NO.
3 customer point is served by No. 1 distribution center.

The chromosome position is expressed as the serial number
of the customer point assigned to each distribution center, yy
represents the distribution center assigned to the d customer
distribution node in chromosomef .

(2) Fitness function

1

Sl e v— (19)
GD + Q7 x §;

where, OZ is the penalty weight. The penalty weights can
facilitate the genetic algorithm to search the global optimal
solution from both feasible and infeasible domains. In our
work of logistics distribution of complex road networks, the
value of QZ cannot be set to 0 in order to obtain the optimal
solution set. S/, is the chromosome number violating the max-
imum transportation distance, and the number of unqualified
chromosomes is added by 1, that is S, = S/, + 1, the initial
S, =0.
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(3) Chromosome selection

Using Monte Carlo method to select operators, the greater
the individual fitness, the higher the probability of being
selected. If the population number is 7’ and the appropriate
value of individual n’ is F, the probability of selecting indi-
vidual a is:

F/
p=—" (20)

S F

(4) Determine the topology of beam search, that is, gener-
ate a set of divisible customer distribution points.

(5) Initialize search beam width and weight

Judge whether the number of initial nodes N is greater
thanbw, if N > bw, then continue. If N < bw, branch the
initial node, where bw is the beam width of beam search.

(6) Introducing penalty function

max GD > QZ (21)

(7) Crossover and variation

Two individuals w, and w; are randomly selected from the
parent generation, and the connection values are randomly
and independently selected for exchange. The cross operation
at bit b is as follows:

wip = wip(1 — B) +wp (22)
wip = wip(l — B) +wp (23)

where B is the random number between [0,1].

Complete uniform mutation with a predetermined proba-
bility to improve individual fitness and approach the optimal
solution from a local point of view. The new gene value after
mutation is:

w = Y Wmax — Wmin) + Wmin (24)

where Wiax, Wmin are the maximum and minimum values of
the initial individual, y is the random number between [0,1].

To sum up, after many cross variations, the optimal path of
urban logistics distribution region is obtained.

V. CASE ANALYSIS

In this section, we use Matlab 2020a to carry out simulation
experiments. The experimental equipment is a computer with
i7-7500 2.90GHz CPU. The computer system is windows10
64 bit Professional Edition with 4G RAM.

In the first stage of decision-making, we use two exam-
ples for analysis. Casel: Based on the road network of a
city in southern Jiangsu, a logistics distribution model con-
sidering complex road networks is established according to
the road network. There are 286 road network nodes in the
city, 10 logistics distribution centers and 95 customer dis-
tribution centers. The 95 customer distribution centers are
expressed with C1, C2, C3,..., C95, and the 10 distribu-
tion centers are represented by D1, D2, D3,..., D10. The
geographical distribution of each point is roughly shown
in Figure 4. Case 2: Based on the basic data of the urban
logistics distribution region partitioning in Literature [4], the
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TABLE 2. Schematic of chromosome codes.

The first dimension 1 1 2 S'
The second dimension B3, (5,2) 3.4 (d, V)
o A. REGION PARTITIONING CALCULATION
e ; h e . _. Lo For the simulated annealing algorithm, the initial temperature
T S o o is 600°, the cooling coefficient is 0.99, the cooling times are
S eoo o R 4 1000, the number of internal cycles before each cooling is
< o . g L e 100, and the number of distribution vehicles is set according
Lm= ® e ¢ me to the number of distribution centers.
.‘7 “ o . ' D”. ' m' Fig. 5 is an iterative convergence diagram of the first stage
- s region division objective function G. It can be seen from Fig.5
° e e L Y L that when the simulated annealing algorithm performs region
Y e Lt oo division, there is a large fluctuation in the early stage, and the
° e mo o oo g value converges to Case 1:418 and Case 2:512 in the later
. S stage. Figure 6 and Figure 7 are the regional division results
o .t o i ® o of Case 1 and Case 2 respectively. It can be seen from the
¢ 5 figure that the division results have good results in terms of
c.. ¢ ¢ o o customer quantity and load (calculated load variance: Case
3 } . . | o 1 412, Case 2: 509, the variance of customer nodes: Case
. A 1:0.627, Case 2:0.718).

FIGURE 4. Spatial distribution of distribution center and customer point.

data in [4] includes 279 road network nodes, 105 distribu-
tion units, five candidate distribution centers, and 1 logis-
tics center. According to the basic data of urban logistics
distribution, we regard the logistics center as a distribution
center and jointly undertake the basic logistics distribution
tasks.

The purpose of the distribution region partitioning is to
determine the number of distribution centers and their cor-
responding locations. In addition, each distribution unit or
customer point should be reasonably allocated to a certain
logistics distribution center. Table 3 measures the distance
between 10 logistics distribution centers and the top 15 cus-
tomer distribution centers in Case 1.

Table 4 lists the coordinates of some customer distribution
nodes and road network nodes and the demand information
for customer distribution nodes.

In the second stage of decision-making, we first discussed
the hybrid idea of the algorithm in this study. In order to
solve the problem of a large search range of genetic algo-
rithms, we mixed genetic algorithm and beam search algo-
rithm to realize the pruning operation of beam search in
three cases: before chromosome crossover, after chromo-
some mutation, both before chromosome crossover and after
chromosome mutation. Then, the efficiency of the proposed
heuristic hybrid algorithm is evaluated on the Solomon data
set. Finally, the vehicle route optimization is realized by the
region partitioning result of the example in the first stage of
decision-making.
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B. VEHICLE ROUTING PLANNING CALCULATION

Since each customer distribution node usually contains more
than 20 customers, the requirements of the Solomon data-set
or extended Solomon data-set are collected for each cus-
tomer. In order to better reflect the actual distribution demand
of each customer point, in this embodiment, the customer
delivery demand of RC1_2_1 in Solomon data set [19] is
multiplied by 20 as the delivery demand, that is, the data set
is expanded to meet the actual distribution demand.

For the HGBS algorithm, setting vehicle carrying capacity
Q = 2000, the fixed cost of vehicles F' = 500, the fixed cost
of vehicles F' = 500, the maximum transportation distance
of vehicle LD = 35 mile, the beam Search width of bundle
search bw = 4, the maximum number of generations is
Smax = 500, the crossover probability p. = 0.8, the mutation
probability p,, = 0.02.

In the first step, the fusion methods of the three algorithms
are compared and verified on the Solomon data set. The
minimum cost, number of iterations, and algorithm running
time obtained by random experiments 5 times are shown in
Table 5.

It can be seen from Table 5 that before the chromo-
some crossing, the beam search algorithm is integrated,
and the pruning function is introduced to cut the chromo-
some sequence that does not meet the transportation dis-
tance limit and vehicle capacity constraint, and pruning is
performed once before the chromosome crossover, after the
chromosome mutation, both before and after the chromosome
crossover. The experimental results show that after five sim-
ulation experiments, the experimental results show that the
average total cost of pruning before chromosome crossing is
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TABLE 3. The distances (miles) between 10 logistics distribution centers and top 15 customer distribution centers.

Cl C2 C3 C4 C5 C6 C7 C8 C9 Clo Cl1 Cl12 C13 Cl4 CI5
D1 12.7 487 549 486 338 41 222 559 142 515 138 27.6 469 585 66.1
D2 69.7 582 365 327 335 23 38.1 383 613 59.6 483 284 609 40 26.3
D3 704 657 413 467 44 156 226 353 173 633 146 169 128 17.1 233
D4 693 323 139 679 735 329 8.3 194 307 446 19.7 452 533 16.6 8.8
D5 223 239 318 6.4 60.1 22 548 36.6 434 17.8 344 722 39.1 174 36.7
D6 46.8 509 29.7 741 2.8 664 685 597 7.4 19.6 252 51 102 54.1 8
D7 49 37.1 584 536 67.8 668 251 524 148 2.3 55.8 375 36 457 463
D8 645 604 433 137 18 66.5 12,6 734 535 4.5 51.1 32 5.4 7.3 61.4
D9 542 112 495 389 73 60 34 324 619 6.3 10 13 293 624 603
D10 299 395 313 493 471 219 1.2 73.8 125 279 149 255 714 69 4
Note: Di = the i-th distribution center, Ci = the i-th customer point.
TABLE 4. Customer distribution node coordinates and requirements.
Number Coordinates / load (kg) Number Coordinates / load (kg) Number Coordinates / load (kg)
1 (5.0,35.0)/200 70 (28.0,35.0)/700 123 (40.0,50.0)/320
2 (0,40.0)/500 71 (18.0,75.0)/400 124 (20.0,80.0)/640
3 (18.0,75.0)/100 72 (45.0,68.0)/410 125 (87.0,30.0)/0
4 (8.0,40.0)/0 73 (30.0,50.0)/0 126 (65.0,60.0)/0
5 (2.0,40.0)/160 74 (58.0,75.0)/190 127 (90.0,35.0)/230
6 (22.0,75.0)/210 75 (40.0,69.0)/230 128 (8.0,70.0)/160
case 1 case 2
850
Ll 800
600
, 100
2 550 2
el @' 60
500
450 500
0 100 200 300 400 0 100 200 300 400

Number of iterations

Number of iterations

FIGURE 5. Iterative convergence curve of simulated annealing algorithm.

the lowest, which is $28815.8, which is about 0.72% lower
than the average total cost of pruning after mutation, and
about 0.07% lower than the average total cost of pruning
before chromosome crossing and after mutation. Under the
three different operations, it is relatively better to prune both
before crossing and after mutation at the same time in terms
of the number of iterations and the execution time of the
algorithm to obtain the optimal results, the reason is that the
pruning operation is carried out before crossing and after
mutation at the same time, so that the nodes that do not
meet the current optimum at each stage are pruned. This is
a greedy strategy. Therefore, the number of iterations and the
execution time of the algorithm are relatively small, but the
result will fall into the local optimum and the global optimum

VOLUME 10, 2022

solution cannot be accurately obtained. Therefore, in this
study, we chose to prune before crossing. In addition, the
number of iterations of the algorithm is significantly better
than that of the other two cases in both minimum cost and
optimal results. Pruning the unqualified chromosome before
the chromosome crossing ensures the best of the father gen-
eration, and the offspring obtained after the cross mutation
basically inherits the best of the parent, so as to ensure the
relative optimal result. However, if the chromosome is pruned
after the cross mutation, it is pruning in the offspring, which
cannot guarantee global optimization, so the result is optimal.

In the second step, the efficiency of the proposed heuristic
hybrid algorithm is verified on Solomon data set. We use
the same Solomon dataset to implement and test different
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FIGURE 6. Case 1: distribution region partitioning result.

algorithms related to this paper such as HPSO [38], GA [39],
ACO [40], EPSO-GA [4], 2MPSO [41], IPSO [42], TS-
MOEA [12], HPSO-HGA [18].

Most of the routing based meta heuristic search and opti-
mization algorithms which have been searched and collected
for the first time in this paper have been developed relatively
more recently. All algorithms are carried out under equal con-
ditions. Equal conditions mean using the same starting and
termination criterion, equal number of starting search points,
the same data set, same hardware running the algorithms.

Each algorithm is executed for 10 times, and we selected
the optimal solution as the distribution region partitioning
results for each method. For the optimal cost, Yin ef al.’s
optimal solution is GD=$31577, Shima et al’s opti-
mal solution is GD=$32693, and Chen et al’s optimal
solution is GD=$34672, and Wang et al.’s optimal solu-
tion is GD=%$29993, and Okulewicz et al.’s optimal solu-
tion is GD=$31106, and Hannan er al.’s optimal solution
is GD=$29653, and Wang et al’s optimal solution is
GD=$28906, and Lu et al.’s optimal solution is GD=$30017.

In addition, HGBS algorithm and other algorithms are exe-
cuted 10 times with the optimal cost, the number of iterations,
and algorithm running time for convergence. The results are
shown in Table 6, Table 7, and Table 8. When HGBS algo-
rithm is used for vehicle route planning, the average total cost
is the lowest, about $28912.6. Compared with TS-MOEA
($29025.2), which is the best performing algorithm in other
algorithms, the average total cost is reduced by about 0.39%.

For statistical analysis, t-test method has been performed,
as shown in the last column of Table 6 and Table 7.

In order to compare the performance of the proposed algo-
rithm, the same iteration parameters are used. In the t-test:

Hp: It is argued that there is no difference between the
means.
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FIGURE 7. Case 2: distribution region partitioning result.

H,: It is argued that there is a meaningful difference
between the means.

P: Probability value

t Stat: t statistic value

Pearson Correlation: The correlation coefficient be-

tween LCA and OIO samples

t Critical one-tail: Single-sided t critical value

t Critical two-tail: Double-sided t critical value

alfa: Significant level

In the t-test, there are two hypotheses, Hy and H,. When
the p value is less than 0.01, the Hy hypothesis is rejected and
H, is accepted. When p value is greater than or equal to 0.01,
Hy hypothesis is accepted and H, is rejected. If the test result
value of P is less than 0.01, there is a significant difference
between the two groups of data. The smaller the P value, the
more obvious the difference is, and the greater the difference
is from the benchmark data.

It can be seen from Table 6 and Table 7 that compared with
HGBS algorithm, the p-values of the other eight algorithms
are significantly less than 0.01 and all are negative. The t-test
of ts-moea is relatively optimal, which is —1.18. The t-test
results show that the results obtained by this algorithm are
relatively good compared with other algorithms, and the t-test
results of ACO are relatively poor, which is —28.65. The t-test
results show that the results obtained by this algorithm are
relatively poor compared with other algorithms.

Based on the t-test results, both the distribution cost per day
and the number of iterations are significantly different than
each of the other methods. Compared with the Genetic Algo-
rithm, the total cost of the algorithm is reduced by 14.1%, and
the number of iterations required to reach the optimal solution
isreduced by 152 times. The reason why HGBS algorithm has
achieved this experimental effect is that the pruning operation
is carried out before the chromosome crossing of GA, which
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TABLE 5. Comparison of experimental results under three fusion methods.

Total cost Number of iterations Execution time
Operation Before After Before Before After Before Before After Before
crossover mutation crossover and crossover mutation crossover and crossover mutation crossover and
after mutation after mutation after mutation

1 28623 28932 28902 312 314 308 2.87 2.88 277

2 28941 28996 28703 314 315 310 276 2.92 271

3 28623 29008 29001 320 311 307 2.89 2.81 2.80

4 28835 29104 28731 313 312 312 2.90 2.83 2.69

5 29062 29083 28843 318 317 311 2.84 2.85 2.82

Average 288168  29024.6 28836 315.4 313.8 309.6 2.852 2.858 2758
TABLE 6. Different optimization algorithms comparison (total cost).

Method 1 2 3 4 5 6 7 8 9 10 Average t-test
HGBS(this paper) 28837 28951 28996 28623 29017 28623 29618 28623 28836 29002  28912.6 —
HP Soz%ig)et al, 33829 31577 31996 32098 34006 31910 33217 32926 32152 31609 32532  -12.11
GA(S%%*;‘)“ al, 33598 34609 32901 34017 33969 33497 35109 32693 33281 32886 33656  -17.93
ACO(ZCOh]eln) etal, 36011 34905 35217 34672 36218 34810 35521 36254 34516 35171 35329  -28.65

EP Soz;ﬁ‘;él‘;’)ang 30117 32096 31249 30843 32091 33095 30076 32174 31548 29993 31328 -6.94
2MPS(;8'0“1“7€;W“2 ° 31652 32001 31408 31301 31189 31285 31106 31260 31456 31309 313967  -19.93

IPSO(E‘ST;‘“ tal 29653 29773 30017 30827 29831 30188 30711 30227 30142 30219 30159 -8.20
TS'Mgglgl(;V)ang ® 28991 29102 28906 29001 29053 29034 29068 29083 28996 29018 290252  -1.18
HPSO‘Z’(%’?SL“ ctal 30798 30130 31031 30082 30017 31105 30182 30421 30118 30234 303627  -9.38

ensures the optimal selection of the parent generation, so that
the offspring obtained by the individuals after the pruning
after the mutation crossing operation basically inherits the
optimal selection of the parent generation, thus ensuring the
relatively optimal results.

In addition, as can be seen from Table 8, in terms of the
speed of obtaining the optimal solution, through 10 experi-
ments and simulations, the average algorithm execution time
of HGBS algorithm is 68.5s, which is 18.85% higher than
that of HPSO-HGA (84.41s), and 55.19% higher than that
of 2mpso (106.31s). Compared with other algorithms, HGBS
algorithm can obtain the optimal solution faster. This means
that HGBS algorithm is more likely to find the optimal solu-
tion than other methods. That is, the method proposed in this
paper can better capture the partitioning scheme, optimal cost
and iteration times, and show its ability to solve the com-
plex distribution region partitioning problem and logistics
distribution vehicle routing optimization in urban logistics
distribution networks. The reason why HGBS algorithm can
obtain the optimal solution in a short time is that the pruning
operation before the individual crossing avoids the search for
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the relative inferior solution and reduces the execution time of
the algorithm on the premise that the individual of the parent
generation is guaranteed to be optimal.

Compared with the other four algorithms, HGBS algorithm
has the following merits:

(1) HGBS algorithm is a hybrid algorithm combining
genetic algorithm and beam search algorithm, which has
global and local search capabilities.

(2) BS algorithm is a graph search algorithm, it is similar
to the directed graph of logistics distribution constructed by
the logistics distribution model considering complex road
networks.

(3) The unique pruning function of BS algorithm in the
search process can set the search width for the next node
search at any time according to the quality of the customer
points obtained from the expansion.

(4) HGBS algorithm has inherent advantages and can
be applied to large-scale logistics distribution network with
thousands of customers. As shown in Table 6 and Table 7,
the number of iterations of HGBS algorithm is signifi-
cantly less than that of other methods. As the number
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TABLE 7. Different optimization algorithms comparison (number of iterations).

Method 1 2 3 4 5 6 7 8 9 10 Average t-test
HGBS(this paper) 312 319 321 311 317 308 310 314 307 313 313.2 —
HPSO(Yin et al., 2006) 388 412 396 408 421 417 409 399 405 414 407 -26.60
GA(Shima et al., 2006) 453 469 457 461 477 480 454 466 471 459 465 -45.59
ACO(Chen et al., 2011) 510 496 487 501 512 483 492 505 488 517 499 -46.73
EPSO-GA ( Wang et al., 2015) 365 389 371 402 393 378 369 392 387 411 386 -14.71
2MPSO(Okulewicz et al 2017) 344 341 346 348 350 339 342 345 351 357 346.3 -14.77
IPSO(Hannan et al 2018) 352 357 360 351 364 347 358 362 366 359 358 -18.51
TS-MOEA(Wang et al 2018 ) 320 324 328 323 319 342 337 329 322 330 327.4 -5.12
HPSO-HGA(Lu et al 2020) 332 337 329 348 341 340 336 338 331 342 337.4 -10.39
TABLE 8. Different optimization algorithms comparison (algorithm running time/second).
Method 1 2 3 4 5 6 7 8 9 10 Average
HGBS(this paper) 67.8 69.2 68.3 68.4 69.1 67.7 68.9 69.3 67.8 68.5 68.5
HPSO(Yin et al., 2006) 98.3 101.1 99.6 98.6 100.3 99.4 95.9 97.6 98.3 99.4 98.85
GA(Shima et al., 2006) 102.3 100.2 103.2 99.8 1022 100.7 101.6 1014 101.6  101.8 101.48
ACO(Chen et al., 2011) 103.1 1029 1019 1048 1062  107.2 104.5 105.7 103.8 103.6 104.37
EPSO-GA ( Wang et al., 2015)  100.2 101.5 102.1 103.5 104.5 102.6  106.7 103.7 1062  107.3 103.83
2MPSO(Okulewicz et al 2017) 108.3 107.2 107.6 1083 1092 1062 1052 1062  103.2 101.7 106.31
IPSO(Hannan et al 2018) 102.2 100.2 103.3 104.2 1039  102.8 1032 1013 103.4 1014 102.59
TS-MOEA(Wang et al 2018 ) 98.2 96.2 97.2 96.3 96.2 98.3 97.5 97.4 96.4 96.8 97.05
HPSO-HGA(Lu et al 2020) 88.8 89.2 89.5 87.3 78.2 80.2 80.4 82.4 84.5 83.6 84.41
TABLE 9. Results of the two cases.
Method Case 1 Case 2
cost number of Algorithm running cost number of Algorithm running
iterations time iterations time
This paper 28912 313 68.5 31174 407 78.3
GA 37416 467 101.48 39505 515 104.31
EPSO-GA 32173 356 103.83 33038 396 105.62
IPSO 30017 334 102.59 33419 466 104.88
HPSO-HGA 29434 330 84.41 33409 426 98.37

of customers increases, this advantage will become more
obvious.

In summary, the HGBS algorithm proposed in this paper
is a hybrid algorithm combining genetic algorithm and beam
search algorithm. It is designed and implemented by updating
penalty weight and pruning the parent chromosome.

In addition, in the two-stage algorithm, we first improved
the HSA algorithm with the goal of balancing the vehicle
load to achieve the division of logistics distribution regions.
Through the HSA algorithm, the entire distribution region
is divided into independent sub regions, so as to reduce
the region scale and the path optimization range, reduce
the path search cost, and improve the global search effect
of the path. Secondly, in order to minimize the total cost
of logistics distribution, considering the complex road net-
work constraints of each sub region after the division of
regional road network, an improved path search strategy
based on genetic algorithm is proposed. Before the chromo-
some crossing of genetic algorithm, the beam search algo-
rithm is used to prune the unqualified chromatids to ensure
the optimization of the parent nodes, so as to improve the
search ability of GA for the local optimal solution of the path.
However, the algorithm still has some disadvantages, such
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as high computational complexity, imperfect decision space
performance, and difficult experimental parameter setting.
In the follow-up study, the above factors need to be com-
prehensively considered to improve the performance of the
algorithm.

The proposed hybrid algorithm can obtain a better optimal
solution for most of the randomly generated initial popula-
tions, but for those poor initial populations, the pruning func-
tion rarely appears in the optimal solution. Compared with
other methods, the optimization success rate of the method is
very high (3 times in 10 times).

Finally, according to the regional division results of two
examples in the first stage decision-making, the logistics dis-
tribution vehicle route is optimized, and the classical genetic
algorithms GA, EPSO-GA [4], IPSO [42], and HPSO-HGA
[18] are compared to verify the effectiveness of the method
proposed in this paper on two examples. The operation com-
parison results are shown in Table 9.

The experimental results of the two practical cases are
shown in Table 9. The average total cost of the two-stage
algorithm proposed in this paper on Casel is about $28912,
which is about 1.8% lower than the optimal HPSO-HGA
($29434) among other algorithms, the number of iterations
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of the algorithm is reduced by about 5.4%, and the execution
time of the algorithm is increased by about 23.2%. The aver-
age total cost on Case2 is $31174, which is about 7.2% lower
than the optimal HPSO-HGA ($33409) in other algorithms,
the number of algorithm iterations is about 4.7%, and the
algorithm execution time is about 25.6%. As can be seen from
Table 9, on the premise of considering the complex urban road
network structure, the distribution region partitioning method
proposed in this paper can well realize the division of logistics
distribution regions, so as to optimize the vehicle path in
each region and minimize the overall cost. The experimental
results show that the proposed method has some advantages
in scheme division, total cost and iteration times. Through
comparison, it is proved that the logistics distribution region
partitioning method has the ability to optimize the logistics
distribution network. The proposed method is easy to imple-
ment in practice, can effectively divide the urban logistics
distribution region, and helps logistics operators reduce oper-
ating costs and improve customer service.

VI. CONCLUSION

To solve the problem of difficult region partitioning and
routing planning in large-scale logistics distribution under
complex road network conditions, this paper establishes a
mathematical model of logistics distribution based on con-
sideration of traffic elements and road network topology, and
proposes a two-stage vehicle routing optimization scheme for
logistics and distribution based on HSA-HGBS algorithm.
In the first stage, the overall distribution region is divided
into independent sub-regions by HSA algorithm to balance
the vehicle task load. In the second stage of routing decision,
with the goal of minimizing the total cost of logistics and dis-
tribution, the HGBS-based routing search method is proposed
to reduce the randomness of the model in the initial search
path by heuristic genetic algorithm, and then combined with
Beam search method to reduce the space and time occupied
by the search.

In this paper, 10 experiments are conducted on the standard
data set for sub-region routing decisions. When HGBS algo-
rithm is used for vehicle route planning, the average total cost
is the lowest, about $28912.6. Compared with TS-MOEA
($29025.2), which is the best performing algorithm in other
algorithms, the average total cost is reduced by about 0.39%.
The results show that the HGBS algorithm can effectively
improve the effectiveness of independent sub-region routing
optimization. Through the experimental verification of the
proposed algorithm in two practical cases, the average total
cost of the HSA-HGBS algorithm in Casel and Case is about
1.8% and 7.2% lower than the best result in the comparison
algorithm, and the number of iterations of the algorithm of the
algorithm are reduced by about 5.4% and 4.7% respectively.
The results show that the two-stage algorithm proposed in this
paper can effectively divide the urban logistics distribution
region, reduce the region scale and route search cost, and
improve the efficiency and rationality of the overall physical
distribution route selection.
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Although the two-stage decision algorithm proposed in this
paper can better optimize the large-scale urban logistics dis-
tribution considering the complex road network, there are still
some defects. For example, the complex road network con-
sidered in this paper is limited to the complex road network
problem composed of detailed and complex traffic elements
and the topological structure of the road network. Although it
reflects the actual road network situation to a certain extent,
further analysis is still needed in terms of traffic rules, pop-
ulation density, and measures of motor vehicles (or more
accurately, road parameters causing problems). In addition,
building a more realistic distribution data set is also the focus
and difficulty of the next research.
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