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ABSTRACT Aiming at the problems of complex urban road network, low efficiency of logistics distribution,
and the difficulty of large-scale logistics distribution area division and routing planning, this paper proposes
a two-stage logistics distribution vehicle routing optimization (VRP) method based on the establishment
of a multi-factor complex road network constrained logistics distribution mathematical model. Considering
the complex traffic elements and road network topological structure in logistics and distribution, in the first
stage, a heuristic simulated annealing (HSA) distribution region partitioning algorithm is proposed with the
objective of balancing vehicle task load to divide the urban logistics distribution network under complex road
networks, so as to reduce the region scale and path search cost. In the second stage of route decision making,
aiming at minimizing the total cost of logistics distribution, combining the VRP problem with complex road
network conditions, a heuristic path search method combined with complex road network model constraints
is proposed. In this stage, a hybrid genetic beam search(HGBS) algorithm is used to plan the path nodes,
reduce the randomness of the model in the initial search for paths by heuristic genetic algorithms, then
combine with Beam Search methods to reduce the space and time used for the search, and use optimization
algorithms to improve the accuracy of independent sub-region routing optimization and the rationality of
overall physical distribution route selection. Finally, the proposed method is validated in this paper with two
practical cases. The experimental results show that the two-stage decision-making algorithm proposed in
this paper has certain advantages in partitioning schemes, minimizing total cost and iteration times. Through
comparison, the optimization ability of this method for logistics distribution networks is proved.
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INDEX TERMS Vehicle routing optimization, complex road network, two-stage algorithm, heuristic
simulated annealing, hybrid genetic beam search.

I. INTRODUCTION21

With the rapid development of online shopping and the22

modern logistics industry, logistics distribution has become23

an important link connecting producers and consumers, and24

it plays an increasingly important role in the whole sup-25

ply chain. Optimizing the vehicle routing of urban logistics26

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

distribution is of great significance to reduce logistics opera- 27

tion costs and improve customer service satisfaction. There- 28

fore, the research of vehicle routing optimization (VRP) for 29

multi-factor complex road network constraints has been paid 30

more and more attention. 31

Since Dantzig and Ramser [1] proposed the truck schedul- 32

ing problem, researchers have been studying the relationship 33

between vehicle routing planning and delivery planning. It is 34

considered a typical case of VRP, involving the distribution 35
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of goods from central warehouses to geographically dis-36

persed customers. By planning a reasonable driving route,37

the cost (such as the shortest distance and the least time)38

can be minimized. At this period, some scholars have studied39

many external factors that affect vehicle routing planning in40

logistics distribution. In the study of constraints related to41

vehicle routing planning, Wagner [2] studied the relation-42

ship between logistics region partitioning and transportation43

through empirical analysis in the case of a whole logistics44

area in Hamburg, Germany, and concluded that traffic flow45

would affect the distribution of the logistics region. This kind46

of direct path planning for the entire logistics network can be47

called level-1-based VRP.48

Logistics distribution can also divide the entire logis-49

tics distribution network into several smaller sub regions,50

and further study the vehicle routing problem in each sub51

region. This method can be called two-level VRP, where,52

Christofides [3] meshed the distribution region into square53

areas of unequal sizes and aggregated each square area into54

distribution units according to the historical path connec-55

tion frequency of different square areas, so as to divide56

the distribution area and optimize the vehicle path in each57

area. Besides, Wang et al. [4] proposed a hybrid algo-58

rithm based on extended particle swarm optimization and59

genetic algorithm (EPSO-GA). By establishing a two-level60

logistics distribution system, the efficient urban logistics61

distribution can be realized under the minimization of logis-62

tics distribution cost. Based on the above research, it can63

be seen that traffic flow, regional scale, distribution cost,64

and other factors have become the key factors affecting the65

quality of vehicle routing planning, which directly affect66

the efficiency, cost, capacity, and service level of logistics67

distribution. In addition, the traffic elements and topological68

structure of urban roads also affect the operation of the entire69

logistics distribution system. Because it is very complex to70

establish a VRP mathematical model considering the com-71

plex road network, there are fewer studies considering the72

impact of the complexity of urban roads on urban logistics73

distribution.74

The partitioning of logistics distribution region is a combi-75

natorial optimization problem with multiple constraints and76

multi-objective decision. In recent years, research on solving77

the optimal vehicle routing method is emerging in endlessly.78

Most of the methods need to establish mathematical models79

to complete the vehicle path optimization by defining dif-80

ferent types of variables, constraint functions and objective81

functions. The commonly used methods mainly include exact82

algorithms and heuristics [5], [6], [7], [8], [9]. Among them,83

exact search algorithms mainly focus on the branch and84

bound method, the branch cutting method, sequence gener-85

ation method and dynamic programming method etc [10],86

[11]. Because VRP is a NP-hard problem, it will consume87

too much computing power and storage space when using88

exact algorithms to optimize, which limits the accuracy of89

the optimal vehicle path. This method can only be applied to90

small-scale VRP solution.91

With the gradual increase of the problem scale, some 92

scholars propose to use heuristic search algorithm to solve 93

the vehicle path planning problem. General computational 94

intelligence heuristic search algorithms are divided into ten 95

types: biological based, social based, chemical based, phys- 96

ical based, music based, mathematics based, sports based, 97

population-based, plant-based and water based [8], [9]. The 98

heuristic algorithm is based on the optimization algorithm. 99

Its basic idea is to give a feasible solution to the combi- 100

natorial optimization problem within an acceptable range. 101

In the VRP Problem, the heuristic search algorithms mainly 102

used in VRP problems include evolutionary algorithm [12], 103

particle swarm optimization algorithm [13], ant colony algo- 104

rithm [14], genetic algorithm [15], intelligent water drop, tabu 105

search [7] and their improvement types [16], [17], [18]. Com- 106

pared with the exact search algorithm, the heuristic search 107

algorithm has better robustness and feasibility when dealing 108

with large-scale VRP problems. 109

Based on the existing research, both exact search algorithm 110

and intelligent heuristic search algorithm can be used to 111

solve VRP and related problems. Exact algorithms can find 112

the optimal solution for the problem. However, it is highly 113

dependent on the solution space, the number of constraints 114

and the number of decision variables in the problem model, 115

and cannot provide a general solution strategy for different 116

types of variables, objectives and constraints [7], [9]. How- 117

ever, when the scale of the problem becomes larger, there 118

will be a ‘‘combination explosion’’ phenomenon in exact 119

algorithm that will consume too much computing power and 120

storage space. By designing the heuristic function, heuristic 121

algorithms can get the optimal solution to a search problem 122

in a very short time. For the NP problem, it can also get 123

a better solution in polynomial time. Heuristic algorithms 124

can further improve the accuracy of vehicle routing. The 125

classification and advantages and disadvantages of vehicle 126

routing optimization methods for logistics distribution are 127

shown in Table 1. 128

At present, there are three kinds of data used in VRP 129

research The first is the standard Solomon data-set [19], 130

which is limited to dozens of points. However, in the actual 131

distribution process, especially in industries closely related 132

to daily life, such as garbage collection, milk collection 133

and distribution, cigarette distribution, and so on, the cus- 134

tomer group consists of residents or retailers distributed in 135

all corners of the city, and the scale of the problem to be 136

solved is often in the order of 100 or 1000. Whether exact 137

algorithms or heuristic algorithms are directly used to solve 138

large-scale problems, they have limitations. The second is 139

the data set based on experimental simulation. Compared 140

with the standard data set, the scale of this kind of data 141

will expand. For example, Li et al. [21], Mester and Bräysy 142

[22], and Accorsi and Vigo [23] obtained a large-scale CVRP 143

example with 1200 customer points according to the example 144

generator designed by themselves, and designed effective 145

solution algorithms such as simulated annealing and variable 146

neighborhood search. Duhamel et al. [24] presented a VRP 147
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example using a two-stage algorithm to deal with large-scale148

and multi-vehicle models. Vonolfen et al. [25] gave an exam-149

ple of VRP with a time window processing of 1000 points.150

However, the scale of these computer-generated experimental151

simulation examples was still less than that of the actual152

distribution cases, and the constraints caused by the com-153

plex geographical environment and special industrial require-154

ments that the actual distribution needs to face cannot be155

reflected in the standard examples. In this regard, Wasil [26]156

and Cheong et al. [27] studied the distribution problem of the157

beverage industry and combined it with the two-stage algo-158

rithm to realize the distribution path optimization. Beasley159

and Christofides [28] studied the example of a large mail160

order company in the UK that accepts orders by telephone161

or mail and then delivers them to customers’ homes. They all162

adopted the customer region partition method based on postal163

code, and realized the distribution route selection through164

the customer region partition based on postal code. These165

studies put forward many effective strategies for standard166

examples, simulation examples, and practical cases, which167

have important guiding significance for the study of large-168

scale VRP in actual distribution.169

The urban road network has complexity, which is mainly170

reflected in detailed and complex traffic elements and com-171

plex topology (see Section 2.3). Complex traffic elements172

mainly include traffic lights, accidents, peak hours, etc.,173

as well as the restrictions of urban road intersections and174

road sections. The complex urban road network topology175

is mainly reflected in the connection path between two176

points, including multiple choices. This road network struc-177

ture affects the operation of the whole logistics distribution178

system. At present, in a logistics distribution system, the179

location and quantity of logistics centers are usually deter-180

mined. Therefore, the two most important links in large-scale181

urban logistics distribution under the condition of a complex182

road network are the reasonable partitioning of distribution183

regions and the optimization of vehicle routing. The parti-184

tioning of logistics distribution regions can reduce the burden185

of large-scale logistics distribution and provide convenience186

for urban logistics planning. Vehicle routing optimization187

can alleviate urban congestion, improve mobility, and reduce188

pollution. Based on previous studies, it is of great practical189

significance to solve the vehicle routing optimization prob-190

lem of large-scale logistics distribution facing the constraints191

of multi-factors and complex road networks. The main con-192

tributions to this paper are as follows:193

(1) Aiming at the problem of complex road network com-194

posed of detailed and complex traffic elements and the195

topological structure of road network in urban logistics196

distribution, the mathematical model of urban complex197

road network is established.198

(2) Aiming at the vehicle routing optimization prob-199

lem considering complex road networks, a two-stage200

decision-making algorithm is established to improve201

the accuracy and timeliness of vehicle routing in202

logistics distribution. In the first stage, aiming at bal- 203

ancing the vehicle task load, the overall distribution 204

region is divided into independent sub-regions by sim- 205

ulated annealing algorithms, so as to reduce the region 206

scale and path optimization range, reduce the path 207

search cost, and improve the path search effect. 208

(3) In the second stage of route decision-making, aiming 209

at minimizing the total cost of logistics distribution 210

and considering the complex road network constraints 211

in each sub-regions after the partition of the regional 212

road network, a hybrid genetic beam search algorithm 213

is proposed to realize vehicle routing optimization and 214

enhance the accuracy of independent sub-region rout- 215

ing optimization and the rationality of overall physical 216

allocation routing selection. 217

II. VRP MATHEMATICAL MODEL CONSIDERING 218

COMPLEX ROAD NETWORK 219

A. THE DIFFERENCE BETWEEN VRP CONSIDERING 220

COMPLEX ROAD NETWORK AND TRADITIONAL 221

PROBLEMS 222

Traditional VRP can be defined as [1]: (1)Multiple customers 223

need transportation services at the same time, and multiple 224

vehicles are required to solve customer demand problems. 225

(2) Each customer can only be visited once by one vehicle. 226

(3) All vehicles start from the depots and finally return to the 227

depots. (4) All vehicles must meet the loading capacity con- 228

straints. Under the above constraints, reasonably arrange the 229

distribution lines to minimize the total distribution distance 230

and shorten the distribution time. 231

The precondition for solving the traditional VRP is that 232

the location of the logistics distribution center, the location 233

of the customer point, and the shortest path between any 234

two customer points are known. On this basis, the customer 235

is assigned to different vehicles, and the customer access 236

sequence is arranged for each vehicle, so as to determine the 237

problem solution. 238

The search traversal network graph of traditional VRP is 239

relatively simple, which is an undirected graph with cus- 240

tomers as nodes and the shortest known path as the edge. 241

The search network graph of the VRP model considering 242

complex road networks is a directed graph composed of path 243

nodes(refers to the intersection of two roads) [27], customer 244

nodes, and paths, with additional consideration of actual road 245

traffic restrictions (such as one-way driving and motor vehi- 246

cles). Therefore, the VRP model considering complex road 247

networks is more practical. 248

B. ROAD NETWORK CONSTRAINTS AND CUSTOMER 249

DEMAND CONSTRUCTION 250

In logistics distribution, urban road conditions (mainly 251

reflected in the complexity of urban road networks) affect 252

the operation of the whole distribution system. The complex 253

road network basically reflects the road network structure 254

of the real city. Its complexity is mainly reflected in the 255
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TABLE 1. Classification of exact search algorithm and heuristic search algorithm.

detailed and complex traffic elements and complex topology.256

Specifically, there may be many connection paths between257

two points. The traffic network data in the process of logistics258

distribution and transportation belongs to spatial information.259

Before modeling, it is necessary to grid the urban logistics260

distribution region according to the road network.261

The model of the urban complex road network can be262

expressed as:263

G = (V (G),A(G),P(G)) (1)264

V (G) = {v1, v2, . . . . . . , vn} (2)265

A(G) = {R(vi, vj)|R(vi, vj) = 1, i, j = 1, 2, 3, . . . , n}266

(3)267

∀i = j, R(vi, vj) = 0 (4)268

vi = vi(x, y) (5)269

P(G) = {P(vi, vj)|P(vi, vj) = (P1 × U2)/(P2 × U1)270

and (vi, vj) = 1, i, j = 1, 2, 3, . . . , n} (6)271

Formula (1) represents the road network G consists of272

point set V (G), directed path set A(G) and road congestion273

information P(G). In formula (2), V (G) is the set of all path274

nodes, vi is the ith path node, and n is the number of path275

nodes. Formula (3) represents that the elements of A(G) are276

composed of path matrixR(vi, vj). Formula (4) represents that 277

for the path node itself R(vi, vj) = 0. Formula (5) represents 278

the coordinate of path node of vi. Formula (6) is the descrip- 279

tion of road congestion: The impact of natural conditions 280

and road grade on road capacity is evaluated, import formula 281

P = (P1 × U2)/(P2 × U1), (P1 and U1 are the average fuel 282

consumption and speed of national roads in plain regions. P2 283

and U2 are the corresponding parameters of a certain class 284

of highway in a certain place), and then, in formula (6), 285

P(G) indicates that when path nodes vi to vj are passable, 286

road congestion information P(vi, vj) including all path nodes 287

exists. 288

The demand information of the customer distribution cen- 289

ter can be described as: 290

C = {c1, c2, c3, . . . , cd , . . . , cs} (7) 291

cd = cd (x̄, ȳ,R(vu, vp), qd ) (8) 292

Q =
∑S

d=1
qd (9) 293

J = {J1, J2, J3, . . . . . . , Js} (10) 294

In formula (7), the customer distribution center demand is 295

represented by set C , where, cd is the demand information 296

of the d th customer distribution node Jd , and S is the total 297

number of customer distribution points, d = 1, 2, 3, . . . , S. 298

VOLUME 10, 2022 99649



Q. Sun et al.: Two-Stage Vehicle Routing Optimization for Logistics Distribution Based on HSA-HGBS Algorithm

In formula (8), x̄ and ȳrepresents the coordinate of the d th299

customer distribution node Jd , where R(vu, vp) = 1 also300

indicates that the customer distribution node Jd is on the301

traffic side where vu points to vp (that is, there is a path302

between any two path nodes). qd represents the distribution303

and delivery demand of all customers at the d customer304

distribution node Jd . vu represents the average speed of all305

path nodes. Formula (9) represents the sum of the demand306

of all customers for distribution and delivery. Formula (10)307

represents the set of customer distribution nodes.308

This paper uses a two-stage decision-making method to309

solve the problems of distribution region partitioning and310

vehicle distribution path planning. In the first stage, the prob-311

lem of vehicle distribution region partitioning is solved first.312

Customers are scattered throughout the city, and the location313

of the distribution center is generally fixed. Customers are314

mainly clustered around the distribution center as the central315

point in logistics distribution. In addition, due to the insuf-316

ficient utilization of vehicle load capacity caused by uneven317

vehicle task load and the increase in maintenance cost caused318

by vehicle selection differences caused by uneven task load,319

the goal of balancing vehicle task load is adopted in the first320

stage decision-making:321

min G =
∑N

m=1
(Qm − Q̄)2 (11)322

where, Q̄ = Q/N represents the average of vehicle capacity,323

Qm is the freight volume of vehicle m. Equation (10) repre-324

sentsminimizing the vehicle operating variance during region325

partitioning, where Q represents the sum of the demand of all326

customers for distribution and delivery, N represents the total327

number of vehicles.328

In the second stage of decision-making, a better heuristic329

algorithm is used for path planning. Through actual examples330

to prove the proposed algorithm has the ability of path opti-331

mization and can reduce the total distribution cost. On the332

whole, the two-stage decision-making takes into account the333

optimization of distribution costs and benefits on the premise334

of ensuring that customers are served.335

C. MAPPING DESCRIPTION OF COMPLEX ROAD336

NETWORK337

(1) When the customer distribution point is mapped to the338

road network node: When the customer distribution node cd339

coincides with the road network node vi, then the path search340

to the customer distribution node cd is equivalent to the path341

search to the road network node vi.342

(2) When the customer distribution center is a certain343

distance from the main road (e.g. in the inner center of the344

community), it is processed according to the actual path from345

the trunk road to the customer distribution point. A path node346

is added at the point where the trunk road enters the customer347

point. The distance from the customer to the trunk road is the348

distance from the customer to the path node, which is closer349

to the actual situation.350

(3) When the customer distribution center is just beside 351

the street, it is necessary to consider that the two customer 352

distribution centers are distributed on different sides of the 353

two-way traffic road and there is an isolation belt in the center 354

of the road. At this time, the ideal shortest distance between 355

the two customer distribution centers should be the driving 356

distance of the vehicle entering the node of the road network 357

first and then turning back to the customer distribution center 358

on the other side. 359

(4) Vehicle transportation path description: the vehicle 360

transportation path is described by the arrangement of path 361

nodes and customer distribution points, indicating the path 362

nodes and customer distribution points that the vehicle passes 363

through in turn. 364

III. DISTRIBUTION REGION PARTITIONING 365

The partitioning of the logistics distribution region is a com- 366

plex and comprehensive problem that needs to consider many 367

factors. For many years, it has been a research hotspot for 368

scholars, involving logistics regional segmentation, vehicle 369

scheduling, vehicle optimal combination, facility scale, dis- 370

tribution time, and distribution cost. These problems will 371

directly affect the efficiency, cost, capacity, and service level 372

of logistics distribution regional planning. 373

The problem of logistics distribution region partitioning is 374

to determine a set of large and small car distribution schemes 375

and then determine the selection of transfer stations and the 376

attribution division of distribution units, so as to minimize the 377

total cost of the objective function. The schematic diagram 378

before and after region partitioning is shown in Figure 1. 379

The logistics distribution partitioning considering of com- 380

plex road network can more easily deal with all links of 381

logistics distribution, and carry out effective management and 382

decision-making analysis on the problems involved, so as to 383

meet the requirements of modern logistics and help logis- 384

tics distribution enterprises make effective use of existing 385

resources, reduce consumption and improve efficiency. 386

In the first stage, the heuristic simulated annealing algo- 387

rithm is used to divide the vehicle distribution region. Firstly, 388

the heuristic simulated annealing algorithm is used to gen- 389

erate the initial partition decomposition: In the first stage, 390

heuristic simulated annealing algorithm is used to divide the 391

vehicle distribution region. First, the heuristic SA algorithm 392

is used to generate the initial partition decomposition: 393

(1) Set initial value: m = 0, kn = 0, set safe radius 394

sr = 2
√
(max(x)−min(x)2 + (max(y)−min(y)2), where, 395

kn represents the number of iterations, max(x) represents the 396

maximumvalue of abscissa of all customer distribution points 397

c, and other meanings are similar, turn to (2). 398

(2)Whetherm is less than or equal to the limited number of 399

vehicles N , if so, proceed to (3); Otherwise, it indicates that 400

the division is completed, the algorithm ends, and turn to (6) 401

to evaluate the solution. 402

(3) Randomly generate the center coordinate ACm(xm, ym) 403

of the distribution region of vehiclem. xm = rand×(max(x)− 404

min(x)), rand represents a random number between (0, 1), 405
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FIGURE 1. Distribution region partitioning.

ym = rand×(max(y)−min(y)), ifm = 1, turn to (4), ifm > 1,406

then turn to (5).407

(4) From m′ = 1 to m − 1, verifying whether the center408

distance from the distribution region center of themth vehicle409

to the first m− 1 vehicle is greater than or equal to the safety410

radius sr . if so, m = m + 1, turn to step (2). If not, turn to411

step (5).412

(5) Record the number of repeated calculations kn =413

kn + 1, if kn is less than the iteration limit value KN , return414

to step (3) to regenerate the random center. If kn = KN ,415

it indicates that the algorithm may stagnate, and return to416

step (1) for recalculation.417

(6) Cluster the coordinates of all customer points to each418

AC point according to the principle of minimum Euler dis-419

tance, and calculate the G value from Equation (11).420

Simulated annealing algorithm has been reported in VRP421

for the generation of specific distribution paths. In this paper,422

the simulated annealing algorithm is used to divide the dis-423

tribution region of vehicles [28], [29], [30]. The flow of424

simulated annealing algorithm is shown in Figure 2.425

FIGURE 2. Flow chart of simulated annealing algorithm.

The logistics distribution model considering the complex 426

road network constructed in the previous stage is taken as 427

the input of the first stage decision-making, the distribution 428

region NCm of divided N vehicles is taken as the output, and 429

transmitted to the second stage decision-making as the input. 430

IV. HEURISTIC PATH SEARCH ALGORITHM 431

After the first stage decision is completed, the distribution 432

task setNC ′ ofN vehicles will be output. For the second stage 433

of decision-making, a heuristic hybrid genetic-beam search 434

algorithm is proposed in this paper. 435

A. LOGISTICS DISTRIBUTION CONSTRAINTS AND 436

OBJECTIVE FUNCTION CONSTRUCTION CONSTERING 437

COMPLEX ROAD NETWORK 438

Considering the vehicle routing problems of complex road 439

networks, in the actual distribution line, railways, rivers, 440

and other traffic obstacles cannot be crossed directly. If the 441
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distribution line passes through the above obstacles, vehicles442

need to bypass them, resulting in detour costs. The obstacles443

that the bypass cost exceeds the scope of distribution must be444

avoided in the route planning.445

The total cost of vehicle distribution considering the com-446

plex road networks can be expressed as:447

GD = min(
∑
k ′∈M

∑
vi,vj∈D

fyvi,vjx
k ′
Jd ,Jd ′

448

+

∑
k ′∈M

F
∑
Jd∈V ′

xk
′

v0,Jd ′
+ l) (12)449

l = ω(
∑
k ′∈M

∑
Jd∈S

√√√√√√√(x̄ −

∑
Jd∈S

x̄

S∑
d=1
|Jd |

)2 + (ȳ−

∑
Jd∈S

ȳ

S∑
d=1
|Jd |

)2)450

(13)451 ∑
k ′∈M

∑
Jd∈V ′

xk
′

Jd ,Jd ′
= 1, ∀Jd ∈ V ′ (14)452

∑
Jd∈V

xk
′

Jd ,vp −
∑
Jd ′∈V

xkJd ′ ,vj = 0, ∀vp ∈ V ′, ∀k ′ ∈ M453

(15)454 ∑
Jd ′∈V ′

∑
Jd∈D

xk
′

Jd ,Jd ′
qd ≤ Q, ∀k ′ ∈ M (16)455

xk
′

Jd ,Jd ′
∈ (0, 1), ∀Jd , Jd ′ ∈ D, ∀k

′
∈ M (17)456 ∑

k ′∈M

xk
′

Jd ,Jd ′
= 0, avi,vj ∈ NC (18)457

Equation (12) is the total vehicle operation cost, which is458

composed of the driving cost, vehicle fixed cost, and time459

delay cost. Equation (13) is the time delay cost, where, ω rep-460

resents the time delay cost corresponding to the unit distance.461 ∑S
d=1 |Jd | represents the number of all customer points in all462

urban logistics distribution regions. The time delay cost l is463

directly proportional to the sum of the distances from all cus-464

tomers in the line to the geographical center. The time delay465

cost here is only used to compare the advantages and disad-466

vantages of schemes, and the value of a single scheme has467

no practical operational significance. Equations (14) and (15)468

ensure that a customer distribution center is visited only once,469

and the incoming vehicles must drive out. Equation (16) is470

to ensure that the loading capacity of each vehicle meets471

the limit of rated loading capacity. In equation (17), xk
′

Jd ,Jd ′
472

represents the decision variable, when xk
′

Jd ,Jd ′
= 1,it means473

that the k ′-th vehicle accesses the customer distribution node474

Jd ′ after visiting the customer distribution node Jd , otherwise,475

it takes 0. Equation (18) ensures that the traffic obstacles that476

must be avoided do not appear in the distribution line.477

Input parameters:478

J : A set of customer distribution nodes,
J = {J1, J2, J3, . . . . . . , Js}

C : set of customer distribution point
requirements

S: Total number of customer distribution
points, d = 1, 2, 3, . . . , S

cd : Demand information of the d th customer
distribution node Jd

(x̄, ȳ): Coordinate of the d th customer distribu-
tion node Jd

F : Vehicle fixed cost
l: Time delay cost
v0: Distribution Centre
M : set of vehicles, M =

(1, 2, . . . , k ′, . . . ,m, . . . ,N )
ω: Time delay cost corresponding to unit

distance
D: set of distribution centers and customers
V ′ = D\{v0}: s customer distribution nodes
FY : Cost matrix, cost fyvi,vj ∈ FY corre-

sponding to each path avi,vj ∈ A
vi = vi(x, y): Coordinates of path node vi
Q: Loading capacity of the vehicles
A: The set of paths is composed of the

shortest paths between any two points
in D. The traffic fault paths that must
be avoided in A are put into the set
NC,NC ∈ A

S ′: The number of distribution regions, S ′ ≤
S

479

B. VEHICLE ROUTING OPTIMIZATION 480

According to the distribution task set NC ′ of N vehicles 481

output after the completion of the first stage decision. When 482

using genetic algorithm to plan the vehicle path, because the 483

algorithm has a certain dependence on the selection of the ini- 484

tial population [31], [32], [33], and has a certain randomness 485

when searching the path, it can be improved in combination 486

with some heuristic algorithms. 487

Beam search algorithm [34], [35], [36], [37] is a heuris- 488

tic graph search algorithm, which is usually used when the 489

solution space of the graph is relatively large. In order to 490

reduce the space and time occupied by the search, some 491

nodes with poor quality are cut off and some nodes with high 492

quality are retained during each step of depth expansion. This 493

reduces space consumption and improves time efficiency.In 494

the second stage, the hybrid genetic-beam search (HGBS) 495

algorithm is used to plan the path nodes. 496

The algorithm flow is shown in Figure 3. The algorithm 497

takes the customer node as the starting point of initialization 498

and the path search minimization cost as the output. The 499

specific steps are as follows: 500

(1) Chromosome coding [34] 501

The route information and distribution information are 502

chromosome coded, and the two-dimensional chromosome 503

coding method is adopted. 504
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FIGURE 3. Flow chart of HGBS algorithm.

The first dimension is the natural number sequence:505

1, 2, 3, . . . , S ′, S ′ the number of distribution regions.506

The second dimension is the position of the chromosome.507

The chromosomes encoded are illustrated in Table 2. For508

example, [1,(3,1)] represents in the sub-region 1, the NO.509

3 customer point is served by No. 1 distribution center.510

The chromosome position is expressed as the serial number511

of the customer point assigned to each distribution center, yfd512

represents the distribution center assigned to the d customer513

distribution node in chromosomef .514

(2) Fitness function515

Z =
1

GD+ QZ × S ′d
(19)516

where, QZ is the penalty weight. The penalty weights can517

facilitate the genetic algorithm to search the global optimal518

solution from both feasible and infeasible domains. In our519

work of logistics distribution of complex road networks, the520

value of QZ cannot be set to 0 in order to obtain the optimal521

solution set. S ′d is the chromosome number violating the max-522

imum transportation distance, and the number of unqualified523

chromosomes is added by 1, that is S ′d = S ′d + 1, the initial524

S ′d = 0.525

(3) Chromosome selection 526

Using Monte Carlo method to select operators, the greater 527

the individual fitness, the higher the probability of being 528

selected. If the population number is m′ and the appropriate 529

value of individual n′ is F , the probability of selecting indi- 530

vidual a is: 531

P =
Fn′∑m′
n′ Fn′

(20) 532

(4) Determine the topology of beam search, that is, gener- 533

ate a set of divisible customer distribution points. 534

(5) Initialize search beam width and weight 535

Judge whether the number of initial nodes N is greater 536

thanbw, if N > bw, then continue. If N < bw, branch the 537

initial node, where bw is the beam width of beam search. 538

(6) Introducing penalty function 539

max GD ≥ QZ (21) 540

(7) Crossover and variation 541

Two individuals wr and wl are randomly selected from the 542

parent generation, and the connection values are randomly 543

and independently selected for exchange. The cross operation 544

at bit b is as follows: 545

wrb = wrb(1− β)+ wlbβ (22) 546

wlb = wlb(1− β)+ wrbβ (23) 547

where β is the random number between [0,1]. 548

Complete uniform mutation with a predetermined proba- 549

bility to improve individual fitness and approach the optimal 550

solution from a local point of view. The new gene value after 551

mutation is: 552

w′ = γ (wmax − wmin)+ wmin (24) 553

where wmax,wmin are the maximum and minimum values of 554

the initial individual, γ is the random number between [0,1]. 555

To sum up, after many cross variations, the optimal path of 556

urban logistics distribution region is obtained. 557

V. CASE ANALYSIS 558

In this section, we use Matlab 2020a to carry out simulation 559

experiments. The experimental equipment is a computer with 560

i7-7500 2.90GHz CPU. The computer system is windows10 561

64 bit Professional Edition with 4G RAM. 562

In the first stage of decision-making, we use two exam- 563

ples for analysis. Case1: Based on the road network of a 564

city in southern Jiangsu, a logistics distribution model con- 565

sidering complex road networks is established according to 566

the road network. There are 286 road network nodes in the 567

city, 10 logistics distribution centers and 95 customer dis- 568

tribution centers. The 95 customer distribution centers are 569

expressed with C1, C2, C3,. . . , C95, and the 10 distribu- 570

tion centers are represented by D1, D2, D3,. . . , D10. The 571

geographical distribution of each point is roughly shown 572

in Figure 4. Case 2: Based on the basic data of the urban 573

logistics distribution region partitioning in Literature [4], the 574
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TABLE 2. Schematic of chromosome codes.

FIGURE 4. Spatial distribution of distribution center and customer point.

data in [4] includes 279 road network nodes, 105 distribu-575

tion units, five candidate distribution centers, and 1 logis-576

tics center. According to the basic data of urban logistics577

distribution, we regard the logistics center as a distribution578

center and jointly undertake the basic logistics distribution579

tasks.580

The purpose of the distribution region partitioning is to581

determine the number of distribution centers and their cor-582

responding locations. In addition, each distribution unit or583

customer point should be reasonably allocated to a certain584

logistics distribution center. Table 3 measures the distance585

between 10 logistics distribution centers and the top 15 cus-586

tomer distribution centers in Case 1.587

Table 4 lists the coordinates of some customer distribution588

nodes and road network nodes and the demand information589

for customer distribution nodes.590

In the second stage of decision-making, we first discussed591

the hybrid idea of the algorithm in this study. In order to592

solve the problem of a large search range of genetic algo-593

rithms, we mixed genetic algorithm and beam search algo-594

rithm to realize the pruning operation of beam search in595

three cases: before chromosome crossover, after chromo-596

some mutation, both before chromosome crossover and after597

chromosome mutation. Then, the efficiency of the proposed598

heuristic hybrid algorithm is evaluated on the Solomon data599

set. Finally, the vehicle route optimization is realized by the600

region partitioning result of the example in the first stage of601

decision-making.602

A. REGION PARTITIONING CALCULATION 603

For the simulated annealing algorithm, the initial temperature 604

is 600◦, the cooling coefficient is 0.99, the cooling times are 605

1000, the number of internal cycles before each cooling is 606

100, and the number of distribution vehicles is set according 607

to the number of distribution centers. 608

Fig. 5 is an iterative convergence diagram of the first stage 609

region division objective functionG. It can be seen from Fig.5 610

that when the simulated annealing algorithm performs region 611

division, there is a large fluctuation in the early stage, and the 612

g value converges to Case 1:418 and Case 2:512 in the later 613

stage. Figure 6 and Figure 7 are the regional division results 614

of Case 1 and Case 2 respectively. It can be seen from the 615

figure that the division results have good results in terms of 616

customer quantity and load (calculated load variance: Case 617

1 412, Case 2: 509, the variance of customer nodes: Case 618

1:0.627, Case 2:0.718). 619

B. VEHICLE ROUTING PLANNING CALCULATION 620

Since each customer distribution node usually contains more 621

than 20 customers, the requirements of the Solomon data-set 622

or extended Solomon data-set are collected for each cus- 623

tomer. In order to better reflect the actual distribution demand 624

of each customer point, in this embodiment, the customer 625

delivery demand of RC1_2_1 in Solomon data set [19] is 626

multiplied by 20 as the delivery demand, that is, the data set 627

is expanded to meet the actual distribution demand. 628

For the HGBS algorithm, setting vehicle carrying capacity 629

Q = 2000, the fixed cost of vehicles F = 500, the fixed cost 630

of vehicles F = 500, the maximum transportation distance 631

of vehicle LD = 35 mile, the beam Search width of bundle 632

search bw = 4, the maximum number of generations is 633

Smax = 500, the crossover probability pc = 0.8, the mutation 634

probability pm = 0.02. 635

In the first step, the fusion methods of the three algorithms 636

are compared and verified on the Solomon data set. The 637

minimum cost, number of iterations, and algorithm running 638

time obtained by random experiments 5 times are shown in 639

Table 5. 640

It can be seen from Table 5 that before the chromo- 641

some crossing, the beam search algorithm is integrated, 642

and the pruning function is introduced to cut the chromo- 643

some sequence that does not meet the transportation dis- 644

tance limit and vehicle capacity constraint, and pruning is 645

performed once before the chromosome crossover, after the 646

chromosomemutation, both before and after the chromosome 647

crossover. The experimental results show that after five sim- 648

ulation experiments, the experimental results show that the 649

average total cost of pruning before chromosome crossing is 650
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TABLE 3. The distances (miles) between 10 logistics distribution centers and top 15 customer distribution centers.

TABLE 4. Customer distribution node coordinates and requirements.

FIGURE 5. Iterative convergence curve of simulated annealing algorithm.

the lowest, which is $28815.8, which is about 0.72% lower651

than the average total cost of pruning after mutation, and652

about 0.07% lower than the average total cost of pruning653

before chromosome crossing and after mutation. Under the654

three different operations, it is relatively better to prune both655

before crossing and after mutation at the same time in terms656

of the number of iterations and the execution time of the657

algorithm to obtain the optimal results, the reason is that the658

pruning operation is carried out before crossing and after659

mutation at the same time, so that the nodes that do not660

meet the current optimum at each stage are pruned. This is661

a greedy strategy. Therefore, the number of iterations and the662

execution time of the algorithm are relatively small, but the663

result will fall into the local optimum and the global optimum664

solution cannot be accurately obtained. Therefore, in this 665

study, we chose to prune before crossing. In addition, the 666

number of iterations of the algorithm is significantly better 667

than that of the other two cases in both minimum cost and 668

optimal results. Pruning the unqualified chromosome before 669

the chromosome crossing ensures the best of the father gen- 670

eration, and the offspring obtained after the cross mutation 671

basically inherits the best of the parent, so as to ensure the 672

relative optimal result. However, if the chromosome is pruned 673

after the cross mutation, it is pruning in the offspring, which 674

cannot guarantee global optimization, so the result is optimal. 675

In the second step, the efficiency of the proposed heuristic 676

hybrid algorithm is verified on Solomon data set. We use 677

the same Solomon dataset to implement and test different 678
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FIGURE 6. Case 1: distribution region partitioning result.

algorithms related to this paper such as HPSO [38], GA [39],679

ACO [40], EPSO-GA [4], 2MPSO [41], IPSO [42], TS-680

MOEA [12], HPSO-HGA [18].681

Most of the routing based meta heuristic search and opti-682

mization algorithms which have been searched and collected683

for the first time in this paper have been developed relatively684

more recently. All algorithms are carried out under equal con-685

ditions. Equal conditions mean using the same starting and686

termination criterion, equal number of starting search points,687

the same data set, same hardware running the algorithms.688

Each algorithm is executed for 10 times, and we selected689

the optimal solution as the distribution region partitioning690

results for each method. For the optimal cost, Yin et al.’s691

optimal solution is GD=$31577, Shima et al.’s opti-692

mal solution is GD=$32693, and Chen et al.’s optimal693

solution is GD=$34672, and Wang et al.’s optimal solu-694

tion is GD=$29993, and Okulewicz et al.’s optimal solu-695

tion is GD=$31106, and Hannan et al.’s optimal solution696

is GD=$29653, and Wang et al.’s optimal solution is697

GD=$28906, and Lu et al.’s optimal solution is GD=$30017.698

In addition, HGBS algorithm and other algorithms are exe-699

cuted 10 times with the optimal cost, the number of iterations,700

and algorithm running time for convergence. The results are701

shown in Table 6, Table 7, and Table 8. When HGBS algo-702

rithm is used for vehicle route planning, the average total cost703

is the lowest, about $28912.6. Compared with TS-MOEA704

($29025.2), which is the best performing algorithm in other705

algorithms, the average total cost is reduced by about 0.39%.706

For statistical analysis, t-test method has been performed,707

as shown in the last column of Table 6 and Table 7.708

In order to compare the performance of the proposed algo-709

rithm, the same iteration parameters are used. In the t-test:710

H0: It is argued that there is no difference between the711

means.712

FIGURE 7. Case 2: distribution region partitioning result.

Ha: It is argued that there is a meaningful difference 713

between the means. 714

P: Probability value 715

t Stat: t statistic value 716

Pearson Correlation: The correlation coefficient be- 717

tween LCA and OIO samples 718

t Critical one-tail: Single-sided t critical value 719

t Critical two-tail: Double-sided t critical value 720

alfa: Significant level 721

In the t-test, there are two hypotheses, H0 and Ha. When 722

the p value is less than 0.01, the H0 hypothesis is rejected and 723

Ha is accepted. When p value is greater than or equal to 0.01, 724

H0 hypothesis is accepted and Ha is rejected. If the test result 725

value of P is less than 0.01, there is a significant difference 726

between the two groups of data. The smaller the P value, the 727

more obvious the difference is, and the greater the difference 728

is from the benchmark data. 729

It can be seen from Table 6 and Table 7 that compared with 730

HGBS algorithm, the p-values of the other eight algorithms 731

are significantly less than 0.01 and all are negative. The t-test 732

of ts-moea is relatively optimal, which is −1.18. The t-test 733

results show that the results obtained by this algorithm are 734

relatively good compared with other algorithms, and the t-test 735

results of ACO are relatively poor, which is−28.65. The t-test 736

results show that the results obtained by this algorithm are 737

relatively poor compared with other algorithms. 738

Based on the t-test results, both the distribution cost per day 739

and the number of iterations are significantly different than 740

each of the other methods. Compared with the Genetic Algo- 741

rithm, the total cost of the algorithm is reduced by 14.1%, and 742

the number of iterations required to reach the optimal solution 743

is reduced by 152 times. The reasonwhyHGBS algorithm has 744

achieved this experimental effect is that the pruning operation 745

is carried out before the chromosome crossing of GA, which 746
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TABLE 5. Comparison of experimental results under three fusion methods.

TABLE 6. Different optimization algorithms comparison (total cost).

ensures the optimal selection of the parent generation, so that747

the offspring obtained by the individuals after the pruning748

after the mutation crossing operation basically inherits the749

optimal selection of the parent generation, thus ensuring the750

relatively optimal results.751

In addition, as can be seen from Table 8, in terms of the752

speed of obtaining the optimal solution, through 10 experi-753

ments and simulations, the average algorithm execution time754

of HGBS algorithm is 68.5s, which is 18.85% higher than755

that of HPSO-HGA (84.41s), and 55.19% higher than that756

of 2mpso (106.31s). Compared with other algorithms, HGBS757

algorithm can obtain the optimal solution faster. This means758

that HGBS algorithm is more likely to find the optimal solu-759

tion than other methods. That is, the method proposed in this760

paper can better capture the partitioning scheme, optimal cost761

and iteration times, and show its ability to solve the com-762

plex distribution region partitioning problem and logistics763

distribution vehicle routing optimization in urban logistics764

distribution networks. The reason why HGBS algorithm can765

obtain the optimal solution in a short time is that the pruning766

operation before the individual crossing avoids the search for767

the relative inferior solution and reduces the execution time of 768

the algorithm on the premise that the individual of the parent 769

generation is guaranteed to be optimal. 770

Comparedwith the other four algorithms, HGBS algorithm 771

has the following merits: 772

(1) HGBS algorithm is a hybrid algorithm combining 773

genetic algorithm and beam search algorithm, which has 774

global and local search capabilities. 775

(2) BS algorithm is a graph search algorithm, it is similar 776

to the directed graph of logistics distribution constructed by 777

the logistics distribution model considering complex road 778

networks. 779

(3) The unique pruning function of BS algorithm in the 780

search process can set the search width for the next node 781

search at any time according to the quality of the customer 782

points obtained from the expansion. 783

(4) HGBS algorithm has inherent advantages and can 784

be applied to large-scale logistics distribution network with 785

thousands of customers. As shown in Table 6 and Table 7, 786

the number of iterations of HGBS algorithm is signifi- 787

cantly less than that of other methods. As the number 788
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TABLE 7. Different optimization algorithms comparison (number of iterations).

TABLE 8. Different optimization algorithms comparison (algorithm running time/second).

TABLE 9. Results of the two cases.

of customers increases, this advantage will become more789

obvious.790

In summary, the HGBS algorithm proposed in this paper791

is a hybrid algorithm combining genetic algorithm and beam792

search algorithm. It is designed and implemented by updating793

penalty weight and pruning the parent chromosome.794

In addition, in the two-stage algorithm, we first improved795

the HSA algorithm with the goal of balancing the vehicle796

load to achieve the division of logistics distribution regions.797

Through the HSA algorithm, the entire distribution region798

is divided into independent sub regions, so as to reduce799

the region scale and the path optimization range, reduce800

the path search cost, and improve the global search effect801

of the path. Secondly, in order to minimize the total cost802

of logistics distribution, considering the complex road net-803

work constraints of each sub region after the division of804

regional road network, an improved path search strategy805

based on genetic algorithm is proposed. Before the chromo-806

some crossing of genetic algorithm, the beam search algo-807

rithm is used to prune the unqualified chromatids to ensure808

the optimization of the parent nodes, so as to improve the809

search ability of GA for the local optimal solution of the path.810

However, the algorithm still has some disadvantages, such811

as high computational complexity, imperfect decision space 812

performance, and difficult experimental parameter setting. 813

In the follow-up study, the above factors need to be com- 814

prehensively considered to improve the performance of the 815

algorithm. 816

The proposed hybrid algorithm can obtain a better optimal 817

solution for most of the randomly generated initial popula- 818

tions, but for those poor initial populations, the pruning func- 819

tion rarely appears in the optimal solution. Compared with 820

other methods, the optimization success rate of the method is 821

very high (3 times in 10 times). 822

Finally, according to the regional division results of two 823

examples in the first stage decision-making, the logistics dis- 824

tribution vehicle route is optimized, and the classical genetic 825

algorithms GA, EPSO-GA [4], IPSO [42], and HPSO-HGA 826

[18] are compared to verify the effectiveness of the method 827

proposed in this paper on two examples. The operation com- 828

parison results are shown in Table 9. 829

The experimental results of the two practical cases are 830

shown in Table 9. The average total cost of the two-stage 831

algorithm proposed in this paper on Case1 is about $28912, 832

which is about 1.8% lower than the optimal HPSO-HGA 833

($29434) among other algorithms, the number of iterations 834
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of the algorithm is reduced by about 5.4%, and the execution835

time of the algorithm is increased by about 23.2%. The aver-836

age total cost on Case2 is $31174, which is about 7.2% lower837

than the optimal HPSO-HGA ($33409) in other algorithms,838

the number of algorithm iterations is about 4.7%, and the839

algorithm execution time is about 25.6%. As can be seen from840

Table 9, on the premise of considering the complex urban road841

network structure, the distribution region partitioning method842

proposed in this paper canwell realize the division of logistics843

distribution regions, so as to optimize the vehicle path in844

each region and minimize the overall cost. The experimental845

results show that the proposed method has some advantages846

in scheme division, total cost and iteration times. Through847

comparison, it is proved that the logistics distribution region848

partitioning method has the ability to optimize the logistics849

distribution network. The proposed method is easy to imple-850

ment in practice, can effectively divide the urban logistics851

distribution region, and helps logistics operators reduce oper-852

ating costs and improve customer service.853

VI. CONCLUSION854

To solve the problem of difficult region partitioning and855

routing planning in large-scale logistics distribution under856

complex road network conditions, this paper establishes a857

mathematical model of logistics distribution based on con-858

sideration of traffic elements and road network topology, and859

proposes a two-stage vehicle routing optimization scheme for860

logistics and distribution based on HSA-HGBS algorithm.861

In the first stage, the overall distribution region is divided862

into independent sub-regions by HSA algorithm to balance863

the vehicle task load. In the second stage of routing decision,864

with the goal of minimizing the total cost of logistics and dis-865

tribution, the HGBS-based routing searchmethod is proposed866

to reduce the randomness of the model in the initial search867

path by heuristic genetic algorithm, and then combined with868

Beam search method to reduce the space and time occupied869

by the search.870

In this paper, 10 experiments are conducted on the standard871

data set for sub-region routing decisions. When HGBS algo-872

rithm is used for vehicle route planning, the average total cost873

is the lowest, about $28912.6. Compared with TS-MOEA874

($29025.2), which is the best performing algorithm in other875

algorithms, the average total cost is reduced by about 0.39%.876

The results show that the HGBS algorithm can effectively877

improve the effectiveness of independent sub-region routing878

optimization. Through the experimental verification of the879

proposed algorithm in two practical cases, the average total880

cost of the HSA-HGBS algorithm in Case1 and Case is about881

1.8% and 7.2% lower than the best result in the comparison882

algorithm, and the number of iterations of the algorithm of the883

algorithm are reduced by about 5.4% and 4.7% respectively.884

The results show that the two-stage algorithm proposed in this885

paper can effectively divide the urban logistics distribution886

region, reduce the region scale and route search cost, and887

improve the efficiency and rationality of the overall physical888

distribution route selection.889

Although the two-stage decision algorithm proposed in this 890

paper can better optimize the large-scale urban logistics dis- 891

tribution considering the complex road network, there are still 892

some defects. For example, the complex road network con- 893

sidered in this paper is limited to the complex road network 894

problem composed of detailed and complex traffic elements 895

and the topological structure of the road network. Although it 896

reflects the actual road network situation to a certain extent, 897

further analysis is still needed in terms of traffic rules, pop- 898

ulation density, and measures of motor vehicles (or more 899

accurately, road parameters causing problems). In addition, 900

building a more realistic distribution data set is also the focus 901

and difficulty of the next research. 902
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