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ABSTRACT This paper is devoted to the study of delay-dependent stability of time-varying delay systems.
A delay-derivative-partitioning approach is proposed. By constructing an augmented Lyapunov functional
that contains two delay-product-dependent terms and using the delay-derivative-partitioning approach,
an improved stability condition is established. The derived condition is described as a set of linear matrix
inequalities, which can be readily implemented. Finally, four examples are carried out so as to attest the

effect and merit of the presented approach.

INDEX TERMS Stability analysis, time-delay system, time-varying delay, Lyapunov functional, linear

matrix inequality.

I. INTRODUCTION

Time-delay system received substantial attention due to its
wide application in the modeling of biological, ecological
and engineering systems [1], [2], [3], [4], [5]. Stability is
a fundamental issue as it is a prerequisite for a system to
operate normally. Therefore, considerable effort has been
devoted to stability analysis of time-delay systems during
the past decades [6], [7], [8], [9], [10], [11], [12]. The
stability conditions can be classified into two categories:
delay-independent conditions and delay-dependent condi-
tions. Delay-independent conditions are usually very con-
servative as it does not take the size of delay into account.
Therefore, more attention is focused on the problem of
delay-dependent stability during the last two decades.

The main purpose of the delay-dependent stability analysis
is to determine the stability-preserving region concerning
time delay. Lyapunov method is prevalent to investigate
the stability of time-delay systems, especially systems with
time-varying delay. Based on Lyapunov method to analyze
stability, the choice of Lyapunov functional is crucial to
the reduction of conservativeness of the derived stabil-
ity conditions. Various methods were developed for the
reduction of conservativeness in view of the construction
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of Lyapunov functional, such as augmented Lyapunov
functional [13], multiple-integral based Lyapunov func-
tional [14], delay-decomposing Lyapunov functional [15],
matrix-refined-function-based Lyapunov functional [16], and
delay-product-type Lyapunov functional [17].

In the derivation of a delay-dependent condition, one of the
main difficulties is to deal with the integral quadratic term,
ftt_ " 1T (s)Ux(s)ds. There are three main methods proposed to
cope with the integral quadratic term: model transformation
approach [18], free-weighting matrix approach [20] and inte-
gral inequality approach [19]. To decrease the gap of between
the integral quadratic term and its lower bound, many
inequalities have been developed, such as Wirtinger-based
inequality [21], auxiliary function-based integral inequali-
ties [22], free-matrix-based integral inequalities [23], [31],
and Bessel-Legendre inequality [24]. For systems with time-
varying, reciprocal convex terms inevitably arise when adopt-
ing the Bessel-Legendre inequality to bound the integral
quadratic term. Several reciprocal convex inequalities are
developed to cope with the reciprocal convex terms (see [25],
[26], [27], [28], [29], [30]). Among these inequalities, the
generalized reciprocal convex inequality in [30] includes
other inequalities as special cases and has the least conser-
vativeness in comparison with others. However, the conser-
vativeness cannot be completely eliminated in bounding the
reciprocal convex terms. By contrast, these reciprocal convex
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terms do not appear when the integral quadratic terms are
bounded by using the free-matrix-based integral inequalities
presented in [31]. Therefore, based on the same Lyapunov
functional, stability conditions derived by using the free-
matrix-based integral inequalities have the least conservative-
ness in comparison with using other inequalities.

It is observed that most of the literatures are focused
on the construction of Lyapunov functional and decrease
the gap of bounding the derivative of Lyapunov functional,
while the information about the delay derivative has not been
fully considered. This paper revisits the stability problem of
systems with time-varying delay. The contributions of the
paper are summarized as follows. Firstly, a delay-derivative-
partitioning approach is originally proposed. By constructing
an improved Lyapunov functional and dividing the delay
derivative interval into two parts, a sufficient condition is
derived. Furthermore, this condition is extended to robust
stability analysis of time-varying delay system with uncertain
system parameters. Finally, four illustrative examples includ-
ing one-area load frequency control system are carried out to
attest the effect and the advantage of the proposed method.

Notation: Throughout the paper, R" denotes the n-
dimensional Euclidean space; R"*" and §"(S"}) are the sets
of n x m real matrices and n x n real (positive definite)
symmetric matrices, respectively; diag{- - - } refers to a block-
diagonal matrix; QT and Q‘1 stand for, respectively, the
transpose and the inverse of the matrix Q; 0 represents zero
matrix with appropriate dimensions; symmetric terms in a
symmetric matrix are represented by the symbol ‘x’; and
Sym{U} =U + UT.

Il. PRELIMINARIES
Consider the following system
x() = Ax(t) + Bx(t — r(t))
x(t) = ¢(1), te€[—h,0]
where A, B € R™" are system matrices, x(t) € R" and

¢(t) are the state vector and its initial condition, r(¢) is a
continuous time-varying function satisfying

ey

0<r(t)<h, p<ilt)<pus 2

Before presenting our main results, the following lemma is
introduced, which is indispensable to derive the main results.

Lemma 1 [31]: Let w: [, B] — R™ be a differentiable
function. Then, for given matrices U € S’j_, Wi, Wh, W3 €
R™*" and a vector 6 € R™, the following inequality holds,

B
— / ol (s)Ud(s)ds <Y (3)
o
where
YT = Z 4 2 9Tw,u— Wl + sSym{6T Wipi0) }
~2i-1 i
pL =é —ex, pp =e1+é —2e3,
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p3 = el —ex+6ez —12e4,v =B —q,

| B | B B
0 = col w(B), w(a), ;/a)(s)ds, ﬁ/./w(u)duds ,

o

é] = [Onx(jfl)n I, 0n><(47j)n ] J= 1,2,3,4.

Ill. MAIN RESULTS

This section will present several stability conditions for the
considered system. For brevity, we define the following nota-
tions.

r(t) = h—r(t),
t t—r()
v1(t) —/ x(s)ds, va(t) —/ x(s)ds,
t—r(t)

v3(t) = %/t r(t)/ x(s)dsdo,

t—r(t) pt—r(t)
vy(t) = — / / x(s)dsdo,
(1) Ji—n 9

t
vs(t,s):[ x(o)da,
x0 =[xFo Lo Lo Lol
x1@) = [xT(0) xT@ —rt)) xTt —h)]
x2() = [Tt —r@®) xT(t - h)]

T
x3(t) =[ o vl — _(t) I — (t) i) — "0 4(t)} ,
X4(t) =[ vl vIi@ vI@ vl xT(t)]
= [Onx(iztin In Onx(la—im]. i=1,2,---,14,
o) = [xF @) @) vI@ v o],

0r(t.9) = [x] 0 [0 vl 1.9 i) )]
03(t) =

[ef €] ef eg elpefy 612] x (@),
04(t) = [

T
el e ef e efy ef 613] x ().

Based on a delay-derivative-partitioning approach, the fol-
lowing stability criterion is obtained.

Theorem 1: For given scalars h, w1 and up, suppose
that there exist W,Y;,Y, € SZ_", 01,0, € Sﬁ_”,
X1, X € Si, Ni1,N12, N21, Nypp € RI4nx3n and
S11, 812, 813, S14, S21, S22, 823, 824, U € R4mxn guch that
LMIs (4) and (5) are satisfied for r(¢) € [0, A,

[ (@), (1) VFON12 rONn]

* -Xi 0 <0
L * =X Lrmeru, 1t
“4)
[D(r(1), (1)) msz V()N ]
* - X1 0 <0
* * —)22

. +
L e M2 1)

&)
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where

O(r(2), 7(t)) = E1 + B2 + E3,
O(r(), (1)) = B1 + Bz + E3,
1 = Sym{IT{ WAy + T Q142 + T1{ Q222)
+ 50T — (1 — F(E)TT} (Q1 — Q)13
— 115 Qo4 + U(Ae; + Bey — e1a)
+ he{, Xaers + (1 — HO)F(1ef (X1 — Xa)ey,
2 = Sym{T1 Y13 + T} Yohs} + #(OT13 Y111
— F(OTIE Vo1,
Sym{S11(r(t)es — e10) + S12(7(t)e7 — e11)
+S13(r()es — e12) + S1a(F()ey — e13)
+NnMi + NipMa},
Sym{S21(r(t)es — e10) + S2n(7(t)e7 — e11)
+823(r(t)es — e12) + S2(r(t)eg — e13)
+ NaiMi + NoaMa},

(1]

(1]

[
w
Il

]
w
Il

r r ,7 ,7T ,T ,T1T
€ €3 €9 €11 €1n 613]’

T

1

T T ,T ,T T T 117

1 € €3 ey ey 0 ey el] )

r r ,7 ,T ,T ,T ,T ,T1T

1 € €3 € €11 € ¢ 62] )

r T ,T ,T ,T ,T r 7 117

1 ey e efy el efgtef e o],
_ T T T T _117

Ms = [r(el rel riel rwel, =X ] .

T T T]T

T
sq = |r(e); r(Dej, e; —e; €l

T T

_ — T
mea = [F(Del; F)ewo+e13)T e —el el ] .

T
eg es 610 en 912]
]T

T
2
2T 37T 39T 310 611 €13
l—i(t))e4 eST I]T tzT r3T ‘C4T]T,
1 —#t)es es 7 7 eI 0 0]

[
[
[
[
[
|
Me = [F)el Fo)el Foel Fnely al]",
|
=
=
= [e], (
= [ef, (
= [ <7 < re” el ol
=t o <l ol o o]
71 =€ — (1 —7@))ez, w2=(1—7(@)ex—e3,
73 = e1 — (1 —7(t))es — F(t)es,
74 = (1 — 7 (t))ex — e7 + r(t)ey,
5 = [r(t)el, r()(1 —i@)el]",
76 = e1 — (1 — 7 (t))ex — F(t)es,
77 = e1 — (1 — 7 (t))es — 27 (t)es,
s = [F(0e], 71 —i)ef]”
79 = (1 — 7 (t))ex — e3 + r(t)er,
110 = (1 = 7(t))e2 — e7 + 2i7(t)ey,
Xi = diag(X;, 3X:,5X;) i=1,2,

_ el — e -
M, = el +ex — 2eg ,
| e1 — e2 + 6eg — 12es |
= 0 — o3 -
M, = er + ez — 2e7
| 2 —e3 + 6e7 — 1269_

Then, system (1) with the delay subject to (2) is asymptoti-
cally stable.
Proof: Choose the Lyapunov functional candidate as:

V() = Vi(t) + Va(1) (6)

where

t
Vi(t) = QlT(t)WQl(t)+/ ()Qg(t,s)ngz(t,s)ds
t—r(t
t—r(t)
+ / 03 (t, )0201(t, 5)ds
t—h
t—r(t)
+ / (h —t + 5)xT ()X x(s)ds
t—h
t
+ / (h —t + $)xT (5)Xox(s5)ds,
t—r(t)

Va(t) = r()e} (1)Y103(t) + (1o (1)Y204(1).
Taking the derivative of V (¢) along the trajectories of system
(1) yields
Vi(t) = 20T ()W o1(1) + 02 (1, 1)Q102(2, 1)
— (1 = #NoX(t, t — r)Q102(t, 1 — (1))

t
+2/ Qg(l‘ 50, 2828 an(t S)
t—r(t)

+ (1 — i(0)ox(t, t — r(t))QzQz(t t—r()
— o (t,t —)Qa0a(t, t — h)
t—r(t)
+2/ ) 03(t,$)0r———— QZ(I 9 ds
i
+ (1 = FHO)FOET (1 — r(t))XUC(l —r()
— (1= OO (t — r)Xai(t — (1))

t—r(t)
+ hxT (1) Xox(1) — / T ()X %(s)ds
t—h
t
— / 1T (9)Xax(s)ds (7
t—r(t)

Va(1) = #(0)o3 (1)Y103(1) + 2r(1)03 (1)Y103(t)
— HOEL (1) Y204(t) + 27 (0T (OV20a(t)  (8)
For brevity, the delay derivative interval [1t, u2] is equally
divided into two subintervals [f1, ue] and [y, no], where

e = ’“'HLZ . For 7(t) € [u1, a], it follows from Lemma
1 that

t—r(t) t
— f ()X 1 x(s)ds — / T (5)Xax(s)ds
t—h t—r(t)
< xT(O[Sym{N1 1M + NioMp} + Qr(t)1x () (9)
with Q(r(1)) = r(ON1 X5 'NT, + F(ONpX[ N,
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It is observed from x(z) that

2xT()S1(r()e — e10)x (1) = 0 (10)
2xT OS12(F()er — e1)x (1) = 0 (11)
2xT(OS13(r(tes — er)x (1) = 0 (12)
2xT(0)S14(F()es — e13)x (1) = 0 (13)
2xT(HU(Aey + Bey — e1)x (1) = 0 (14)

for any matrices Sy, S12, S13, S14, U € R4,

Adding the left-hand sides of (10)-(13) to V(t) and using
(9), we get

V() < xT ()@@ (), 1 (1) + QUre)x (1) (15)

where ®(r(t), 7(¢)) is defined in Theorem 1.

If ©(r(r), 1)) + Qr(t)) < 0 for r(¢) € [0, h], which is
equivalent to LMI (4) in the sense of Schur complement, then
V() < 0.

For 7(¢) € [1q, u2], replacing Ny; with Ny;(i = 1, 2) in (9),
and Sy; with S2;(j = 1, 2, 3, 4) in (10)-(13), we get

V() < 1T @), D) + Qrn)x (@) (16)

with Q(r(1)) = r()N21 X5 ' N + F()Np X[ ' N, Similarly,
if ®(r(r), 7)) + Q2r(t)) < 0 for r(¢) € [0, k], which is
equivalent to LMI (5), then V(1) < 0. Based on Lyapunov
stability theory, the system (1) is asymptotically stable. This
completes the proof.

Remark 1: In the derivation of Theorem 1, four vectors,
v1(2), va(t), va(t) and v4(¢) are introduced in y () to avoid the
emergence of quadratic terms of (7). Noted that (¢)eg x (t) =
elox (1), rerx(t) = e x@), r(egx(t) = enx(t) and
r(t)eg x (1) = e13x(t), the equations (10)-(13) are introduced,
which contribute to the conservativeness reduction.

Remark 2: Two delay-product-dependent terms, r(t)Q3T (1)
Y103(t) and f(t)QZ(t)YgQ4(t), are added in the LKF (6) to
reduce conservativeness. On the other hand, as the Lyapunov
matrices, Y1 and Y, are dependent on (), it make the LKF
(6) capture more information about the variation of the delay.

Remark 3: Inspired by [32], a delay-derivative- partition-
ing approach is proposed. Different form existing litera-
ture [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
by dividing the interval of delay derivative into two subin-
tervals, two groups of free matrices are employed for the
delay derivative to be on different subintervals. Therefore,
the derived condition may be less conservative. The conser-
vativeness can be further reduced by increasing the number
of subintervals to be divided.

To show the effect of the proposed delay-derivative-
partitioning approach, the following stability condition
without using the delay-derivative-partitioning approach is
presented, which is straightforward obtained by setting N»| =
Ni1,Nop = Ni2, 821 = 811,82 = 812,823 = S13, and
S24 = S14 in Theorem 1.

Corollary 1: For given scalars h, 1 and uj, suppose that
there exist W, Y1, Y, € SI", 01,0, € S¥, X1, X, € S%,
Ni1,Nip € R14"X3n, and Si1, S12, 813, S14, U € RM"X”,
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such that LMI (17) is satisfied for r(t) € [0, k] and
(1) € [i1, pal,
O(r(n), 1(1)  VrON12  SrON1
* —X1 0 <0 17
* % —)A('z

where ®(r (1), 7(t)), X1, X, are defined in Theorem 1. Then,
system (1) with the delay subject to (2) is asymptotically
stable.

In addition, the condition in Theorem 1 can be readily
extended to uncertain systems that system parameters A
and B subject to convex polynomial constraints, which are
represented as

P
[AB] €, Q:=][AE) BE] =Y &[4 B,

J=1
p
dg=1,§=01 (18)
j=1

where Aj, Bi j = 1,---,p) are constant matrices with
appropriate dimensions and & (j = 1,.---,p) are time-
invariant uncertainties.

For system (1) with uncertain parameters satisfied with
(18), the following robust stability criterion is presented.

Theorem 2: For given scalars h, pni and pup, suppose
that there exist Wj, Yy;, Yo € Sl”, 01j, Q0 € Si”,
X1, Xoj € S, Niij, Nigj, Naij, Nogj € R4x3n - and
S11j, S127, S13j, S14j, 217, S22, 8237, Soaj, U € R such
that LMIs (19) and (20) are satisfied for r(¢) € [0, k] and
j=1,---,p,

{@Y{(r(rw(r» <1>Y3(6)<r>>] “0 (o)
* ®2 et g

[éYi(rm,i(r)) é&g)(r))] “0 0
* ®2 it )

where
oV (), (1) = Y + &Y + EY.
&V (r(1), (1)) = BV + Y + £,
CDY%(r(t)) = [VF(ON1; /rON1y;]
ci9(120(1)) = [VF(ONxw; /r(ON2y;],
‘D(zg = —diag{Xy;, 3X\j, 5X1j, X2j, 3X2j, 5X2;}
with
EY) = Sym{TT{ Wik1 + 15 Q1jA + T1§ Q142)
+ 15 QT — (1 — FH(E)TTE (Q1j — 023
— 1Y QT4 + U(Aey + Bez — e14) + hel Xojers
+ (1 = FO)F(1)eq (X1j — Xop)es.
89 = Sym(TT Yyjas3 + N1 Yo} + (010 YT
— F(OIT} Yoy T3,
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TABLE 1. System matrices for given examples.

-1 0
Example 1 [ 0 0.9 } [ 1 1 ]

Example 2

) = Sym{S11;(r(t)es — e10) + Siay(F(t)er — e11)
+ S13j(r(t)eg — e12) + S14j(F(t)eg — e13)
+ N1M1 + NigiMa},
&Y = Sym{Sj(r(tes — e10) + Saj(F(t)e7 — e11)
+ S23j(r(t)eg — e12) + So4i(r(t)eg — e13)
+ N21jMy + NooiMb},
and IT;G = 1,2,---,8),A1,A2, A3, 4, M, and M, are

defined in Theorem 1.
Proof: Choose the Lyapunov functional candidate as:

V()= Vi(t) + Va(0) 1)
where
. p
Vi) =) of 0EW01()
J=1
p t
+> f ( )a%(t, $)EQ1j0a(t, s)ds
=1 1=
p t—r(t)
+y / ) 03 (1. )EQ202(1. s)ds
=101
p t—r(t)
+) (h — 1 + $)iT (5)€X5(s)ds
=1 t—h
p t
+) / (h — 1 4 )57 ()€ X2%(5)ds,
=1 t—r(t)
. p p
Va(t) = Y r(0e3 (D& Yo3(t) + Y F(H)e] (1Y 2j04(D).
j=1 j=1

By employing a similar procedure with the proof of Theo-
rem 1, Theorem 2 can be readily obtained. For brevity, the
details are omitted.

IV. NUMERICAL EXAMPLES
In this section, four examples are provided to verify the
superiority and the effectiveness of the proposed method.
Firstly, consider system (1) without uncertainties. The system
matrices are listed in Table 1.

These two examples are ordinarily adopted in previous
literature for the purpose of comparing the conservativeness
of different stability conditions. Given ;1 = —p and py =
wu, Table 2 and Table 3 list the allowable upper bounds
(AUBs) of delay obtained by the presented stability condi-
tions, respectively, for Example 1 and Example 2. As shown
in Tables 2 and 3, the AUBs obtained by Theorem 1 are larger

99334

TABLE 2. Allowable upper bounds of delay (Example 1).

Methods p=0.1  pu=05 p=0.8
[32] 4832 3122 2676
[26] 4714 2.608 2375
[28] 4910 3233 2789
[31] 4.921 3221 2792
[33] 4.93 3.09 2.66
[34] 4936 3273 2848
[37] 4945 3314 2882
[38] 5.026 3428 2997
[40] 4943 3322 2.899
[39] 4966 3395 2983
[41] 5.021  3.493  3.068
[42] 5.078  3.481  3.005

Theorem 1 5.097  3.549  3.147

Corollary 1~ 5.058  3.522  3.117

TABLE 3. Allowable upper bounds of delay (Example 2).

Methods p=0.1  p=02 p=0.5 p=0.8
[16] 7.167 4517 2415 1.838
[35] 7.190 4527 2447  1.856
[28] 7230 4556 2509 1940
[36] 7263 4591 2575 2011
[31] 7308  4.670 2.664  2.072
[40] 7412 4797 2735 2114
[39] 7572 4947 2801  2.137
[41] 7.682 4997 2814 2149
[42] 7.685 4985 2806  2.148

Theorem 1  7.730  5.034  2.841  2.176

Corollary 1~ 7.708  5.015  2.831  2.167

TABLE 4. Consider system with uncertainties (|o| < 0.035).

| A 5
0 —012+12p] [-01 —0.35
Example 3 [1 ~0.465 — p:| [ 0 03 ]

TABLE 5. Allowable upper bounds of delay (Example 3).

Methods ;=0  p=0.1 p=0.5 u=0.9

[43] 0863 0.786  0.465 0454
Theorem2 0.896 0.858 0.770  0.719

than others in the existing literature. In comparison with the
AUBs obtained by Theorem 1 and Corollary 1, it is observed
that the results obtained by Theorem 1 are superior to that by
Corollary 1. It indicates that the delay-derivative-partitioning
approach presented in this paper is effective to reduce the
conservativeness of the derived conditions.

Next, consider system (1) with uncertain parameters. The
system parameters are given in Table 4, which can be repre-
sented as (18) with

A = 0 —0.124+12p,, A = 0 —0.12—-12p,,
=1 —0465—pn |7 72T (1 —0.465 + p
—0.1 —0.35
By =B, = |: 0 03 ] ,  pm=0.035.
Setting o = —u1 = u, for various p, Table 5 lists the

AUBs of delay obtained by Theorem 2, along with the results
given in [43], which verifies the effectiveness of the proposed
method.

Example 4: Consider the one-area load frequency control

system presented in [44], which is modeled as system (1) with
x(t) = [Af AP, AP, [ACE]",
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TABLE 6. Allowable upper bounds of delay (Example 4).

Methods p=0 p=0.1 p=05 p=09

[44] 686  — - 476
[45] 755 738 709 698
Theorem | 757 748 727 7.5

State responses

2|

-4

o0 ‘I‘D 2‘D ]‘D A‘D EID SID YID B‘D S;D 100
Time (s)

FIGURE 1. State response of systems (1) with the parameters in

Example 4.

- D 1 _
= = 0 0
M M
0 ! ! 0
A= Tr Ir ,
1 1
_ 0 _
TR T
. B 0 0 0]
r 0 0 0 0
0 0 0 0
B = K K ’
_BKe o o0 —-L
TG Tg
L O 0 O 0

where Af, AP,,, AP, and [ ACE are the deviation of fre-
quency, the mechanical output of generator, the valve posi-
tion, and the integral of the Area Control Error (ACE),
respectively. D = 1.0 and M = 10 are, respectively, the
generator damping coefficient and the moment of inertia of
the generator, Tg = 0.1 and 77 = 0.3 are the time constants
of the governor and the turbine, respectively, Kp = 0.05 and
K; = 0.2 are the gains of PI controller, R = 0.05 is the
speed drop and 8 = 21 is the frequency bias factor. Setting
W2 = —p1 = W, for various p, the AUBs of delay obtained
by Theorem 1 are summarized in Table 6. It is shown in
the table that the proposed method outperforms [44], [45].
Choosing r(t) = 5.27 4 2sin(0.25t), which satisfies (2) with
h =7.24 and p = 0.5, the state response of the system with
x(0) = [1 0.1 0.5 O]T is depicted in Figure 1. It verifies the
effectiveness of the proposed method.

V. CONCLUSION

This paper concerns the stability of time-varying delay sys-
tems. A delay-derivative-partitioning approach has been pro-
posed. Based on the delay-derivative-partitioning approach
and by constructing an augmented Lyapunov functional that
includes two delay-product terms, improved stability criteria
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are obtained. As two groups of free matrices are employed
for the delay derivative on different intervals, which relax
the condition and hence reduce the conservativeness of the
obtained results. Four examples are finally provided to illus-
trate the effectiveness of the proposed method.
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