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ABSTRACT This paper is devoted to the study of delay-dependent stability of time-varying delay systems.
A delay-derivative-partitioning approach is proposed. By constructing an augmented Lyapunov functional
that contains two delay-product-dependent terms and using the delay-derivative-partitioning approach,
an improved stability condition is established. The derived condition is described as a set of linear matrix
inequalities, which can be readily implemented. Finally, four examples are carried out so as to attest the
effect and merit of the presented approach.
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INDEX TERMS Stability analysis, time-delay system, time-varying delay, Lyapunov functional, linear
matrix inequality.

I. INTRODUCTION9

Time-delay system received substantial attention due to its10

wide application in the modeling of biological, ecological11

and engineering systems [1], [2], [3], [4], [5]. Stability is12

a fundamental issue as it is a prerequisite for a system to13

operate normally. Therefore, considerable effort has been14

devoted to stability analysis of time-delay systems during15

the past decades [6], [7], [8], [9], [10], [11], [12]. The16

stability conditions can be classified into two categories:17

delay-independent conditions and delay-dependent condi-18

tions. Delay-independent conditions are usually very con-19

servative as it does not take the size of delay into account.20

Therefore, more attention is focused on the problem of21

delay-dependent stability during the last two decades.22

The main purpose of the delay-dependent stability analysis23

is to determine the stability-preserving region concerning24

time delay. Lyapunov method is prevalent to investigate25

the stability of time-delay systems, especially systems with26

time-varying delay. Based on Lyapunov method to analyze27

stability, the choice of Lyapunov functional is crucial to28

the reduction of conservativeness of the derived stabil-29

ity conditions. Various methods were developed for the30

reduction of conservativeness in view of the construction31

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng .

of Lyapunov functional, such as augmented Lyapunov 32

functional [13], multiple-integral based Lyapunov func- 33

tional [14], delay-decomposing Lyapunov functional [15], 34

matrix-refined-function-based Lyapunov functional [16], and 35

delay-product-type Lyapunov functional [17]. 36

In the derivation of a delay-dependent condition, one of the 37

main difficulties is to deal with the integral quadratic term, 38∫ t
t−h ẋ

T (s)Uẋ(s)ds. There are threemainmethods proposed to 39

cope with the integral quadratic term: model transformation 40

approach [18], free-weighting matrix approach [20] and inte- 41

gral inequality approach [19]. To decrease the gap of between 42

the integral quadratic term and its lower bound, many 43

inequalities have been developed, such as Wirtinger-based 44

inequality [21], auxiliary function-based integral inequali- 45

ties [22], free-matrix-based integral inequalities [23], [31], 46

and Bessel-Legendre inequality [24]. For systems with time- 47

varying, reciprocal convex terms inevitably arise when adopt- 48

ing the Bessel-Legendre inequality to bound the integral 49

quadratic term. Several reciprocal convex inequalities are 50

developed to cope with the reciprocal convex terms (see [25], 51

[26], [27], [28], [29], [30]). Among these inequalities, the 52

generalized reciprocal convex inequality in [30] includes 53

other inequalities as special cases and has the least conser- 54

vativeness in comparison with others. However, the conser- 55

vativeness cannot be completely eliminated in bounding the 56

reciprocal convex terms. By contrast, these reciprocal convex 57
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terms do not appear when the integral quadratic terms are58

bounded by using the free-matrix-based integral inequalities59

presented in [31]. Therefore, based on the same Lyapunov60

functional, stability conditions derived by using the free-61

matrix-based integral inequalities have the least conservative-62

ness in comparison with using other inequalities.63

It is observed that most of the literatures are focused64

on the construction of Lyapunov functional and decrease65

the gap of bounding the derivative of Lyapunov functional,66

while the information about the delay derivative has not been67

fully considered. This paper revisits the stability problem of68

systems with time-varying delay. The contributions of the69

paper are summarized as follows. Firstly, a delay-derivative-70

partitioning approach is originally proposed. By constructing71

an improved Lyapunov functional and dividing the delay72

derivative interval into two parts, a sufficient condition is73

derived. Furthermore, this condition is extended to robust74

stability analysis of time-varying delay systemwith uncertain75

system parameters. Finally, four illustrative examples includ-76

ing one-area load frequency control system are carried out to77

attest the effect and the advantage of the proposed method.78

Notation: Throughout the paper, Rn denotes the n-79

dimensional Euclidean space; Rn×m and Sn(Sn+) are the sets80

of n × m real matrices and n × n real (positive definite)81

symmetric matrices, respectively; diag{· · · } refers to a block-82

diagonal matrix; QT and Q−1 stand for, respectively, the83

transpose and the inverse of the matrix Q; 0 represents zero84

matrix with appropriate dimensions; symmetric terms in a85

symmetric matrix are represented by the symbol ‘∗’; and86

Sym{U} = U + UT .87

II. PRELIMINARIES88

Consider the following system89 {
ẋ(t) = Ax(t)+ Bx(t − r(t))
x(t) = φ(t), t ∈ [−h, 0]

(1)90

where A,B ∈ Rn×n are system matrices, x(t) ∈ Rn and91

φ(t) are the state vector and its initial condition, r(t) is a92

continuous time-varying function satisfying93

0 < r(t) < h, µ1 ≤ ṙ(t) ≤ µ2 (2)94

Before presenting our main results, the following lemma is95

introduced, which is indispensable to derive the main results.96

97

Lemma 1 [31]: Let ω: [α, β] → Rn be a differentiable98

function. Then, for given matrices U ∈ Sn+, W1,W2,W3 ∈99

Rm×n and a vector θ ∈ Rm, the following inequality holds,100

−

β∫
α

ω̇T (s)U ω̇(s)ds ≤ ϒ (3)101

where102

ϒ =

3∑
i=1

{
β − α

2i− 1
θTWiU−1W T

i θ + Sym{θTWiρiθ̄}

}
,103

ρ1 = ẽ1 − ẽ2, ρ2 = ẽ1 + ẽ2 − 2ẽ3,104

ρ3 = ẽ1 − ẽ2 + 6ẽ3 − 12ẽ4, ν = β − α, 105

θ̄ = col

ω(β), ω(α), 1ν
β∫
α

ω(s)ds,
1
ν2

β∫
α

β∫
s

ω(u)duds

 , 106

ẽj =
[
0n×(j−1)n In 0n×(4−j)n

]
, j = 1, 2, 3, 4. 107

III. MAIN RESULTS 108

This section will present several stability conditions for the 109

considered system. For brevity, we define the following nota- 110

tions. 111

r̄(t) = h− r(t), 112

ν1(t) =
∫ t

t−r(t)
x(s)ds, ν2(t) =

∫ t−r(t)

t−h
x(s)ds, 113

ν3(t) =
1
r(t)

∫ t

t−r(t)

∫ t

θ

x(s)dsdθ, 114

ν4(t) =
1
r̄(t)

∫ t−r(t)

t−h

∫ t−r(t)

θ

x(s)dsdθ, 115

ν5(t, s) =
∫ t

s
x(α)dα, 116

χ (t) =
[
χT1 (t) χ

T
2 (t) χ

T
3 (t) χ

T
4 (t)

]T
, 117

χ1(t) =
[
xT (t) xT (t − r(t)) xT (t − h)

]T
, 118

χ2(t) =
[
ẋT (t − r(t)) ẋT (t − h)

]T
, 119

χ3(t) =
[

1
r(t)

νT1 (t)
1
r̄(t)

νT2 (t)
1
r(t)

νT3 (t)
1
r̄(t)

νT4 (t)
]T
, 120

χ4(t) =
[
νT1 (t) ν

T
2 (t) ν

T
3 (t) ν

T
4 (t) ẋT (t)

]T
, 121

ei =
[
0n×(i−1)n In 0n×(14−i)n

]
, i = 1, 2, · · · , 14, 122

%1(t) =
[
χT1 (t) ν

T
1 (t) ν

T
2 (t) ν

T
3 (t) νT4 (t)

]T
, 123

%2(t, s) =
[
χT1 (t) ν

T
1 (t) ν

T
2 (t) ν

T
5 (t, s) ẋ

T (s) xT (s)
]T
, 124

%3(t) =
[
eT1 eT2 eT6 eT8 eT10 e

T
11 eT12

]T
χ (t), 125

%4(t) =
[
eT1 eT2 eT7 eT9 eT10 eT11 eT13

]T
χ (t). 126

Based on a delay-derivative-partitioning approach, the fol- 127

lowing stability criterion is obtained. 128

Theorem 1: For given scalars h, µ1 and µ2, suppose 129

that there exist W ,Y1,Y2 ∈ S7n+ , Q1,Q2 ∈ S8n+ , 130

X1,X2 ∈ Sn+, N11,N12,N21,N22 ∈ R14n×3n and 131

S11, S12, S13, S14, S21, S22, S23, S24,U ∈ R14n×n such that 132

LMIs (4) and (5) are satisfied for r(t) ∈ [0, h], 1338(r(t), ṙ(t))
√
r̄(t)N12

√
r(t)N11

∗ − X̂1 0
∗ ∗ − X̂2


ṙ(t)∈[µ1,

µ1+µ2
2 ]

< 0 134

(4) 1358̄(r(t), ṙ(t)) √r̄(t)N22
√
r(t)N21

∗ − X̂1 0
∗ ∗ − X̂2


ṙ(t)∈[µ1+µ22 ,µ2]

< 0 136

(5) 137
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where138

8(r(t), ṙ(t)) = 41 +42 +43,139

8̄(r(t), ṙ(t)) = 41 +42 + 4̄3,140

41 = Sym{5T
1Wλ1 +5

T
5Q1λ2 +5

T
6Q2λ2}141

+5T
2Q152 − (1− ṙ(t))5T

3 (Q1 − Q2)53142

−5T
4Q254 + U (Ae1 + Be2 − e14)143

+ heT14X2e14 + (1− ṙ(t))r̄(t)eT4 (X1 − X2)e4,144

42 = Sym{5T
7 Y1λ3 +5

T
8 Y2λ4} + ṙ(t)5

T
7 Y157145

− ṙ(t)5T
8 Y258,146

43 = Sym{S11(r(t)e6 − e10)+ S12(r̄(t)e7 − e11)147

+ S13(r(t)e8 − e12)+ S14(r̄(t)e9 − e13)148

+N11M1 + N12M2},149

4̄3 = Sym{S21(r(t)e6 − e10)+ S22(r̄(t)e7 − e11)150

+ S23(r(t)e8 − e12)+ S24(r̄(t)e9 − e13)151

+N21M1 + N22M2},152

with153

51 =
[
eT1 eT2 eT3 eT10 eT11 eT12 eT13

]T
,154

52 =
[
eT1 eT2 eT3 eT10 eT11 0 eT14 eT1

]T
,155

53 =
[
eT1 eT2 eT3 eT10 eT11 eT10 eT4 eT2

]T
,156

54 =
[
eT1 eT2 eT3 eT10 eT11 eT10 + e

T
11 eT5 eT3

]T
,157

55 =
[
r(t)eT1 r(t)eT2 r(t)eT3 r(t)eT10 πT5a

]T
,158

π5a =
[
r(t)eT11 r(t)eT12 eT1 − e

T
2 eT10

]T
,159

56 =
[
r̄(t)eT1 r̄(t)eT2 r̄(t)eT3 r̄(t)eT10 πT6a

]T
,160

π6a =
[
r̄(t)eT11 r̄(t)(e10 + e13)T eT2 − e

T
3 eT11

]T
,161

57 =
[
eT1 eT2 eT6 eT8 eT10 eT11 eT12

]T
,162

58 =
[
eT1 eT2 eT7 eT9 eT10 eT11 eT13

]T
,163

λ1 =
[
eT14 (1− ṙ(t))eT4 eT5 τT1 τT2 τT3 τT4

]T
,164

λ2 =
[
eT14 (1− ṙ(t))e4 e5 τT1 τT2 eT1 0 0

]T
,165

λ3 =
[
τT5 τT6 τT7 r(t)τT1 r(t)τT2 r(t)τT3

]T
,166

λ4 =
[
τT8 τT9 τT10 r̄(t)τT1 r̄(t)τT2 r̄(t)τT4

]T
,167

τ1 = e1 − (1− ṙ(t))e2, τ2 = (1− ṙ(t))e2 − e3,168

τ3 = e1 − (1− ṙ(t))e6 − ṙ(t)e8,169

τ4 = (1− ṙ(t))e2 − e7 + ṙ(t)e9,170

τ5 =
[
r(t)eT14 r(t)(1− ṙ(t))eT4

]T
,171

τ6 = e1 − (1− ṙ(t))e2 − ṙ(t)e6,172

τ7 = e1 − (1− ṙ(t))e6 − 2ṙ(t)e8,173

τ8 =
[
r̄(t)eT14 r̄(t)(1− ṙ(t))eT4

]T
,174

τ9 = (1− ṙ(t))e2 − e3 + ṙ(t)e7,175

τ10 = (1− ṙ(t))e2 − e7 + 2ṙ(t)e9,176

X̂i = diag(Xi, 3Xi, 5Xi) i = 1, 2,177

M1 =

 e1 − e2
e1 + e2 − 2e6

e1 − e2 + 6e6 − 12e8

 , 178

M2 =

 e2 − e3
e2 + e3 − 2e7

e2 − e3 + 6e7 − 12e9

 . 179

Then, system (1) with the delay subject to (2) is asymptoti- 180

cally stable. 181

Proof: Choose the Lyapunov functional candidate as: 182

V (t) = V1(t)+ V2(t) (6) 183

where 184

V1(t) = %T1 (t)W%1(t)+
∫ t

t−r(t)
%T2 (t, s)Q1%2(t, s)ds 185

+

∫ t−r(t)

t−h
%T2 (t, s)Q2%2(t, s)ds 186

+

∫ t−r(t)

t−h
(h− t + s)ẋT (s)X1ẋ(s)ds 187

+

∫ t

t−r(t)
(h− t + s)ẋT (s)X2ẋ(s)ds, 188

V2(t) = r(t)%T3 (t)Y1%3(t)+ r̄(t)%
T
4 (t)Y2%4(t). 189

Taking the derivative of V (t) along the trajectories of system 190

(1) yields 191

V̇1(t) = 2%T1 (t)W %̇1(t)+ %
T
2 (t, t)Q1%2(t, t) 192

− (1− ṙ(t))%T2 (t, t − r(t))Q1%2(t, t − r(t)) 193

+ 2
∫ t

t−r(t)
%T2 (t, s)Q1

∂%2(t, s)
∂t

ds 194

+ (1− ṙ(t))%T2 (t, t − r(t))Q2%2(t, t − r(t)) 195

− %T2 (t, t − h)Q2%2(t, t − h) 196

+ 2
∫ t−r(t)

t−h
%T2 (t, s)Q2

∂%2(t, s)
∂t

ds 197

+ (1− ṙ(t))r̄(t)ẋT (t − r(t))X1ẋ(t − r(t)) 198

− (1− ṙ(t))r̄(t)ẋT (t − r(t))X2ẋ(t − r(t)) 199

+ hẋT (t)X2ẋ(t)−
∫ t−r(t)

t−h
ẋT (s)X1ẋ(s)ds 200

−

∫ t

t−r(t)
ẋT (s)X2ẋ(s)ds (7) 201

V̇2(t) = ṙ(t)%T3 (t)Y1%3(t)+ 2r(t)%T3 (t)Y1%̇3(t) 202

− ṙ(t)%T4 (t)Y2%4(t)+ 2r̄(t)%T4 (t)Y2%̇4(t) (8) 203

For brevity, the delay derivative interval [µ1, µ2] is equally 204

divided into two subintervals [µ1, µa] and [µa, µ2], where 205

µa =
µ1+µ2

2 . For ṙ(t) ∈ [µ1, µa], it follows from Lemma 206

1 that 207

−

∫ t−r(t)

t−h
ẋT (s)X1ẋ(s)ds−

∫ t

t−r(t)
ẋT (s)X2ẋ(s)ds 208

≤ χT (t)[Sym{N11M1 + N12M2} +�(r(t))]χ (t) (9) 209

with �(r(t)) = r(t)N11X̂
−1
2 NT

11 + r̄(t)N12X̂
−1
1 NT

12. 210
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It is observed from χ (t) that211

2χT (t)S11(r(t)e6 − e10)χ (t) = 0 (10)212

2χT (t)S12(r̄(t)e7 − e11)χ (t) = 0 (11)213

2χT (t)S13(r(t)e8 − e12)χ (t) = 0 (12)214

2χT (t)S14(r̄(t)e9 − e13)χ (t) = 0 (13)215

2χT (t)U (Ae1 + Be2 − e14)χ (t) = 0 (14)216

for any matrices S11, S12, S13, S14,U ∈ R14n×n.217

Adding the left-hand sides of (10)-(13) to V̇ (t) and using218

(9), we get219

V̇ (t) ≤ χT (t)(8(r(t), ṙ(t))+�(r(t)))χ (t) (15)220

where 8(r(t), ṙ(t)) is defined in Theorem 1.221

If 8(r(t), ṙ(t)) + �(r(t)) < 0 for r(t) ∈ [0, h], which is222

equivalent to LMI (4) in the sense of Schur complement, then223

V̇ (t) < 0.224

For ṙ(t) ∈ [µa, µ2], replacing N1i with N2i(i = 1, 2) in (9),225

and S1j with S2j(j = 1, 2, 3, 4) in (10)-(13), we get226

V̇ (t) ≤ χT (t)(8̄(r(t), ṙ(t))+ �̄(r(t)))χ (t) (16)227

with �̄(r(t)) = r(t)N21X̂
−1
2 NT

21+ r̄(t)N22X̂
−1
1 NT

22. Similarly,228

if 8̄(r(t), ṙ(t)) + �̄(r(t)) < 0 for r(t) ∈ [0, h], which is229

equivalent to LMI (5), then V̇ (t) < 0. Based on Lyapunov230

stability theory, the system (1) is asymptotically stable. This231

completes the proof.232

Remark 1: In the derivation of Theorem 1, four vectors,233

ν1(t), ν2(t), ν3(t) and ν4(t) are introduced in χ (t) to avoid the234

emergence of quadratic terms of r(t). Noted that r(t)e6χ (t) =235

e10χ (t), r̄(t)e7χ (t) = e11χ (t), r(t)e8χ (t) = e12χ (t) and236

r̄(t)e9χ (t) = e13χ (t), the equations (10)-(13) are introduced,237

which contribute to the conservativeness reduction.238

Remark 2: Two delay-product-dependent terms, r(t)%T3 (t)239

Y1%3(t) and r̄(t)%T4 (t)Y2%4(t), are added in the LKF (6) to240

reduce conservativeness. On the other hand, as the Lyapunov241

matrices, Y1 and Y2, are dependent on r(t), it make the LKF242

(6) capture more information about the variation of the delay.243

Remark 3: Inspired by [32], a delay-derivative- partition-244

ing approach is proposed. Different form existing litera-245

ture [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],246

by dividing the interval of delay derivative into two subin-247

tervals, two groups of free matrices are employed for the248

delay derivative to be on different subintervals. Therefore,249

the derived condition may be less conservative. The conser-250

vativeness can be further reduced by increasing the number251

of subintervals to be divided.252

To show the effect of the proposed delay-derivative-253

partitioning approach, the following stability condition254

without using the delay-derivative-partitioning approach is255

presented, which is straightforward obtained by settingN21 =256

N11,N22 = N12, S21 = S11, S22 = S12, S23 = S13, and257

S24 = S14 in Theorem 1.258

Corollary 1: For given scalars h, µ1 and µ2, suppose that259

there exist W ,Y1,Y2 ∈ S7n+ , Q1,Q2 ∈ S8n+ , X1,X2 ∈ Sn+,260

N11,N12 ∈ R14n×3n, and S11, S12, S13, S14,U ∈ R14n×n,261

such that LMI (17) is satisfied for r(t) ∈ [0, h] and 262

ṙ(t) ∈ [µ1, µ2], 2638(r(t), ṙ(t))
√
r̄(t)N12

√
r(t)N11

∗ −X̂1 0
∗ ∗ −X̂2

 < 0 (17) 264

where 8(r(t), ṙ(t)), X̂1, X̂2 are defined in Theorem 1. Then, 265

system (1) with the delay subject to (2) is asymptotically 266

stable. 267

In addition, the condition in Theorem 1 can be readily 268

extended to uncertain systems that system parameters A 269

and B subject to convex polynomial constraints, which are 270

represented as 271

[A B] ∈ �, � :=

[A(ξ ) B(ξ )] =
p∑
j=1

ξj[Aj Bj], 272

p∑
j=1

ξj = 1, ξj ≥ 0

 (18) 273

where Aj, Bj (j = 1, · · · , p) are constant matrices with 274

appropriate dimensions and ξj (j = 1, · · · , p) are time- 275

invariant uncertainties. 276

For system (1) with uncertain parameters satisfied with 277

(18), the following robust stability criterion is presented. 278

Theorem 2: For given scalars h, µ1 and µ2, suppose 279

that there exist Wj,Y1j,Y2j ∈ S7n+ , Q1j,Q2j ∈ S8n+ , 280

X1j,X2j ∈ Sn+, N11j,N12j,N21j,N22j ∈ R14n×3n, and 281

S11j, S12j, S13j, S14j, S21j, S22j, S23j, S24j,U ∈ R14n×n such 282

that LMIs (19) and (20) are satisfied for r(t) ∈ [0, h] and 283

j = 1, · · · , p, 284[
8

(j)
11(r(t), ṙ(t)) 8

(j)
12(r(t))

∗ 8
(j)
22

]
ṙ(t)∈[µ1,

µ1+µ2
2 ]

< 0 (19) 285

[
8̄

(j)
11(r(t), ṙ(t)) 8̄

(j)
12(r(t))

∗ 8
(j)
22

]
ṙ(t)∈[µ1+µ22 ,µ2]

< 0 (20) 286

where 287

8
(j)
11(r(t), ṙ(t)) = 4

(j)
1 +4

(j)
2 +4

(j)
3 , 288

8̄
(j)
11(r(t), ṙ(t)) = 4

(j)
1 +4

(j)
2 + 4̄

(j)
3 , 289

8
(j)
12(r(t)) =

[√
r̄(t)N12j

√
r(t)N11j

]
, 290

8̄
(j)
12(r(t)) =

[√
r̄(t)N22j

√
r(t)N21j

]
, 291

8
(j)
22 = −diag{X1j, 3X1j, 5X1j,X2j, 3X2j, 5X2j} 292

with 293

4
(j)
1 = Sym{5T

1Wjλ1 +5
T
5Q1jλ2 +5

T
6Q1jλ2} 294

+5T
2Q1j52 − (1− ṙ(t))5T

3 (Q1j − Q2j)53 295

−5T
4Q2j54 + U (Ae1 + Be2 − e14)+ heT14X2je14 296

+ (1− ṙ(t))r̄(t)eT4 (X1j − X2j)e4, 297

4
(j)
2 = Sym{5T

7 Y1jλ3 +5
T
8 Y2jλ4} + ṙ(t)5

T
7 Y1j57 298

− ṙ(t)5T
8 Y2j58, 299
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TABLE 1. System matrices for given examples.

4
(j)
3 = Sym{S11j(r(t)e6 − e10)+ S12j(r̄(t)e7 − e11)300

+ S13j(r(t)e8 − e12)+ S14j(r̄(t)e9 − e13)301

+N11jM1 + N12jM2},302

4̄
(j)
3 = Sym{S21j(r(t)e6 − e10)+ S22j(r̄(t)e7 − e11)303

+ S23j(r(t)e8 − e12)+ S24j(r̄(t)e9 − e13)304

+N21jM1 + N22jM2},305

and 5i(i = 1, 2, · · · , 8), λ1, λ2, λ3, λ4,M1, and M2 are306

defined in Theorem 1.307

Proof: Choose the Lyapunov functional candidate as:308

V̂ (t) = V̂1(t)+ V̂2(t) (21)309

where310

V̂1(t) =
p∑
j=1

%T1 (t)ξjWj%1(t)311

+

p∑
j=1

∫ t

t−r(t)
%T2 (t, s)ξjQ1j%2(t, s)ds312

+

p∑
j=1

∫ t−r(t)

t−h
%T2 (t, s)ξjQ2j%2(t, s)ds313

+

p∑
j=1

∫ t−r(t)

t−h
(h− t + s)ẋT (s)ξjX1jẋ(s)ds314

+

p∑
j=1

∫ t

t−r(t)
(h− t + s)ẋT (s)ξjX2jẋ(s)ds,315

V̂2(t) =
p∑
j=1

r(t)%T3 (t)ξjY1j%3(t)+
p∑
j=1

r̄(t)%T4 (t)ξjY2j%4(t).316

By employing a similar procedure with the proof of Theo-317

rem 1, Theorem 2 can be readily obtained. For brevity, the318

details are omitted.319

IV. NUMERICAL EXAMPLES320

In this section, four examples are provided to verify the321

superiority and the effectiveness of the proposed method.322

Firstly, consider system (1) without uncertainties. The system323

matrices are listed in Table 1.324

These two examples are ordinarily adopted in previous325

literature for the purpose of comparing the conservativeness326

of different stability conditions. Given µ1 = −µ and µ2 =327

µ, Table 2 and Table 3 list the allowable upper bounds328

(AUBs) of delay obtained by the presented stability condi-329

tions, respectively, for Example 1 and Example 2. As shown330

in Tables 2 and 3, the AUBs obtained by Theorem 1 are larger331

TABLE 2. Allowable upper bounds of delay (Example 1).

TABLE 3. Allowable upper bounds of delay (Example 2).

TABLE 4. Consider system with uncertainties (|ρ| ≤ 0.035).

TABLE 5. Allowable upper bounds of delay (Example 3).

than others in the existing literature. In comparison with the 332

AUBs obtained by Theorem 1 and Corollary 1, it is observed 333

that the results obtained by Theorem 1 are superior to that by 334

Corollary 1. It indicates that the delay-derivative-partitioning 335

approach presented in this paper is effective to reduce the 336

conservativeness of the derived conditions. 337

Next, consider system (1) with uncertain parameters. The 338

system parameters are given in Table 4, which can be repre- 339

sented as (18) with 340

A1 =

[
0 −0.12+ 12ρm
1 −0.465− ρm

]
, A2 =

[
0 −0.12− 12ρm
1 −0.465+ ρm

]
341

B1 = B2 =

[
−0.1 −0.35
0 0.3

]
, ρm = 0.035. 342

Setting µ2 = −µ1 = µ, for various µ, Table 5 lists the 343

AUBs of delay obtained by Theorem 2, along with the results 344

given in [43], which verifies the effectiveness of the proposed 345

method. 346

Example 4: Consider the one-area load frequency control 347

system presented in [44], which is modeled as system (1) with 348

x(t) =
[
1f 1Pm 1Pv

∫
ACE

]T
, 349
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TABLE 6. Allowable upper bounds of delay (Example 4).

FIGURE 1. State response of systems (1) with the parameters in
Example 4.

A =



−
D
M

1
M

0 0

0 −
1
TT

1
TT

0

−
1

TGR
0 −

1
TG

0

β 0 0 0


,350

B =


0 0 0 0
0 0 0 0

−
βKP
TG

0 0 −
KI
TG

0 0 0 0

 ,351

352

where 1f , 1Pm, 1Pv and
∫
ACE are the deviation of fre-353

quency, the mechanical output of generator, the valve posi-354

tion, and the integral of the Area Control Error (ACE),355

respectively. D = 1.0 and M = 10 are, respectively, the356

generator damping coefficient and the moment of inertia of357

the generator, TG = 0.1 and TT = 0.3 are the time constants358

of the governor and the turbine, respectively, KP = 0.05 and359

KI = 0.2 are the gains of PI controller, R = 0.05 is the360

speed drop and β = 21 is the frequency bias factor. Setting361

µ2 = −µ1 = µ, for various µ, the AUBs of delay obtained362

by Theorem 1 are summarized in Table 6. It is shown in363

the table that the proposed method outperforms [44], [45].364

Choosing r(t) = 5.27+ 2sin(0.25t), which satisfies (2) with365

h = 7.24 and µ = 0.5, the state response of the system with366

x(0) =
[
1 0.1 0.5 0

]T is depicted in Figure 1. It verifies the367

effectiveness of the proposed method.368

V. CONCLUSION369

This paper concerns the stability of time-varying delay sys-370

tems. A delay-derivative-partitioning approach has been pro-371

posed. Based on the delay-derivative-partitioning approach372

and by constructing an augmented Lyapunov functional that373

includes two delay-product terms, improved stability criteria374

are obtained. As two groups of free matrices are employed 375

for the delay derivative on different intervals, which relax 376

the condition and hence reduce the conservativeness of the 377

obtained results. Four examples are finally provided to illus- 378

trate the effectiveness of the proposed method. 379
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