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ABSTRACT Due to the development of Convolutional Neural Networks (CNN), significant progress has
beenmade in Salient Object Detection (SOD). However, methods based on CNN are difficult to achieve good
results in learning global context information. Recently, with the rapid development of vision transformer,
it provides a new perspective for the performance improvement of salient object detection. Benefiting from
the powerful capability of global modeling, transformer can supplement rich global contextual information.
For lacking the ability to learn local details, it is suboptimal to only adopt transformer as encoder. Therefore,
how to skillfully combine local details and global context information is crucial. We conbine CNN and
transformer to propose a Multilayer Progressive FPN with Transformer-CNN Based Encoder For Salient
Object Detection (MPTC-FPN). Similar to most of the previous methods, we adopt the FPN network as
the basic structure. But the difference from previous methods is that we have six initial features before
feature fusion, instead of the traditional four or five. We use a low-level feature generation module (LFGM)
to generate a lower-level feature to supplement local details. In addition, we also propose a module to
reduce the difference between features (DRM), making the features more conducive to fusion. On the
basis of FPN, we add a large number of feature fusion nodes, which makes the process of feature fusion
smoother. Moreover, we adjust the supervision strategy, use multiple supervision points, and adopt an
appropriate weight distribution strategy among the multiple supervision points. A series of comprehensive
experimental results demonstrates that our proposed method outperforms previous state-of-the-art methods
on five datasets.
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INDEX TERMS Transformer-CNN, hybrid encoding, salient object detection, feature aggregation, feature
pyramid network.

I. INTRODUCTION21

Salient Object Detection (SOD) aims to locate and segment22

the most important objects or regions in a given image or23

video [1], [2], [3]. It has been applied to numerous vision24

problems, including visual tracking [4], image retrieval [7],25

content-aware image editing [5], robot navigation [6]. Tradi-26

tional salient object detection (SOD) methods [8], [9], [10],27

[11], [12], [36] mostly rely on hand-crafted features, such28

as color contrast, boundary background. However, during29

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

saliency maps generating, the lack of high-level seman- 30

tic information limits its accuracy. In recent years, the 31

rapid development of convolutional neural networks has 32

injected new vitality into the field of salient object detec- 33

tion, which has greatly improved its performance compared 34

to traditional methods. In the field of salient object detec- 35

tion, Encoder-decoder network architectures dominate. These 36

methods usually include two parts: encoder and decoder. 37

The encoder usually uses a pre-trained convolutional neural 38

network model as the backbone network to extract features 39

at different levels, such as VGG [14], ResNet [15]. Decoders 40

are usually carefully designed by researchers spending plenty 41
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of time to combine low-level features with rich spatial details42

and high-level features with semantic information. The fea-43

tures of different levels are fused by the decoder to generate44

the final predicted saliency map.45

But a widespread problem is that semantic information46

in high-level features is gradually ablated during feature47

fusion. Meanwhile, low-level features introduce background48

noise, which has tremendous negative impact on the gener-49

ated significant accuracy and become the first problem to be50

addressed when designing the network structure. Therefore,51

maintaining the clarity of high-level semantic information in52

the feature integration phase and suppressing the background53

noise introduced by low-level features are the keys to the54

excellent performance of methods in the field of salient object55

detection. However, existing methods [22], [51], [52] with56

convolutional neural network as the backbone network is57

limited because of the lack of powerful global modeling58

ability.59

The recently popular transformer networks [16], [17] pro-60

vides a new perspective for solving above existing problem,61

which can break the performance bottleneck. Transformer62

is introduced from the field of natural language processing63

(NLP). It obtains global context information through self-64

attention mechanism and establishes a long-distance depen-65

dency. Transformers treat image patches in the same way that66

they process tokens in natural language processing applica-67

tions [17]. Transformers have been applied to many com-68

puter vision tasks due to their powerful capabilities in global69

modeling. In the meantime it has been applied to the field70

of salient object detection, and have achieved considerable71

results. However, Transformer still lacks in learning local72

detail information, which inhibits further improving the per-73

formance of salient object methods. Because not only the74

global context information, but also the local detail informa-75

tion is still critical to generate the final saliency map. CNN is76

lacking in global modeling, while Transformer is insufficient77

in local detail learning. Therefore, how to effectively combine78

CNN and Transformer is the critical factor to improve the79

performance of salient object detection.80

We improve on the basis of FPN [13], and combine CNN81

and Transformer by using a hybrid encoding method. Most82

existing salient object detection methods use four or five83

levels of features extracted from the backbone network. Our84

hybrid encoding method adopts Swin Transformer [18] as the85

backbone network and uses five levels of different features86

extracted from it. In addition, we process the original image87

through a CNN module named LFGM, which generates a88

low-level feature. It makes our proposed method initially89

have six different levels of features, which we label as F1,90

F2, F3, F4, F5, F6. On the basis of this, we propose a91

feature difference reduction module (DRM) to reduce the gap92

between different features, making the result of feature fusion93

more accurate and effective. It is precisely because of the94

increase in the number of initial features that the network95

depth is been further deepened. In the feature fusion stage,96

different from FPN [13], we add a large number of feature97

fusion nodes and adopt a layer-by-layer fusion method. The 98

purpose of this is to reduce the span between different level 99

features during the feature fusion stage, so that the process 100

of feature fusion is smoother. Simultaneously, we use the 101

proposed CATmodule to fuse features at two different levels, 102

and reduce the number of channels between layers to spare 103

computational resource consumption. Because of the addition 104

of a large number of feature fusion nodes, we have more 105

supervision points to choose than FPN. Therefore, we adopt a 106

multi-supervised point strategy and use an appropriate weight 107

distribution strategy for supervised training. Which further 108

improves the accuracy of the final generated saliency map. 109

Our main contributions can be summarized as follows: 110

• A hybrid encoding method is adopted to combine Trans- 111

former and CNN.The low-level feature generation mod- 112

ule (LFGM) is used to generate a lower-level feature 113

while the transformer is used to capture long-range 114

dependencies. 115

• Based on FPN, we propose a novel deep network struc- 116

ture called MPTC-FPN. The structure of MPTC-FPN is 117

more suitable for multi-supervised strategies. 118

• A feature difference reduction module DRM is proposed 119

to reduce the gap between different levels of features and 120

make it beneficial to feature fusion. 121

• The CAT module is used for feature fusion, and a layer- 122

by-layer progressive strategy is adopted during fusion. 123

In addition, in the feature fusion stage, we continu- 124

ously reduce the number of channels to save computing 125

resources. 126

II. RELATED WORK 127

In this section, we will introduce some recent salient object 128

detection methods and the application of transformer in com- 129

puter vision. 130

A. SALIENT OBJECT DETECTION 131

The vast majority of traditional salient object detection meth- 132

ods [8], [9], [10], [11], [12], [36] are based on hand-crafted 133

features, such as color contrast, edge priors, background 134

information, etc. Based on multi-level image segmentation, 135

Jiang et al. [8] used a supervised learning method to map 136

regional feature vectors to saliency scores, and then fused the 137

saliency scores of different levels to generate a saliency map. 138

Perazzi et al. [10] proposed a clear and intuitive algorithm for 139

contrast-based saliency estimation. Starting from the perspec- 140

tive of reconstruction error, Li et al. [11] calculated the dense 141

and sparse reconstruction errors of each image region, and 142

then obtained the final result through a series of calculations. 143

Although these methods have achieved good results from 144

different perspectives, the lack of high-level semantic infor- 145

mation limits the improvement of these methods in accuracy. 146

In recent years, convolutional neural networks have 147

developed rapidly, and most salient object methods based 148

on convolutional neural networks have achieved excel- 149

lent results. Profit from the powerful feature extraction 150

VOLUME 10, 2022 98817



X. Yang, L. Duan: MPTC-FPN: A Multilayer Progressive FPN With Transformer-CNN Based Encoder for SOD

FIGURE 1. Overall architecture diagram of our proposed MPTC-FPN. LFGM is the low-level feature generation module. DRM and CAT are difference
reduction module and feature aggregation module. OPi is defined as the number of observation points. The value range of i is 0 to 8.

capabilities of convolutional neural networks, convolutional151

neural networks can extract multi-level information in origi-152

nal images. With effective high-level semantic information,153

salient objects or regions can be located more accurately.154

Therefore, the traditional salient object detection methods155

based on hand-crafted features have been gradually aban-156

doned. Li and Yu [35] used CNN to extract multi-scale157

features and compute saliency values for each superpixel.158

Zhao et al. [19] proposed a multi-context deep learning159

framework that uses both global and local context modeling.160

Wang et al. [20] used two CNNs with different functions to161

combine local estimation and global search and generate the162

final saliency map. Compared to traditional methods, these163

methods have achieved remarkable progress. However, these164

methods ignore important overall spatial information because165

they process the image in a patch-level manner, which limits166

the continued improvement of performance.167

To address the limitations of CNNs on image pixel-level168

segmentation, fully convolutional neural networks (FCN)169

[21] are proposed. It inspired the field of salient object170

detection, and researchers have put more effort into pixel-171

level saliency map generation. As we know, the low-level172

features generated by shallow networks have rich local details173

and can be used to refine the boundaries of salient objects174

or regions, while the high-level features generated by deep175

networks have rich semantic information and are mainly176

used to locate salient objects or regions. Therefore, the abil-177

ity to effectively fuse low-level features and high-level fea-178

tures is the key to generating high-quality saliency maps.179

Liu et al. [22] extended the role of pooling layers in convo- 180

lutional neural networks and proposed an efficient network 181

model. Wei et al. [23] designed a cascaded feedback decoder 182

to refine previous featureswith high-resolution and high-level 183

semantic features. In addition, a pixel position-aware loss 184

function is designed to assign different weights to pixels at 185

different positions. Zhao et al. [24] uses a multi-level gating 186

unit to control the information of the encoder to flow to the 187

decoder reasonably. Ma et al. [25] designed a unique multi- 188

scale information extraction module. The network struc- 189

ture they proposed only fuses adjacent feature nodes during 190

the feature fusion process, effectively suppressing the intro- 191

duction of background noise. However, the lack of global 192

modeling ability makes CNN-based salient object detection 193

methods encounter a bottleneck in performance improvement 194

again. This paved the way for the introduction of Transformer 195

in the field of salient object detection. 196

B. APPLICATION OF TRANSFORMER IN COMPUTER 197

VISION 198

Transformer [16] was first proposed in the field of natu- 199

ral language processing and applied to machine translation. 200

In many natural language processing tasks, it has achieved 201

remarkable results. Dosovitskiy et al. [17] first introduced 202

Transformer to the field of computer vision and achieved 203

state-of-the-art methods on multiple standard datasets for 204

image classification. Compared with CNN-based methods, 205

their proposed Vision Transformer (ViT) requires less com- 206

putational resources [17]. Wang et al. [26] proposed the 207
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Pyramid Vision Transformer (PVT), a pure Transformer208

backbone network that can be used for a variety of pixel-209

level dense prediction tasks. Liu et al. [18] proposed a210

hierarchical Vision Transformer (Swin Transformer), which211

aims to become a general computer vision backbone net-212

work.Transformer has a very wide range of applications in213

the field of computer vision [57], such as object detection214

[58], segmentation [59], pose estimation [60]. Besides, Trans-215

former was introduced into SOD field. Liu et al. [27] pro-216

posed a unified model (VST) for salient object detection217

from a new perspective of sequence-to-sequence modeling218

based on a pure Transformer structure. Mao et al. [28] used219

the Swin Transformer [18] as the backbone network to con-220

duct research on salient object detection and camouflaged221

object detection. Benefiting from the powerful global mod-222

eling capabilities of transformer, Transformer-based salient223

object detection methods have achieved remarkable results.224

However, most of these methods ignore local detail infor-225

mation, which plays a key role in refining the boundaries of226

salient objects. Abundant local details canmake the generated227

saliency map more refined. Therefore, how to supplement228

local detail information in the process of feature fusion is229

significant for Transformer-based salient object detection230

methods.231

In order to solve the above problems, we adopt the form232

of hybrid encoding to effectively combine CNN and Trans-233

former. While utilizing the powerful global modeling ability234

of Transformer, the low-level features generated by CNN are235

used to supplement local details.236

III. METHOD237

In this section, we will describe our proposed module. In the238

first part, we give an overall overview of the proposed net-239

work structure. In the second part, we will describe the240

encoder part in more detail, especially the hybrid coding241

strategy adopted. In the third part, we will introduce the242

decoder part and the modules used in detail. In the fourth part,243

we will elaborate on the proposed DRM module at length.244

In the final fifth part, we give a brief introduction to the loss245

function we use. A more intuitive representation of the entire246

network is shown in Figure 1.247

A. OVERVIEW OF NETWORK248

Our network structure is an MPTC-FPN structure formed249

by improving the FPN [13] structure. As a result of the use250

of hybrid coding, the network structure is further deepened.251

DRM is not applied to all initial features, only added to252

F3 andF4. In feature fusion, we add a large number of feature253

fusion nodes. Finally, we supervise a total of nine feature254

points at the top and both sides of the network, and use a255

reasonable strategy to adjust the weight ratio between each256

supervision point.257

B. ENCODER258

As we mentioned earlier, high-level features contain seman-259

tic information, which can precisely locate salient objects260

or regions. The low-level features are rich in local detail 261

information, which can well complement the local details in 262

the generated saliency map. In previous works, most of the 263

methods used five-level features extracted from the back- 264

bone network, and then used a well-designed decoder for 265

feature fusion, and finally generated a better saliency map. 266

For some reasons, some methods abandon the use of the first- 267

level features, and use the fourth-level features extracted by 268

the backbone network, and then perform feature fusion to 269

generate the final result. 270

While our encoder structure is different from the previous 271

methods, in this part, we adopt a hybrid encoding method. 272

These include the five-level features encoded with Trans- 273

former and our newly added one-level features. Transformers 274

use self-attention to capture long-term dependencies in the 275

data, which has important implications for capturing global 276

contextual information. Swin Transformer constructs hierar- 277

chical feature maps, and this hierarchical architecture reduces 278

the computational complexity related to image size to linear. 279

This greatly improves computational efficiency and can serve 280

as a general computer vision backbone. We choose Swin-B 281

pre-trained on the ImageNet-1K dataset [29] as the backbone 282

network. The image input size is 384∗384, and the five-level 283

feature maps extracted by the backbone network are 96 ∗ 96, 284

48∗48, 24∗24, 12∗12, and 12∗12 respectively. The number of 285

channels is 128, 256, 512, 1024, 1024, respectively. We label 286

these five-level feature maps as F2, F3, F4, F5, and F6, 287

respectively. To refine the generated saliency map, supple- 288

menting local spatial details, we introduce a lower-level fea- 289

ture. We adopt low-level feature generation module (LFGM) 290

to generate a feature map of size 192 ∗ 192 and the number 291

of channels is 64. This lower-level feature contains a large 292

amount of local detail information, which is complementary 293

to the powerful global modeling ability of transformer. This 294

good complementary form can not only accurately locate 295

salient objects and regions but also supplement local spa- 296

tial details during feature fusion. Therefore, higher-quality 297

saliency maps can be generated, which greatly improves the 298

accuracy. We label this lower-level feature as F1. LFGM can 299

be expressed as follow: 300

X∗ = ReLU (BN (Conv(I ))) 301

O = ReLU (BN (Conv(MaxPool(X∗)))) 302

I represents the input original image, while X* represents 303

the intermediate state generated during processing. O rep- 304

resents the final generated result. Conv, BN, and ReLU are 305

represented as convolutional layers, normalization layers, and 306

RelU activation functions, respectively. 307

C. DECODER 308

In the decoder part, we added a large number of feature 309

fusion nodes, and formed a layer-by-layer progressive struc- 310

ture. Because of the introduction of feature F1 in hybrid 311

encoding, the depth of our network is further deepened. From 312

six feature nodes in leftmost side of network structure, it is 313
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FIGURE 2. Visual presentation of the details about our proposed three modules.(a) The CAT module is used to fuse the two features and reduce
the number of channels. (b) LFGM is used to generate lower-level feature representation maps in hybrid coding. (c) DRM is used to reduce the
difference between different levels of features and improve the feature fusion effect.

reduced layer by layer to one feature node in the far right.314

When performing feature fusion, we adopt a simple feature315

fusion module namely CAT. The higher-level feature maps316

are first upsampled to the same size as the adjacent lower-317

level features at first. Then two feature maps of the same318

size are connected, and the feature maps generated after the319

connection are passed through a series of convolutional layers320

to complete feature fusion. The added large number of feature321

fusion nodes can alleviate the problem of too large span322

between different features, and can better fuse features at all323

levels. In the process of progressive layer by layer, we are324

continuously reducing the number of channels to save the325

consumption of computing resources. After the intermediate326

process graph generated by the connection operation passes327

through a series of convolutional layers, it will be reduced to328

1/2, 1/4, 1/8, and 1/16 of the original number of channels in329

different layers. The CAT module we use can be formulated330

as follows:331

X∗ = Concat(X ,Y )332

Z = ReLU (BN (Conv(X∗)))333

O = ReLU (BN (Conv(Z )))334

X and Y represent the two feature points to be fused, O335

represents the process map generated during the convolution336

process, and Z∗ represents the final result generated after the337

fusion of the two feature points.338

D. DIFFERENCE REDUCTION MODULE339

Excessive differences between different-level features will340

also affect the effect of feature fusion. Therefore, we design341

a Difference Reduction Module (DRM) to reduce the dif- 342

ference between features, so that the effect of feature fusion 343

is further improved. Probably different from many previous 344

works, we only add DRMmodule to the middle two features, 345

not to all the features. F3 and F4 are two intermediate-level 346

features, which play a critical role in communicating high- 347

level features and low-level features, and are a bridge between 348

high-level features and low-level features. For this reason, 349

we only add our proposed module to the middle layers. 350

It makes the processed F3 and F4 more communicative and 351

adaptable between high-level features and low-level features, 352

which is more conducive to feature fusion. 353

Some previous work [53], [54], [55] has demonstrated that 354

enriching the receptive fields of convolution kernels enhances 355

neural network learning for objects of different scales and 356

sizes during feature processing. Therefore we use three differ- 357

ent types of convolutions in the DRMmodule, including ordi- 358

nary convolutions, asymmetric convolution [30] and atrous 359

convolutions [31]. We deal with the input features in three 360

ways. First of all, we duplicate the input features twice, and 361

upsample and downsample the copied features respectively. 362

After upsampling and downsampling, there will be three dif- 363

ferent sizes of features. Then we use the atrous convolutional 364

layer to process the features after upsampling, and use the 365

asymmetric convolutional layer to process the features after 366

downsampling. For the original size feature, we use original 367

convolution for processing. Then, we restore the previously 368

up-sampling and down-sampling features to their original 369

size using down-sampling and up-sampling, respectively. The 370

three convolutional features of different types are connected 371
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together through the connection operation, and then passed372

through a common 3 ∗ 3 convolutional layer. DRM can be373

formalized as follows:374

X1 = MaxPool(Convatr (Up(I )))375

X2 = Conv3∗3(I )376

X3 = Up(Convasy(MaxPool(I )))377

O = Conv3∗3(Concat(X1,X2,X3))378

We employ atrous convolution with a dilation rate of 2,379

which is defined as Convatr . For the convolution kernel of380

asymmetric convolution, we adopt the dimensions of 1∗3 and381

3∗1, which are defined asConvasy. The size of the convolution382

kernel of ordinary convolution, we use the ordinary size of383

3 ∗ 3. For the downsampling process, we use a max pooling384

layer for processing. And Upsampling is denoted as Up.385

E. LOSS FUNCTION386

Our proposed MPTC-FPN structure facilitates the realization387

of a strategy of multiple supervision points for supervision.388

Therefore, we used nine supervision points in the training389

process and adjusted the weight ratio between each supervi-390

sion point. We used binary cross-entropy loss function, IOU391

loss function and progressive self-guided (PSG) loss [56].392

The binary cross-entropy loss function ignores the simi-393

larity in image structure, and only calculates the difference394

between individual pixels. The IOU loss function can be used395

to calculate the similarity of the overall structure between396

two images, so combining it with the binary cross-entropy397

loss function can achieve better training results.In addition,398

we use PSG loss as an anxiliary loss function for training. The399

binary cross-entropy loss function, IOU loss function and the400

PSG loss are denoted as Lbce , Liou and Lpsg , respectively.401

The final loss function is defined as Ltotal The overall loss402

function we use is as follows:403

L = Lbce + Liou + Lpsg (1)404

Ltotal = α × L(0)
+ (1− α)×

8∑
k=1

L(k) (2)405

We adjust the weight ratio of different supervision points.406

In our paper, we set α to 0.6. The binary cross-entropy loss407

can be formulated as:408

Lbce = −

H ,W∑
i,j

[G(i, j) log(P(i, j))409

+ (1− G(i, j)) log(1− P(i, j))] (3)410

H andW represent the height and width of the image, respec-411

tively. G represents the ground-truth map, and P represents412

the saliency map generated by prediction. The IoU loss func-413

tion can be expressed as:414

Liou =1−

∑H
x=1

∑W
y=1 P(x, y)G(x, y)∑H

x=1
∑W

y=1[P(x, y)+G(x, y)−P(x, y)G(x, y)]
415

(4)416

FIGURE 3. Convergence curve of the loss function.

The symbols in the formula have the same meaning as those 417

in the binary cross-entropy loss function. The PSG loss can 418

be formulated as follows: 419

Lpsg = L(SMpred , f (SMpred )) (5) 420

L(∗, ∗) represents the main loss function used. So L(∗, ∗) 421

can be expressed as follows: 422

L(∗, ∗) = Lbce (∗, ∗)+ Liou (∗, ∗) (6) 423

f (∗) is defined as a simulated morphological closing opera- 424

toin. It can be described as follows: 425

f (SMpred ) ≈ maxpool(SMpred ) ∩ SMgt (7) 426

SMpred and SMgt represent the generated saliency map and 427

ground truth, respectively. Our goal is to reduce the loss 428

function as the number of training epochs increases. 429

IV. EXPERIMENTS 430

In this section, we will describe the content of the five 431

subsections. These include experimental details, selection of 432

datasets, evaluation metrics, performance comparisons, and 433

experimental studies of ablation. We will demonstrate the 434

superiority of our proposedmethod by comparing our method 435

with some previous state-of-the-art methods. In addition, 436

we conduct a series of ablation experiments to explore the 437

impact of each module or strategy used by our proposed 438

MPTC-FPN on the experimental result. In addition, for the 439

training process of the model, we draw the loss function 440

convergence curve, as shown in Figure 3. 441

A. IMPLEMENTATION DETAILS 442

The proposed approach is implemented by the Pytorch. The 443

SGD optimizer [32] with weight decay of 5e-4 and momen- 444

tum of 0.9 is adopted to optimize the network. We use a warm 445

up strategy, and warming up epochs is 6. Meantime, poly is 446

adopted to adjust the learning rate. The learning rate change 447
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TABLE 1. Quantitative comparison results between our method and sixteen previous state-of-the-art methods on five datasets.Higher values for Fβ , Fω
β

and mean better, and lower values for Sm mean better.The best performing values are marked in bold.

formula can be expressed as follows:448

lr = lrinit × (1−
k

epochs
)γ (8)449

lrinit represents the initial learning rate. The value of γ is 0.9.450

We initialize the learning rate to 8e-3. The pre-trained Swin451

Transformer-B [18] on ImageNet-1K is used as backbone,452

and we set its initial learning rate as one tenth of that of453

other parts, which is 8e-4. We follow the way of [25] to454

initialize the parameters of other parts. All of the image is455

adjusted to 384 * 384 input the network. For data augmenta-456

tion, we adopt horizontal flipping and random cropping. The457

proposed network is trained for 50 epochs on a PC with a 458

RTX 2080Ti. And we set batch size to 6. 459

B. DATASETS 460

We use DUTS-TR [33] dataset to train our network. 461

10553 images and corresponding annotated maps are 462

included in DUTS-TR [33] dataset. To evaluate the superior 463

performance of our proposed method, we select five popular 464

benchmark datasets: DUTS-TE [33], ECSSD [34], HKU-IS 465

[35], DUT-OMRON [36], and PASCAL-S [37], respec- 466

tively. DUTS [33] is the largest SOD dataset at this stage. 467
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FIGURE 4. Visual comparison of saliency maps generated by our proposed method and seven other state-of-the-art methods. The proposed MPTC-FPN
can not only accurately locate salient objects or regions, but also suppress background noise well.

DUTS-TE [33] is a part of DUTS, which contains 5019 test468

images and corresponding labels. There are 1000 images469

in ECSSD [34]. These images included in the dataset have470

meaningful semantic information. HKU-IS [35] contains471

4447 images with multiple salient objects. At the same time,472

the picture background is also very complex. DUT-OMRON473

[36] contains 5168 images and corresponding labels. The474

objects in these pictures are often complex in structure and475

the background of the picture is also complicated. PASCAL-S476

[37] contains 850 challenging images selected from a dataset477

originally used for semantic segmentation, namely PASCAL478

VOC 2010.479

C. EVALUATION CRITERIA480

To evaluate the accuracy of our proposed network structure,481

we used four very popular evaluation metrics for a fair com-482

parison.483

(1) MAE is defined as the absolute error between the484

binary ground truth and the predicted image. Similarity of485

the predicted image compared to the binary ground truth is486

indicated by it. MAE is calculated as487

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|P(i, j)−G(i, j)| (9)488

P denotes the predicted saliency map and G denotes the489

ground-truth. H and W are height and weight of the image.490

(2) F-measure is denoted as Fβ . It is computed by the 491

weight harmonic mean of the precision and recall. Fβ can be 492

formulated as 493

Fβ =
(1+ β2)× Precision× Recall
β2 × Precision+ Recall

(10) 494

As with the previous work, we set β2 to 0.3 to emphasize the 495

importance of precision. And we report the max values of Fβ . 496

(3) Weight F-measure [38] is denoted as Fωβ . It can be 497

defined as 498

Fωβ =
(1+ β2)× Precisionω × Recallω

β2 × Precisionω + Recallω
(11) 499

Fωβ uses weighted precision and weighted recall to measure 500

the accuracy of different models, where Fωβ is also set to 0.3. 501

(4) S-measure combines the region-aware(Sr ) and object- 502

aware(So), Sm [39] and focuses on measuring the overall 503

structure similarity. It has the following formula 504

Sm = αSo + (1− α)Sr (12) 505

Same as some of the previous work, where the α is set to 506

0.5 as default. 507

D. PERFORMANCE COMPARISON 508

We compare our proposed method with 16 previous state- 509

of-the-art methods, including Amulet [40], UCF [41], BRN 510

[42], C2SNet [43], AFNet [61], BASNet [44], F3Net [23], 511
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FIGURE 5. Precision recall curves on two saliency datasets,including ECSSD, DUTS-TE.

FIGURE 6. Precision recall curves on three common saliency datasets, including HKU-IS, DUT-OMRON and PASCAL-S.

CAGNet-R [45], GCPANet [46], ITSD [47], LDF [48],512

MINet [49], GateNet [24], VST [27], PAKRN [50], PFSNet513

[25]. To ensure the fairness of the comparison, all predicted514

saliency maps are downloaded from the public official web-515

site and evaluated under the same evaluation code and envi-516

ronment.517

1) QUANTITATIVE COMPARSION518

We present the comparison results with the previous 16 state-519

of-the-art methods on five datasets in Table 1. We adopt520

four widely-used evaluation metrics, including MAE , Fβ ,521

Fωβ , Sm, where Fβ and MAE are in one subtable and Fωβ522

and Sm are in another subtable. By comparison, we find523

that our proposed method significantly outperforms some524

of the previous methods. The Fβ values of MPTC-FPN on525

five widely adopted datasets, ECSSD, DUTS-TE, HKU-IS,526

DUT-OMRON, and PASCAL-S, reached 0.961, 0.919, 0.953,527

0.847, and 0.905, respectively. Especially on the PASCAL-S528

dataset, our method outperforms the second best method by529

0.015. This is a very significant improvement, while the Fβ530

values improvement on the other four datasets is around531

0.01. MAE values We improved by 0.008, 0.009, 0.005,532

0.008, 0.010 on the five datasets over the second best data533

in the table. Among them, the improvement is still the most534

obvious on the PASCAL-S dataset. The Fωβ values reached535

0.939, 0.888, 0.930, 0.800, and 0.859 on the five datasets,536

respectively.Among them, the five data sets are improved by537

0.019, 0.027, 0.020, 0.021, 0.030 than the second best value.538

Our method still achieves the most obvious improvement539

on the PASCAL-S dataset. The Sm values reached 0.941,540

TABLE 2. + represents a simple addition operation. 5 and 6 represent not
using mixed encoding and using mixed encoding, respectively. CAT
indicates that the CAT module is used for feature fusion. 1ds, 5ds, and
9ds represent the use of one supervision point, five supervision points,
and nine supervision points, respectively.

0.914, 0.935, 0.864, and 0.876 on the corresponding five 541

datasets, respectively. The improved values are all around 542

0.010. Through a series of comparisons, the results can 543

demonstrate that our proposed method outperforms previous 544

state-of-the-art methods. More importantly, there has been a 545

great improvement in most cases. 546

2) VISUAL COMPARSION 547

Some predicted saliency map of the proposed saliency 548

method (MPTC-FPN) and other seven state-of-the-art meth- 549

ods have been shown in Figure 4. In the first and second rows, 550

in the detection scene of small objects, our method can find 551

salient objects more accurately. In the third row, MPTC-FPN 552

can effectively distinguish salient object regions, even when 553

the contrast between salient objects and background is low. 554

In some scenes with complex backgrounds, such as the fourth 555
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TABLE 3. This table shows the effects of different loss functions on the experimental results.

and fifth rows, our method can not only locate the salient556

regions accurately but also avoid introducing background557

noise. As shown in the seventh row, MPTC-FPN still per-558

forms very well with multiple salient objects. In the eighth559

row, our method is able to accurately locate the correct salient560

objects in the face of multiple object interference scenes.561

For small parts of objects, our method can also detect them562

completely, which is shown in the ninth row. Through visual563

comparison, it can be seen that the saliency map generated564

by our method is more accurate and can better suppress565

background noise.566

In addition, in Figure 5 and 6, we also show the PR567

curve of MPTC-FPN. We plot the PR curves of MPTC-FPN568

and the previous sixteen state-of-the-art methods on the569

corresponding five datasets. We can clearly see that our570

method curve is higher than other state-of-the-art methods.571

This means that our method performs better than other state-572

of-the-art methods.573

E. ABLATION STUDY574

To demonstrate the effectiveness of the proposed mod-575

ule components and the parameter configurations of576

MPTC-FPN, we conduct a series of ablation experiments on577

two challenge datasets (DUT-OMRON and PASCAL-S).578

1) EFFECTIVENESS OF MPTC-FPN(CAT)579

We give the results of the most basic FPN network in the first580

row, only replacing the backbone network with Transformer.581

Then on the second and third line, we changed the structure582

of the decoder to be MPTC-FPN structure. At the same time,583

we added the CAT module to the feature fusion. By compar-584

ison, we can clearly see that the evaluation values on the two585

datasets have excellent results in Table 2.586

2) EFFECTIVENESS OF MULTIPLE SUPERVISION POINTS587

Then we changed the supervision strategy to include multiple588

supervision points. We increase the supervision points to five589

based on MPTC-FPN(CAT). We put the results after adding 590

supervision points in the fourth row. It can be seen that the 591

results have improved slightly. This shows that the multi- 592

supervision point strategy still has a positive effect on our 593

proposed method. 594

3) EFFECTIVENESS OF HYBRID ENCODING 595

On the basis of the previous one, we changed the structure of 596

the encoder and used a hybrid encoding method for encod- 597

ing. Because of the addition of a lower-level feature, our 598

network depth is increased from five to six layers. Therefore, 599

we further increased the number of supervision points, raising 600

the number of supervision points to nine. The corresponding 601

experimental results, we can see in the fourth and seventh 602

row. Through comparison, we find that both PASCAL-S and 603

DUT-OMRON are improved. 604

4) EFFECTIVENESS OF DRM 605

Finally we added DRM modules on F3 and F4. We can see 606

the final experimental results in the eighth row. By adding the 607

DRM module, the gap between different levels of features 608

is reduced, which is more conducive to feature fusion.We 609

can clearly see the significant improvement in DUT-OMRON 610

dataset. Experimental result strongly proves that DRM can 611

further improve the performance of the saliency network. 612

We added DRMmodules for five supervision points and nine 613

supervision points under the hybrid encoding structure. Based 614

on the experimental results, better results can be achieved in 615

the state of nine supervision points. 616

5) EFFECTIVENESS OF HYPARAMETER α 617

We further explored the weight distribution parameters 618

between multiple observation points, and the results are 619

shown in Table 4. We found that the total loss with dif- 620

ferent α have different effects on final saliency results. 621

From Table 4, when the parameter α is 0.6 gets the best 622

result. 623
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TABLE 4. This table shows the effects of five different parameter values
on the experimental results.

6) COMPARISON OF DIFFERENT LOSS FUNCTIONS624

On the basis of the best results obtained previously, we con-625

duct ablation studies on the loss function used. We adopted626

a strategy of hybrid loss functions, using three different loss627

functions. They are BCE loss, IOU loss and PSG loss [56]628

respectively. PSG is used as an auxiliary loss function. The629

results of the ablation study for the loss function are shown630

in Table 3. Through the comparison between the first line631

and the second line, we find that IOU plays a key role in632

the decline of MAE and the increase of Fωβ . By comparing633

the first and fourth lines, the second and fifth lines, we can634

be sure that the addition of PSG can further improve the635

performance. Because PSG loss function can only be used636

as auxiliary function [56]. Therefore, we have not set up an637

experiment using PSG loss function alone. Finally, based on638

the performance of various numerical values, we decide to use639

the sum of three loss functions as the hybrid loss function.640

V. CONCLUSION641

In this paper, we propose a multi-layer progressive archi-642

tecture and use the CAT module simultaneously to fuse the643

features at all levels more smoothly. In the encoder stage,644

we effectively combine Vision Transformer and CNN to fur-645

ther improve the experimental results. We also designed a646

difference reduction module (DRM) to reduce the difference647

between features to further improve the performance. In addi-648

tion, we adopt a multi-supervised point training strategy and649

incorporate a more advanced loss function. The experimental650

results show that our proposed method outperforms previous651

state-of-the-art methods on five widely used datasets. How-652

ever, our approach has some limitations, as the addition of a653

large number of feature fusion nodes increases the complexity654

of the overall model, which makes the overall model very655

computationally intensive.656
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