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ABSTRACT Due to the development of Convolutional Neural Networks (CNN), significant progress has
been made in Salient Object Detection (SOD). However, methods based on CNN are difficult to achieve good
results in learning global context information. Recently, with the rapid development of vision transformer,
it provides a new perspective for the performance improvement of salient object detection. Benefiting from
the powerful capability of global modeling, transformer can supplement rich global contextual information.
For lacking the ability to learn local details, it is suboptimal to only adopt transformer as encoder. Therefore,
how to skillfully combine local details and global context information is crucial. We conbine CNN and
transformer to propose a Multilayer Progressive FPN with Transformer-CNN Based Encoder For Salient
Object Detection (MPTC-FPN). Similar to most of the previous methods, we adopt the FPN network as
the basic structure. But the difference from previous methods is that we have six initial features before
feature fusion, instead of the traditional four or five. We use a low-level feature generation module (LFGM)
to generate a lower-level feature to supplement local details. In addition, we also propose a module to
reduce the difference between features (DRM), making the features more conducive to fusion. On the
basis of FPN, we add a large number of feature fusion nodes, which makes the process of feature fusion
smoother. Moreover, we adjust the supervision strategy, use multiple supervision points, and adopt an
appropriate weight distribution strategy among the multiple supervision points. A series of comprehensive
experimental results demonstrates that our proposed method outperforms previous state-of-the-art methods
on five datasets.

INDEX TERMS Transformer-CNN, hybrid encoding, salient object detection, feature aggregation, feature
pyramid network.

I. INTRODUCTION
Salient Object Detection (SOD) aims to locate and segment

saliency maps generating, the lack of high-level seman-
tic information limits its accuracy. In recent years, the

the most important objects or regions in a given image or
video [1], [2], [3]. It has been applied to numerous vision
problems, including visual tracking [4], image retrieval [7],
content-aware image editing [5], robot navigation [6]. Tradi-
tional salient object detection (SOD) methods [8], [9], [10],
[11], [12], [36] mostly rely on hand-crafted features, such
as color contrast, boundary background. However, during
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rapid development of convolutional neural networks has
injected new vitality into the field of salient object detec-
tion, which has greatly improved its performance compared
to traditional methods. In the field of salient object detec-
tion, Encoder-decoder network architectures dominate. These
methods usually include two parts: encoder and decoder.
The encoder usually uses a pre-trained convolutional neural
network model as the backbone network to extract features
at different levels, such as VGG [14], ResNet [15]. Decoders
are usually carefully designed by researchers spending plenty

VOLUME 10, 2022


https://orcid.org/0000-0002-7015-1133
https://orcid.org/0000-0002-0917-2277

X. Yang, L. Duan: MPTC-FPN: A Multilayer Progressive FPN With Transformer-CNN Based Encoder for SOD

IEEE Access

of time to combine low-level features with rich spatial details
and high-level features with semantic information. The fea-
tures of different levels are fused by the decoder to generate
the final predicted saliency map.

But a widespread problem is that semantic information
in high-level features is gradually ablated during feature
fusion. Meanwhile, low-level features introduce background
noise, which has tremendous negative impact on the gener-
ated significant accuracy and become the first problem to be
addressed when designing the network structure. Therefore,
maintaining the clarity of high-level semantic information in
the feature integration phase and suppressing the background
noise introduced by low-level features are the keys to the
excellent performance of methods in the field of salient object
detection. However, existing methods [22], [51], [52] with
convolutional neural network as the backbone network is
limited because of the lack of powerful global modeling
ability.

The recently popular transformer networks [16], [17] pro-
vides a new perspective for solving above existing problem,
which can break the performance bottleneck. Transformer
is introduced from the field of natural language processing
(NLP). It obtains global context information through self-
attention mechanism and establishes a long-distance depen-
dency. Transformers treat image patches in the same way that
they process tokens in natural language processing applica-
tions [17]. Transformers have been applied to many com-
puter vision tasks due to their powerful capabilities in global
modeling. In the meantime it has been applied to the field
of salient object detection, and have achieved considerable
results. However, Transformer still lacks in learning local
detail information, which inhibits further improving the per-
formance of salient object methods. Because not only the
global context information, but also the local detail informa-
tion is still critical to generate the final saliency map. CNN is
lacking in global modeling, while Transformer is insufficient
in local detail learning. Therefore, how to effectively combine
CNN and Transformer is the critical factor to improve the
performance of salient object detection.

We improve on the basis of FPN [13], and combine CNN
and Transformer by using a hybrid encoding method. Most
existing salient object detection methods use four or five
levels of features extracted from the backbone network. Our
hybrid encoding method adopts Swin Transformer [18] as the
backbone network and uses five levels of different features
extracted from it. In addition, we process the original image
through a CNN module named LFGM, which generates a
low-level feature. It makes our proposed method initially
have six different levels of features, which we label as F'1,
F2, F3, F4, F5, F6. On the basis of this, we propose a
feature difference reduction module (DRM) to reduce the gap
between different features, making the result of feature fusion
more accurate and effective. It is precisely because of the
increase in the number of initial features that the network
depth is been further deepened. In the feature fusion stage,
different from FPN [13], we add a large number of feature
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fusion nodes and adopt a layer-by-layer fusion method. The
purpose of this is to reduce the span between different level
features during the feature fusion stage, so that the process
of feature fusion is smoother. Simultaneously, we use the
proposed CAT module to fuse features at two different levels,
and reduce the number of channels between layers to spare
computational resource consumption. Because of the addition
of a large number of feature fusion nodes, we have more
supervision points to choose than FPN. Therefore, we adopt a
multi-supervised point strategy and use an appropriate weight
distribution strategy for supervised training. Which further
improves the accuracy of the final generated saliency map.
Our main contributions can be summarized as follows:

« A hybrid encoding method is adopted to combine Trans-
former and CNN.The low-level feature generation mod-
ule (LFGM) is used to generate a lower-level feature
while the transformer is used to capture long-range
dependencies.

« Based on FPN, we propose a novel deep network struc-
ture called MPTC-FPN. The structure of MPTC-FPN is
more suitable for multi-supervised strategies.

o A feature difference reduction module DRM is proposed
to reduce the gap between different levels of features and
make it beneficial to feature fusion.

o The CAT module is used for feature fusion, and a layer-
by-layer progressive strategy is adopted during fusion.
In addition, in the feature fusion stage, we continu-
ously reduce the number of channels to save computing
resources.

Il. RELATED WORK

In this section, we will introduce some recent salient object
detection methods and the application of transformer in com-
puter vision.

A. SALIENT OBJECT DETECTION
The vast majority of traditional salient object detection meth-
ods [8], [9], [10], [11], [12], [36] are based on hand-crafted
features, such as color contrast, edge priors, background
information, etc. Based on multi-level image segmentation,
Jiang et al. [8] used a supervised learning method to map
regional feature vectors to saliency scores, and then fused the
saliency scores of different levels to generate a saliency map.
Perazzi et al. [10] proposed a clear and intuitive algorithm for
contrast-based saliency estimation. Starting from the perspec-
tive of reconstruction error, Li ef al. [11] calculated the dense
and sparse reconstruction errors of each image region, and
then obtained the final result through a series of calculations.
Although these methods have achieved good results from
different perspectives, the lack of high-level semantic infor-
mation limits the improvement of these methods in accuracy.
In recent years, convolutional neural networks have
developed rapidly, and most salient object methods based
on convolutional neural networks have achieved excel-
lent results. Profit from the powerful feature extraction
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FIGURE 1. Overall architecture diagram of our proposed MPTC-FPN. LFGM is the low-level feature generation module. DRM and CAT are difference
reduction module and feature aggregation module. OPi is defined as the number of observation points. The value range of i is 0 to 8.

capabilities of convolutional neural networks, convolutional
neural networks can extract multi-level information in origi-
nal images. With effective high-level semantic information,
salient objects or regions can be located more accurately.
Therefore, the traditional salient object detection methods
based on hand-crafted features have been gradually aban-
doned. Li and Yu [35] used CNN to extract multi-scale
features and compute saliency values for each superpixel.
Zhao et al. [19] proposed a multi-context deep learning
framework that uses both global and local context modeling.
Wang et al. [20] used two CNNs with different functions to
combine local estimation and global search and generate the
final saliency map. Compared to traditional methods, these
methods have achieved remarkable progress. However, these
methods ignore important overall spatial information because
they process the image in a patch-level manner, which limits
the continued improvement of performance.

To address the limitations of CNNs on image pixel-level
segmentation, fully convolutional neural networks (FCN)
[21] are proposed. It inspired the field of salient object
detection, and researchers have put more effort into pixel-
level saliency map generation. As we know, the low-level
features generated by shallow networks have rich local details
and can be used to refine the boundaries of salient objects
or regions, while the high-level features generated by deep
networks have rich semantic information and are mainly
used to locate salient objects or regions. Therefore, the abil-
ity to effectively fuse low-level features and high-level fea-
tures is the key to generating high-quality saliency maps.
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Liu et al. [22] extended the role of pooling layers in convo-
lutional neural networks and proposed an efficient network
model. Wei et al. [23] designed a cascaded feedback decoder
to refine previous features with high-resolution and high-level
semantic features. In addition, a pixel position-aware loss
function is designed to assign different weights to pixels at
different positions. Zhao et al. [24] uses a multi-level gating
unit to control the information of the encoder to flow to the
decoder reasonably. Ma et al. [25] designed a unique multi-
scale information extraction module. The network struc-
ture they proposed only fuses adjacent feature nodes during
the feature fusion process, effectively suppressing the intro-
duction of background noise. However, the lack of global
modeling ability makes CNN-based salient object detection
methods encounter a bottleneck in performance improvement
again. This paved the way for the introduction of Transformer
in the field of salient object detection.

B. APPLICATION OF TRANSFORMER IN COMPUTER
VISION

Transformer [16] was first proposed in the field of natu-
ral language processing and applied to machine translation.
In many natural language processing tasks, it has achieved
remarkable results. Dosovitskiy et al. [17] first introduced
Transformer to the field of computer vision and achieved
state-of-the-art methods on multiple standard datasets for
image classification. Compared with CNN-based methods,
their proposed Vision Transformer (ViT) requires less com-
putational resources [17]. Wang et al. [26] proposed the
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Pyramid Vision Transformer (PVT), a pure Transformer
backbone network that can be used for a variety of pixel-
level dense prediction tasks. Liu et al. [18] proposed a
hierarchical Vision Transformer (Swin Transformer), which
aims to become a general computer vision backbone net-
work. Transformer has a very wide range of applications in
the field of computer vision [57], such as object detection
[58], segmentation [59], pose estimation [60]. Besides, Trans-
former was introduced into SOD field. Liu et al. [27] pro-
posed a unified model (VST) for salient object detection
from a new perspective of sequence-to-sequence modeling
based on a pure Transformer structure. Mao et al. [28] used
the Swin Transformer [18] as the backbone network to con-
duct research on salient object detection and camouflaged
object detection. Benefiting from the powerful global mod-
eling capabilities of transformer, Transformer-based salient
object detection methods have achieved remarkable results.
However, most of these methods ignore local detail infor-
mation, which plays a key role in refining the boundaries of
salient objects. Abundant local details can make the generated
saliency map more refined. Therefore, how to supplement
local detail information in the process of feature fusion is
significant for Transformer-based salient object detection
methods.

In order to solve the above problems, we adopt the form
of hybrid encoding to effectively combine CNN and Trans-
former. While utilizing the powerful global modeling ability
of Transformer, the low-level features generated by CNN are
used to supplement local details.

ill. METHOD

In this section, we will describe our proposed module. In the
first part, we give an overall overview of the proposed net-
work structure. In the second part, we will describe the
encoder part in more detail, especially the hybrid coding
strategy adopted. In the third part, we will introduce the
decoder part and the modules used in detail. In the fourth part,
we will elaborate on the proposed DRM module at length.
In the final fifth part, we give a brief introduction to the loss
function we use. A more intuitive representation of the entire
network is shown in Figure 1.

A. OVERVIEW OF NETWORK

Our network structure is an MPTC-FPN structure formed
by improving the FPN [13] structure. As a result of the use
of hybrid coding, the network structure is further deepened.
DRM is not applied to all initial features, only added to
F3and F4.In feature fusion, we add a large number of feature
fusion nodes. Finally, we supervise a total of nine feature
points at the top and both sides of the network, and use a
reasonable strategy to adjust the weight ratio between each
supervision point.

B. ENCODER
As we mentioned earlier, high-level features contain seman-
tic information, which can precisely locate salient objects
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or regions. The low-level features are rich in local detail
information, which can well complement the local details in
the generated saliency map. In previous works, most of the
methods used five-level features extracted from the back-
bone network, and then used a well-designed decoder for
feature fusion, and finally generated a better saliency map.
For some reasons, some methods abandon the use of the first-
level features, and use the fourth-level features extracted by
the backbone network, and then perform feature fusion to
generate the final result.

While our encoder structure is different from the previous
methods, in this part, we adopt a hybrid encoding method.
These include the five-level features encoded with Trans-
former and our newly added one-level features. Transformers
use self-attention to capture long-term dependencies in the
data, which has important implications for capturing global
contextual information. Swin Transformer constructs hierar-
chical feature maps, and this hierarchical architecture reduces
the computational complexity related to image size to linear.
This greatly improves computational efficiency and can serve
as a general computer vision backbone. We choose Swin-B
pre-trained on the ImageNet-1K dataset [29] as the backbone
network. The image input size is 384 % 384, and the five-level
feature maps extracted by the backbone network are 96 * 96,
48%48, 2424, 12x12, and 12x12 respectively. The number of
channels is 128, 256, 512, 1024, 1024, respectively. We label
these five-level feature maps as F2, F3, F4, F5, and F6,
respectively. To refine the generated saliency map, supple-
menting local spatial details, we introduce a lower-level fea-
ture. We adopt low-level feature generation module (LFGM)
to generate a feature map of size 192 % 192 and the number
of channels is 64. This lower-level feature contains a large
amount of local detail information, which is complementary
to the powerful global modeling ability of transformer. This
good complementary form can not only accurately locate
salient objects and regions but also supplement local spa-
tial details during feature fusion. Therefore, higher-quality
saliency maps can be generated, which greatly improves the
accuracy. We label this lower-level feature as F 1. LFGM can
be expressed as follow:

X* = ReLU (BN (Conv(I)))
O = ReLU (BN (Conv(MaxPool(X™))))

I represents the input original image, while X* represents
the intermediate state generated during processing. O rep-
resents the final generated result. Conv, BN, and ReLU are
represented as convolutional layers, normalization layers, and
RelU activation functions, respectively.

C. DECODER

In the decoder part, we added a large number of feature
fusion nodes, and formed a layer-by-layer progressive struc-
ture. Because of the introduction of feature F1 in hybrid
encoding, the depth of our network is further deepened. From
six feature nodes in leftmost side of network structure, it is
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FIGURE 2. Visual presentation of the details about our proposed three modules.(a) The CAT module is used to fuse the two features and reduce
the number of channels. (b) LFGM is used to generate lower-level feature representation maps in hybrid coding. (c) DRM is used to reduce the
difference between different levels of features and improve the feature fusion effect.

reduced layer by layer to one feature node in the far right.
When performing feature fusion, we adopt a simple feature
fusion module namely CAT. The higher-level feature maps
are first upsampled to the same size as the adjacent lower-
level features at first. Then two feature maps of the same
size are connected, and the feature maps generated after the
connection are passed through a series of convolutional layers
to complete feature fusion. The added large number of feature
fusion nodes can alleviate the problem of too large span
between different features, and can better fuse features at all
levels. In the process of progressive layer by layer, we are
continuously reducing the number of channels to save the
consumption of computing resources. After the intermediate
process graph generated by the connection operation passes
through a series of convolutional layers, it will be reduced to
1/2,1/4,1/8, and 1/16 of the original number of channels in
different layers. The CAT module we use can be formulated
as follows:

X* = Concat(X,Y)
Z = ReLU(BN (Conv(X™)))
O = ReLU (BN (Conv(Z)))
X and Y represent the two feature points to be fused, O
represents the process map generated during the convolution

process, and Zx* represents the final result generated after the
fusion of the two feature points.

D. DIFFERENCE REDUCTION MODULE
Excessive differences between different-level features will
also affect the effect of feature fusion. Therefore, we design
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a Difference Reduction Module (DRM) to reduce the dif-
ference between features, so that the effect of feature fusion
is further improved. Probably different from many previous
works, we only add DRM module to the middle two features,
not to all the features. F3 and F'4 are two intermediate-level
features, which play a critical role in communicating high-
level features and low-level features, and are a bridge between
high-level features and low-level features. For this reason,
we only add our proposed module to the middle layers.
It makes the processed F'3 and F4 more communicative and
adaptable between high-level features and low-level features,
which is more conducive to feature fusion.

Some previous work [53], [54], [55] has demonstrated that
enriching the receptive fields of convolution kernels enhances
neural network learning for objects of different scales and
sizes during feature processing. Therefore we use three differ-
ent types of convolutions in the DRM module, including ordi-
nary convolutions, asymmetric convolution [30] and atrous
convolutions [31]. We deal with the input features in three
ways. First of all, we duplicate the input features twice, and
upsample and downsample the copied features respectively.
After upsampling and downsampling, there will be three dif-
ferent sizes of features. Then we use the atrous convolutional
layer to process the features after upsampling, and use the
asymmetric convolutional layer to process the features after
downsampling. For the original size feature, we use original
convolution for processing. Then, we restore the previously
up-sampling and down-sampling features to their original
size using down-sampling and up-sampling, respectively. The
three convolutional features of different types are connected
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together through the connection operation, and then passed
through a common 3 * 3 convolutional layer. DRM can be
formalized as follows:
X1 = MaxPool(Convg, (Up(I)))
Xp = Convzus(l)
X3 = Up(Convysy(MaxPool(I)))
O = Convi33(Concat(X1, Xo, X3))

We employ atrous convolution with a dilation rate of 2,
which is defined as Conv,,,-. For the convolution kernel of
asymmetric convolution, we adopt the dimensions of 13 and
31, which are defined as Conv,y. The size of the convolution
kernel of ordinary convolution, we use the ordinary size of
3 % 3. For the downsampling process, we use a max pooling
layer for processing. And Upsampling is denoted as Up.

E. LOSS FUNCTION
Our proposed MPTC-FPN structure facilitates the realization
of a strategy of multiple supervision points for supervision.
Therefore, we used nine supervision points in the training
process and adjusted the weight ratio between each supervi-
sion point. We used binary cross-entropy loss function, IOU
loss function and progressive self-guided (PSG) loss [56].
The binary cross-entropy loss function ignores the simi-
larity in image structure, and only calculates the difference
between individual pixels. The IOU loss function can be used
to calculate the similarity of the overall structure between
two images, so combining it with the binary cross-entropy
loss function can achieve better training results.In addition,
we use PSG loss as an anxiliary loss function for training. The
binary cross-entropy loss function, IOU loss function and the
PSG loss are denoted as Lyce , Liow and Ly, , respectively.
The final loss function is defined as Ly The overall loss
function we use is as follows:

L= ﬁbce + Eiou + £psg (1)
8
Loa =ax LO+A-a)x Yy L0 @
k=1
We adjust the weight ratio of different supervision points.
In our paper, we set « to 0.6. The binary cross-entropy loss
can be formulated as:

HW
Loce =— Y _[G(i. j)log(P(i, }))
i.j

+ 1 = GG, )log(l — PG, NI ()
H and W represent the height and width of the image, respec-
tively. G represents the ground-truth map, and P represents
the saliency map generated by prediction. The IoU loss func-
tion can be expressed as:

Y P, )G, y)
S SV IP(. y) +Glx, y) —Px, y)G(x, y)]
@)

Liou =1-
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The symbols in the formula have the same meaning as those
in the binary cross-entropy loss function. The PSG loss can
be formulated as follows:

Epsg = L(SMpred’f(SMpred)) 5

L(x, *) represents the main loss function used. So L(x, *)
can be expressed as follows:

L(*v *) = Ebce (*7 *) + ‘CiOll (*s *) (6)

f(x) is defined as a simulated morphological closing opera-
toin. It can be described as follows:

S (SMprea) = maxpool(SMpreq) N SM g, @)

SMpreq and SMy; represent the generated saliency map and
ground truth, respectively. Our goal is to reduce the loss
function as the number of training epochs increases.

IV. EXPERIMENTS

In this section, we will describe the content of the five
subsections. These include experimental details, selection of
datasets, evaluation metrics, performance comparisons, and
experimental studies of ablation. We will demonstrate the
superiority of our proposed method by comparing our method
with some previous state-of-the-art methods. In addition,
we conduct a series of ablation experiments to explore the
impact of each module or strategy used by our proposed
MPTC-FPN on the experimental result. In addition, for the
training process of the model, we draw the loss function
convergence curve, as shown in Figure 3.

A. IMPLEMENTATION DETAILS

The proposed approach is implemented by the Pytorch. The
SGD optimizer [32] with weight decay of 5e-4 and momen-
tum of 0.9 is adopted to optimize the network. We use a warm
up strategy, and warming up epochs is 6. Meantime, poly is
adopted to adjust the learning rate. The learning rate change
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TABLE 1. Quantitative comparison results between our method and sixteen previous state-of-the-art methods on five datasets.Higher values for Fg, F?

B

and mean better, and lower values for S;; mean better.The best performing values are marked in bold.

Methods ECSSD DUTS-TE HKU-IS DUT-OMRON PASCAL-S
Fyg MAE Fg MAE Fg MAFE Fyg MAE Fg MAE
Amulet 0.915 0.059 0.778 0.085 0.897 0.051 0.743 0.098 0.839 0.099
UCF 0.903 0.069 0.773 0.112 0.888 0.062 0.730 0.120 0.824 0.116
BRN 0.922 0.041 0.828 0.050 0.910 0.036 0.774 0.062 0.856 0.073
C2SNet 0.896 0.059 0.790 0.066 0.883 0.051 0.733 0.079 0.840 0.088
AFNet 0.935 0.042 0.863 0.046 0.923 0.036 0.797 0.057 0.871 0.071
BASNet 0.942 0.037 0.860 0.048 0.928 0.032 0.805 0.056 0.860 0.079
F3Net 0.945 0.033 0.891 0.035 0.937 0.028 0.813 0.053 0.882 0.064
CAGNet-R | 0.937 0.037 0.866 0.040 0.926 0.030 0.791 0.054 0.873 0.069
GCPANet 0.948 0.035 0.888 0.038 0.938 0.031 0.812 0.056 0.882 0.063
ITSD 0.947 0.034 0.883 0.041 0.934 0.031 0.821 0.061 0.882 0.066
LDF 0.950 0.034 0.898 0.034 0.939 0.027 0.820 0.051 0.887 0.062
MINet 0.947 0.033 0.884 0.037 0.935 0.029 0.810 0.055 0.880 0.066
GateNet 0.952 0.035 0.898 0.035 0.942 0.029 0.829 0.051 0.888 0.065
VST 0.951 0.033 0.890 0.037 0.942 0.029 0.825 0.058 0.890 0.062
PAKRN 0.953 0.032 0.907 0.033 0.943 0.027 0.834 0.050 0.888 0.068
PFSNet 0.952 0.031 0.896 0.036 0.943 0.026 0.823 0.055 0.887 0.065
Ours 0.961 0.023 0.919 0.024 0.953 0.021 0.847 0.042 0.905 0.052
Methods ECSSD DUTS-TE HKU-IS DUT-OMRON PASCAL-S
Fg Sm Fg Sm F‘B*’ Sm FE“ Sm FE’ Sm
Amulet 0.840 0.894 0.658 0.804 0.817 0.886 0.626 0.781 0.739 0.819
UCF 0.806 0.883 0.596 0.782 0.779 0.875 0.573 0.760 0.698 0.806
BRN 0.891 0.903 0.774 0.842 0.875 0.894 0.709 0.806 0.802 0.837
C2SNet 0.839 0.882 0.701 0.818 0.818 0.873 0.640 0.780 0.762 0.826
AFNet 0.886 0.913 0.785 0.867 0.869 0.905 0.717 0.826 0.804 0.850
BASNet 0.904 0.916 0.803 0.866 0.889 0.909 0.751 0.836 0.797 0.834
F3Net 0.912 0.924 0.835 0.888 0.900 0.917 0.747 0.838 0.823 0.857
CAGNet-R | 0.902 0.908 0.817 0.864 0.893 0.904 0.728 0.815 0.816 0.839
GCPANet 0.903 0.927 0.821 0.891 0.889 0.920 0.734 0.839 0.819 0.864
ITSD 0.910 0.925 0.824 0.885 0.894 0.917 0.750 0.840 0.823 0.859
LDF 0.915 0.924 0.845 0.892 0.904 0.919 0.752 0.838 0.829 0.859
MINet 0911 0.925 0.825 0.884 0.897 0.919 0.738 0.833 0.818 0.854
GateNet 0.906 0.929 0.828 0.897 0.893 0.925 0.749 0.849 0.821 0.865
VST 0.910 0.932 0.828 0.896 0.897 0.928 0.755 0.850 0.827 0.871
PAKRN 0.918 0.928 0.861 0.900 0.909 0.923 0.779 0.853 0.828 0.858
PFSNet 0.920 0.930 0.842 0.892 0.910 0.924 0.756 0.842 0.829 0.859
Ours 0.939 0.941 0.888 0.914 0.930 0.935 0.800 0.864 0.859 0.876
formula can be expressed as follows: proposed network is trained for 50 epochs on a PC with a
RTX 2080Ti. And we set batch size to 6.
Ir = lIripi x (1 — )Y (3)

epochs

Irinir represents the initial learning rate. The value of y is 0.9.
We initialize the learning rate to 8e-3. The pre-trained Swin
Transformer-B [18] on ImageNet-1K is used as backbone,
and we set its initial learning rate as one tenth of that of
other parts, which is 8e-4. We follow the way of [25] to
initialize the parameters of other parts. All of the image is
adjusted to 384 * 384 input the network. For data augmenta-
tion, we adopt horizontal flipping and random cropping. The
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B. DATASETS

We use DUTS-TR [33] dataset to train our network.
10553 images and corresponding annotated maps are
included in DUTS-TR [33] dataset. To evaluate the superior
performance of our proposed method, we select five popular
benchmark datasets: DUTS-TE [33], ECSSD [34], HKU-IS
[35], DUT-OMRON [36], and PASCAL-S [37], respec-
tively. DUTS [33] is the largest SOD dataset at this stage.
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FIGURE 4. Visual comparison of saliency maps generated by our proposed method and seven other state-of-the-art methods. The proposed MPTC-FPN
can not only accurately locate salient objects or regions, but also suppress background noise well.

DUTS-TE [33] is a part of DUTS, which contains 5019 test
images and corresponding labels. There are 1000 images
in ECSSD [34]. These images included in the dataset have
meaningful semantic information. HKU-IS [35] contains
4447 images with multiple salient objects. At the same time,
the picture background is also very complex. DUT-OMRON
[36] contains 5168 images and corresponding labels. The
objects in these pictures are often complex in structure and
the background of the picture is also complicated. PASCAL-S
[37] contains 850 challenging images selected from a dataset
originally used for semantic segmentation, namely PASCAL
VOC 2010.

C. EVALUATION CRITERIA

To evaluate the accuracy of our proposed network structure,
we used four very popular evaluation metrics for a fair com-
parison.

(1) MAE is defined as the absolute error between the
binary ground truth and the predicted image. Similarity of
the predicted image compared to the binary ground truth is
indicated by it. MAE is calculated as

AN
MAE = —— 3 > IPG.)) = GG, ) ©)

i=1 j=1

P denotes the predicted saliency map and G denotes the
ground-truth. H and W are height and weight of the image.
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(2) F-measure is denoted as Fg. It is computed by the
weight harmonic mean of the precision and recall. Fg can be
formulated as
Fo— (1 + B?) x Precision x Recall

p= B2 x Precision + Recall

(10)

As with the previous work, we set 82 to 0.3 to emphasize the
importance of precision. And we report the max values of Fg.

(3) Weight F-measure [38] is denoted as F g’ It can be
defined as

Fo _ (1 + B?) x Precision® x Recall®
B B2 x Precision” + Recall®

Y

F% uses weighted precision and weighted recall to measure
the accuracy of different models, where F g’ is also set to 0.3.

(4) S-measure combines the region-aware(S, ) and object-
aware(S,), S» [39] and focuses on measuring the overall
structure similarity. It has the following formula

S =aS, + (1 —a)S; (12)
Same as some of the previous work, where the « is set to

0.5 as default.

D. PERFORMANCE COMPARISON

We compare our proposed method with 16 previous state-
of-the-art methods, including Amulet [40], UCF [41], BRN
[42], C2SNet [43], AFNet [61], BASNet [44], F3Net [23],
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FIGURE 6. Precision recall curves on three common saliency datasets, including HKU-IS, DUT-OMRON and PASCAL-S.

CAGNet-R [45], GCPANet [46], ITSD [47], LDF [48],
MINet [49], GateNet [24], VST [27], PAKRN [50], PFSNet
[25]. To ensure the fairness of the comparison, all predicted
saliency maps are downloaded from the public official web-
site and evaluated under the same evaluation code and envi-
ronment.

1) QUANTITATIVE COMPARSION

We present the comparison results with the previous 16 state-
of-the-art methods on five datasets in Table 1. We adopt
four widely-used evaluation metrics, including MAE, Fg,
FE’, Sm, where Fg and MAE are in one subtable and Fg’
and S, are in another subtable. By comparison, we find
that our proposed method significantly outperforms some
of the previous methods. The Fg values of MPTC-FPN on
five widely adopted datasets, ECSSD, DUTS-TE, HKU-IS,
DUT-OMRON, and PASCAL-S, reached 0.961,0.919, 0.953,
0.847, and 0.905, respectively. Especially on the PASCAL-S
dataset, our method outperforms the second best method by
0.015. This is a very significant improvement, while the Fg
values improvement on the other four datasets is around
0.01. MAE values We improved by 0.008, 0.009, 0.005,
0.008, 0.010 on the five datasets over the second best data
in the table. Among them, the improvement is still the most
obvious on the PASCAL-S dataset. The F/g” values reached
0.939, 0.888, 0.930, 0.800, and 0.859 on the five datasets,
respectively. Among them, the five data sets are improved by
0.019, 0.027, 0.020, 0.021, 0.030 than the second best value.
Our method still achieves the most obvious improvement
on the PASCAL-S dataset. The S,, values reached 0.941,
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TABLE 2. + represents a simple addition operation. 5 and 6 represent not
using mixed encoding and using mixed encoding, respectively. CAT
indicates that the CAT module is used for feature fusion. 1ds, 5ds, and
9ds represent the use of one supervision point, five supervision points,
and nine supervision points, respectively.

Configaration DUT-OMRON PASCAL-S
mFy | MAE | mFs | MAE

FPN(+) 0.730 | 0.063 | 0.805 | 0.076
5-MPTC-FPN(+)-1ds 0.726 | 0.059 | 0.815 | 0.072
5-MPTC-FPN(CAT)-1ds 0.764 | 0.049 | 0.852 | 0.058
5-MPTC-FPN(CAT)-5ds 0.769 | 0.047 | 0.853 | 0.058
6-MPTC-FPN(CAT)-5ds 0.774 | 0.049 | 0.857 | 0.058
6-MPTC-FPN(CAT)-5ds-DRM | 0.765 | 0.049 | 0.857 | 0.057
6-MPTC-FPN(CAT)-9ds 0.773 | 0.052 | 0.859 | 0.056
6-MPTC-FPN(CAT)-9ds-DRM | 0.774 | 0.046 | 0.858 | 0.057

0.914, 0.935, 0.864, and 0.876 on the corresponding five
datasets, respectively. The improved values are all around
0.010. Through a series of comparisons, the results can
demonstrate that our proposed method outperforms previous
state-of-the-art methods. More importantly, there has been a
great improvement in most cases.

2) VISUAL COMPARSION

Some predicted saliency map of the proposed saliency
method (MPTC-FPN) and other seven state-of-the-art meth-
ods have been shown in Figure 4. In the first and second rows,
in the detection scene of small objects, our method can find
salient objects more accurately. In the third row, MPTC-FPN
can effectively distinguish salient object regions, even when
the contrast between salient objects and background is low.
In some scenes with complex backgrounds, such as the fourth
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TABLE 3. This table shows the effects of different loss functions on the experimental results.

Loss function ECSSD DUTS-TE HKU-IS DUT-OMRON | PASCAL-S
F; | MAE | F; | MAE | F; | MAE | F; | MAE | F; | MAE
BCE 0956 | 0.020 | 0.909 | 0.020 | 0.948 | 0.025 | 0.829 | 0.046 | 0.901 | 0.057
10U 0.957 | 0.024 | 0910 | 0.025 | 0.947 | 0022 | 0.827 | 0.042 | 0.898 | 0.053
BCE + 10U 0.960 | 0.024 | 0917 | 0026 | 0.952 | 0.021 | 0.841 | 0.044 | 0910 | 0.051
BCE + PSG 0959 | 0.026 | 0.911 | 0028 | 0.950 | 0.024 | 0.832 | 0.045 | 0.901 | 0.055
10U + PSG 0.960 | 0.023 | 0913 | 0025 | 0.952 | 0.020 | 0.836 | 0.042 | 0.901 | 0.052
BCE + 10U +PSG | 0.961 | 0023 | 0919 | 0024 | 0953 | 0.021 | 0.847 | 0.042 | 0.905 | 0.052
Loss function ECSSD DUTS-TE HKU-IS DUT-OMRON | PASCAL-S
FY | Sm | F§ | Sm | F§ | Sm | FS | Sm | FY | Sm
BCE 0920 | 0.937 | 0.851 | 0.908 | 0.908 | 0932 | 0.762 | 0.854 | 0.838 | 0.874
10U 0.936 | 0935 | 0.881 | 0906 | 0.926 | 0928 | 0.787 | 0.851 | 0.855 | 0.868
BCE + 10U 0.937 | 0.940 | 0.880 | 0912 | 0.927 | 0934 | 0.789 | 0.859 | 0.860 | 0.879
BCE + PSG 0929 | 0.941 | 0.861 | 0.909 | 0.915 | 0933 | 0.770 | 0.855 | 0.846 | 0.877
10U + PSG 0942 | 0937 | 0.887 | 0908 | 0.933 | 0932 | 0.801 | 0.860 | 0.862 | 0.872
BCE + 10U +PSG | 0.939 | 0941 | 0.888 | 0914 | 0.930 | 0935 | 0.800 | 0.864 | 0.859 | 0.876

and fifth rows, our method can not only locate the salient
regions accurately but also avoid introducing background
noise. As shown in the seventh row, MPTC-FPN still per-
forms very well with multiple salient objects. In the eighth
row, our method is able to accurately locate the correct salient
objects in the face of multiple object interference scenes.
For small parts of objects, our method can also detect them
completely, which is shown in the ninth row. Through visual
comparison, it can be seen that the saliency map generated
by our method is more accurate and can better suppress
background noise.

In addition, in Figure 5 and 6, we also show the PR
curve of MPTC-FPN. We plot the PR curves of MPTC-FPN
and the previous sixteen state-of-the-art methods on the
corresponding five datasets. We can clearly see that our
method curve is higher than other state-of-the-art methods.
This means that our method performs better than other state-
of-the-art methods.

E. ABLATION STUDY
To demonstrate the effectiveness of the proposed mod-
ule components and the parameter configurations of

MPTC-FPN, we conduct a series of ablation experiments on
two challenge datasets (DUT-OMRON and PASCAL-S).

1) EFFECTIVENESS OF MPTC-FPN(CAT)

We give the results of the most basic FPN network in the first
row, only replacing the backbone network with Transformer.
Then on the second and third line, we changed the structure
of the decoder to be MPTC-FPN structure. At the same time,
we added the CAT module to the feature fusion. By compar-
ison, we can clearly see that the evaluation values on the two
datasets have excellent results in Table 2.

2) EFFECTIVENESS OF MULTIPLE SUPERVISION POINTS
Then we changed the supervision strategy to include multiple
supervision points. We increase the supervision points to five
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based on MPTC-FPN(CAT). We put the results after adding
supervision points in the fourth row. It can be seen that the
results have improved slightly. This shows that the multi-
supervision point strategy still has a positive effect on our
proposed method.

3) EFFECTIVENESS OF HYBRID ENCODING

On the basis of the previous one, we changed the structure of
the encoder and used a hybrid encoding method for encod-
ing. Because of the addition of a lower-level feature, our
network depth is increased from five to six layers. Therefore,
we further increased the number of supervision points, raising
the number of supervision points to nine. The corresponding
experimental results, we can see in the fourth and seventh
row. Through comparison, we find that both PASCAL-S and
DUT-OMRON are improved.

4) EFFECTIVENESS OF DRM

Finally we added DRM modules on F3 and F4. We can see
the final experimental results in the eighth row. By adding the
DRM module, the gap between different levels of features
is reduced, which is more conducive to feature fusion.We
can clearly see the significant improvement in DUT-OMRON
dataset. Experimental result strongly proves that DRM can
further improve the performance of the saliency network.
We added DRM modules for five supervision points and nine
supervision points under the hybrid encoding structure. Based
on the experimental results, better results can be achieved in
the state of nine supervision points.

5) EFFECTIVENESS OF HYPARAMETER «

We further explored the weight distribution parameters
between multiple observation points, and the results are
shown in Table 4. We found that the total loss with dif-
ferent « have different effects on final saliency results.
From Table 4, when the parameter « is 0.6 gets the best
result.
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TABLE 4. This table shows the effects of five different parameter values
on the experimental results.

Valuos |_DUT-OMRON | PASCAL-S
mFy | MAE | mFs | MAE

03 | 0.761 | 0.047 | 0.786 | 0.0356
04 | 0773 | 0.047 | 0.857 | 0.057
05 | 0774 | 0.047 | 0.857 | 0.057
0.6 | 0774 | 0.046 | 0.858 | 0.057
0.7 | 0773 | 0.047 | 0.856 | 0.057

6) COMPARISON OF DIFFERENT LOSS FUNCTIONS

On the basis of the best results obtained previously, we con-
duct ablation studies on the loss function used. We adopted
a strategy of hybrid loss functions, using three different loss
functions. They are BCE loss, IOU loss and PSG loss [56]
respectively. PSG is used as an auxiliary loss function. The
results of the ablation study for the loss function are shown
in Table 3. Through the comparison between the first line
and the second line, we find that IOU plays a key role in
the decline of MAE and the increase of Fg’ By comparing
the first and fourth lines, the second and fifth lines, we can
be sure that the addition of PSG can further improve the
performance. Because PSG loss function can only be used
as auxiliary function [56]. Therefore, we have not set up an
experiment using PSG loss function alone. Finally, based on
the performance of various numerical values, we decide to use
the sum of three loss functions as the hybrid loss function.

V. CONCLUSION

In this paper, we propose a multi-layer progressive archi-
tecture and use the CAT module simultaneously to fuse the
features at all levels more smoothly. In the encoder stage,
we effectively combine Vision Transformer and CNN to fur-
ther improve the experimental results. We also designed a
difference reduction module (DRM) to reduce the difference
between features to further improve the performance. In addi-
tion, we adopt a multi-supervised point training strategy and
incorporate a more advanced loss function. The experimental
results show that our proposed method outperforms previous
state-of-the-art methods on five widely used datasets. How-
ever, our approach has some limitations, as the addition of a
large number of feature fusion nodes increases the complexity
of the overall model, which makes the overall model very
computationally intensive.
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