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ABSTRACT Much like traditional database querying, the question answering process in a Question
Answering (QA) system involves converting a user’s question input into query grammar, querying the
knowledge base through the query grammar, and finally returning the query result (i.e., the answer) to the
user. The accuracy of query grammar generation is therefore important in determining whether a Question
Answering system can produce a correct answer. Generally speaking, incorrect query grammar will never
find the right answer. SPARQL is the most frequently used query language in question answering systems.
In the past, SPARQL was generated based on graph structures, such as dependency trees, syntax trees
and so on. However, the query cost of generating SPARQL is high, which creates long processing times
to answer questions. To reduce the query cost, this work proposes a low-cost SPARQL generator named
Light-QAWizard, which integrates multi-label classification into a recurrent neural network (RNN), builds a
template classifier, and generates corresponding query grammars based on the results of template classifier.
Light-QAWizard reduces query frequency to DBpedia by aggregating multiple outputs into a single output
using multi-label classification. In the experimental results, Light-QAWizard’s performance on Precision,
Recall and F-measure metrics were evaluated on the QALD-7, QALDS8 and QALD-9 datasets. Not only did
Light-QAWizard outperform all other models, but it also had a lower query cost that was nearly half that of
QAWizard.

INDEX TERMS Question answering system (QA), SPARQL query, query cost, recurrent neural network
(RNN), question answering over linked data (QALD).

I. INTRODUCTION The former extracts the keywords in the question sentence,

In recent years, Natural Language Processing (NLP) has
become an important research field in Artificial Intelligence
(AI), and Question Answering (QA) systems are a key subject
within NLP [1], [2], [3]. When a user asks a question, the
system can understand the question and give the correct
answer. For example, well-known real-world products such
as Siri, Alisha, and OK Google use voice question inputs to
look up answers on the Internet and return search results.
QA systems can be divided into two types [4]: one is infor-
mation retrieval-based, and the other is knowledge-based.
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and uses the search engine to search for related documents on
the Internet. Afterwards, the searched web links or document
paragraphs are acquired and filtered by search engines. The
latter pulls data from knowledge bases (KB for short), such
as DBpedia [5]. In DBpedia, the entity is described by an
URI as linked data. The related entities are linked together
through linked data. For example, the place “England” is
linked to the URI http://dbpedia.org/resource/England, which
can be denoted by dbr:England. Linking the data, the request
question can be converted into a query language (such as
SPARQL [6], SQL, etc.) that is compatible with the KB’s data
structure through a semantic parser. The resulting SPARQL
yields query results that fulfill the user’s query intentions.
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FIGURE 2. Illustration of an RDF triple.

Therefore, the accuracy of SPARQL generation decides the
accuracy of the query results. To improve accuracy, past
works [2], [3], [7] have sought to generate as many SPARQLSs
as possible to find all query results in order to address the
user’s query intent. However, this approach results in high
query costs, which means DBpedia must handle a lot of
unnecessary query requests. This paper focuses on proposing
a low-cost, highly accurate KB-based QA system.

A typical KB-based QA system architecture, as shown
in Figure 1, consists of four components: parsing, entity
mapping, SPARQL generation, and evaluation. In the parsing
phase, the lemma and part-of-speech tags (POS tags) of words
or phrases are obtained from the input question. Named-entity
recognition (NER) is used to label the entity type. In the entity
mapping phase, words and phrases are mapped and linked to
entities in DBpedia based on the tagged entity type. The entity
type can be divided into three types: Named entity, property
entity, and class entity. Names, events, objects, and places
are marked as named entities (e.g., dbr:England). Property
entities are used to represent relationships between named
entities (e.g., dbp:capital). The class entity describes the class
of the entity (e.g., dbo:country). The dependency tree struc-
ture can determine pivot words or phrases according to the
tagged entity types. Afterward, the SPARQL queries can be
generated by the basis of the tree structure. The SPARQL
queries are executed to query the answers from KB in the
evaluation phase. A SPARQL query is composed of RDF
triples. An RDF triple is of the form (Subject, Predicate,
Object) as shown in Figure 2, which can be expressed as an
entity (Subject), an attribute (Predicate) and a value (Object).
For example, the statement ‘“‘the capital city of England is
London”, consists of a subject (‘““England’’), a predicate
(““the capital city”’), and an object (“London”’). Note that the
subject and the predicate can only be described by a URI, and
the object can be addressed by a URI or literal.

The three main types of SPARQL generation are Seman-
tic Query Graph (SQG) searches [2], [3], [8], template

VOLUME 10, 2022

Generation

SPARQL

» Evaluation Answers

designs [1], and machine learning solutions [7], [9]. Based
on SQG generated by a dependency tree structure of a ques-
tion, Ochieng [8] proposed a framework to translate nat-
ural language to SPARQL. gAnswer2 [3] uses knowledge
graph structure to recursively search the subgraphs to find
all the possible RDF triples. gAnswer2 looks for all possible
SPARQL queries to increase the probability of finding an
accurate answer, but it spends a lot of time sending unneces-
sary queries to DBpedia, increasing query costs. The query
cost here refers to the frequency of queries to DBpedia.
TWDAqua [2] uses Ngrams in entity mapping, which also
increases the frequency of queries to DBpedia. In addition,
WDAgqua only considers the semantic graph in the KB, but
does not consider syntax issues, resulting in low precision
of query results. The experiments compare the performance
of our proposed method to those of gAnswer2 [3] and
TWDAqua [2], as they have both won the QALD (Question
and Answering Linked Data) competition [10], [11], [12]
in the last three years. QALD is an open-domain question
dataset that serves as a benchmark dataset for researchers to
evaluate the performance of designed models against other
models.

In template design, the question is transformed into an
intermediate data format (IDF) [1], such as an entity type
tagger, and then a SPARQL query base of the dependency
tree is generated to reduce the cost of searching subgraphs
in SQG. However, depending on the template, all the possi-
ble generated SPARQL queries increase the query cost. For
machine learning solutions, Yin et al. [13] designed a neural
SPARQL machine that uses eight neural network models to
transform problems into SPARQL queries. It answers sim-
ple and fixed-answer questions well, such as closed-domain
questions, but is not suitable for complex and diverse datasets,
such as open-domain questions (such as the QALD dataset
[ [10], [11], [12]). QAWizard [7] answers input questions
through two stages of Maximum Entropy Markov Model
(MEMM) training, including an entity type tagging stage and
an RDF type tagging stage. Seven predefined templates are
used to generate SPARQL queries based on the results of the
two stages. Although QAWizard’s query accuracy is better
than those of gAnswer2 and WDAqua, its query cost is still
high.

To reduce query cost and achieve high query accuracy, the
proposed approach, named Light-QAWizard, consists of two
parts: an entity type tagger and template classifier. A Recur-
sive Neural Network (RNN) is used to build the template
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classifier. To improve accuracy, Light-QAWizard converts the
question answering problem from a multi-class problem to a
multi-label problem by using the label powerset method [14].
Based on the results of the template classifier, the neces-
sary SPARQL queries are generated. Therefore, this model
avoids generating unnecessary SPARQL queries in order to
reduce query cost and thereby speed up system response
time. In the experiments, Light-QAWizard had the lowest
query cost among the models compared to schemes [3], [13].
Furthermore, when evaluating the QALD dataset [10], [11],
[12], the precision, recall and F-measure of the proposed QA
system were higher than those achieved with [2], [3], [13].

The rest of the paper is organized as follows. In Section 2,
we describe related studies. Section 3 describes the proposed
method in detail. Section 4 presents our experiments and
compares other results. Finally, Section 5 draws conclusions
and presents possible future work.

Il. RELATED LITERATURE

This section introduces the concept of the label powerset
method [14] in subsection II-A. We also briefly review the
differences between our work and that in [2], [3], and [13].

A. LABEL POWERSET [14]

Multi-label classification trains a target object with multiple
classifications. For example, movies can be labeled “com-
edy” and “‘romance”. Based on multi-label classification,
McCallum [15] used a Bayesian machine learning algorithm
and a hybrid model applied to the Reuters-21578 dataset.
Liu et al. [16] labeled a huge dataset with the most relevant
labels, calling this process Extreme Multi-Label Text Classi-
fication (XMTC). Label powerset (LP for short), is a multi-
classification method that combines multiple labels into one
classification. Taking Figure 3 as an example, the original
input X can output multiple output ¥ types. X! can output
two types, Y» and Y3, as shown in Figure 3(a). The results
of the output types can be combined together as Y, as shown
in Figure 3(b). The advantage is that the classifier predicts
one value, Y, instead of four values, Y|, Y, Y3, Y4. It is more
difficult for a classifier to accurately predict four values than
one. Therefore, after such a transformation, the accuracy
is improved. This is the reason that we chose to base our
proposed approach on LP-based template classifier.

B. SPARQL GENERATOR

SPARQL is a query language that requests data in the
form of RDF triples. Intui3 [17] divided each question into
chunks, then uses right-to-left sequential chunks to gener-
ate SPARQL queries. Freitas et al. [18], [19] used Partially
Ordered Dependency Structures (PODS) to transform the
problem into a dependency tree. A pre-defined rule was
applied to merge or prune the nodes of the tree. Next, a pivot
node was selected as the start node of the tree to generate the
SPARQL queries. Between 2019 and 2021, gAnswer?2 [3] and
WDQqua [2] were the winners of the QALD competition.
gAnswer?2 [3] is a QA system developed by Hu et al., and
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FIGURE 3. An LP example.

has a problem-based dependency tree structure, searching the
tree from the root node to its children until the leaf nodes,
forming relational phrases according to depth-first search
(DES). Then, the entity of DBpedia determines whether it
matches the relational phrase. After that, the dependency
tree is applied to create an SQG. Each subgraph of the
SQG is assigned a score, and the scores are then sorted
to select the top-k subgraphs as candidates for generating
SPARQL queries. WDAqua [2] uses N-grams to find all
related entities in DBpedia. That is, by calculating the dis-
tances between entities, the mapped entity is like a root
searching the DBpedia based on breath-first search (BFS)
at depth 2. The SPARQL queries are generated according to
the calculated distance. The results of the queried results are
ranked, and the first ranked answer is returned to the user as
the final answer.

In contrast to the aforementioned approaches, Xser [1] is
a new branch of designing structured perceptrons to detect
entity types. Based on entity types, a dependency graph,
a semantic DAG, is constructed to present the relationships
between entities. According to the relationships between enti-
ties, the pre-defined rules are used to generate the SPARQL
queries that satisfy the query intents. After executing the
SPARQL query, the answers are evaluated against the rank-
ing results. Using MEMM, the past work QAWizard [13]
proposed two stages, namely the training stage and query
stage. The training phase aims to learn entity types and RDF
labels from experience with questions defined in the QALD
dataset. In the query phase, the answering processing for
input questions contains several steps: preprocessing, entity
type tagging, entity mapping, RDF tagging, SPARQL gener-
ation, evaluation, and answer filtering. The processing steps
of QAWizard are similar to those in Light-QAWizard. The
main differences between QAWizard and light-QAWizard are
that in the latter, (1) RDF tagging is directly integrated into
the next SPARQL generation; (2) RNN is used to answer
questions considering the context of the question; (3) the
multi-label problem is treated as a multi-class problem using
LP to reduce the query cost of QAWizard; and (4) a bidi-
rectional LSTM-CREF (conditional random field), referred to
as BILSTM-CREF [20], is used to label the entities of the
input question in order to improve the accuracy of entity

tagging.
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FIGURE 4. Architecture of the proposed approach.

Ill. THE PROPOSED APPROACH

The system architecture shown in Figure 4 consists of two
phases: the training phase and the query phase. During the
training phase, using RNN model, we use BILSTM-CRF [20]
as the entity type tagger model to train entity types, and
LP as the output of the template classifier model to train
appropriate query templates for later generation of SPARQL
queries. The RNN model, as shown in Figure 5, consists of
four parts: input, processing, dense and output. For the input
part, the words in a given question are transformed into a
word embedding or multiple embeddings. In the processing
part, the RNN is trained by LSTM, GRU and BiLSTM for
the first, second and third fully connected layers. The problem
can be directed to a template ID after processing and intensive
for generating the corresponding RDF queries. The query
stage consists of six steps: preprocessing, entity type tagging,
entity mapping, SPARQL generation, evaluation, and answer
filtering. After a SPARQL query request is sent to DBpedia,
the result evaluates whether the answer is valid. Answer type
filtering is used to filter the results and return the filtered
answer to the user.

A. TRAINING PHASE

As shown in Figure 4, there are two learning models: entity
type tagger model and template classifier model. The input
QALD training dataset, shown in Figure 6, is a manually
labeled dataset based on the QALD dataset, including ques-
tions, corresponding SPARQL queries, and answers. The
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question includes the language encoding, the question, and
the keywords in the question, where “query’’ is the SPARQL
query used to request answers from DBpedia, and “answer”
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TABLE 1. Precision of various entity type tagging models [20].

Models Precision
Structured Perceptron 0.84
MEMM 0.81
CRF 0.86
LSTM 0.79
BiLSTM 0.84
LSTM-CRF 0.87
BILSTM-CRF 0.91

is the answer to the question. The entity type tagger model is
used to assign the correct entity type to a keyword or phrase in
the question. Based on QALD-7 [10], the accuracy of entity
type tagging results is shown in Table 1. Light-QAWizard
uses BILSTM-CREF, which had the highest precision, as the
entity type tagging model.

The keywords or phrases w; from the question are assigned
the right entity types through the first model, which can be
tagged as E, R, C, V, or N to represent a named entity, relation
entity, class entity, variable, or non-useful entity, respectively.
Named entity, relation entity and class entity describe w;’s
name, property/relation, and class, respectively. If no enti-
ties are found for w;, w; is tagged as N. Since one entity
might contain more than one word, the notations -B (Begin),
-I (Intermediate), and -E (End) are used to concatenate con-
secutive words to represent one entity. Only -B is appended
to entity types with a slash “/” if the entity is a single word.
In the second case, if the entity contains two words, the
first and second words are labeled -B and -I, respectively.
Otherwise, if the entity contains three words or more, the first
and last words are marked -B and -E, respectively, and the
remaining words are marked -I. For example, the sentence
“List all the musicals with music by Elton John.” is tagged
as follows:

List/V-B all/N the/N musicals/C-B with/N music/R-B by/N
Elton/E-B John/E-I

A SPARQL query consists of RDF triples. RDF triples take
the form (subject, predicate, object), and predicates are S, P,
and O. In the previous example, the resulting RDF triples
are as follows. Here, Elton John is a named entity, described
as dbr:Elton_John, Music maps to a class dbo:Musical, and
the relationship between dbr:Elton_John and dbo:Musical is
the attribute entity dbo:musicBy. When generating SPARQL
queries, named entities (E) are placed in Subject or Object,
relationships (R) are placed in Predicate, and class entities
(C) are placed in Object.

SELECT DISTINCT ?ans WHERE {
?ans rdf:type dbo:Musical.
?ans dbo:musicBy dbr:Elton_John.

}

In Table 2, the RDF triples designed in Light-QAWizard
can be assigned as the following cases. For a given question,
the ID A, B, and D can handle a single SPARQL query, and
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the ID A, B, and C can handle more than one SPARQL query.
In some questions, the intermediate points 7x and ?ans can be
used to generate RDF triples, where 7x is a bridge connecting
two RDF triples and ?ans is the answer to be queried. For
example, in the sentence “Who is Robert Kennedy’s daughter
married to?”, the daughter’s name, denoted by ?x, can be
looked up by the named entity ‘“Robert Kennedy”’. ?x can
be used to find the final answer ?ans. To handle multiple
SPARQL query pruning, LP is used to prune unnecessary
templates to reduce query cost, as shown below.

a) If 7x appears in every RDF triple, you will never get the
answer ?ans. Therefore, 7x cannot be used in all RDF
triples.

b) ?x must be used in at least two triples, and one of the
RDF triples must contain both ?x and ?ans.

¢) An RDF triple is a valid SPARQL query when the triple
is described by one of the IDs A, a, B, and b in Table 3.

The pruned results are shown in Table 3, where midpoint

7x is represented by the lowercase letter (such as IDs a, b,
and c), and ?ans is represented by the uppercase letter (such
as IDs A, B, and C). After pruning unnecessary templates, the
filtered templates for two RDF triples and three RDF triples
are as shown in Table 4. For example, the generated SPARQL
query for the sentence “How many pages are there in War and
Peace?” is shown below:

(dbr:War_and_Peace, dbo:numberOfPages, ?ans)

Taking “How many people live in the capital of Aus-
tralia?”’ for the ac type, the SPARQL query is generated as
follows:

SELECT DISTINCT ?ans WHERE {
(dbr:Australia, dbo:capital, ?x .)
(7x, dbo:populationTotal,?ans.)

}

The template ID shown in Table 3 is the same as the label
defined in the LP. The labels are merged to transform the
problem into multi-class classification via LP methods. For
example, the merged label appears in the Table 4 as an ID
field, as the result of the template classifier, which is used
later to generate the corresponding SPARQL queries. The
number of labels is reduced from 259 labels to 32 labels. The
statistical results are shown in Table 5.

B. QUERY PHASE

After the user enters a question, the question is parsed and
processed in six steps, as shown in Figure 1, including:
preprocessing, entity type tagging, entity mapping, answer
retrieval, and answer type filtering. The preprocessing step
parses the input problem, and includes tokenization, lemma-
tization, and part-of-speech (POS) tagging. The trained entity
tagger is used to assign an entity type to each token in the
entity type tagging step. Next, the tokenized token finds the
name entity in the entity mapping step. The answer retrieval
step generates the corresponding SPARQL query and eval-
uates the query results. Finally, the query result is filtered
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FIGURE 6. Sample QALD dataset.

TABLE 2. Possible RDF triple scenarios.

ID | RDF triple Example SPARQL query

A (S, P, 20) How many pages does War and Peace have? (dbr:War_and_Peace, dbo:numberOfPages, ?ans)

B (?S,P,0) Whom did Lance Bass marry? (?ans, dbo:spouse, dbr:Lance_Bass)

C (7S, P, 70) What other books have been written by (dbr:The_Fault_in_Our_Stars, dbo:author, ?x)
T the author of The Fault in Our Stars? (?ans, dbo:author, ?x)

D (S,P,0) Is Michelle Obama the wife of Barack Obama? | (dbr:Barack_Obama, dbo:spouse, dbr:Michelle_Obama)

TABLE 3. Possible scenarios for two RDF triples.

RDF triple
(S, P, 7ans)
(S, P, 7x)
(?ans, P, O)
(?x,P,0)
(?ans, P, 7x)
(7x, P, 7ans)

ola|o|ws|>5

according to the answer type through the answer type filtering
step, and the final answer is returned to the user.

1) PRE-PROCESSING
According to the input question, the question is divided into
several tokens. Afterward, the token is lemmatized and then
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tokenized with the corresponding POS tag. For example,
Table 6 shows the question sentence ““List all musicals with
music by Elton John” after the preprocessing step.

2) ENTITY TYPE TAGGING AND ENTITY MAPPING

Based on the sentence processed by the pre-processing step,
we use the trained entity type tagger model to tag the sentence
as follows:

List/V-B all/N the/N musicals/C-B with/N music/R-B by/N
Elton/E-B John/E-I

Here, the POS tags Verb, None, Named Entity, Class Enti-
ties and Relation Entities are labeled V, N, E, C, and R,
respectively. The beginning, the intermediate, and the end
tokens are denoted as -B, -I, and -E, respectively. When the
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TABLE 4. Possible scenarios for RDF triples.

ID template ID template
(7, P,O)
Yanc
A (S, P, 2ans) bc (7x. P, 7ans)
(S, P, 7x)
B (?ans, P, O) aBC (7ans, P, O)
(?ans, P, 7x)
(S, P, 7x)
D S,P,0) aBc (?ans, P, O)
(7x, P, 7ans)
(S, P, 7x)
2an¢
AA Eg v ,,;‘;‘:; ABB | (2ans,P,O)
> T (?ans, P, O)
(?ans, P, O)
9
AB ((fdn}: 'lfn(s))) BBB | (ans, P,0)
e (?ans, P, O)
(?ans, P, O)
S,P,?
aC ({,(ans b ’f,)x) Bbc | (?x,P,0)
B (?x, P, 7ans)
(7, P,0)
N
ac ("(XS,FI’)’V;;)s) bbc (7%, P, 0)
e (?x, P, 7ans)
(?ans,P,0O)
BB | (2ans.0)

TABLE 5. Possible scenarios for two RDF triples.

Number of RDF triples | Multi-label | Multi-class
A triple 7 3
Two triples 36 7
Three triples 216 22
Total 259 32

TABLE 6. A pre-processing example.

Token POS tagger Lemmatization
List NN List

all PDT all

the DT the

musicals NNS musical

with IN with

music NN music

by IN by

Elton NNP Elton

John NNP John

tagged results of tokens are presented as the same entity type
but with different indicator -B and -I, the entity mapping step
concatenates the tokens together with ““_" as a single token.
For example, the tokens Elton and John are both labeled E,
so the concatenated result is:

List/V all/N the/N musicals/C with/N music/R by/N
Elton_John/E

Only E, C and R are considered in the entity mapping step.
As for E, the token is matched to DBRDict-A and DBRDict-B
[21], which are the designate and abbreviation indicating
the DBpedia repository as shown in Table 7 and Table 8.
As for C, the entity look-up from the DBRDict-C [21], which
collects the possible class entities and the example, is shown
in Table 9. For entity type R, the PATTY [22] is used to
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TABLE 7. DBRDict-A example.

Label URI
Elton John http://dbpedia.org/resource/Elton_John
War and Peace | http://dbpedia.org/resource/War_and_Peace
United States | http://dbpedia.org/resource//United_States

TABLE 8. DBRDict-B example.

Label URI

ASUS | http://dbpedia.org/resource/Asus
Aena | http://dbpedia.org/resource/ENAIRE
Aena | http://dbpedia.org/resource/ENAIRE

TABLE 9. DBRDict-C example.

Label URI

movie http://dbpedia.org/ontology/Film
automobile | http://dbpedia.org/ontology/Automobile
university | http://dbpedia.org/ontology/University

TABLE 10. DBRDict-P example.

Label URI
be bear at | http://dbpedia.org/ontology/birthPlace
marry by http://dbpedia.org/ontology/spouse
be write by | http://dbpedia.org/ontology/author

build DBRDict-P for relation entities, an example of which
is shown in Table 10.

3) SPARQL GENERATION

According to the template classifier model, the input question
can be classified into one of the templates listed in Table 4.
Algorithm 1 is the main function to call the corresponding
sub-function to generate the SPARQL queries based on the
classified results. For example, if the delivered result is BB,
the function B is called twice. The entity type E is placed in
the position S or O, the R is placed in P position, and C is
placed in O position, and P is designated rdf:type.

Take the input question ‘““List all the musicals with music
by Elton John.” for example. In a template classifier model,
the template result is BB, i.e. the SPARQL queries are (?ans,
P, O) (?ans, P, O). Thus, Algorithm 1 will call fun_B in
Algorithm 2 twice. The fun_B is used to judge whether ERC
tag contains C in advance. If it contains C, fun_B generates a
RDF triple as (?ans, rdf:type, C); then, it removes the C from
the ERC tag to call fun_B again. This time, the call occurs
without C so that it processes the remaining tags music/R
and Elton_John/E. From left to right, the SPARQL queries
are generated as:

(?ans, rdf:type, dbo:Musical)
(?ans, dbo:musicBy, dbr:Elton_John)

When DBpedia is queried with the generated SPARQL
queries, the answers are returned as:
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Algorithm 1 Template Matching Algorithm

I: procedure match template: 20: case"BB": 38: case"BBB":
2 case"A": 21: fun_B(ERC) 39: fun_B(ERC)
3 fun_A(ERC) 22: fun_B(ERC) 40: fun_B(ERC)
4: case"B": 23:  case"bc": 41: fun_B(ERC)
5: fun_B(ERC) 24: fun_b(ERC) 42: case"Bbc":
6: case"D": 25: fun_c(ERC) 43: fun_B(ERC)
7 fun_D(ERC) 26: case"aBC": 44: fun_b(ERC)
8: case"AA": 27: fun_a(ERC)  45: fun_c(ERC)
9: fun_A(ERC) 28: fun_B(ERC) 46: case"bbc":

10: fun_A(ERC) 29: fun_C(ERC) 47: fun_b(ERC)

11: case"AB": 30: case"aBc": 48: fun_b(ERC)

12: fun_A(ERC) 31: fun_a(ERC) 49: fun_c(ERC)

13: fun_B(ERC) 32: fun_B(ERC)

14: case"aC": 33: fun_c(ERC)

15: fun_a(ERC) 34: case"ABB":

16: fun_C(ERC) 35: fun_A(ERC)

17: case"ac": 36: fun_B(ERC)

18: fun_a(ERC) 37: fun_B(ERC)

19: fun_c(ERC)

Algorithm 2 Slot Filling Algorithm

1: fun_A(ERC) 20:  fun_b(ERC)
2: choose first name entity from left to right 21 If ERC tag Contain(C):
3: S=e+""+r+"7ans." 22: S="7ns " + "rdf:type " +c +"."
4: remove E from ERC 23: remove C from ERC
5 return S 24: else:
6: fun_a(ERC) 25: choose first name entity from left to right
7 choose first name entity from left to right 26: ="+ " e+
8: S=e+""+r+"X." 27: remove E from ERC
9: remove E from ERC 28: return S
10: return S 29:  fun_C(ERC)
11:  fun_B(ERC) 30: S="7ans"+r+" %"
12: If ERC tag Contain(C): 31: return S
13: S="7ns " + "rdf:type " +c+"." 32:
14: remove C from ERC 33:  fun_c(ERC)
15: else: 34: =" "+1+" %ans."
16: choose first name entity from left to right 35 return S
17: S="lans"+r+""+e+"" 36:  fun_D(ERC)
18: remove E from ERC 37 S=e+""+r+""+e+""
19: return S 38: return S

Aida_(musical) The_Lion_King_(musical)
Billy_Elliot_the_Musical Lestat_(musical)

The answer type filters the answers according to the
word tagged V in the entity type tagger model. The ques-
tion can be roughly divided into six answer types, such
as People/Organization, Place, Time, True/False Question,
Returned Value, and Others. If the word is “Who”, the
answers are kept if the corresponding type of rdf:type are
dbo:Person and dbo:Organisation. If the word is “Where”,
the answers are kept when rdf:type equals dbo:Place. If the
word is “When”, the answers might be dates or times,
so the answers containing xsd:date or xsd:dateTime are kept.
If the starting word in the question is “Did” or “Does”,
the returned result is True if at least one answer is found;
otherwise, False. If the starting word in the given question
is “How”, (e.g., how many), two divided answers are given
as: (1) obtained by a property, such as dbo:populationTotal
from the question “How many people live in Poland?”’, and
(2) gotten by counting the number of the properties, such as
the number of properties dbo:child from the question “How
many children does Benjamin Franklin have?”. The start-
ing words “Which”, “What”’, “List”, “Give”” and *“Show”’
belong to the Others category type, which return a name or
a collection as the final result. For example, the only result
QT is the result for the question, ““List all the musicals with
music by Elton John”, as shown in Table 11, including three
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TABLE 11. Sample SPARQL queries and their results.

id SPARQL queries query result
Aida_(musical)
QT (?ans, rdf:type, dbo:Musical) The_Lion_King (musical)
| (%ans, dbo:musicBy, dbr:Elton_John) | Billy_Elliot_the_Musical
Lestat_(musical)

(?ans, rdf:type, dbo:Musical) .

QT (?ans, dbo:producer, dbr:Elton_John) no result
(?ans, rdf:type, dbo:Musical)

QTs (?ans, dbo:Artist, dbr:Elton_John) no result

(?ans, rdf:type, dbo:Musical)
QT4 (?ans, dbo:associated_band, no result
dbr:Elton_John)

(?ans, rdf:type, dbo:Musical Work) .

QTs (?ans, dbo:musicBy, dbr:Elton_John) no result
(?ans, rdf:type, dbo:Musical Work)

QTe (?ans, dbo:producer, dbr:Elton_John) no result
(?ans, rdf:type, dbo:Musical Work)

QT7 | (9ans. dbo: Artist, dbr:Elton_John) 1o result
(?ans, rdf:type, dbo:Musical Work)

QTg (?ans, dbo:associated_band, no result
dbr:Elton_John)

fields, template number (id), SPARQL queries and query
results.

IV. EXPERIMENTAL RESULTS

Python was used to implement the system with a Tensorflow
[23] network architecture using an RNN deep learning model.
The parameters used are listed in Table 12. The study com-
pares the LSTM, GRU, and Bi-LSTM models as well as the
parameters for LSTM Layer and LSTM Unit setas 1, 2, 3 and
64, 128, and 256, respectively. BERT, which was proposed
by Devlin et al. [24], could be used to resolve the synonym
problem according to the context between sentences. The
POS tag embedding was trained by the data set Treebank
[25] to classify the POS Tag, which could help to realize
the semantics of natural language in order to increase the
precision of the trained model. The embedding size was set
to 30 because the number of labels of Part-of-Speech Tags
was 36. Window size was the parameter for training POS
tag embedding. On average, 7 words needed to be analyzed
for the questions QALD-7, QALD-8, and QALD-9; thus, the
Window Size was set at 5. Training time was set at 100 epochs
to reduce the loss. Batch Size referred to the batch of data.
Optimizer Adam was applied to adjust the weights and bias
to minimize the loss. We compared the performance when the
learning rates were 0.01, 0.05 and 0.001. The evaluation of
loss for each learning rate is shown in Figure 7. The result
shows that the loss is stable if the learning rate is 0.001.
Dropout was used to handle the over fitting problem.

A. DATA

The question datasets QALD-7 [10], QALD-8 [11] and
QALD-9 [12] provided by QALD were used as the experi-
ment datasets. As mentioned in [10], [11], and [12], QAKIS,
gAnswer2 and WDAqua were evaluated on QALD-7,
QALD-8, QALD-9, and both gAnswer2 and WDAqua won
the QALD-7, QALD-8, and QALD-9 challenges. How-
ever, the QAKIS, gAnswer2, and WDAqua models were
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FIGURE 7. Loss rate based on different learning rates.

TABLE 12. Parameter settings.

Parameter Values Parameter Value
Model LS I&%&U Epoch 100
Layer 123 Batch Size 8
LSTM Unit 64128256 Optimizer Adam
Word Embedding Gl]}) i]r;(]l?,ogll{rr Learning Rate 0.001
. 00.050.1
P‘v’vsif(;‘(‘)lsf‘jfz‘:g 5 Dropout 0.150.2
0.250.3
Pos Embedding
size 30

TABLE 13. Number of training sets and testing sets for different datasets.

Training sets | Testing sets
QALD-7 183 23
QALD-8 174 33
QALD-9 302 82

all designed to answer simple questions without compar-
atives, superlatives, or interrogative sentences requiring
URIs with sko:Category entities. Therefore, the proposed
scheme excludes complex sentences including comparatives
and superlatives sentences to preserve the sentences listed in
Table 13.

B. EXPERIMENTS

Three metrics, namely Precision, Recall, and F-measure,
were used to evaluate the performance of the QA systems,
which are defined as follows, where T'(g) is the number of
answers to questions g, A(g) is the number of the correct
answers to questions ¢, and C(q) is the number of gold stan-
dard answers to questions g. F-measure is the harmonic mean
of Precision(q) and Recall(q) defined in Equation(3). For
example, there are 50 questions, the QA systems can correctly
answer 25 questions, and QALD provides 45 gold standard
answers. Therefore, the values of T'(¢g), A(g) and C(g) are 50,
25, and 45, respectively. The values of Precision(q), Recall(q)
and F-measure(g) are 223 and 15—9, respectively.

50’ 45

Ag)

1
T(q) W

Precision(q) =

99858
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TABLE 14. Comparison of tagging results on different test sets based on
three different models.

QALD-7 QALD-8 QALD-9
LSTM 69.56% 81.81% 69.51%
GRU 65.21% 81.81% 68.29%
Bi-LSTM 73.91% 84.84% 70.73%

TABLE 15. Comparison of the proposed system with other QA systems on
different test sets.

QALD System Precision | Recall | F-measure
QAwizard 0.59 0.59 0.59
: gAnswer2 0.469 0.498 0.487
QALD-T ' —pAqua T 016 | 0.162 | 0.163
Ours 0.565 0.652 0.594
QAwizard 0.375 0.3584 0.3429
) gAnswer2 0.3862 0.3902 0.388
QALD-8 WDAqua 0.3912 0.4065 0.3872
Ours 0.462 0.5 0.457
QAwizard 0.311 0.469 0.33
) gAnswer2 0.261 0.267 0.250
QALD-Y ' —rpaqua 0293 [ 0327 | 0.298
Ours 0.398 0.426 0.406
A
Recall(q) = ﬂ 2)
Cl)

2 x Precision(q) x Recall(q)
Precision(q) + Recall(q)

3

F-measure(q) =
To give further detail on the tagging results of different
types of QALD, Table 14 shows the precision on QALD-7,
QALD-8, and QALD-9 at 73.91%, 84.84% and 70.73%,
respectively, when Bi-LSTM is adopted. Table 15 shows
different precision based on different models and different
data sets, with average precision (Precision), average recall
(Recall), and average F-measure (F-measure). The precision
scores of Light-QAWizard were 0.565, 0.462 and 0.398,
respectively, representing the best precision compared to
QAWizard, gAnswer2, and WDAqua. Also, the average recall
scores were better than those of gAnswer2 and WDAqua
based on three different datasets. The F-measures of Light-
QAWizard were 0.594, 0.457 and 0.406 as tested on QALD-7,
QALD-8, and QALD-9 datasets, respectively, outperforming
those of QAWizard, gAnswer2, and WDAqua.
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TABLE 16. Comparison of cost computation.

Entity | Property | Class Query Cost
gAnswer2 e r [ exr X c
WDAqua e r C (e+r+c)Z X 2+ w
QAwizard e r [ exr X cXx 2
Ours e r c exr X ¢

TABLE 17. Query cost comparison.

Template no template ganswer2 | QAwizard | Ours
A (S,P,?ans) n/2 n n/2
B (?ans,P,0) n/2 n n/2
D (S,P,O) n n n

S,P,?ans
AA ES,P,?ans; n/2 n n/2
S,P,7ans
AB ((?ans,P, O)) n/2 n n/2
aC (,?(21511’2;’5?))() n/2 n n/2
ac (?(XS,’;’)’,;Z;)S) n/2 n n/2
?ans,P,0
BB E?ans,P,Og n/2 n n/2
7x,P,0
be (;X,P,?an)s) n/2 n n/2
(S,P,7x)
aBC (?ans,P,0) n/2 n n/2
(?ans,P,7x)
(S,P,7x)
aBc (?ans,P,0) n/2 n n/2
(7x,P,?ans)
(S,P,?ans)
ABB (?ans,P,0) n/2 n n/2
(?ans,P,0)
(?ans,P,0)
BBB (?ans,P,0) n/2 n n/2
(?ans,P,0)
(?ans,P,0)
Bbc (7x,P,0) n/2 n n/2
(7x,P,?ans)
(?x,RO)
bbc (7x,P,0) n/2 n n/2
(7x,P,7ans)

The query costs, listed in Table 16, indicate the search
frequency via DBpedia, where the times of name entity,
attribute entity, and class entity are denoted by e, r and c.
Note that w is the number of SPARQL queries generated with
a distance condition using WDAqua. gAnswer2[3] generates
a dependency tree for natural language questions and converts
them into a query graph that contains semantic information,
finds subgraphs in the graph through the graph knowledge
base, and use the subgraphs to generate relative query syntax.
gAnswer2 can clearly determine the placement of named
entities and attribute entities in the RDF triple, so the query
costis e X r x c. WDAqua [2] uses N-grams to perform entity
comparisons with DBpedia for each word in the question
sentence. Each entity is treated as a starting point, a breadth-
first search (BFS) at depth 2 is started in DBpedia, and its
distance is calculated to generate SPARQL queries. The query
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costof WDAqua is (e+r+c)?x24w. QAWizard [7] contains
two stages: entity type tagging and RDF type tagging. The
pre-designed templates are used to generate the SPARQL
queries. The query cost of QAwizard is e X r X ¢ X 2 on
average. Based on the query cost calculation in Table 17, the
query cost of the QAWizard system method is n, the query
cost of the gAnswer2 system is n/2, and the query cost of
the WDAqua system is 5a. This research method uses the
multi-label classification method to reduce the query cost of
QAWizard to n/2. The advantages of Light-QAWizard are
summarized below:

1) Light-QAWizard outperforms QAWizard, gAnswer2,
and WDQqua in terms of average precision, recall and
F-measure.

2) SPARQL query templates are trained on the QALD-7,
QALD-8 and QALD-9 datasets. Thus, only the neces-
sary SPARQL queries are kept, reducing query costs.
Light-QAWizard achieves the lowest query cost when
compared to QAWizard and WDAqua.

V. CONCLUSION

A QA system can accurately answer users’ questions.
SPARQL query generation often drives the query costs,
which reflects the frequency of queries to DBpedia. The
necessary queries consider the efficiency of answering the
question. This paper proposes a classification model and
integrates RNN to train a model that can learn from the expe-
riences of picking out suitable SPARQL queries. To reduce
query costs, LP is adopted to combine the labels to generate
the SPARQL queries. The accuracies on QALD-7, QALD-8
and QALD-9 are 73.91%, 84.84% and 70.73% respectively.
The outstanding performance on metrics including precision,
recall, F-measure, and query costs, surpass those of all other
systems evaluated on the same test sets.

Although the proposed system achieves superior perfor-
mance, further work should be considered to improve the
quality of answers. For example, multilabel classification
algorithms, such as binary relevance, classifier chains, and
pairwise, could be used to answer complex questions that
include comparatives and superlatives. Moreover, the experi-
mental dataset, QALD, is still small, and is therefore limited
in its ability to train a model that can sufficiently satisfy
almost all types of questions. LC-QuAD [26], a larger dataset,
could be used for training to increase the accuracy of the
model.
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