IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 August 2022, accepted 4 September 2022, date of publication 15 September 2022, date of current version 27 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3206772

== RESEARCH ARTICLE

Analyzing the Trade-Off Between Complexity
Measures, Ambiguity in Insertion System
and Its Applications

ANAND MAHENDRAN', KUMAR KANNAN',
MOHAMED HAMADA "2, (Senior Member, IEEE), AND MANUEL MAZZARA 3

!School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
2Software Engineering Laboratory, The University of Aizu, Aizuwakamatsu 965-8580, Japan
3nstitute of Software Development and Engineering, Innopolis University, 420500 Innopolis, Russia

Corresponding author: Anand Mahendran (manand @vit.ac.in)

The work of Anand Mahendran was supported by the Council of Scientific and Industrial Research (CSIR) under
Project 25(0291)/18/EMR-II.

ABSTRACT Insertion is one of the basic operations in DNA computing. Based on this operation, an evolu-
tionary computation model, the insertion system, was defined. For the above defined evolutionary compu-
tation model, varying levels of ambiguity and basic descriptional complexity measures were defined. In this
paper, we define twelve new (descriptional) complexity measures based on the integral parts of the derivation,
such as axioms, strings to be inserted, and contexts used in the insertion rules. Later, we analyze the trade-off
among the (newly defined) complexity measures and the existing ambiguity levels. Finally, we examine the
application of the analyzed trade-off in natural languages and modelling of bio-molecular structures.

INDEX TERMS Insertion systems, complexity measures, ambiguity levels, trade-off, natural languages.

I. INTRODUCTION

In the recent decades, the usage of computer has been
increased enormously starting from storing and retrieving
of data, manipulating scientific computations and perform-
ing other complex operations. To capture the needs of the
fast growing world, there is a constant research happen-
ing in the domain of computer science. Due to the need
of increase in computation speed and storage of data, the
computing models used for computation and the technolo-
gies used for storage medium needs to be changed rapidly.
As nature is always more faster than human brains and the
computing devices, researchers felt that the nature would
play a critical role, in specific, if biology is introduced in
the domain of computer science. This initiated the notion
of natural computing or bio-inspired computing models
which bridged the gap between nature and computer sci-
ence. As a result, lot of bio-inspired computing models have
been defined namely membrane computing, sticker systems,
splicing systems, Watson-Crick automata, insertion-deletion
systems, DNA Computing, H-systems [6], [35], [36]. In formal

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Li

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

language theory, the language generation depends on the
rewriting operations, which paved a new dimension for inser-
tion systems. If a string § is lodged between two substrings
o1, ap of a string «jop to get a new string o Baa, then the
performed operation on the strings is called insertion. Inser-
tion operation was first theoretically studied in [16]. In DNA
computing, the insertion operations have (some) biological
relevance, which in turn has (some) biological relevant prop-
erties in human genetics. In [34], the application of the inser-
tion operation in the domain of genetics has been investigated.

In 1969, Solomon Marcus introduced Contextual gram-
mars which are mainly based on the descriptive linguis-
tics [30]. In contextual grammars based on the selector, the
context is inserted to the left and right of selectors. Using
the adjoining operation, iteratively, the strings are generated
in the language, where as in insertion system based on the
left and right context, the string is inserted. In [33], differ-
ent ambiguity levels were defined and studied for external,
internal contextual grammars depending on the parts that are
used in the derivation. For more details, on the ambiguity
issues related to contextual grammars, we cite [18], [21],
[22], [32], [34]. As insertion system can be viewed as the
counterpart of contextual grammars, in the similar line of

100513

https://orcid.org/0000-0002-8654-031X
https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0002-6515-4567

IEEE Access

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

direction, in [23], various ambiguity levels were interpreted
for insertion systems. As there will be more than one gram-
mars (systems) Gp, Ga, ..., G, which generates a language
L, a situation arises to choose an economical grammar (sys-
tem) G which generates L. This idea of economical grammar
(system) leads to the introduction of the notation called
descriptional complexity measures. In [15], the complex-
ity measures were investigated for context-free grammars.
Several complexity measures were defined for contextual
grammars such as Ax, MAx,TAx,Con,MCon,TCon,Phi,MSel,
TSel [20], [37], [38]. In [24], depending on the insertion
and deletion rules, different complexity measures were intro-
duced and analyzed for insertion-deletion systems.

In programming and natural languages ambiguity is one of
the interesting problems that needs to be investigated. First,
we will discuss about the ambiguity issues in programming
languages. Given a grammar G and an input string w € L(G),
if it has more than one derivation or derivation trees (for the
same string w), then the grammar G is said to be ambiguous.
On the other hand the grammar G is unambiguous, if there
exists only one derivation (derivation tree) for all the words
in L(G). The following example shows the importance and
necessity of studying about the trade-off in programming
languages. Consider the following Context Free Grammar
(CFG) G which generates L (the set of arithmetic expres-
sions): Let G = ({X, Y}, {a,+,%, ()L X, {X - YV, X —
X+X,X > X*X,X > (X),Y — a}). The grammar G is
ambiguous. The string a + a * a € L(G) can be derived by
two (distinct) left most derivations (LMD): LMD 1: X —
XxX —= X+ XX — a+X*xX — a+axX —> a+axa.
IMD2:X = X+X = a+X —m a+X*xX =
a+axX = a+ a* a. The grammar G is ambiguous
in addition to that the grammar G is minimal in terms of the
measures non-terminals and productions. The minimal values
of the measures based on the grammar G is 2 and 5 respec-
tively. For the same language L, an unambiguous grammar G’
canbederived. G = ({X, Y, X", Y}, {a,+, %, ()}, X, (X —
XX YV >sYX->X+X X -XxY,Y —>
(X), Y — a}. The interesting fact about the above grammar
G’ is unambiguous but is not minimal with respect to the mea-
sures non-terminals and number of productions. The Table.1
shows the comparison between the measures of the grammars
G and G’ respectively.

Based on the (minimal) measures number of non-terminals
and productions a minimal CFG can be given for the expres-
sion language, but the given CFG is ambiguous. Whereas
if the grammar G is unambiguous, it is not minimal in the
measures non-terminals and productions. As insertion system
is mainly based on the insertion operation, it has a potential
application in generating natural languages and modelling of
bio-molecular structures [30], [35]. In general, if we want to
store natural languages, we will prefer economical and an
unambiguous system. Under these circumstances, a trade-off
needs to be performed based on the descriptional complexity
measures and the ambiguity levels. As far as considering the
research work on insertion systems it is mainly focused on
the introduction of variants, reducing the weights towards the

100514

TABLE 1. Comparison of complexity measures.

Measures Ambiguous
Grammar (G) | Unambiguous
Grammar(G’)
Number of Non-terminals 2 4
Number of Terminals 5 5
Number of productions 5 7

computational completeness, analyzing the relationship with
Chomskian hierarchy of grammars, closure properties, ambi-
guity issues and decidability issues. For more details, we refer
to [9], [10], [11], [12], [13], [23], [24], [25], [35]. This moti-
vated to define new decsriptional complexity measures for
insertion systems, perform the trade-off and to investigate the
application of the analyzed trade-off.

The organization of the paper is given as, the preliminaries
are dealt in Section II. The newly introduced descriptional
complexity measures of insertion systems were discussed in
Section III. The trade-off results between the newly defined
complexity measures and various ambiguity levels of inser-
tion systems were investigated in Section I'V. The application
of the trade-off between ambiguity and measures in natu-
ral languages and modelling of bio-molecular structures has
been probed in Section V. The comparative study is dealt in
Section VI. The conclusion and the future work is dealt in
Section VIL

Il. PRELIMINARIES

We start with discussing about the fundamental notations
used in formal language theory. V(%) is called an alphabet
set. T is called a terminal set. The free monoid generated by
V(%) is represented as V*(X*). The null string is denoted by
A. Strings or words are the elements from V*(X*). By elim-
inating A from V*(X*), we can obtain V¥ (Z*). A language
Lisgivenas L C V*(X*). For more details, we refer to [40].

An insertion system is defined as: y = (V, A, R), where V
represents an alphabet, A is a finite language over the alphabet
(axiom), R is defined as a set of finite insertion rules in the
given format (u, B, v). In the above insertion rule (IR) the pair
(u, v) is called context and (u, v) € V* x V*. The 8 represents
the string to be inserted (IS) and 8 € V*. Given an insertion
rule, depending on the left context (LC) and right context
(RC), (u, v), the string B is inserted. If (#,v) € A, then the
insertion of 8 can be done anywhere in the word.

Given an insertion rule (u, 8,v), the y can be derived
from x as follows ((x,y) € V* and x — y). Con-
sider the following derivation step: x = xjutvxy,y =
xiupvxy, for some x1,x, € V*and (u, B,v) € R, | marks
the Tocation of the string to be inserted, the inserted string is
represented by a underline. The language generated by y is
defined as: L(y) = {w € V* | x =* w, for some x €
A}, where =" is the reflexive and transitive closure of the
defined relation =.

In [23], six new levels of ambiguity were defined for
insertion systems by considering the parts that are used
in the derivation. Given a derivation step in an inser-
tion system (y) § : w = w; — ... —
Wm,m > 1 where wi € A and the scenario can be

VOLUME 10, 2022

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

IEEE Access

Wi = X1,Ujvixj, Wir1 = X1 jujBjvjx2 j, when an insertion
rule (uj, B;, vj) is used, where x1 j, uj, vj, xo; € V*. If the
sequence has wi, B1, B2, B3, ..., Bm—1 (axioms and inserted
strings) then it is control sequence (CS). If the sequence has
wi, (u1, B1, v1), (U2, B2, v2), (U3, B3, v3), ..., (Um—1, Bm—1,
vm—1) (axioms, inserted strings and the contexts) then it is
complete control sequence (CCS). If the sequence is defined
as wi, x1,1u1 B1vixe,1, X1,2u282v2x2.2, X1,3U3B3V3X2,3, - - -,
X1,m—1Um—1Pm—1Vm—1X2,m—1, Which is mainly based on the
position where the string S is inserted, then it is a description.
Given an insertion system y, the Table. 2 depicts the various
ambiguity levels.

TABLE 2. Different ambiguity levels of insertion system.

Ambiguity Level
0 — ambiguous

Description
From two different axioms (A1, As € A, A1 # Aa,),
a same word w can be derived
If the same word w can be obtained by two distinct
unordered CS
If the same word w can be obtained by two distinct
unordered CCS
If the same word w can be obtained by two distinct
ordered CS
If the same word w can be obtained by two distinct
ordered CCS
If the derivations are different based on the descriptions

1 — ambiguous

2 — ambiguous

3 — ambiguous

4 — ambiguous

5 — ambiguous

Now, we recall the various complexity measures intro-
duced for insertion-deletion (ins-del) systems. Given an
ins-del system y = (V, T, A, R), the existing descriptional
complexity measures of ins-del systems are defined as fol-
lows in Table. 3. For more details, we refer [20], [24], [37],
[38]. Given the measure M and language L, the minimal sys-
tem y for the language L is defined as: M (L) = min{M (y) |
L = L(y)}. For a given measure M and a language L, we
define M~Y(L) = {y | L(y) = L and M(y) = M(L)}. In
the above definition, M ~1(L) denotes the set of all minimal
systems that generates L which are minimal in the measures
M. For a language L, two measures M1, M, are said to be
incompatible if the following relation M; ' (L)NM, (L) = ¢
holds true. If Ml_l(L) N M2_1(L) # ¢, then the measures
(M7 and M>) are called compatible. Based on the above def-
inition, in [34], any two of the measures Ax, MAx, TAx are
proved to be compatible. From the above measures (Table. 3),
if the deletion rules were not used by the system y, the mea-
sures {TDEL — StrCon, TDEL — Str} are not applicable to
insertion systems.

Ill. NEW DESCRIPTIONAL COMPLEXITY MEASURES

In this section, we introduce twelve new descriptional com-
plexity measures depending on the integrants used in the
derivation of the language. The Table. 4, shows the newly
introduced measures.

IV. TRADE-OFF RESULTS BETWEEN (DESCRIPTIONAL)
COMPLEXITY MEASURES AND AMBIGUITY LEVELS
In this section, we investigate the trade-off for insertion lan-
guages by considering the complexity measures and ambigu-
ity levels.

Theorem 1: There are pseudo inherently 5-ambiguous
insertion languages which are minimal in M; € {TLen —

VOLUME 10, 2022

TABLE 3. Existing descriptional complexity measures of ins-del system.

S.No Measure Notation
1 Az card(A)
2 M Az maxy,e A |wl
3 T Az Z |w|
wEA
Prod card(R)
5 T Length — Con Z |uv|
(u,v)ER
6 T Length — Str Z 18] + |
(u,ae/B,v)ER
7 TINS — StrCon Z |uv| + | 8]
(u,\/B,v)ER
8 TDEL — StrCon Z [uv| + |
(u,a/A\,v)ER
9 TINS — Str > 18l
(u,\/B,v)ER
10 TDEL — Str > el
(u,/ XN V)ER

LCon, MLen— LCon, TLen— LCon+ InsStr, MLen— LCon+
InsStr} and M, € {Ax}.

Proof: Let the language L; = {b°a™ | m > 0}. The
following 5-ambiguous insertion system y; can be used to
generate L1. y; = ({a, b}, {b3, b3a}, {(a, a, 1)}). The system
y1 is minimal in TLen— LCon, MLen— LCon, TLen— LCon+
InsStr, MLen — LCon + InsStr. Now, we will prove on the
minimal measures of the system y;. In this regard, first we
will prove for the measures TLen — LCon, MLen — LCon.
From the system y;, we can see that TLen — LCon(y;) =
1. As the system y1, uses only one insertion rule and since
TLen — LCon(y1) = 1, which implies MLen — LCon(y;) = 1.
Now, we will discuss on the other measures TLen — LCon +
InsStr, MLen — LCon + InsStr. Any system which generates
L1, should have a string to be inserted of minimum length one.
Therefore, TINS — Str(y;) = 1. Earlier, we have proved that
the TLen — LCon(y1) = 1 = MLen — LCon(y1). Therefore,
TLen— LCon+InsStr(y1) = 2 = MLen— LCon+ InsStr(y1).
From the above arguments, we can conclude that the system
y1 is minimal in TLen— LCon, MLen— LCon, TLen— LCon+
InsStr, MLen — LCon + InsStr.

Consider any y; which generates L; which has TLen —
LCon(y1) = 1 = MLen — LCon(y;) and TLen — LCon +
InsStr(y1) = 2 = MLen — LCon + InsStr(y;). Consider
a word b3dk € L1, for a large value of k. In the derivation
of the above words, different a can be chosen, thus produc-
ing two different descriptions. Therefore, the system y;| is
5-ambiguous.

However, the language L; is unambiguous as there exists
an unambiguous insertion system y," which generates L;.
Consider the system y; = ({a, b}, {b*}, (b, a, 1)}). The
system ;" is unambiguous. From the system y/’, it is clear
that y;" generates Li. While deriving ba",r > 1 € Ly,
the position of the string a to be inserted is unique in the
derivation. As the system y,’ has only one axiom b°, it is
minimal with respect to Ax. Note that the system y;" is not
minimal in {TLen — LCon, MLen — LCon, TLen — LCon +
InsStr, MLen — LCon + InsStr}. |

100515

IEEE Access

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

TABLE 4. Newly introduced descriptional complexity measures of insertion system.

S.No Measure Notation Description
1 MLen — InsStr max _|S] Maximum length of the IS
(u,B,v)ER
2 mLen — InsStr min _[3] Minimum length of the IS
(u,B,v)ER
3 MLen — LCon max |ul Maximum length of the LC used
(u,B8,v)ER
in the IR
4 MLen — RCon max _|v] Maximum length of the RC used
(u,8,v)ER
in the IR
5 mLen — LCon min |ul Minimum length of the LC used
(u,8,v)ER
in the IR
6 mLen — RCon min _ |v] Minimum length of the RC used
(u,B8,v)ER
in the IR
7 TLen — LCon Z [ul Total length of all LC
(u,B8,v)ER
used in the IR
8 TLen — RCon Z [v] Total length of all RC
(u,B,v)ER
used in the IR
9 TLen — LCon + InsStr > ul+18l Total length of LC
(u,8,v)ER
+ the length of the IS
10 TLen — RCon + InsStr Z [v] + |8 Total length of LC
(u,B8,v)ER
+ the length of the IS
11 MLen — LCon + InsStr (r;1a§< lul + |5] Maximum length of LC
u,B,v)e
+ the length of the IS
12 MLen — RCon + InsStr max _|v] + [B] Maximum length of RC
(u.B,v)ER
+ the length of the IS

Corollary 1: There are pseudo inherently 5-ambiguous
insertion languages with M| € {TLen — LCon,MLen —
LCon, TLen — LCon + InsStr, MLen — LCon + InsStr} and
M, € {MAx, TAx}.

Theorem 2: There are pseudo inherently 5-ambiguous
insertion languages which are minimal in M € {TINS — Str}
and M, € {TLen — RCon, MLen — RCon, mLen — RCon}.

Proof: Let the language L, = {d @b | k >
0} U {(@®b)*c¢ | k = 0}. The following 5-ambiguous
insertion system j» can be used to generate L;. y» =
({a, b, c,d}, {d, da®b, c, a®bc}, {(A, a’b, a’b)}). The system
y2 is minimal in TINS — Str. Any insertion system
¥, which generates Ly should have an insertion string of
length < 4. Therefore, y» is minimal in TINS — Str and
TINS — Str(Ly) = 4.

Consider any y, which generates L, which has TINS —
Str = 4. Consider the words d(a3b)! or (a*bYc € Ly, for
a large values of i,j. In the derivation of the above word,
different a>b can be chosen, thus producing two different
descriptions. Therefore, the system y; is 5-ambiguous.

However, the language L, is unambiguous as there exists
an unambiguous insertion system ;" which generates L.
Consider the system) = ({a, b, c, d}, {c, d}, {(d, a’b, 1),
(A, @b, ¢)}). The system yJ’ is unambiguous. With the help
of the insertion rule (d, agb, A, d(a3b)k ,k > 0 can be
generated. Likewise, by using the insertion rule (A, a’b, c¢),
(@®b)fe,k > 0 can be generated. While deriving d (a3b)
or (a3b)sc, r,s > 1 € L, the position of the string to be
inserted @b is unique in the derivation. From the system

100516

y4, it is easy to see that the ;" is minimal with respect to
{TLen — RCon, MLen — RCon, mLen — RCon}. |

Corollary 2: In the above result, if the insertion rule is
changed as (ab, a’b, 1), the language L, is represented as L.
For the language L), there exists a result for the following
measures. There are pseudo inherently 5-ambiguous insertion
languages with respect to My € {TINS — Str} and M €
{TLen — LCon, MLen — LCon, mLen — LCon}.

Theorem 3: There are pseudo inherently S5-ambiguous
insertion languages which are minimal in M; € {TINS —
Str, TLen — RCon, MLen — RCon, mLen — RCon, TLen —
RCon~+InsStr, MLen—RCon+InsStr} and M, € {Ax, TLen—
LCon, MLen — LCon, TLen — LCon + InsStr}.

Proof: Let the language L3 = {cha’cd"” | n >
1} U {dba®da® | n > 1}. The following 5-ambiguous
insertion system y3 can be used to generate L3. y3 =
({a, b, c,d}, {cbazca, cba’ca?, cha’ca’, dba’da, dba*da?,
dba*da’}, {(a®, a, M)}). The system y3 is minimal in TINS —
Str, TLen — RCon, MLen — RCon, mLen — RCon, TLen —
RCon + InsStr, MLen — RCon + InsStr. Any insertion sys-
tem y; which generates L3 should have an insertion string
of length < 1. Therefore, y3 is minimal in TINS — Str and
TINS — Str(L3) = 1. Now, we will prove for other minimal
measures. As the insertion system has only one insertion rule
and it uses A as the right context, the system y3 is minimal in
the measures TLen — RCon, MLen — RCon, mLen — RCon.
As the TINS — Str(L3) = 1 and TLen — RCon(L3) = A =
MLen — RCon(L3), we can conclude the system y3 is minimal
in the measures 7Len—RCon+InsStr, MLen—RCon-+InsStr.

VOLUME 10, 2022

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

IEEE Access

Consider any y; which generates L3 which has TINS —
Str = 4, {TLen — RCon, MLen — RCon, mLen — RCon} = A,
{TLen—RCon+InsStr, MLen—RCon+InsStr} = 1. Consider
the words cha’ca® or dba*da’ € Ls, for a large values of
s, t. In the derivation of the above words, different a can be
chosen, thus producing two different descriptions. Therefore,
the system y; is 5-ambiguous.

However, the language L3 is unambiguous as there exists
an unambiguous insertion system y; which generates Ls.
Consider the system ! = ({a, b, c, d}, {cb*ca, db*da}, {(c,
a,a), (d, a, a)}). The system y3’ is unambiguous and minimal
in the measures Ax, TLen — LCon, MLen — LCon, TLen —
LCon + InsStr. With the help of the insertion rule (c, a, a),
cha?ca®, k > 1 can be generated. Likewise, by the using the
insertion rule (d, a, a), dba?dd®, k > 1 can be generated.
While deriving cba*ca’ or dba*da®,r,s > 1 € L3, the posi-
tion of the string to be inserted a is unique in the derivation.
Any system which generates L3 should have minimum two
axioms. As the system uses the insertion rules of the form
{(c,a,a),(d,a,a)}, it is easy to see that the y;’ is minimal
with respect to {Ax, TLen — LCon, MLen — LCon, TLen —
LCon + InsStr}.]

Corollary 3: There are pseudo inherently 5-ambiguous
insertion languages with respect to M; € {TINS —
Str, TLen — RCon, MLen — RCon, mLen — RCon, TLen —
RCon + InsStr,MLen — RCon + InsStr} and M, €
{Ax, MAx, TAx, TLen—LCon, MLen— LCon, TLen— LCon+
InsStr}.

Theorem 4: There are pseudo inherently 4-ambiguous
insertion languages with M| € {Ax} and My € {TLen —
LCon, MLen — LCon, TINS — Str}.

Proof: Let the language Ly = (2" | n > 0} U {d?a" |
n > 0}U{c*a"d?*a™ | n, m > 0}. The following 4-ambiguous
insertion system ys4 can be used to generate Lg. Y4 =
({a, b, c,d}, {c?, d?, c*d?}, {(c?, a, 1), (d?, a, M)}). To gener-
ate L4, any insertion system y, should have the axioms of the
form (which should be minimum three) c2,d?, c?d?. There-
fore, Ax(L4) = 3.

Consider any yA{ which generates L4, where Ax(Ls) = 3.
To generate a1 >0of Ly, definitely, the insertion system
must have an insertion rule of the following form (cz, d, A),
i > 1. To generate d 2ak k> 0of Ly, definitely, the insertion
system should have a rule of the form (dz, &), j = 1L
In order to prove y, is 4-ambiguous, let us examine a string
c?dtd*ad"t e L4. The above string can be acquired by
two different ordered CCS. In one CCS, first the following
insertion rule (¢2, a, A) can be used, followed by the another
insertion rule (dz, a, A). In another CCS, first the following
insertion rule (dz, a, A) can be used, followed by the other
insertion rule (02, a, A). As the string to be inserted d' is same
for any arbitrary system, the insertion system y, is 1 and
3-unambiguous.

However, L4 is unambiguous as there exists an unambigu-
ous system y,” which generates Ly. Consider the system " =
({a, b, c,d}, {cz, d?, c*d?, c*a, d*a, c*ad?, 2d?a, cta
d?a}, {(a, a, 1)}). The system ¥4 is minimal while consider-
ing the following measures: {TLen — LCon, MLen — LCon,

VOLUME 10, 2022

TINS — Str}. As the system y,’ uses only one insertion rule
(a, a, L), it is clear that the system is 4-unambiguous. O

Corollary 4: There are pseudo inherently 4-ambiguous
insertion languages with M| € {MAx,TAx} and M, €
{TLen — LCon, MLen — LCon, TINS — Str}.

Theorem 5: There are pseudo inherently 4-ambiguous
insertion languages with respect to M, € {Ax,mLen —
LCon, MLen — LCon + InsStr} and M, € {TLen — LCon}.

Proof: Let the language L5 = (@b | n > 1} U
{d*(@b®)" | n > 13U{c2(ab?)'d%*(ab®Y" | n, m > 0}. The fol-
lowing 4-ambiguous insertion system y;5 can be used to gener-
ate Ls. y5 = ({a, b, ¢, d}, {c*ab’, d*ab?®, *d?}, {(c?, ab>, 1),
(d?, ab?, A)}). First, we will discuss on the measure Ax. The
axioms c2ab3, d%ab?®, c>d? can be used to derive the first,
second and third part of Ls. It is easy to see that mini-
mum three axioms should be there to generate Ls. Therefore,
Ax(Ls) <3, which implies Ax(Ls) = 3. Next, we will discuss
on the measure mLen — LCon. The insertion rule (c2, ab>, A)
is used to generate the first part of the language Ls. The
dz(ab3)", n > 1 part of the language L5 can be derived using
the following insertion rule (d?, ab>, 1). By using the inser-
tion rules alternatively,the third part of the language Ls can
be generated. Any system which generates Ls, should have
insertion rules whose mLen — LCon(Ls) < 2, which implies
mLen — LCon(Ls) = 2. Next, we will discuss on the measure
MLen—LCon+InsStr. Any system which generates Ls should
have the left contexts c2, d? in the insertion rules, which
implies MLen — LCon(Ls) = 2. Likewise, the inserted string
should be ab?, which implies MLen — InsStr(Ls) = 4. As
the measure MLen — LCon + InsStr is the combination of
the above two measures, we can conclude MLen — LCon +
InsStr(Ls) = 6.

Consider any)/5’ which generates Ls, where Ax(L5) = 3,
mLen — LCon(Ls) = 2 and MLen — LCon + InsStr(Ls) = 6.
Since cz(ab3)" € Ls, the insertion system 7/5’ should have
an insertion rule which should be of the following form
(cz, (ab3)r, M), r > 1. Likewise, dz(ab3)” € Ls, the sys-
tem should have an insertion rule of the form (d2, (ab’)*, 1),
s > 1. Consider the word ¢%(ab’)'d*(ab®)* € Ls. This word
can be generated from the axiom ¢>d? by means of two differ-
ent ordered CCS. In one CCS, the insertion rule (c2, ab?, L)
is used followed by (d2, ab’, 1). In another CCS, first the
following insertion rule (d?, ab?,) is used in the derivation
followed by the another insertion rule (6’2, ab’,)). Therefore,
itimplies the insertion system ys is 4-ambiguous. The system
¥¢ is 1 and 3-unambiguous, because the same string ab’ is
inserted in both the derivations.

However, the language Ls is unambiguous since there
exists an 4-unambiguous system y¢’ = ({a, b, ¢, d}, {c2ab?, d?
ab’, c*d?, ctab3d?, c2d*ab?, ctab’d?ab’}, (b3, ab’, M))).
The system y2’ is 4-unambiguous as it uses only one insertion
rule. The system yJ’ is minimal with respect to TLen — LCon.
Note that, the insertion system y:’ is not minimal in the
measures {Ax, mLen — LCon, MLen — InsStr}. |

Corollary 5: There exists pseudo inherently 4-ambiguous
insertion languages with M; € {MAx, TAx, mLen —
LCon, MLen — InsStr} and M, € {TLen — LCon}.

100517

IEEE Access

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

Theorem 6: There are pseudo inherently 2-ambiguous
insertion languages with M| € {Ax} and My € {TLen —
LCon, TLen — RCon, MLen — LCon, MLen — RCon, TLen —
LCon + InsStr, TLen — RCon + InsStr}.

Proof: Let the language Lg = {@*™ | m > 0} U
(" | m = 0} U {a®"c¢* | m > 0}. The following
2-ambiguous insertion system y5 can be used to generate Lg.
ve = (a, b, c},{a® 2, a*c*}, {(@®, b, A), (A, b, c?)}). The
insertion system ¥, is minimal in Ax. Any system which gen-
erates Lg should have minimum three axioms {a?, ¢Z, a*c?}.
Therefore, Ax(Lg) < 3, in turn it infers Ax(L¢g) = 3.

Consider any insertion system y, which is used to gen-
erate Lg, where Ax(Lg) = 3. Since the strings of the form
b i>0e¢ Lg, definitely in the insertion rule there should
be a context of the form (a2, b*), u > 0. Likewise, since the
string of the form v cz, j > 0 € Lg, definitely in the insertion
rule there should be a context of the form (', ¢2),t > 0.
In both the cases, the inserted string will be b",v > 1.
To prove the insertion system is y, is 2-ambiguous, lets us
take a string a*b** ¢ e Lg. From two (different) unordered
CCS, the above string can be obtained from the (same)
axiom. In one sequence using the context (@®, b completely,
the string a?b°* ¢? can be obtained. In another sequence,
using the context (b', ¢?) completely, the string a6t/ ¢ can
be derived. Thus, the same word a?b¢t/ ¢? is derived from
two distinct unordered CCS. Therefore, the language Lg is
2-ambiguous.

The language L¢ is unambiguous as L(y¢) = Lg.
The 2-unambiguous insertion system is given as: y; =
({a, b, ¢}, {d2, 2, a®b, be?, a*c?, a*be?), {(b, b, M)}). Since,
the system ¢ has only one context in the insertion rule
(b,), it implies y¢' is 2-unambiguous. The insertion sys-
tem y¢ is minimal in the measures {TLen — LCon, TLen —
RCon, MLen — LCon,MLen — RCon,TLen — LCon +
InsStr, TLen — RCon + InsStr}. From the system y/, it is
not minimal in Ax. O

Corollary 6: There are pseudo inherently 2-ambiguous
insertion languages in the measures M| € {MAx, TAx} and
M, € {TLen — LCon, TLen — RCon, MLen — LCon, MLen —
RCon, TLen — LCon + InsStr, TLen — RCon + InsStr}.

Theorem 7: There are pseudo inherently 2-ambiguous
insertion languages which are minimal in M| € {TLen —
LCon,TLen — LCon + InsStr} and M, € {TLen —
RCon, TLen — RCon + InsStr}.

Proof: Let the language L7 = {a(bc®)" | n > 1} U
{(bAYd | n > 1} U {a(b3)'d | n > 0}. The following
2-ambiguous insertion system y; can be used to generate L7.

vi=(a, b, ¢, d}, {abc®, bi’d, ad}, {(a, b3, 1), (A, b, d)}).

The system y; is minimal with respect to {TLen —
LCon, TLen — LCon + InsStr}. Any system which generates
L7 should have the following contexts {(a, 1), (A, d)} in the
insertion rules and the inserted string of the form bc>. From
the system y7, it is clear that the system 37 is minimal in the
measures {TLen — LCon, TLen — LCon + InsStr}. It is easy
to see that TLen — LCon < 1 and TLen — LCon + InsStr < 5,
which implies that TLen — LCon = 1 and TLen — LCon +
InsStr = 5.

100518

Consider any system y; which generates L7, where
TLen — LCon(L7) = 1 and TLen — LCon + InsStr(L7) = 5.
Since the strings of the form a(bc3)i ,i > 1 € Ly, definitely
in the insertion rule there should be a context of the form
(a, (bc3)’),t > 0. Likewise, since the strings of the form
(bc3)/d ,j = 1 € L, definitely in the insertion rule there
should be a context of the form ((bc?)*, d), s > 0. In both
the cases, the inserted string will be (b3, k > 1. In order to
prove the insertion system is y; is 2-ambiguous, lets us take a
string a(b?)* d e L;. From two (different) unordered CCS,
the above word can be obtained from the (same) axiom. In one
sequence using the context (a, (bc®)") completely, the string
a(bc?)** d can be obtained. In another sequence, using the
context ((bc3)*, d) completely, the string a(be®)et d can be
derived. Thus, the same word a(bc®)etd e L7, is derived
from two different unordered CCS. Therefore, the language
L7 is 2-ambiguous.

However, the language L7 is 2-unambiguous since there
exists an 2-unambiguous insertion system which is mini-
mal in {TLen — RCon,TLen — RCon + InsStr}. y; =
({a, b, ¢, d}, {abc®, bc3d, ad, ab3d}, {(S3, b3, V)}). As the
system y;’ uses only one insertion rule, obviously, there will
be only one context in the insertion rule (c3, A). Therefore,the
system y; is 2-unambiguous. The system y.’ is minimal in
the measures {TLen — RCon, TLen — RCon + InsStr}. Note
that, the insertion system p. is not minimal in the measure
{TLen — LCon, TLen — LCon + InsStr}. O

Theorem 8: There are pseudo inherently 0-ambiguous
insertion languages with respect to M| € {Ax, MLen —
InsStr, TINS — Str,mLen — InsStr} and M, € {MLen —
LCon, MLen — RCon, TLen — LCon, TLen — RCon}.

Proof: Let the language Lg = (@ | n > 1} U (b*c? |
n > 1} U {a®0"c¢* | n > 0}. The following 0-ambiguous
insertion system yg can be used to generate Lg. y3 =
({a, b, ¢}, {a®b3, b2c2, a>c2, a’bc?}, (a2, b3, 1), (A, b2, A))).
The system yg is minimal with respect to {Ax, MLen —
InsStr, TINS — Str}. First, we will prove for the measures
{MLen — InsStr, TINS — Str}. From the system g, it is easy
to see that MLen — InsStr(yg) < 3 and TINS — Str(yg) < 5.
To generate the strings of the form a?bfct k>0 e Lg, the
insertion rule should have the string b. However, if such an
insertion string is present in any of the insertion rules, then
the system yg may generate some strings a’b*”, p > 1 and
pac?, g > 1 which doesn’t ¢ Lg. From the above claim, all
the parts of Lg cannot be produced by the insertion string b,
which implies mLen — InsStr(yg) = 2. Next, we will discuss
on the following measure TINS — Str. Since the strings of
the structure a2b*?, p > 1 € Lg, insertion rule will certainly
have the string b3. Likewise, since the strings of the structure
bzqcz, q > 1 € Lg, insertion rule will certainly have the
string b%. Therefore, we conclude MLen —InsStr(yg) > 3 and
TINS — Str(yg) > 5.

Next, we will discuss on the measure Axiom. Any system
which generates Lg will have three axioms a?b3, b*c?, a*c?.
Next, we will discuss why the system should have an axiom
a’bc? . If the system is not having the axiom a”bc?, probably
it can be generated by using the axiom a*c? by inserting

VOLUME 10, 2022

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

IEEE Access

the string b. But previously, we have proved that the system
cannot have b as the string to be inserted. Therefore, it implies
a*bc? should be present in the axiom. Therefore, the system
yg is minimal in the measure Ax.

Consider any system yg which generates Lg. The system
yé is minimal in the measure Ax, MLen — InsStr, TINS —
Str, mLen — InsStr. In order to claim ys’ is 0-ambiguous, let
us take the strings a*b’" and b¥c? € Lg, fora large values of
r and s. To produce the words of the form a?b3p, p > 1and
b*4c?, g > 1, the insertion system ¥g should have strings of
the form b3, t > 1 and bz", u > 1 respectively. Consider a
word a2p3mt2unc2 ¢ 1o form > 1,n > 0. The above word
can be achieved from two unique axioms a’c? and a’bc?.
Starting from the axiom a’c?, the word a?b3mt2uncl cap
be obtained by inserting the strings b, m-times and b*“,
n-times. On the other hand, the word a2b3™+2un¢2 can be
derived from the axiom a?bc?. In one derivation, the string b3
can be inserted for m —i{-times, i; > 1. In another derivation,
the string b can be inserted for n + ip-times, i» > 1. Thus,
the word a?b>™+2un¢2 is obtained from two different axioms
a?c?, a’bc?. Therefore, the system yé is 0-ambiguous. For the
measures MLen — InsStr, TINS — Str, mLen — InsStr, an akin
reasoning can be given.

Next, we have to prove the Lg is O-unambiguous,
by showing there exists an 0-unambiguous system yg' =
({a, b, c}, {a2b3, a?b®, b*c?, b*c?, bOc?, a?c?, a’bc?, a’b*c?,
a*b3c?, a?b*c?, a?b>c?), {(b, b0, 1)}) which generates Lg.
The system will produce a unique derivation step for any
word € Lg, starting from an axiom by inserting the string b°,
which shows y;' is 0-unambiguous. As the system uses the
following insertion rule (b, b°, A), the system y;’ is minimal
in the measures MLen — LCon, MLen — RCon, TLen — LCon,
MLen — RCon. O

Corollary 7: There are pseudo inherently 0-ambiguous
insertion languages in the measures M| € {MAx, TAx, MLen—
InsStr, TINS — Str,mLen — InsStr} and M, € {MLen —
LCon, MLen — RCon, TLen — LCon, TLen — RCon}.

Theorem 9: There are pseudo inherently O-ambiguous
insertion languages with respectto M| € {Ax, mLen—InsStr}
and M, € {MLen — RCon, mLen — RCon, TLen — RCon +
InsStr, MLen — RCon + InsStr}.

Proof: Let the language Ly = {ba® | n > 1} U
{@c | n > 1} U{bd"c | n > 0}). The following
0-ambiguous insertion system y9 can be used to generate Lo.
vo = ({a, b, c}, {ba?, a*c, be, bac}, {(b, a*, 1), (A, a*, ©)}).
The system yq is minimal with respect to {Ax, mLen—InsStr}.
First, we will prove for the measure mLen — InsStr. From
the system o, it is easy to see that mLen — InsStr(yg) <
2. To generate the strings of the form ab,k > 0 €
Lo, the insertion rule should have the string a. However,
if such an insertion string is present in any of the inser-
tion rules, then the system y9 may generate some strings
bazP,p > 1 and a4‘fc,q > 1 which doesn’t ¢ Lg. From
the above claim, all the parts of Ly cannot be produced by
the insertion string a. So, obvisouly the minimum length of
the insertion string should be a?. Therefore, we conclude
mLen — InsStr(yy) > 2.

VOLUME 10, 2022

Next, we will discuss on the measure Axiom. Any system
which generates Lg will have three axioms ba2, a*c, be. Next,
we will discuss why the system y9 should have an axiom bac.
If the system is not having the axiom bac, probably it can be
generated by using the axiom bc by inserting the string a. But
previously we have proved that the system cannot have a as
the string to be inserted. Therefore, it implies bac should be
present in the axiom. Therefore, the system yg is minimal in
the measure Ax.

Consider any system yg which generates L. The system
¥4 is minimal in the measure Ax, mLen — InsStr. In order
to claim yg is 0-ambiguous, let us take the strings ba*" and
a*c € Lo, for a large values of r and s. To produce the
words of the form ba®”, p > 1 and a*?c, g > 1, the insertion
system yg should have strings of the form a®. t > 1and
a ou > 1 respectively. Consider a word battmt2ung ¢ Lo,
form > 1,n > 0. The above word can be achieved from
two unique axioms bc and bac. Starting from the axiom bc,
the word ba*”*2"¢ can be obtained by inserting the strings
a? , m-times and a4“, n-times. On the other hand, the word
ba*™+24n ¢ can be derived from the axiom bac. In one deriva-
tion, the string a?' can be inserted for m — ij-times, i > 1.
In another derivation, the string a*" can be inserted for n+ ir-
times, iy > 1. Thus, the word ba*™t24"¢ is obtained from
two different axioms bc, bac. Therefore, the system)/9’ is
0-ambiguous.

Next, we have to prove the Lg is 0O-unambiguous,
by showing there exists an 0-unambiguous system yy =
({a, b, c}, {baz, ba*, a*c, be, bac, bac, ba’c, ba4c}, {(a, a*,
A)}) which generates Lg. The system will produce a unique
derivation step for any word € Lo, starting from an axiom by
inserting the string a*, which shows yg is 0-unambiguous.
As the system uses the following insertion rule (a, a4,)), the
system y,' is minimal in the measures {MLen—RCon, mLen—
RCon, TLen — RCon + InsStr, MLen — RCon + InsStr}. [

Corollary 8: There are pseudo inherently 0-ambiguous
insertion languages in the measures M| € {MAx, TAx, mLen—
InsStr} and M, € {MLen — RCon, mLen — RCon, TLen —
RCon + InsStr, MLen — RCon + InsStr}.

Table.5 shows the different trade-off results acquired for
various blends of the ambiguity levels and descriptional com-
plexity measures. The intersecting entry at M1 and M, shows
there exists a pseudo inherently ambiguous insertion lan-
guages with respect to the measure Mj and M,. For exam-
ple, the intersection of row 7 (mLen — LCon) and column 9
(TLen — LCon) indicates the language Ls which is pseudo
inherently 4-ambiguous with respect to the measures M; €
mLen — LCon and M, € TLen — LCon. In Table. 4, the
intersection of (M, M>) entries that are empty are left as open
problems. The entries which are in diagonal and those marked
by * are not suitable for the trade-off study.

V. APPLICATION OF THE TRADE-OFF RESULTS

In this section, we analyze the application and significance of
the trade-off in natural languages, modelling of bio-molecular
structures. Before moving on to the application, first, we will
discuss about the controlling parameters and limitations of

100519

IEEE Access

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

the proposed trade-off study. Given an insertion system, the
weight of the system is the sum of n, i, j. The n denotes
the maximal length of insertion string and i, j denotes the
maximal length of the left and right context used in insertion
rules. The weight of a insertion system is given as (n, i, j).
Several attempts were made on the insertion systems to
characterize recursively enumerable languages with a lesser
weights. In addition to that many variants has been introduced
such as universal matrix insertion grammars, graph controlled
insertion-deletion systems, path controlled insertion systems,
insertion-deletion P Systems, Context-free insertion-deletion
systems [9], [10], [11], [19], [31]. Natural languages such
as English, Dutch has some grammatical structures that are
beyond the power of context-free languages. As insertion
system can characterize recursively enumerable languages
the system can be considered as one of the prominent gram-
mar models in generating natural language constructs and
modelling of the bio-molecular structures. The computational
completeness of the insertion systems mainly depends on the
weights used in the insertion rules. In practical, such weights
will play a limiting factor while generating the natural lan-
guage constructs and modelling the bio-molecular structures.
Despite of such practical difficulty the application what we
had investigated in this paper will throw a new light on theo-
retical study on the trade-off.

A. APPLICATION OF THE ANALYZED TRADE-OFF IN
NATURAL LANGUAGES
Syntactic and semantic ambiguity deserves a special atten-
tion in natural, programming and artificial languages. As the
programming language constructs are mainly based on syn-
tax and semantic rules handling these ambiguities is not a
great deal of interest, whereas in natural languages handling
syntactic ambiguity is easier when compared to semantic
ambiguity. The main reason is, while dealing with the nat-
ural languages, one sentence (or a word) can convey differ-
ent meaning. Even in Google translator, if the translation
is carried out word by word the meaning may be differ-
ent from the source to the target language. Under these cir-
cumstances, natural languages should be translated (stored)
in an unambiguous manner. As we know, for every (natu-
ral/programming/artificial) language, there is a grammar G,
such that L(G) = L. To generate the natural languages such
as English, Dutch, we need grammars that are beyond the
(generative) capability of Context-free grammar [5], [39].
In addition to that, many natural languages has the existence
of sentences beyond context free [7], [28]. In this regard,
to generate (store) such natural languages the grammar G
which generates L should be unambiguous and at the same
time it should be minimal in terms of measures. In practical,
such a minimal unambiguous system will not be there for all
languages. Under these, circumstances a necessary trade-off
needs to be studied between the (descriptional) complexity
measures and ambiguity.

To prove why such a trade-off is very important in natu-
ral languages, lets consider the following sentence, They are
hunting dogs. The sentence is syntactically correct, where

100520

as the sentence is having semantic ambiguity, as it can be
elucidated in a different manner. The different interpreta-
tion of the above mentioned sentence can be: Whether any
group is hunting for dogs? or Whether the category of dogs
belongs to the hunting type or Whether the phrase hunting
dogs refers to a music band or a basket ball team or a secret
code. In fact, the right phrases of the sentence are They are,
They are hunting, They are dogs, They are hunting dogs.
Assume that, we want to construct an insertion system which
generates the above sentence. As there is no concept of
non-terminals(variables) in insertion system, it can be called
as pure grammars. Since the insertion system is a pure
grammar, every derivation step should represent a correct
phrase, the correct phrases are They are, They are hunting,
They are dogs, They are hunting dogs. Consider, ‘They are’
is an axiom and the insertion rules are of the form:
(They are, dogs, L) and (They are, hunting, A).

By using the above axiom and the insertion rules,
the derivations can be of the forms (the underlined
words indicates the inserted string): (1) They are —
They are dogs == They are hunting dogs, which
gives all the three correct phrases. (2) They are =—>
They are hunting = They are dogs hunting, which is
not a correct phrase. So, with the above insertion rules
all the correct phrases cannot be generated. However,
if we consider three insertion rules (They are, dogs, \),
(They are, hunting, 1), (They are, hunting, dogs) all the three
correct phrases can be derived from the axiom or else using
different insertion rules we may get all correct phrases of the
sentence, but the number of insertion rules will be more. So,
to derive the above sentence, we need three insertion rules.

Such sentences can be stored compactly if there exists an
unambiguous system which generates it, but may happen to
be not minimal with respect to measure(s). As insertion sys-
tems is found to be one of the prominent (rewriting) gram-
mar mechanisms, the system can be recognized to be one of
the fit (rewriting) mechanisms to generate natural languages
[30]. The above example clearly shows that the sentence can
be generated by an unambiguous system but not minimal in
terms of components used to iterate the sentence. The above
case study explicit the importance of studying the trade-off in
natural languages.

B. APPLICATION OF THE ANALYZED TRADE-OFF IN
MODELLING OF BIO-MOLECULAR STRUCTURES

In computational biology there are lot of research prob-
lems needs to be addressed based on the gene sequence
such as gene structure prediction, gene sequence alignment,
bio-molecular modelling, construction of phylogenetic trees.
Such gene structure prediction, bio-molecular modelling
problems are effectuated by progressing with relevant pattern
matching algorithms. The above discussed computational
biological problems are somewhat akin to investigating the
structural frameworks in computational linguistics. The gene
structure prediction, bio-molecular modelling problems can
be handled in an effective and succinct manner, if there exists
a unique grammar model/system which generates/models it.

VOLUME 10, 2022

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

IEEE Access

To model or predict the structures, first, it should be expressed
as a gene sequence. Such sequences can be visualized as
strings formed over the four basic chemical symbols a, ¢, g
and ¢ (Xpna). The complementary of the above four chem-
ical symbols is givenasa =, g = ¢, I = a, ¢ = g.
As the bio-molecular structures can be expressed in terms of
(gene) sequences it has kindled the researchers to study the
connection and application of formal language theory and
computational biology [42]. In addition to that, the genetic
structural descriptions that are found in the bio-molecular
structures has some coherence in natural language constructs
such as triple agreements: Ly, = {a"b"c" | n > 1}, quadruple
agreements: Ly, = {a"b"c"d" | n > 1}, crossed dependen-
cies: Leg = {a"b™c"d™ | n,m > 1}, copy language: L., =
{ww | w € {a, b}*}. More precisely, L, and Ly, resembles
triple and quadruple helix structure. Likewise, L.4 and L.y, has
some pertinence with pseudoknot and attenuator structures
respectively [41], [43]. For modelling of the bio-molecular
structures that occurs at intramolecular, intermolecular and
RNA secondary structures, we refer to [17], [25], [26], [27],
[29], [44].

Before we discuss about the application of the trade-off in
modelling of the bio-molecular structures, first, we will show
that insertion system is capable of modelling some of the bio-
molecular structures. Consider the following bio-molecular
structures like hairpin, stem and loop, orthodox. The lan-
guage description and modelling of the above structures by
using insertion system are given in the following lemmas.
In the forthcoming lemmas y € Xpna, the counterpart of y
is y/. wR, iR is the complementary reversal of the string w,u
respectively.

Lemma 1: The hairpin language Ly, = {w = Wi
w € XJy,) can be spawned by the insertion system yy,, =
YA YA Y OD.

Lemma 2: The stem and loop language Ly = {uvu
u,v € X} can be achieved by insertion system yg =
W Y3 L A0, 3). 0,9, Y.

A string w is said to be orthodox over X}, (complementary
alphabet) iff it fulfills the following conditions (i) it should
be an empty string A, or (2) the string obtained by the
insertion of yy’ anywhere in an orthodox string. A language
which contains only orthodox strings is called orthodox
language L.

Lemma 3: The orthodox language L,4 can be spawned by
the insertion system y,q = ({y, o'}, {1}, {(X, yy', M)}).

R

1) AMBIGUITY ISSUES IN ORTHODOX LANGUAGE L,y
In this subsection, we will discuss about the ambigu-
ity issues in the orthodox language L,;. In the deriva-
tions/descriptions/sequence the underlined string denotes the
inserted gene sequence and ¥ denotes the position where the
gene sequence is to be inserted.

Case 1: Consider the string cgatatgccg € L,q,which can be
obtained from two different axioms.

Derivation 1 : cgi - cga_t¢ == cgata_ti ==
cgatat&¢ = cgataigecg.

VOLUME 10, 2022

Derivation 2 :¥ at = %aﬁ - cgat£¢ -
cgatigcg — cgatatgccg.

In both the derivations, the same sequence cgatatgccg is
derived from two different axioms cg and at. Therefore, the
system y,4 evinces 0-ambiguous.

Case 2: Consider an orthodox string cgtagccgat € Loy,
which can be obtained by two different ordered CS:

Ordered CS1 ¥) = ta* = z‘ag¢ = z‘agcgi
=" tagcegat => cgtagcegat.

Ordered CS2 :¥) = ta — %taL == cgtaia_t

!

= cglagc”at = cgtagccgat.

In CS1, the order of gene sequence used by the insertion
rules are ta, gc, cg, at, cg, whereas in CS2, the order of gene
sequence used by the insertion rule are ta, cg, at, gc, cg.
Thus, the gene sequence cgtagccgat can be derived by two
different ordered CS. Therefore, the system y,; evinces 1-
ambiguous also.

Case 3: Consider the string arcgcgta € Lyq, which can be
derived in two different descriptions by y,4; which are given
below:

Description 1 : cgi — cg%i = cgegta —
atcgcegta.
Description 2 4 g = a_tcgi = atcgit_a -
atcgegta.

In both the descriptions the axioms are same cg and the con-
texts used in the insertion rules (A, A) are also same, but the
position where the inserted gene sequence yy' are different.
Therefore, the system y,4 is S-ambiguous also.

The above example shows a clear evidence on the existence
of different levels of ambiguity for the same language L,
on different gene sequences. In addition to that, the above
(ambiguity) example reveals that analysis of the ambiguity
issues in gene sequences has to be carried out with utmost
care because ambiguity issues plays a pivot role in some of
the computational biology problems such as protein sequence
analysis, parallel gene recognition, prediction of gene loca-
tions. For more practical applications on the importance of
ambiguity in gene sequences, we refer to [1], [2], [3], [4].
The evolutionary relationship among the various biological
species can be depicted in terms of trees. The trees can be
derived based on the differences and similarities among the
species. Such trees are called as phylogenetic trees [45]. The
phylogenetic trees plays an important role in DNA/Protein
sequence divergence problem [8].

The axiom, intermediates sequence and the final sequence
to be generated can be represented as a tree. If the interme-
diate gene sequences are different then we will have more
than one phylogenetic trees for the same gene sequence. Such
a study on the different intermediate sequences will help us
to study more on the inheritance properties. The following
example of a phylogenetic tree will give a better understand-
ing on the ambiguity. One such phylogenetic tree is shown

100521

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

IEEE Access

VOo—87T | VO— 87T VOo—8T | VO— 87T
Ve — &7 Ve — €7 Ve — €7 VG — €T
* Ve—T | ve—%1 | ve—%T | ve—%T | ve—%7 | ve—°1 48 — SNIL
£1GSUT
X Ve —¢7T Ve — €7 Ve — €7 VS — 87 | +uopy — uTIN
L\ﬁm%:N
* Vv — 97 Ve— 1T | tuopq7 —uwg N
mesz
X Ve — €7 Ve —¢7 Ve —¢7 VG — 87 | tuopy — uaq,J,
Lgsur
Ve — 47 x Ve —+1 ve—1'7 FuoDT —uaq.[
Ve —¢7T X Ve — €7 Ve — €7 Ve —¢7 UoDYH — U
Ve — 4T Ve — 471 x ve—17 uopDT —UT. [
Ve — €7 Ve—¢7 x Ve —¢7 Ve—¢7 UoDY — uagut
Vi — 97 X U0 T — UTU
Ve — €7 Ve —¢7 X Ve —¢7 Ve — €7 uoDY — U TN
X ve—17 uopT — uTIN
Vo— 67 Vo— 67 Vo— 67 Vo— 67
Vo—87 | ¥O—87 VO—8%7T | V0O— 87 x LISsU — U TUW
Vo—87 | ¥O—87 VO—87 | VO— 87 x LSsuUl — U TN
Vo— 67 Vo— 67 Vo— 67 Vo— 67
VO—8T | VO— 8T VO—8T | VO— 8T
Ve—97 | Ve—97 | Ve—97T | Ve— 9T VY.L
Vv — 9T Ve—91 | Ve — 97 X TV N
Vv —7%1 Vv —7v1 Vv —7"1 Yy
)
TN 7
snonbIQuULy
43gsuy £1GSUT 42GSUT 42GsuUr YL | ———— ==
415 — +uopy FuoT +uopy +uo DT uoY uo T uopYy uoT uo Y uo T L15sur L35 suy TV N ~ TN
WZNB |:®\NN\< |:®\N§ |§®\Nrﬁ |\E\®\Nrﬁ |:®\Nrﬁ |§W\Nrﬁ |:w\NE |\Z\®\NE |:®\NS< |:®\N§ |:w\NE |§®\N§ Hm\ m::\D.Em.@QEG:D

"Sj|nsaJ jjo-apel) paulelqo s I19dvL

VOLUME 10, 2022

100522

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

IEEE Access

‘ IN4
T i|
| IN5
| IN1
o ® o o ® ®
MV MV BV BV FV HV HV
FIGURE 1. Interpretation of ambiguity in Phylogenetic tree.
TABLE 6. Comparative Study.

Paper Grammar Computational | Trade-off | Applications

Formali Completeness
Paun, Gh | Insertion Y N N
(1997) Systems
Paun, Gh., | Insertion- Y N N
Rozernberg, Deletion
G., Salomaa, | Systems
A (1998)
Krishna, S.N. | Insertion- Y N N
et.al (2001) Deletion P

Systems
Lakshmanan, | Matrix N N N
K et.al (2011) | Insertion-

Deletion

Systems
Lakshmanan, | Insertion- N Y N
Ket.al (2011) | Deletion

Systems
Fernau, K | Universal Y N N
et.al (2017) Matrix

Insertion

Systems
Fernau, K | Graph Y N N
et.al (2017) Controlled

Insertion-

Deletion

Systems
Fernau, K | Path- Y N N
et.al (2019) structured

graph-

controlled

insertion-

deletion

systems
Fernau, K | Semi- Y N N
et.al (2019) conditional

Insertion-

Deletion

Systems
Fernau, K | Path Y N N
et.al (2019) Controlled

Insertion-

Deletion

Systems
This paper Insertion N Y Y

System

in Figure.1. In Figure.1, IN represents intermediate node,
MYV represents Monkey Virus, BV represents Bird Virus,
FV represents Fish Virus, HV represents Human Virus.

VOLUME 10, 2022

To reach the Human Virus leaf node, the path can be explored
as: RootNode — IN2 — IN3 — IN4 — INS5. Starting from
the root node there is a unique path up to the intermediate
node IN5, whereas, after reaching the purple color interme-
diate node INS, there exists two paths. One path will be Voilet
line from IN5 — HYV and another path will be Yellow line
from IN5 — HV. So, the Human Virus node can be reached
by two different paths from the root node. The above scenario,
clearly shows that a different perspective can be given in
the visualization of ambiguity in phylogenetic trees. On the
other hand, while predicting the gene structure, we need an
optimal system and at the same time the system which gener-
ates/models the bio-molecular structure should be unambigu-
ous. Consider the system y,s = ({y, b}, {A}, {0, yV, M)}
which generates the L,4. One insertion rule is enough to
generate all the strings in L,qy. The system y,4 is minimal
{Ax, MLen — LCon, MLen — RCon, mLen — LCon, mLen —
RCon, TLen—LCon, TLen—TCon}. The language L, can be
generated by an unambiguous system but definitely the unam-
biguous system will not be minimal in the above mentioned
measures. This example shows the importance and applica-
tion of the trade-off study between complexity measures and
ambiguity levels in modelling of the bio-molecular structures.

Vi. COMPARATIVE STUDY

In this section, we discuss about the comparative study of
trade-off results obtained for the insertion systems and its
applications in natural languages, modelling of bio-molecular
structures. Table.6 shows the comparative study of the pro-
posed results and applications with other relevant grammar
models. From the comparative study, it has a clear evi-
dence, that the insertion systems, insertion-deletion systems,
variants of insertion deletion systems are mainly motivated
towards reducing the weights in simulating the recursively
enumerable languages by means of suitable normal forms
where as, in this paper, we have defined some new descrip-
tional complexity measures, analyzed the trade-off between
ambiguity levels and descriptional complexity measures.
In addition to that, we have discussed about the application
of the analyzed trade-off which was missing in the various
research work carried out on insertion systems.

VII. CONCLUSION

In this paper, we defined twelve new descriptional complexity
measures namely MLen — InsStr, mLen — InsStr, MLen —
LCon, MLen — RCon, mLen — LCon, mLen — RCon, TLen —
LCon, TLen — RCon, TLen — LCon + InsStr, TLen — RCon +
InsStr, MLen — LCon + InsStr, MLen — RCon + InsStr based
on the components used in the derivations. Later, we dis-
cussed the trade-off between the newly defined ambiguity
levels and measures in insertion systems by showing that
there exists pseudo inherently ambiguous insertion languages
which can be generated by an ambiguous system that are
minimal in M7 and unambiguous if they are minimal in M5.
Finally, we have studied the application of the investigated
trade-off in natural languages and modelling of bio-molecular
structures. Analyzing the trade-off between measures and

100523

IEEE Access

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

ambiguity levels which are not considered in this paper is
left as a future work. More, precisely it would be interesting
such a trade-off results can be obtained for the ambiguity
levels 1 and 3. As insertion systems can be recognized as a
good model to generate some of the programming language
constructs, analyzing the trade-off in programming languages
would be an another line of future work.

ACKNOWLEDGMENT

An

earlier version of this paper was presented at the

International Conference (ICRTC-2022) held at SRMIST,
New Delhi.

REFERENCES

[1]
[2]

[3]

[4]

[5]
[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. J. Bishop and C. J. Rawlings, Nucleic Acid and Protein Sequence
Analysis. London, U.K.: Oxford Univ. Press, 1987.

M. Borodovsky and J. MclIninch, “Recognition of genes in DNA sequence
with ambiguities,” Biosystems, vol. 30, nos. 1-3, pp. 161-171, 1993.

M. Borodovsky and J. Mclninch, “Prediction of gene locations using DNA
Markov chain models,” in Bioinformatics, Supercomputing and Complex
Genome Analysis, 1993, pp. 231-248.

M. Borodovsky and J. Mclninch, “GENMARK: Parallel gene recogni-
tion for both DNA strands,” Comput. Chem., vol. 17, no. 2, pp. 123-133,
Jun. 1993.

J. Bresnan, R. M. Kaplan, S. Peters, and S. Zaenen, *“Cross-serial depen-
dencies in Dutch,” Linguistic Inquiry, vol. 13, no. 4, pp. 613-663, 1982.
C. S. Calude and G. Paun, Computing With Cells and Atoms an Introduc-
tion to Quantum, DNA and Membrane Computing. London, U.K.: Taylor
and Francis, 2001.

N. Chomsky, “Formal properties of grammars,” in Handbook of Mathe-
matical Psychology, R. D. Luce, Ed. New York, NY, USA: Wiley, 1963,
pp. 323-418.

S. Choudhuri, Bioinformatics for Beginners: Genes, Genomes, Molecular
Evolution, Databases and Analytical Tools. Amsterdam, The Netherlands:
Elsevier, 2014.

H. Fernau, L. Kuppusamy, and S. Verlan, “Universal matrix insertion
grammars with small size,” in Proc. Int. Conf. Unconventional Comput.
Natural Comput. Springer, Cham, Jun. 2017, pp. 182-193.

H. Fernau, L. Kuppusamy, and I. Raman, ‘““Graph-controlled insertion-
deletion systems generating language classes beyond linearity,” in Proc.
Int. Conf. Descriptional Complex. Formal Syst. Cham, Switzerland:
Springer, Jul. 2017, pp. 128-139.

H. Fernau, L. Kuppusamy, and I. Raman, “On path-controlled insertion—
deletion systems,” Acta Inf., vol. 56, no. 1, pp. 35-59, Feb. 2019.

H. Fernau, L. Kuppusamy, and I. Raman, “Computational completeness
of simple semi-conditional insertion-deletion systems,” in Proc. Int. Conf.
Unconventional Comput. Natural Comput. Cham, Switzerland: Springer,
Jun. 2018, pp. 86-100.

H. Fernau, L. Kuppusamy, and I. Raman, ‘“Computational completeness of
path-structured graph-controlled insertion-deletion systems,” in Proc. Int.
Conf. Implement. Appl. Automata. Cham, Switzerland: Springer, Jun. 2017,
pp- 89-100.

D. Haussler, “Insertion Languages,” Inf. Sci., vol. 31, no. 1, pp. 77-89,
1983.

J. Gruska, “Descriptional complexity of context-free languages,” in Math-
ematical Foundations of Computer Science. Bratislava, Slovakia: High
Tatras, 1973, pp. 71-84.

D. Haussler, “Insertion languages,” Inf. Sci., vol. 31, no. 1, pp. 77-89,
Oct. 1983.

T. Head, “Formal language theory and DNA: An analysis of the generative
capacity of specific recombinant behaviors,” Bull. Math. Biol., vol. 49,
pp. 737-750, Nov. 1987.

L. Ilie, “On ambiguity in internal contextual languages,” in Proc. 2nd Int.
Conf. Math. Ling., C. Martin-Vide, Eds. Amsterdam, The Netherlands:
John Benjamins, 1997, pp. 29-45.

S. N. Krishna and R. Rama, “Insertion-deletion P systems,” in Proc.
Int. Workshop DNA-Based Comput. Berlin, Germany: Springer, 2001,
pp. 362-370.

100524

(20]

[21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]
(34]
(35]
(36]
(371
(38]

(39]

(40]

[41]

(42]

(43]

[44]

(45]

K. Lakshmanan, “Incompatible measures of internal contextual gram-
mars,” in Proc. DCFS, C. Mereghetti, Eds. Como, Italy, 2005,
pp. 253-260.

K. Lakshmanan, “A note on ambiguity of internal contextual grammars,”
Theor. Comput. Sci., vol. 369, pp. 436441, Dec. 2006.

K. Lakshmanan, M. Anand, and K. Krithivasan, “On the trade-off between
ambiguity and measures in internal contextual grammars,” in Proc. DCFS,
C. Campeanu and G. Pighizinni, Eds., 2008, pp. 216-223.

L. Kuppusamy, A. Mahendran, and K. Krithivasan, “On the ambigu-
ity of insertion systems,” Int. J. Found. Comput. Sci., vol. 22, no. 7,
pp. 17471758, Nov. 2011.

K. Lakshmanan, M. Anand, K. Krithivasan, and K. Mohammed, “On the
study of ambiguity and the trade-off between measures and ambiguity
in insertion—deletion languages,” Nano Commun. Netw., vol. 2, nos. 2-3,
pp. 106-118, 2011.

K. Lakshmanan, M. Anand, and S. N. Krishna, ‘“Matrix insertion-deletion
systems for bio-molecular structures,” in Proc. ICDCIT in Lecture Notes
in Computer Science, vol. 6536, R. Natarajan and A. Ojo. Eds., 2011,
pp. 301-311.

K. Lakshmanan, M. Anand, and E. V. Clergerie, ‘“Modelling intermolec-
ular structures and defining ambiguity in gene sequences using matrix
insertion-deletion systems,” in Biology, Computation and Linguistics, New
Interdisciplinary Paradigms, vol. 228. Amsterdam, The Netherlands 10S
Press, 2011, pp. 71-85.

L. Kuppusamy and A. Mahendran, ‘“Modelling DNA and RNA secondary
structures using matrix insertion—deletion systems,” Int. J. Appl. Math.
Comput. Sci., vol. 26, no. 1, pp. 245-258, Mar. 2016.

D. T. Langendoen and P. M. Postal, The Vastness of Natural Language.
Oxford, U.K.: Blackwell, 1984.

A. Mahendran and L. Kuppusamy, ‘“Formal language representation and
modelling structures underlying RNA folding process,” in Theoretical
Computer Science and Discrete Mathematics (Lecture Notes in Computer
Science), vol. 10398, S. Arumugam, J. Bagga, L. Beineke, and B. Panda,
Eds. Cham, Switzerland: Springer, 2017, pp. 20-29.

S. Marcus, “Contextual grammars,” Rev. Roum. Pures. Appl., vol. 14,
pp. 1525-1534, 1969.

M. Margenstern, G. Paun, Y. Rogozhin, and S. Verlan, “Context-
free insertion—deletion systems,” Theor. Comput. Sci., vol. 330, no. 2,
pp. 339-348, (2005).

C. Martin-Vide, J. Miguel-Verges, A. G. Paun, and A. Salomaa, “Attempt-
ing to define the ambiguity in internal contextual languages,” in Proc. 2nd
Int. Conf. Math. Ling., C. Martin-Vide, Ed. Amsterdam, The Netherlands:
John Benjamins, 1997, pp. 59-81.

G. Paun, Contextual Grammars. Bucuresti, Romania: Publishing House of
the Romanian Academy of Sciences, 1982.

G. Paun, Marcus Contextual Grammars. Norwell, MA, USA: Kluwer,
1997.

G. Paun, G. Rozenberg, and A. Salomaa, DNA Computing, New Computing
Paradigms. Cham, Switzerland: Springer, 1998.

G. Paun, Membrane Computing An Introduction. Cham, Switzerland:
Springer, 2002.

G. Paun, “On the compl of contextual grammars with choice,” Stud. Cerc.
Matem., vol. 27, pp. 559-569, 1975.

G. Paun, “Further remarks on the syntactical complexity of Marcus con-
textual languages,” Ann. Univ. Buc., Ser. Matem.-Inform., pp. 72-82, 1991.
G. H. Pullum, “‘On two recent attempts to show that english is not a context-
free language,” Comput. Linguistics, vol. 10, nos. 3—4, pp. 182-186,
1980.

G. Rozenberg and A. Salomaa, Handbook of Formal Languages, Word,
Language, Grammar, vol. 1. Cham, Switzerland: Springer, (1997).

E. Rivas and S. R. Eddy, “The language of RNA: A formal grammar
that includes pseudoknots,” Bioinformatics, vol. 16, no. 4, pp. 334-340,
Apr. 2000.

D. B. Searls, “The linguistics of DNA,” Amer. Scientist, vol. 80, no. 6,
pp. 579-591, 1992.

D. B. Searls, ““The computational linguistics of biological sequences,” in
Artificial Intelligence and Molecular Biology, L. Hunter. Menlo Park, CA,
USA: AAAI Press, 1993, pp. 47-120.

D. B. Searls, “Formal grammars for intermolecular structure,” in
Proc. 1st Int. Symp. Intell. Neural Biol. Syst. (INBS), May 1995,
pp- 30-37.

J. C. Setubal and J. Meidanis, Introduction to Computational Molecular
Biology. Brooks, vol. 5, no. 9. Pacific Grove, CA, USA: Cole Publishing
Company, 1997, p. 18.

VOLUME 10, 2022

A. Mahendran et al.: Analyzing the Trade-Off Between Complexity Measures, Ambiguity in Insertion System and Its Applications

IEEE Access

ANAND MAHENDRAN received the B.E. degree
in computer science and engineering from Madras
University, India, in 2003, the M.E. degree in com-
puter science and engineering from Anna Uni-
versity, India, in 2005, and the Ph.D. degree
in computer science and engineering from the
Vellore Institute of Technology (VIT), Vellore,
India, in 2012. He worked as a Postdoctoral
Research Fellow with the Laboratory of Theoreti-
cal Computer Science, National Research Univer-
sity, Higher School of Economics (HSE), Moscow, Russia. He is currently an
Associate Professor (Senior) with the School of Computer Science and Engi-
neering, VIT. He has published more than 50 papers in international journals
and refereed international conferences. His research interests include formal
language and automata theory, and bio-inspired computing models.

KUMAR KANNAN received the bachelor’s
degree in computer science and engineering (CSE)
from Madras University, in 1998, the master’s
degree in CSE from Pondicherry University,
in 2004, and the Ph.D. degree in CSE from the
Vellore Institute of Technology, Vellore, in 2016.
From 1998 to 2001, he worked as a Program-
mer/Software Engineer at Computer Access Ltd.,
and Bhari Information Technology, and later he
worked as a Lecturer by passion. Since 2005,
he has been an Associate Professor with the VIT. He is currently a Researcher
and an Engineer who has been working in software engineering, recom-
mender patterns, context-aware patterns, and machine learning applications.
He has presented several works in the area of software patterns and machine
learning, and published various articles, and book chapters in international
and national level.

VOLUME 10, 2022

MOHAMED HAMADA (Senior Member, IEEE)
received the Ph.D. degree from the University of
Tsukuba, Japan, under the scholarship from the
Japanese Government (MEXT). He got a Japan
International Cooperation Agency (JICA) Fellow-
ship for six months. He is currently a Senior
Associate Professor at The University of Aizu,
Aizuwakamatsu, Fukushima, Japan. He is a Regu-
lar Visiting Professor at Fatih University, Istanbul,
Turkey, and the African University of Science and
Technology, Abuja, Nigeria. He leaded several funded research projects and
supervised several graduate (M.Sc. and Ph.D.) and undergraduate students.
He edited three books and has more than 100 papers in major international
journals and conferences published by major publishers, such as IEEE, ACM,
Elsevier, and Springer. His research interests include artificial intelligence
and learning technologies. He is also interested in smart devices (such as
smartphones and tablets) applications development and innovation. He is a
member of the editorial board of several international journals and a program
committee member of several international conferences. He is a member
of the IEEE Technical Committee on Multimedia, and the IEEE Technical
Committee on Learning Technologies. He is a Senior Member of IEEE and
ACM Computer Societies.

MANUEL MAZZARA received the Ph.D. degree
in computing science from the University of
Bologna, Italy. He is currently a Professor of com-
puter science at Innopolis University, Russia, with
a research background in software engineering,
service-oriented architecture, concurrency theory,
formal methods, and software verification. He is
also the Director of the Institute of Software
Development and Engineering and the Head of
the International Cooperation Office at Innopolis
University. He published many relevant and highly-cited papers, in partic-
ular in the field of service engineering and software architectures. He has
collaborated with European and U.S. industries, plus governmental and
inter-governmental organizations, such as the United Nations, always at the
edge between science and software production. The work conducted by Dr.
Manuel Mazzara and his team in recent years focuses on the development
of theories, methods, tools, and programs covering the two major aspects of
software engineering: the process side, related to how we develop software,
and the product side, concerning the results of this process.

100525

