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ABSTRACT Much like traditional database querying, the question answering process in a Question
Answering (QA) system involves converting a user’s question input into query grammar, querying the
knowledge base through the query grammar, and finally returning the query result (i.e., the answer) to the
user. The accuracy of query grammar generation is therefore important in determining whether a Question
Answering system can produce a correct answer. Generally speaking, incorrect query grammar will never
find the right answer. SPARQL is the most frequently used query language in question answering systems.
In the past, SPARQL was generated based on graph structures, such as dependency trees, syntax trees
and so on. However, the query cost of generating SPARQL is high, which creates long processing times
to answer questions. To reduce the query cost, this work proposes a low-cost SPARQL generator named
Light-QAWizard, which integrates multi-label classification into a recurrent neural network (RNN), builds a
template classifier, and generates corresponding query grammars based on the results of template classifier.
Light-QAWizard reduces query frequency to DBpedia by aggregating multiple outputs into a single output
using multi-label classification. In the experimental results, Light-QAWizard’s performance on Precision,
Recall and F-measure metrics were evaluated on the QALD-7, QALD8 and QALD-9 datasets. Not only did
Light-QAWizard outperform all other models, but it also had a lower query cost that was nearly half that of
QAWizard.
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INDEX TERMS Question answering system (QA), SPARQL query, query cost, recurrent neural network
(RNN), question answering over linked data (QALD).

I. INTRODUCTION19

In recent years, Natural Language Processing (NLP) has20

become an important research field in Artificial Intelligence21

(AI), andQuestion Answering (QA) systems are a key subject22

within NLP [1], [2], [3]. When a user asks a question, the23

system can understand the question and give the correct24

answer. For example, well-known real-world products such25

as Siri, Alisha, and OK Google use voice question inputs to26

look up answers on the Internet and return search results.27

QA systems can be divided into two types [4]: one is infor-28

mation retrieval-based, and the other is knowledge-based.29

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-keung Fung .

The former extracts the keywords in the question sentence, 30

and uses the search engine to search for related documents on 31

the Internet. Afterwards, the searched web links or document 32

paragraphs are acquired and filtered by search engines. The 33

latter pulls data from knowledge bases (KB for short), such 34

as DBpedia [5]. In DBpedia, the entity is described by an 35

URI as linked data. The related entities are linked together 36

through linked data. For example, the place ‘‘England’’ is 37

linked to the URI http://dbpedia.org/resource/England, which 38

can be denoted by dbr:England. Linking the data, the request 39

question can be converted into a query language (such as 40

SPARQL [6], SQL, etc.) that is compatible with the KB’s data 41

structure through a semantic parser. The resulting SPARQL 42

yields query results that fulfill the user’s query intentions. 43
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FIGURE 1. Typical QALD system architecture [7].

FIGURE 2. Illustration of an RDF triple.

Therefore, the accuracy of SPARQL generation decides the44

accuracy of the query results. To improve accuracy, past45

works [2], [3], [7] have sought to generate as many SPARQLs46

as possible to find all query results in order to address the47

user’s query intent. However, this approach results in high48

query costs, which means DBpedia must handle a lot of49

unnecessary query requests. This paper focuses on proposing50

a low-cost, highly accurate KB-based QA system.51

A typical KB-based QA system architecture, as shown52

in Figure 1, consists of four components: parsing, entity53

mapping, SPARQL generation, and evaluation. In the parsing54

phase, the lemma and part-of-speech tags (POS tags) of words55

or phrases are obtained from the input question. Named-entity56

recognition (NER) is used to label the entity type. In the entity57

mapping phase, words and phrases are mapped and linked to58

entities in DBpedia based on the tagged entity type. The entity59

type can be divided into three types: Named entity, property60

entity, and class entity. Names, events, objects, and places61

are marked as named entities (e.g., dbr:England). Property62

entities are used to represent relationships between named63

entities (e.g., dbp:capital). The class entity describes the class64

of the entity (e.g., dbo:country). The dependency tree struc-65

ture can determine pivot words or phrases according to the66

tagged entity types. Afterward, the SPARQL queries can be67

generated by the basis of the tree structure. The SPARQL68

queries are executed to query the answers from KB in the69

evaluation phase. A SPARQL query is composed of RDF70

triples. An RDF triple is of the form (Subject, Predicate,71

Object) as shown in Figure 2, which can be expressed as an72

entity (Subject), an attribute (Predicate) and a value (Object).73

For example, the statement ‘‘the capital city of England is74

London’’, consists of a subject (‘‘England’’), a predicate75

(‘‘the capital city’’), and an object (‘‘London’’). Note that the76

subject and the predicate can only be described by a URI, and77

the object can be addressed by a URI or literal.78

The three main types of SPARQL generation are Seman-79

tic Query Graph (SQG) searches [2], [3], [8], template80

designs [1], and machine learning solutions [7], [9]. Based 81

on SQG generated by a dependency tree structure of a ques- 82

tion, Ochieng [8] proposed a framework to translate nat- 83

ural language to SPARQL. gAnswer2 [3] uses knowledge 84

graph structure to recursively search the subgraphs to find 85

all the possible RDF triples. gAnswer2 looks for all possible 86

SPARQL queries to increase the probability of finding an 87

accurate answer, but it spends a lot of time sending unneces- 88

sary queries to DBpedia, increasing query costs. The query 89

cost here refers to the frequency of queries to DBpedia. 90

TWDAqua [2] uses Ngrams in entity mapping, which also 91

increases the frequency of queries to DBpedia. In addition, 92

WDAqua only considers the semantic graph in the KB, but 93

does not consider syntax issues, resulting in low precision 94

of query results. The experiments compare the performance 95

of our proposed method to those of gAnswer2 [3] and 96

TWDAqua [2], as they have both won the QALD (Question 97

and Answering Linked Data) competition [10], [11], [12] 98

in the last three years. QALD is an open-domain question 99

dataset that serves as a benchmark dataset for researchers to 100

evaluate the performance of designed models against other 101

models. 102

In template design, the question is transformed into an 103

intermediate data format (IDF) [1], such as an entity type 104

tagger, and then a SPARQL query base of the dependency 105

tree is generated to reduce the cost of searching subgraphs 106

in SQG. However, depending on the template, all the possi- 107

ble generated SPARQL queries increase the query cost. For 108

machine learning solutions, Yin et al. [13] designed a neural 109

SPARQL machine that uses eight neural network models to 110

transform problems into SPARQL queries. It answers sim- 111

ple and fixed-answer questions well, such as closed-domain 112

questions, but is not suitable for complex and diverse datasets, 113

such as open-domain questions (such as the QALD dataset 114

[ [10], [11], [12]). QAWizard [7] answers input questions 115

through two stages of Maximum Entropy Markov Model 116

(MEMM) training, including an entity type tagging stage and 117

an RDF type tagging stage. Seven predefined templates are 118

used to generate SPARQL queries based on the results of the 119

two stages. Although QAWizard’s query accuracy is better 120

than those of gAnswer2 and WDAqua, its query cost is still 121

high. 122

To reduce query cost and achieve high query accuracy, the 123

proposed approach, named Light-QAWizard, consists of two 124

parts: an entity type tagger and template classifier. A Recur- 125

sive Neural Network (RNN) is used to build the template 126
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classifier. To improve accuracy, Light-QAWizard converts the127

question answering problem from a multi-class problem to a128

multi-label problem by using the label powerset method [14].129

Based on the results of the template classifier, the neces-130

sary SPARQL queries are generated. Therefore, this model131

avoids generating unnecessary SPARQL queries in order to132

reduce query cost and thereby speed up system response133

time. In the experiments, Light-QAWizard had the lowest134

query cost among the models compared to schemes [3], [13].135

Furthermore, when evaluating the QALD dataset [10], [11],136

[12], the precision, recall and F-measure of the proposed QA137

system were higher than those achieved with [2], [3], [13].138

The rest of the paper is organized as follows. In Section 2,139

we describe related studies. Section 3 describes the proposed140

method in detail. Section 4 presents our experiments and141

compares other results. Finally, Section 5 draws conclusions142

and presents possible future work.143

II. RELATED LITERATURE144

This section introduces the concept of the label powerset145

method [14] in subsection II-A. We also briefly review the146

differences between our work and that in [2], [3], and [13].147

A. LABEL POWERSET [14]148

Multi-label classification trains a target object with multiple149

classifications. For example, movies can be labeled ‘‘com-150

edy’’ and ‘‘romance’’. Based on multi-label classification,151

McCallum [15] used a Bayesian machine learning algorithm152

and a hybrid model applied to the Reuters-21578 dataset.153

Liu et al. [16] labeled a huge dataset with the most relevant154

labels, calling this process Extreme Multi-Label Text Classi-155

fication (XMTC). Label powerset (LP for short), is a multi-156

classification method that combines multiple labels into one157

classification. Taking Figure 3 as an example, the original158

input X can output multiple output Y types. X (1) can output159

two types, Y2 and Y3, as shown in Figure 3(a). The results160

of the output types can be combined together as Y , as shown161

in Figure 3(b). The advantage is that the classifier predicts162

one value, Y , instead of four values, Y1,Y2,Y3,Y4. It is more163

difficult for a classifier to accurately predict four values than164

one. Therefore, after such a transformation, the accuracy165

is improved. This is the reason that we chose to base our166

proposed approach on LP-based template classifier.167

B. SPARQL GENERATOR168

SPARQL is a query language that requests data in the169

form of RDF triples. Intui3 [17] divided each question into170

chunks, then uses right-to-left sequential chunks to gener-171

ate SPARQL queries. Freitas et al. [18], [19] used Partially172

Ordered Dependency Structures (PODS) to transform the173

problem into a dependency tree. A pre-defined rule was174

applied to merge or prune the nodes of the tree. Next, a pivot175

node was selected as the start node of the tree to generate the176

SPARQL queries. Between 2019 and 2021, gAnswer2 [3] and177

WDQqua [2] were the winners of the QALD competition.178

gAnswer2 [3] is a QA system developed by Hu et al., and179

FIGURE 3. An LP example.

has a problem-based dependency tree structure, searching the 180

tree from the root node to its children until the leaf nodes, 181

forming relational phrases according to depth-first search 182

(DFS). Then, the entity of DBpedia determines whether it 183

matches the relational phrase. After that, the dependency 184

tree is applied to create an SQG. Each subgraph of the 185

SQG is assigned a score, and the scores are then sorted 186

to select the top-k subgraphs as candidates for generating 187

SPARQL queries. WDAqua [2] uses N-grams to find all 188

related entities in DBpedia. That is, by calculating the dis- 189

tances between entities, the mapped entity is like a root 190

searching the DBpedia based on breath-first search (BFS) 191

at depth 2. The SPARQL queries are generated according to 192

the calculated distance. The results of the queried results are 193

ranked, and the first ranked answer is returned to the user as 194

the final answer. 195

In contrast to the aforementioned approaches, Xser [1] is 196

a new branch of designing structured perceptrons to detect 197

entity types. Based on entity types, a dependency graph, 198

a semantic DAG, is constructed to present the relationships 199

between entities. According to the relationships between enti- 200

ties, the pre-defined rules are used to generate the SPARQL 201

queries that satisfy the query intents. After executing the 202

SPARQL query, the answers are evaluated against the rank- 203

ing results. Using MEMM, the past work QAWizard [13] 204

proposed two stages, namely the training stage and query 205

stage. The training phase aims to learn entity types and RDF 206

labels from experience with questions defined in the QALD 207

dataset. In the query phase, the answering processing for 208

input questions contains several steps: preprocessing, entity 209

type tagging, entity mapping, RDF tagging, SPARQL gener- 210

ation, evaluation, and answer filtering. The processing steps 211

of QAWizard are similar to those in Light-QAWizard. The 212

main differences between QAWizard and light-QAWizard are 213

that in the latter, (1) RDF tagging is directly integrated into 214

the next SPARQL generation; (2) RNN is used to answer 215

questions considering the context of the question; (3) the 216

multi-label problem is treated as a multi-class problem using 217

LP to reduce the query cost of QAWizard; and (4) a bidi- 218

rectional LSTM-CRF (conditional random field), referred to 219

as BiLSTM-CRF [20], is used to label the entities of the 220

input question in order to improve the accuracy of entity 221

tagging. 222
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FIGURE 4. Architecture of the proposed approach.

III. THE PROPOSED APPROACH223

The system architecture shown in Figure 4 consists of two224

phases: the training phase and the query phase. During the225

training phase, using RNNmodel, we use BiLSTM-CRF [20]226

as the entity type tagger model to train entity types, and227

LP as the output of the template classifier model to train228

appropriate query templates for later generation of SPARQL229

queries. The RNN model, as shown in Figure 5, consists of230

four parts: input, processing, dense and output. For the input231

part, the words in a given question are transformed into a232

word embedding or multiple embeddings. In the processing233

part, the RNN is trained by LSTM, GRU and BiLSTM for234

the first, second and third fully connected layers. The problem235

can be directed to a template ID after processing and intensive236

for generating the corresponding RDF queries. The query237

stage consists of six steps: preprocessing, entity type tagging,238

entity mapping, SPARQL generation, evaluation, and answer239

filtering. After a SPARQL query request is sent to DBpedia,240

the result evaluates whether the answer is valid. Answer type241

filtering is used to filter the results and return the filtered242

answer to the user.243

A. TRAINING PHASE244

As shown in Figure 4, there are two learning models: entity245

type tagger model and template classifier model. The input246

QALD training dataset, shown in Figure 6, is a manually247

labeled dataset based on the QALD dataset, including ques-248

tions, corresponding SPARQL queries, and answers. The249

FIGURE 5. RNN network architecture.

question includes the language encoding, the question, and 250

the keywords in the question, where ‘‘query’’ is the SPARQL 251

query used to request answers from DBpedia, and ‘‘answer’’ 252
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TABLE 1. Precision of various entity type tagging models [20].

is the answer to the question. The entity type tagger model is253

used to assign the correct entity type to a keyword or phrase in254

the question. Based on QALD-7 [10], the accuracy of entity255

type tagging results is shown in Table 1. Light-QAWizard256

uses BiLSTM-CRF, which had the highest precision, as the257

entity type tagging model.258

The keywords or phrases wi from the question are assigned259

the right entity types through the first model, which can be260

tagged as E, R, C, V, or N to represent a named entity, relation261

entity, class entity, variable, or non-useful entity, respectively.262

Named entity, relation entity and class entity describe wi’s263

name, property/relation, and class, respectively. If no enti-264

ties are found for wi, wi is tagged as N. Since one entity265

might contain more than one word, the notations -B (Begin),266

-I (Intermediate), and -E (End) are used to concatenate con-267

secutive words to represent one entity. Only -B is appended268

to entity types with a slash ‘‘/’’ if the entity is a single word.269

In the second case, if the entity contains two words, the270

first and second words are labeled -B and -I, respectively.271

Otherwise, if the entity contains three words or more, the first272

and last words are marked -B and -E, respectively, and the273

remaining words are marked -I. For example, the sentence274

‘‘List all the musicals with music by Elton John.’’ is tagged275

as follows:276

List/V-B all/N the/N musicals/C-B with/N music/R-B by/N277

Elton/E-B John/E-I278

ASPARQL query consists of RDF triples. RDF triples take279

the form (subject, predicate, object), and predicates are S, P,280

and O. In the previous example, the resulting RDF triples281

are as follows. Here, Elton John is a named entity, described282

as dbr:Elton_John, Music maps to a class dbo:Musical, and283

the relationship between dbr:Elton_John and dbo:Musical is284

the attribute entity dbo:musicBy. When generating SPARQL285

queries, named entities (E) are placed in Subject or Object,286

relationships (R) are placed in Predicate, and class entities287

(C) are placed in Object.288

SELECT DISTINCT ?ans WHERE {289

?ans rdf:type dbo:Musical.290

?ans dbo:musicBy dbr:Elton_John.291

}292

In Table 2, the RDF triples designed in Light-QAWizard293

can be assigned as the following cases. For a given question,294

the ID A, B, and D can handle a single SPARQL query, and295

the ID A, B, and C can handle more than one SPARQL query. 296

In some questions, the intermediate points ?x and ?ans can be 297

used to generate RDF triples, where ?x is a bridge connecting 298

two RDF triples and ?ans is the answer to be queried. For 299

example, in the sentence ‘‘Who is Robert Kennedy’s daughter 300

married to?’’, the daughter’s name, denoted by ?x, can be 301

looked up by the named entity ‘‘Robert Kennedy’’. ?x can 302

be used to find the final answer ?ans. To handle multiple 303

SPARQL query pruning, LP is used to prune unnecessary 304

templates to reduce query cost, as shown below. 305

a) If ?x appears in every RDF triple, you will never get the 306

answer ?ans. Therefore, ?x cannot be used in all RDF 307

triples. 308

b) ?x must be used in at least two triples, and one of the 309

RDF triples must contain both ?x and ?ans. 310

c) An RDF triple is a valid SPARQL query when the triple 311

is described by one of the IDs A, a, B, and b in Table 3. 312

The pruned results are shown in Table 3, where midpoint 313

?x is represented by the lowercase letter (such as IDs a, b, 314

and c), and ?ans is represented by the uppercase letter (such 315

as IDs A, B, and C). After pruning unnecessary templates, the 316

filtered templates for two RDF triples and three RDF triples 317

are as shown in Table 4. For example, the generated SPARQL 318

query for the sentence ‘‘Howmany pages are there inWar and 319

Peace?’’ is shown below: 320

(dbr:War_and_Peace, dbo:numberOfPages, ?ans) 321

Taking ‘‘How many people live in the capital of Aus- 322

tralia?’’ for the ac type, the SPARQL query is generated as 323

follows: 324

SELECT DISTINCT ?ans WHERE { 325

(dbr:Australia, dbo:capital, ?x .) 326

(?x, dbo:populationTotal,?ans.) 327

} 328

The template ID shown in Table 3 is the same as the label 329

defined in the LP. The labels are merged to transform the 330

problem into multi-class classification via LP methods. For 331

example, the merged label appears in the Table 4 as an ID 332

field, as the result of the template classifier, which is used 333

later to generate the corresponding SPARQL queries. The 334

number of labels is reduced from 259 labels to 32 labels. The 335

statistical results are shown in Table 5. 336

B. QUERY PHASE 337

After the user enters a question, the question is parsed and 338

processed in six steps, as shown in Figure 1, including: 339

preprocessing, entity type tagging, entity mapping, answer 340

retrieval, and answer type filtering. The preprocessing step 341

parses the input problem, and includes tokenization, lemma- 342

tization, and part-of-speech (POS) tagging. The trained entity 343

tagger is used to assign an entity type to each token in the 344

entity type tagging step. Next, the tokenized token finds the 345

name entity in the entity mapping step. The answer retrieval 346

step generates the corresponding SPARQL query and eval- 347

uates the query results. Finally, the query result is filtered 348
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FIGURE 6. Sample QALD dataset.

TABLE 2. Possible RDF triple scenarios.

TABLE 3. Possible scenarios for two RDF triples.

according to the answer type through the answer type filtering349

step, and the final answer is returned to the user.350

1) PRE-PROCESSING351

According to the input question, the question is divided into352

several tokens. Afterward, the token is lemmatized and then353

tokenized with the corresponding POS tag. For example, 354

Table 6 shows the question sentence ‘‘List all musicals with 355

music by Elton John’’ after the preprocessing step. 356

2) ENTITY TYPE TAGGING AND ENTITY MAPPING 357

Based on the sentence processed by the pre-processing step, 358

we use the trained entity type tagger model to tag the sentence 359

as follows: 360

List/V-B all/N the/N musicals/C-B with/N music/R-B by/N 361

Elton/E-B John/E-I 362

Here, the POS tags Verb, None, Named Entity, Class Enti- 363

ties and Relation Entities are labeled V, N, E, C, and R, 364

respectively. The beginning, the intermediate, and the end 365

tokens are denoted as -B, -I, and -E, respectively. When the 366
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TABLE 4. Possible scenarios for RDF triples.

TABLE 5. Possible scenarios for two RDF triples.

TABLE 6. A pre-processing example.

tagged results of tokens are presented as the same entity type367

but with different indicator -B and -I, the entity mapping step368

concatenates the tokens together with ‘‘_’’ as a single token.369

For example, the tokens Elton and John are both labeled E,370

so the concatenated result is:371

List/V all/N the/N musicals/C with/N music/R by/N372

Elton_John/E373

Only E, C and R are considered in the entity mapping step.374

As for E, the token is matched to DBRDict-A andDBRDict-B375

[21], which are the designate and abbreviation indicating376

the DBpedia repository as shown in Table 7 and Table 8.377

As for C, the entity look-up from the DBRDict-C [21], which378

collects the possible class entities and the example, is shown379

in Table 9. For entity type R, the PATTY [22] is used to380

TABLE 7. DBRDict-A example.

TABLE 8. DBRDict-B example.

TABLE 9. DBRDict-C example.

TABLE 10. DBRDict-P example.

build DBRDict-P for relation entities, an example of which 381

is shown in Table 10. 382

3) SPARQL GENERATION 383

According to the template classifier model, the input question 384

can be classified into one of the templates listed in Table 4. 385

Algorithm 1 is the main function to call the corresponding 386

sub-function to generate the SPARQL queries based on the 387

classified results. For example, if the delivered result is BB, 388

the function B is called twice. The entity type E is placed in 389

the position S or O, the R is placed in P position, and C is 390

placed in O position, and P is designated rdf:type. 391

Take the input question ‘‘List all the musicals with music 392

by Elton John.’’ for example. In a template classifier model, 393

the template result is BB, i.e. the SPARQL queries are (?ans, 394

P, O) (?ans, P, O). Thus, Algorithm 1 will call fun_B in 395

Algorithm 2 twice. The fun_B is used to judge whether ERC 396

tag contains C in advance. If it contains C, fun_B generates a 397

RDF triple as (?ans, rdf:type, C); then, it removes the C from 398

the ERC tag to call fun_B again. This time, the call occurs 399

without C so that it processes the remaining tags music/R 400

and Elton_John/E. From left to right, the SPARQL queries 401

are generated as: 402

(?ans, rdf:type, dbo:Musical) 403

(?ans, dbo:musicBy, dbr:Elton_John) 404

When DBpedia is queried with the generated SPARQL 405

queries, the answers are returned as: 406
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Algorithm 1 Template Matching Algorithm
1: procedure match template: 20: case"BB": 38: case"BBB":
2: case"A": 21: fun_B(ERC) 39: fun_B(ERC)
3: fun_A(ERC) 22: fun_B(ERC) 40: fun_B(ERC)
4: case"B": 23: case"bc": 41: fun_B(ERC)
5: fun_B(ERC) 24: fun_b(ERC) 42: case"Bbc":
6: case"D": 25: fun_c(ERC) 43: fun_B(ERC)
7: fun_D(ERC) 26: case"aBC": 44: fun_b(ERC)
8: case"AA": 27: fun_a(ERC) 45: fun_c(ERC)
9: fun_A(ERC) 28: fun_B(ERC) 46: case"bbc":
10: fun_A(ERC) 29: fun_C(ERC) 47: fun_b(ERC)
11: case"AB": 30: case"aBc": 48: fun_b(ERC)
12: fun_A(ERC) 31: fun_a(ERC) 49: fun_c(ERC)
13: fun_B(ERC) 32: fun_B(ERC)
14: case"aC": 33: fun_c(ERC)
15: fun_a(ERC) 34: case"ABB":
16: fun_C(ERC) 35: fun_A(ERC)
17: case"ac": 36: fun_B(ERC)
18: fun_a(ERC) 37: fun_B(ERC)
19: fun_c(ERC)

Algorithm 2 Slot Filling Algorithm
1: fun_A(ERC) 20: fun_b(ERC)
2: choose first name entity from left to right 21: If ERC tag Contain(C):
3: S = e + " " + r + "?ans." 22: S = "?ans " + "rdf:type " + c + "."
4: remove E from ERC 23: remove C from ERC
5: return S 24: else:
6: fun_a(ERC) 25: choose first name entity from left to right
7: choose first name entity from left to right 26: S = "?x " + r + " " + e + "."
8: S = e + " " + r + "?x." 27: remove E from ERC
9: remove E from ERC 28: return S

10: return S 29: fun_C(ERC)
11: fun_B(ERC) 30: S = "?ans " + r + " ?x."
12: If ERC tag Contain(C): 31: return S
13: S = "?ans " + "rdf:type " + c + "." 32:
14: remove C from ERC 33: fun_c(ERC)
15: else: 34: S = "?x " + r + " ?ans."
16: choose first name entity from left to right 35: return S
17: S = "?ans " + r + " " + e + "." 36: fun_D(ERC)
18: remove E from ERC 37: S = e + " " + r + " " + e + "."
19: return S 38: return S

Aida_(musical) The_Lion_King_(musical)407

Billy_Elliot_the_Musical Lestat_(musical)408

The answer type filters the answers according to the409

word tagged V in the entity type tagger model. The ques-410

tion can be roughly divided into six answer types, such411

as People/Organization, Place, Time, True/False Question,412

Returned Value, and Others. If the word is ‘‘Who’’, the413

answers are kept if the corresponding type of rdf:type are414

dbo:Person and dbo:Organisation. If the word is ‘‘Where’’,415

the answers are kept when rdf:type equals dbo:Place. If the416

word is ‘‘When’’, the answers might be dates or times,417

so the answers containing xsd:date or xsd:dateTime are kept.418

If the starting word in the question is ‘‘Did’’ or ‘‘Does’’,419

the returned result is True if at least one answer is found;420

otherwise, False. If the starting word in the given question421

is ‘‘How’’, (e.g., how many), two divided answers are given422

as: (1) obtained by a property, such as dbo:populationTotal423

from the question ‘‘How many people live in Poland?’’, and424

(2) gotten by counting the number of the properties, such as425

the number of properties dbo:child from the question ‘‘How426

many children does Benjamin Franklin have?’’. The start-427

ing words ‘‘Which’’, ‘‘What’’, ‘‘List’’, ‘‘Give’’ and ‘‘Show’’428

belong to the Others category type, which return a name or429

a collection as the final result. For example, the only result430

QT1 is the result for the question, ‘‘List all the musicals with431

music by Elton John’’, as shown in Table 11, including three432

TABLE 11. Sample SPARQL queries and their results.

fields, template number (id), SPARQL queries and query 433

results. 434

IV. EXPERIMENTAL RESULTS 435

Python was used to implement the system with a Tensorflow 436

[23] network architecture using an RNN deep learningmodel. 437

The parameters used are listed in Table 12. The study com- 438

pares the LSTM, GRU, and Bi-LSTM models as well as the 439

parameters for LSTMLayer and LSTMUnit set as 1, 2, 3 and 440

64, 128, and 256, respectively. BERT, which was proposed 441

by Devlin et al. [24], could be used to resolve the synonym 442

problem according to the context between sentences. The 443

POS tag embedding was trained by the data set Treebank 444

[25] to classify the POS Tag, which could help to realize 445

the semantics of natural language in order to increase the 446

precision of the trained model. The embedding size was set 447

to 30 because the number of labels of Part-of-Speech Tags 448

was 36. Window size was the parameter for training POS 449

tag embedding. On average, 7 words needed to be analyzed 450

for the questions QALD-7, QALD-8, and QALD-9; thus, the 451

Window Size was set at 5. Training timewas set at 100 epochs 452

to reduce the loss. Batch Size referred to the batch of data. 453

Optimizer Adam was applied to adjust the weights and bias 454

to minimize the loss. We compared the performance when the 455

learning rates were 0.01, 0.05 and 0.001. The evaluation of 456

loss for each learning rate is shown in Figure 7. The result 457

shows that the loss is stable if the learning rate is 0.001. 458

Dropout was used to handle the over fitting problem. 459

A. DATA 460

The question datasets QALD-7 [10], QALD-8 [11] and 461

QALD-9 [12] provided by QALD were used as the experi- 462

ment datasets. As mentioned in [10], [11], and [12], QAKIS, 463

gAnswer2 and WDAqua were evaluated on QALD-7, 464

QALD-8, QALD-9, and both gAnswer2 and WDAqua won 465

the QALD-7, QALD-8, and QALD-9 challenges. How- 466

ever, the QAKIS, gAnswer2, and WDAqua models were 467
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FIGURE 7. Loss rate based on different learning rates.

TABLE 12. Parameter settings.

TABLE 13. Number of training sets and testing sets for different datasets.

all designed to answer simple questions without compar-468

atives, superlatives, or interrogative sentences requiring469

URIs with sko:Category entities. Therefore, the proposed470

scheme excludes complex sentences including comparatives471

and superlatives sentences to preserve the sentences listed in472

Table 13.473

B. EXPERIMENTS474

Three metrics, namely Precision, Recall, and F-measure,475

were used to evaluate the performance of the QA systems,476

which are defined as follows, where T (q) is the number of477

answers to questions q, A(q) is the number of the correct478

answers to questions q, and C(q) is the number of gold stan-479

dard answers to questions q. F-measure is the harmonic mean480

of Precision(q) and Recall(q) defined in Equation(3). For481

example, there are 50 questions, the QA systems can correctly482

answer 25 questions, and QALD provides 45 gold standard483

answers. Therefore, the values of T (q), A(q) and C(q) are 50,484

25, and 45, respectively. The values ofPrecision(q),Recall(q)485

and F-measure(q) are 25
50 ,

25
45 and 5

19 , respectively.486

Precision(q) =
A(q)
T (q)

(1)487

TABLE 14. Comparison of tagging results on different test sets based on
three different models.

TABLE 15. Comparison of the proposed system with other QA systems on
different test sets.

Recall(q) =
A(q)
C(q)

(2) 488

F-measure(q) =
2× Precision(q)× Recall(q)
Precision(q)+ Recall(q)

(3) 489

To give further detail on the tagging results of different 490

types of QALD, Table 14 shows the precision on QALD-7, 491

QALD-8, and QALD-9 at 73.91%, 84.84% and 70.73%, 492

respectively, when Bi-LSTM is adopted. Table 15 shows 493

different precision based on different models and different 494

data sets, with average precision (Precision), average recall 495

(Recall), and average F-measure (F-measure). The precision 496

scores of Light-QAWizard were 0.565, 0.462 and 0.398, 497

respectively, representing the best precision compared to 498

QAWizard, gAnswer2, andWDAqua. Also, the average recall 499

scores were better than those of gAnswer2 and WDAqua 500

based on three different datasets. The F-measures of Light- 501

QAWizardwere 0.594, 0.457 and 0.406 as tested onQALD-7, 502

QALD-8, and QALD-9 datasets, respectively, outperforming 503

those of QAWizard, gAnswer2, and WDAqua. 504
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TABLE 16. Comparison of cost computation.

TABLE 17. Query cost comparison.

The query costs, listed in Table 16, indicate the search505

frequency via DBpedia, where the times of name entity,506

attribute entity, and class entity are denoted by e, r and c.507

Note that w is the number of SPARQL queries generated with508

a distance condition using WDAqua. gAnswer2[3] generates509

a dependency tree for natural language questions and converts510

them into a query graph that contains semantic information,511

finds subgraphs in the graph through the graph knowledge512

base, and use the subgraphs to generate relative query syntax.513

gAnswer2 can clearly determine the placement of named514

entities and attribute entities in the RDF triple, so the query515

cost is e×r×c. WDAqua [2] uses N-grams to perform entity516

comparisons with DBpedia for each word in the question517

sentence. Each entity is treated as a starting point, a breadth-518

first search (BFS) at depth 2 is started in DBpedia, and its519

distance is calculated to generate SPARQLqueries. The query520

cost ofWDAqua is (e+r+c)2×2+w. QAWizard [7] contains 521

two stages: entity type tagging and RDF type tagging. The 522

pre-designed templates are used to generate the SPARQL 523

queries. The query cost of QAwizard is e × r × c × 2 on 524

average. Based on the query cost calculation in Table 17, the 525

query cost of the QAWizard system method is n, the query 526

cost of the gAnswer2 system is n/2, and the query cost of 527

the WDAqua system is 5n. This research method uses the 528

multi-label classification method to reduce the query cost of 529

QAWizard to n/2. The advantages of Light-QAWizard are 530

summarized below: 531

1) Light-QAWizard outperforms QAWizard, gAnswer2, 532

and WDQqua in terms of average precision, recall and 533

F-measure. 534

2) SPARQL query templates are trained on the QALD-7, 535

QALD-8 and QALD-9 datasets. Thus, only the neces- 536

sary SPARQL queries are kept, reducing query costs. 537

Light-QAWizard achieves the lowest query cost when 538

compared to QAWizard and WDAqua. 539

V. CONCLUSION 540

A QA system can accurately answer users’ questions. 541

SPARQL query generation often drives the query costs, 542

which reflects the frequency of queries to DBpedia. The 543

necessary queries consider the efficiency of answering the 544

question. This paper proposes a classification model and 545

integrates RNN to train a model that can learn from the expe- 546

riences of picking out suitable SPARQL queries. To reduce 547

query costs, LP is adopted to combine the labels to generate 548

the SPARQL queries. The accuracies on QALD-7, QALD-8 549

and QALD-9 are 73.91%, 84.84% and 70.73% respectively. 550

The outstanding performance on metrics including precision, 551

recall, F-measure, and query costs, surpass those of all other 552

systems evaluated on the same test sets. 553

Although the proposed system achieves superior perfor- 554

mance, further work should be considered to improve the 555

quality of answers. For example, multilabel classification 556

algorithms, such as binary relevance, classifier chains, and 557

pairwise, could be used to answer complex questions that 558

include comparatives and superlatives. Moreover, the experi- 559

mental dataset, QALD, is still small, and is therefore limited 560

in its ability to train a model that can sufficiently satisfy 561

almost all types of questions. LC-QuAD [26], a larger dataset, 562

could be used for training to increase the accuracy of the 563

model. 564
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