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ABSTRACT Owing to the increasing capabilities of mobile devices and the development of mobile
communication techniques in vehicular ad hoc networks (VANETs), mobile multimedia services have
focused on supporting high Quality of Service (QoS) and Quality of Experience (QoE) for the subscribers
in video streaming services. In VANETs, high-quality video streaming services aim to provide subscribers
with safety and various infotainment applications. Due to the dynamic topology and frequent connectivity
changes in moving vehicles, video streaming services require elastic and continuous vehicle information
updates to present interactive real-time views of nontrivial road scenarios. The QoS and QoE are affected
due to obstacles, re-location tracking, network traffic, and bandwidth factors that occur due to mobility
problems and significantly influence the ability of vehicles withmobility to provide video streaming services.
To achieve high QoS and QoE of video streaming services in VANETs, this paper proposes a novel protocol
named PSOstreaming based on a particle swarm optimization (PSO) which is one of the mainstream and
nature-inspired algorithms for swarm intelligence (SI). PSOstreaming calculates the PSQ score, which is the
scoring method of the node in the topology in terms of the data communication capability measurement to
analyze and optimize topology information in real-road circumstances. In addition, PSOstreaming utilizes a
3D vector mobility prediction algorithm for the mobility prediction method for the vehicles to address the
characteristics of VANETs. In the topology, PSOstreaming defines Global PSO members and Local PSO
members to disseminate video packets for video-streaming services to the service requester by computational
equations. Experimental results indicate that PSOstreaming achieves high-quality video streaming services
with a flexible response to dynamic topology changes and a high frame delivery ratio in terms of QoS and
QoE.
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INDEX TERMS Swarm intelligence, particle swarm optimization, vehicular ad-hoc networks, video
streaming service, 3D-vector mobility support.

I. INTRODUCTION23

As the era of advanced development of vehicles and vari-24

ous infotainment content enjoyed in vehicles is approaching,25

(VANETs) are a very realistic and practical way to meet these26

needs [1]. In VANETs, vehicles assume the role of network27

nodes with special characteristics, such as high mobility, self-28

organization, road pattern restrictions, no energy constraints,29

and large-scale network sizes. Roadside units (RSUs) are30

installed near roads, and act as relay nodes owing to their31

static locations. Vehicles and RSUs can communicate with32

The associate editor coordinating the review of this manuscript and

approving it for publication was Ran Cheng .

each other via dedicated short-range communication (DSRC) 33

technology [2] for vehicle-to-vehicle (V2V) and vehicle-to- 34

infrastructure (V2I) communications [3], [4]. Several projects 35

(e.g., VICS [5], CarTALK 2000 [6], network-on-wheels 36

(NoW)) [7]), and industry groups (e.g., Car2Car Commu- 37

nication Consortium [8]) have conducted various studies to 38

establish intelligent transport systems using VANETs. Fur- 39

thermore, as an important component of smart cities and intel- 40

ligent transportation systems (ITSs), VANETs have attracted 41

increasing research and real-life communities. Several stud- 42

ies on VANETs have researched various applications, such 43

as special event warnings on the road for safe car driving, 44

emergency notifications for public service, road congestion 45
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notices for improved driving, and diverse image content46

commercial advertisements for business and infotainment47

services [9], [10], [11].48

Among the applications of VANETs, video streaming49

services are currently garnering significant attention for sup-50

porting applications, such as video warnings for safe driving51

and video advertisements for infotainment services. A vehi-52

cle can send a video warning file about an accident to the53

user vehicle from the surrounding and trajectory information.54

It can also share video clip files advertising nearby stores55

with neighboring vehicles through a video advertising appli-56

cation. Generally, video files contain large amounts of data57

depending on their related applications, and have stringent58

quality of service (QoS) and quality of experience (QoE)59

requirements. Moreover, VANETs have dynamic topology60

features owing to intermittent connections and frequent link61

breakages caused by the high mobility of vehicles on roads.62

Accordingly, three challenging issues should be addressed63

to achieve the QoS and QoE requirements to support video64

streaming services in VANETs with dynamic topology fea-65

tures and intermittent connections. First, the load-balancing66

mechanism should be considered to satisfy the high QoS and67

QoE, and prevent overload of the nodes owing to the extensive68

video data forwarded to the vehicles. Previous studies on QoS69

and QoE for video streaming services [12], [13], and [14]70

have no adaptable load-balancing mechanisms for real-time71

topology information searches. Second, the vehicle’s mobil-72

ity must be calculated to predict the direction and forward73

streaming data with less loss data. Vehicles in the topology74

have high mobility with unpredictable directions and speeds.75

The research proposed in [15], [16], and [17] adopted a76

mobility prediction algorithm for video-streaming services77

in VANETs; however, these protocols cannot be applied78

to short-term mobility predictions with real-time tracking.79

Third, data caching should be efficiently conducted to store80

the video data content on the calculated route until commu-81

nication is complete. Previous studies [18], [19], [20] have82

a caching mechanism that does not consider video packet83

distribution for real-time video streaming services.84

Mobile Ad-hoc Networks (MANET) technologies for mul-85

timedia data forwarding have recently been proposed in86

diverse research areas [21], [22]. MANET has a critical87

energy consumption issue for the multimedia streaming ser-88

vice. The mobile node in MANET has no energy supplies for89

maintaining the multimedia streaming data forwarding. The90

energy issue in MANET for the video streaming service is91

no longer the problem in VANET due to the characteristics92

of the vehicle. The recently researched multimedia streaming93

services inMANET are unsuitable for VANET circumstances94

due to resource calculation differences. The differences in the95

algorithms and topologies impact the QoS and QoE in the96

multimedia data forwarding process.97

In this paper, we propose a novel protocol named98

PSOstreaming to provide video streaming services with sup-99

porting QoS and QoE in VANETs by efficiently addressing100

the three challenging issues. We first adopt Particle swarm101

optimization (PSO) algorithm to solve the load-balancing 102

problem in dynamic topology changes. We then formulate 103

short-term mobility predictions to react to the mobility of 104

the vehicle immediately. The dependent long-term mobil- 105

ity prediction algorithm based on the vehicle’s trajectory to 106

the destination may cause resource wastage and take time 107

to recover the forwarding route when the user vehicle is 108

off the calculated path. The proposed protocol uses particle 109

swarm optimization information from the topology and the 110

user vehicle’s mobility to establish the forwarding path via a 111

3D mobility short-term prediction algorithm, rather than the 112

long-term predictions researched previously [14], [23], [24]. 113

The long-term prediction algorithms have to use the trajectory 114

of the user vehicle to predict the user vehicle’s future location 115

to forward the streaming data. However, using the vehicle’s 116

trajectory information to the destination to predict the vehi- 117

cle’s future location cannot immediately handle unexpected 118

circumstances. When the previous studies faced unforeseen 119

circumstances due to the free will of the drivers, the mobility 120

prediction algorithms took more time and more resources to 121

rebuild the data forwarding path to the requested vehicles, 122

which often happens in real road scenarios. Additionally, 123

it constrains the topology resource waste in the streaming 124

services. Otherwise, the short-term mobility prediction in the 125

PSO streaming can avoid the mentioned problems. However, 126

the PSOstreaming immediately reacts to topology changes 127

because of the service user number, whichmakes the resource 128

balance of APs in the topology. Owing to the dynamic routing 129

decisions for user vehicles and the closed cooperation of 130

different methods of PSO and 3D mobility prediction, the 131

proposed protocol is capable of adaptively coping with rapid 132

topology changes in real-time video streaming scenarios. The 133

main contributions of this paper are as follows: 134

• We propose a PSO topology information searching 135

mechanism for APs and calculate the score of APs’ 136

resource availability. Compared to previous protocols 137

that search for static availability data by end-to-end 138

routing, the proposed algorithm has flexibility and great 139

adaptability in real-time video streaming. Furthermore, 140

the proposed protocol leads to high load balancing in 141

the topology because all APs organically share their 142

resource information. 143

• We derive mathematical models for the resource 144

arrangement of APs in the topology before the video 145

streaming service is initiated. The PSO algorithm cal- 146

culates the scores of all APs in the topology based on 147

resource availability. The aforementioned mathematical 148

models calculate the particle swarm quality information 149

(PSQ) score. The PSQ score continues to update in 150

real time during video streaming. Hence, it recognizes 151

the resource changes owing to the service users in the 152

topology, and updates the live PSQ score for the other 153

service users to create a path and select the global and 154

local PSO members. 155

• The PSO-based algorithm calculates the topology infor- 156

mation based on the PSQ score from the pre-learning 157
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phase. Then, global and local PSOmembers are selected158

when the video streaming service is provided to the159

service requesting user vehicle. The early process of the160

proposed algorithm mainly comprises candidate deriva-161

tion and optimal global and local PSO member selec-162

tion. It also enables collaboration between two member163

groups for video streaming services.164

• A 3D vector mobility prediction mechanism is pro-165

posed to predict the mobility of the moving vehicle.166

This mechanism primarily employs the mobility infor-167

mation of the vehicle, such as the vector direction, speed,168

and geographical information. Moreover, it immediately169

reacts to mobility changes caused by the driver’s han-170

dling. The proposed mobility prediction method pro-171

vides short-term mobility support and helps maintain172

the link connection to the user vehicle without trajectory173

information.174

The remainder of this paper is organized as follows. Related175

works are described in Section II. The proposed protocol is176

described in detail in Section III. In Section IV, we experi-177

mented with simulation in real-road circumstances withMan-178

hattan combined with random mobility of the vehicles and179

analyzed the simulation results. Finally, Section V concludes180

the paper.181

II. THE RELATED WORKS182

The primary purpose of this study is to optimize the routing183

information of vehicles in the topology, and route video184

streaming data to a vehicle moving toward its destination185

according to its geographical information in a VANET. In this186

section, we review the studies related to the aim of our study.187

First, we examine studies on multimedia streaming services188

in VANETs. To satisfy the demands of multimedia streaming189

services and infotainment applications in VANETs, various190

routing schemes [25], [26], [27], [28], [29] have been pro-191

posed to deliver multimedia streaming data. These studies are192

based on selecting relaying vehicles to forward distributed193

streaming data using time scheduling methods for the user194

vehicle. However, they did not consider QoS and QoE, which195

are the main factors affecting user satisfaction with video196

streaming services.197

Therefore, several routing protocols that support QoS and198

QoE mainly have been proposed for multimedia stream-199

ing services in VANETs. To support the QoS require-200

ments of multimedia services, Lakas et al. [12] proposed201

CBQoS-Vanet with a bee colony-inspired algorithm that cal-202

culates the best routes from a source to destination based203

on QoS metrics such as bandwidth, end-to-end delay, and204

jitter. Xing et al. [13] proposed a hybrid framework to deter-205

mine the best delivery strategy and select an optimal path206

for multimedia data dissemination by considering delivery207

delay, storage cost, and QoS. To enhance the QoE of video208

streaming, DQLTV [24] selects forwarding vehicles with the209

best link quality (transmission success) and link availability210

(lifetime) using the mobility information of the vehicles.211

GeoQoE [14] conducts QoE-aware geographic routing for212

video streaming, which measures the QoE values (i.e., mean 213

opinion score (MOS)) of neighboring vehicles based on cor- 214

related QoE and QoS factors (e.g., packet loss rate, jitter, 215

and delay). Subsequently, it selects the vehicle with the best 216

QoE value as the relay vehicle. Using the mobility infor- 217

mation of vehicles, some studies have proposed methods to 218

efficiently support the QoS and QoE of multimedia streaming 219

services in VANETs. The 3MRP method exploits the trajec- 220

tory information of vehicles as one of the five QoS metrics 221

(distance to destination, vehicle density, trajectory, available 222

bandwidth estimation, and MAC layer losses). Accordingly, 223

3MRP [15] enables a vehicle to select the best forwarding 224

node for sending video reporting messages to an AP in the 225

city infrastructure to alert emergency services. By exploit- 226

ing the mobility prediction of vehicles, an adaptive video 227

uploading scheme [16] is proposed to reliably deliver video 228

streaming data from a moving vehicle to a fixed network by 229

selecting the optimal APs and stable relay vehicles. LBP [17] 230

is a prediction window-based video streaming algorithm that 231

adjusts the requested QoE of a video while ensuring that no 232

video stall occurs in vehicles. In addition, the QoS and QoE 233

are supported by vehicular streaming services. To enhance 234

the QoE of video streaming, Pederson et al. [18] proposed an 235

algorithm to support adaptive bit rate (ABR) based on video 236

characteristics and efficiently using caching in radio access 237

networks. Yashuang et al. [19] proposed a dual time-scale 238

dynamic cache scheme in base stations to support ABR 239

streaming under the condition of high channel variations to 240

achieve high QoS and QoE for video streaming services 241

in VANETs. Zhao et al. [20] proposed a scheme to cache 242

OTTmultimedia streaming content in future connected RSUs 243

using vehicle mobility prediction. However, existing proto- 244

cols that support the QoS and QoE of multimedia streaming 245

services only consider static destination vehicles. Moreover, 246

they exploit mobility prediction and cachingwith themobility 247

information of normal vehicles on roads instead of the trajec- 248

tory information of the destination vehicles. 249

The video streaming service application aims to provide 250

a high-quality infotainment service to the user vehicle. Info- 251

tainment enables the smart cars to provide informational and 252

entertainment services, enhancing the experience of drivers 253

and passengers. Video streaming applications in infotain- 254

ment services are the primary technology to achieve the 255

goal. In recent years, the vehicle infotainment system has 256

captivated significant attention from automobile industries 257

discussed in [30]. For the high-quality media content pro- 258

vided in infotainment services, the services have a topology 259

that minimizes the video file data loss with the minimum 260

delay to the destination vehicle. Indipendented infotainment 261

service without considering QoS and QoE in the multimedia 262

data forwarding process [30] cause the challenging issues 263

mentioned before in multimedia service in VANETs. 264

As mentioned previously, the study timeline has pointed 265

out QoS and QoE improvement solutions in the routing pro- 266

cess. However, these protocols cause a high error rate and 267

quality decline, owing to the unintended mobility behavior 268
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of the requested vehicles. These challenges arise from two269

main factors. One is the low refresh rate of the topology infor-270

mation. If the topology information does not reflect the live271

status, there is a chance that the user vehicles can derive stal-272

eness information in the forwarding process. Moreover, the273

relay AP may have an overloading situation because the user274

vehicles continue using the same path even though the energy275

level of the AP in the path has decreased. However, with the276

rapid development of mobile devices and inter-vehicle sys-277

tems, the processability of vehicles has increased enough to278

handle high-cost calculations. This study adopts the concept279

of artificial intelligence (AI), called swarm intelligence (SI).280

SI methods are employed in routing, owing to the similarity281

in the behavior of swarms and routing. SI techniques have282

provided an optimized solution that ensures flexibility and283

robustness economically by prior learning.284

Several studies have been conducted on VANETs using285

optimization techniques. Therefore, we classify the SI286

techniques in VANETs into three categories: ant colony opti-287

mization (ACO), bee swarm optimization (BSO), and particle288

swarm optimization (PSO) [31]. Swarm Intelligence proto-289

cols are derived in various application areas. Many studies290

accept the concept of the SI protocols in VANETs published291

in the research area. However, in this paper, we categorized292

the SI protocols for VANETs with video data forwarding in293

related work. ACO imitates the food exploration behavior294

of ants. The search for an optimized route for a given task295

represented in the graph is researched in [32]. The ACO296

algorithm is based on the ants’ behavior when they search297

for the shortest path between their nests and a food source298

in the ground. ACO employs a metaheuristic approach. Ants299

are communal creatures that reside in colonies. Initially,300

ants randomly go out of the settlement to search for food301

and discover the shortest route from their territories to the302

location of the food source. They return to the colony after303

food discovery using the same path they followed by laying304

tracks with pheromones. If the other ants in the popula-305

tion find the track with the pheromone, they are likely to306

select that path for traversing. Thus, the route is strength-307

ened because of the growth in the pheromone deposition by308

ants.309

Di. Caro et al. proposed the basic concept of ACO. It is310

a hybrid and multipath routing protocol that employs ACO311

techniques called AntHocNet [33]. It initially uses a reac-312

tive route setup procedure by broadcasting and unicasting313

to search for the best route to the destination. Saleem et al.314

proposed a broadcast-based ACO routing protocol called315

BIOSARP [34]. It employs the biological movement behav-316

ior patterns of ants. In the optimal path selection proce-317

dure, the data collected from the broadcast are optimized by318

self-organization to determine the shortest path to the desti-319

nation to forward the packets. Li et al. proposed an adaptive320

vehicular routing protocol using ACO [35] which is based321

on route selection techniques, to reduce the minimum delay322

and overhead for low-rate delivery. BSO is a novel method323

based on the foraging behavior of honeybee swarms. It uses324

different types of bees to optimize the numerical architecture 325

by distinct moving patterns [36]. 326

Particle Swarm Optimization (PSO) [37] is a metaheuristic 327

SI technique that uses a stochastic population and achieves 328

optimization. PSO adopts real-life social behavior of diverse 329

animals, such as fish schooling and birds flocking while 330

performing the movement for food search. The PSO concept 331

analyzes the physical movements of an individual in a swarm, 332

where each particle is guided by its own best position and 333

that of the entire swarm. Therefore, the individual particles 334

in PSO work properly in group movement situations such as 335

VANETs. PSO also has high adaptability in various network 336

environments in VANETs. In VANETs with video streaming, 337

multiple characteristics users are excited in the topology. 338

The users have different network features in their network 339

devices. Therefore, the devices participating in the network 340

service have to use optimized different algorithms to for- 341

ward the requested data to the destination. PSO is adaptive 342

algorithm that can optimize the network status of the nodes 343

adapted using a metaheuristic technique. PSO algorithm sat- 344

isfies the dynamic topology challenge issues in VANETs due 345

to the reason mentioned [38]. 346

The proposed protocol uses the Particle Swarm Optimiza- 347

tion (PSO), which is the most suitable algorithm compared 348

with others in the diverse circumstances in VAENTs. The 349

proposed protocol aims at two primary goals. The first is 350

topology load balancing using a Particle SwarmOptimization 351

algorithm, and the second is vehicle video streaming service 352

using a 3D vector mobility prediction algorithm and video 353

data caching mechanism. The mentioned techniques for the 354

video streaming service in VANETs lead low delay in data 355

forwarding time and minimize the data loss in terms of 356

the diverse conditions. The mentioned previous research in 357

VANET for video streaming services and multimedia proto- 358

cols has struggled the challenge issues in VANETs discussed 359

before. In the next section, we describe the two main tech- 360

niques of the proposed protocol to solve the challenge issues 361

in VANET streaming service. 362

III. THE PROPOSED PROTOCOL 363

In this section, we present the proposed protocol, PSOstream- 364

ing for supporting video streaming services in VANETs. 365

First, we explain the network model and the overview of our 366

protocol. Subsequently, we describe in detail of the process 367

of PSOstreaming in time order. 368

A. NETWORK MODEL AND PROTOCOL OVERVIEW 369

By leveraging mobile vehicle technologies, video streaming 370

services have been developed for the various multimedia 371

protocols mentioned in communication technologies. How- 372

ever, the main challenges of video streaming services are 373

the highly dynamic topology, extensive coverage challenge, 374

and intensely varying density of VANETs. To address these 375

challenges, any video-streaming solution must comply with 376

certain QoS and QoE requirements. With this satisfying 377

condition, the proposed protocol has a prelearning phase to 378
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FIGURE 1. The protocol overview of PSOstreaming: a requester vehicle receives video streaming data through the data forwarding path from a Global
PSO member and Local PSO members in the section where it locates during moving on its trajectory.

analyze the overall topology status with AP conditions,379

to determine the best particle swarm optimization path. The380

proposed scheme aims to support dynamic topology changes381

under real-life road conditions. The AP status analysis pro-382

cess is activated only once before the path selection. The383

aforementioned challenging issues occur with time flows,384

owing to the large amount of multimedia data and load385

balancing. However, the proposed protocol has a PSO pre-386

learning phase to support real-time changes in the AP status387

in terms of bandwidth, energy consumption, and number of388

subscribers. As a result of the prelearning phases, all APs in389

the topology share their conditions and information for data390

forwarding. Consequently, this leads tomaking the path to the391

user vehicle and dealing with the unsuspected changes on the392

roads easier. Before the scenario, a numerical integration of393

all communicationAPs is required to reduce the overall delay.394

Each AP maintains an updated status value called the particle395

swarm quality (PSQ), based on a connection performance396

test with neighboring APs from the pre-learning phase. The397

connection performance test is an activated-robustness PSO398

algorithm with its neighbor.399

Figure 1 illustrates the overview of the PSOstreaming400

using the situation on the road with two sectors. The first401

process of the proposed protocol is finding the requester402

vehicle and the request content data in the topology. The403

request packet has been generated from the requester vehicle404

to the nearest AP on the topology. Then, the request packet 405

is forwarded to the global PSO member already selected for 406

the video streaming service. The response packet is sent back 407

to the first requester vehicle using the same path the request 408

packet used. The first request packet has the information of 409

the vehicle and the request content data identification, which 410

uses for searching from the backbone server for the video 411

streaming service. 412

The proposed protocol can be divided into PSQ measure- 413

ment, PSO group decision, 3D vectormobility prediction, and 414

link connection with the delivery process. In the PSQ mea- 415

surement phase, the PSQ value is estimated, which unifies 416

the resource status and availability of the APs in all topology 417

areas. Furthermore, using PSO, the proposed protocol indi- 418

cates how to maintain the real-time data of the APs. In the 419

PSO group decision phase, every AP gets its own invested 420

roles following the basic concept of PSO. The roles comprise 421

global and local PSOs. In the 3D vector mobility prediction 422

phase, the proposed protocol employs a short-term mobil- 423

ity prediction model to manage the unsuspected mobility 424

changes of the vehicles. This mobility prediction compen- 425

sates for the defect of a long-term mobility prediction model 426

based on the trajectory of the vehicles. In the link connection 427

with the delivery process, a one-hop link is connected along 428

with the selected end node and requested vehicle. It utilizes 429

the 3D vector mobility prediction algorithm for a seamless 430
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link connection between the last and flowing link connec-431

tion times of the PSO groups and request vehicles. Thus,432

the proposed protocol conducts the aforementioned phase433

in sequence, to provide a high-packet data content service434

through communication between the requested vehicle and435

PSO group members.436

B. PARTICLE SWARM QUALITY (PSQ) INFORMATION437

In previous studies, a timeline was used. A recent study [23]438

considered live-streaming services with extensivemultimedia439

data andmobility support for vehicles. However, other studies440

on existing node informationmeasurements are unsuitable for441

live video streaming services because of the low reflection442

rate of real-time node scenarios. Real-time resource availabil-443

ity information is crucial for live multimedia streaming sup-444

port, to estimate the optimal forwarding path to a requested445

vehicle with high QoS, QoE, and load balancing. The PSQ446

score is an indicator of the network efficiency of the APs447

based on the PSO algorithm, which affects the user QoS448

and QoE of the overall topology. However, previous node449

information measurements primarily measure AP availabil-450

ity in statistical circumstances. Therefore, it is difficult to451

continuously measure the change in the capability of APs in452

a live vehicle movement situation where mobility changes453

continuously. The proposed protocol provides a solution to454

the challenges of the pre-learning process of PSO. In the pre-455

learning process, the selected global PSO members discover456

paths to each location and share the resource information of457

their local PSO members. When the user vehicle requests458

multimedia data, global PSO members compute adaptive459

PSQ scores depending on the requested geographical location460

of the vehicle using pre-learning data. The equation for the461

PSQ score measurement is as follows:462

Unet =
B

NUser
(1)463

PSQscore =
1√

1
N

∑N
k=1 (yk − ykd )

2
∗ (H (1− E)

1
Unet

)464

(2)465

In the equation 1 and 2, where yk denotes the output corre-466

sponding to the kth particle input, Ykd is the desired particle467

output of the k-th sample, and N is the number of pre-468

learning samples. H represents the performance of a node469

in the case of hardware, and it ranges from 1 – 10 based on470

the response time and hardware availability measurements.471

A single-packet transmission test can calculate the hardware472

score in the communication range of the destination vehicle473

without any obstacles. B is the bandwidth of the AP, and474

bandwidth usage is calculated by the number NUsers of users475

that connect the AP to receive video chunks. E represents476

the error rates due to the geographic features and network477

topology of the node. UNet represents the real-time network478

usage. The interaction of the network topology with neigh-479

bors, traffic information, and source data size defines the480

real-time network usage. Based on these factors, the PSQ 481

score can calculated using the following equation. 482

C. PSO PRE-LEARNING 483

In standard PSO, diverse particles distributed in the field 484

are gathered in groups around the best particles as the iter- 485

ation progresses. The particle swarm optimization algorithm 486

assumes that a group of animals searches for their goals, such 487

as food and destinations. However, not all animals in a group 488

ensure their distance and location from the goal because 489

they are unaware of the specific coordinates or geographical 490

locations of the goal. The fastest way to find a goal is to search 491

for the area around the animals closest to the goal. In PSO, 492

each particle has a direction for optimal particles and searches 493

for the communication area to determine the best particles. 494

In the learning phase, APs are the particles in the particle 495

swarm optimization algorithm. 496

Moreover, in the proposed protocol, the topology is divided 497

into several sectors to distinguish the area and choose a global 498

PSO member in the sector. APs compute their PSQ score 499

and share the score with their neighbors to determine the 500

best global PSO member in the sector. A group of n APs is 501

broadcast in a divided sector-search space. Each AP in the 502

search process considers its search history and the best score 503

within the group of other APs, and position changes are based 504

on this. The position of the Aps, score, and location of the 505

best AP changes according to the following equation in the 506

standard PSO algorithm: 507

Si(k + 1) = ωSi(k)+ cirand()(Pi − Xi(k)) 508

+ c2rand()(Pg − Xi(k)) (3) 509

Xi(k + 1) = Xi(k)+ Si(k + 1) (4) 510

In the equation 3 and 4, where Xi is the position vector of 511

the i-th AP and Si is the PSQ score of the AP. Consider Pi as 512

the best position of the i-th AP during its search process in 513

the communication range, and Pg as the position of the best 514

global PSO member during the current search in the sector. 515

ω determines the current communication speed of the AP to 516

its neighbors. c1 and c2 are learning factors that make the 517

AP have the process of self-summary and learning to the best 518

of the sector, and determine the location of the best position 519

of the global PSO member in the sector. rand() is a random 520

number distributed within [0,1]. The communication speed of 521

the AP is limited to the maximum range Smax . 522

DN =
1

1+ E(N )
(5) 523

E(N ) =
1
N

Score∑
j=1

Ej(N ) (6) 524

Ej(N ) =

N∑
i=1

−pijlogpij (7) 525

In the equations 5, 6, and 7, pij is the probability that the 526

jth bit is sign I in N APs. E(N ) denotes the average entropy 527
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FIGURE 2. 3D vector mobility prediction architecture.

of the sector. Ej(N ) is the entropy of N APs in the jth bit.528

DN represents AP density, which is the resource strength of529

the sector, DN ∈ (0,1). According to the computation of the530

resource strength of the sector, when DN = 1, the sector that531

services the video data streaming has qualified QoS and QoE532

for the user vehicle.533

D. GLOBAL PSO GROUP DECISION534

PSO prelearning is performed before a request event occurs.535

Sectors are selected in the pre-learning phase, and. one of536

the APs located in the optimal regional location in the sector537

promotes the global PSO member. The service district is538

divided into several sectors depending on the void-area range539

and number of APs and user vehicles. Global PSO members540

are selected according to the optimal regional location among541

the APs in the topology. The optimal regional location is542

where global PSO members are located. Each global PSO543

member is one of the APs in the optimal regional location,544

covering each sector within the communication range, and545

is connected to the backbone content network. Furthermore,546

the selected APs in each sector communicate to share the547

information collected from the sector. When an event occurs,548

they receive content data from the backbone network for549

streaming services.550

E. 3-DIMENSION VECTOR MOBILITY PREDICTION551

The 3D vector algorithm in the proposed protocol predicts552

vehicle mobility. Using the localization device in the vehicle,553

such as GPS, the proposed protocol indicates the vehicle’s554

location at time t+1, utilizing the vehicle’s information at555

times t-1 and t. Figure 2 shows the 3D vector mobility predic-556

tion architecture. The role of 3D vector mobility prediction557

is to predict the next 10 minutes mobility patterns from the558

vehicle’s trajectory vector direction information in the past559

5 minutes. To solve the prediction problem of the moving560

vehicle in the PSO streaming, the main factors of the archi-561

tecture are explained in the following equations.562

NP
t = (xt , yt , vxt , v

y
t ) (8)563

vxt = vt cos θt , v
y
t = vt sin θt (9)564

OPt = (1x,1y,1vx ,1vy) (10)565

L i =
10∑
t=5

∣∣∣N i
t+1 − N̂

i
t+1

∣∣∣ (11) 566

NP
t represents the mobility prediction results from the 567

equation 8. Where xt denotes the vehicle’s latitude when the 568

time t, where yt denotes the vehicle’s longitude when the time 569

t . vxt denotes the vector prediction factor that gives the loca- 570

tion information for the moving vehicle. OPt represents the 571

position changes of the moving vehicle due to the vector 572

position changes in time t . Where L i denotes next 10 min- 573

utes location information prediction results using previous 574

5 minutes vector direction information from the mobility pre- 575

diction architecture. Using the PSO optimization algorithm, 576

the PSOstreaming minimize the change value θ for better 577

performance in delay and data loss. 578

Using the equations 9, 10, and 11, the proposed protocol 579

can predict the mobility of vehicles in the topology in a short 580

time. The predicted data of all vehicles are then forwarded to 581

the AP in the communication range; hence, the AP collects 582

and manages mobility data from all vehicles within its range. 583

All mobility information of the vehicles in the sector is super- 584

intended in real time because the APs containing the vehicle’s 585

mobility information forward the information to global PSO 586

members. 587

F. CONTENT REQUEST 588

When a live streaming service is requested, the first process 589

is to choose a local PSO member, where the AP has the 590

highest PSQ score in the requested vehicle’s communication 591

range. The selected AP then forwards the requested packet 592

to the global PSO member in its sector. The global PSO 593

member downloads the requested content and determines 594

the optimal path to the local PSO member connecting the 595

requested vehicle, using pre-learning phase information. The 596

optimal path to the first local PSO member follows the PSQ 597

score to reach its destination. From the pre-learning data by 598

particle swarm optimization, the global PSO member recog- 599

nizes the PSQ scores of every AP in the topology within the 600

communication range. Following the direction of the route 601

that requested the used packet, the global PSO member sets 602

the discovery route table to the first local PSO member using 603

the pre-learning topology information. The requested content 604

data are forwarded based on the calculated path to the local 605

PSO member, and mobility support according to the user 606

vehicle’s mobility is described in the following local PSO 607

group decision. 608

G. LOCAL PSO GROUP DECISION 609

Figure 3 shows the operation of local PSO members in a 610

section. After the Global PSO members have selected in the 611

sectors, the Local PSO selection algorithm is processed to 612

help the streaming data forward to the requested vehicle. 613

The local PSO member candidates are the random AP in the 614

sector with a high PSQ score to the requested vehicle to serve 615

the high QoS and QoE in the streaming services. The first 616

local PSO member is selected, and the mobility information 617
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FIGURE 3. The operation of local PSO members in a section: a requester
vehicle receives video streaming data from the local PSO member with
which it connects during moving in the section.

of the vehicle is calculated using a three-dimensional vector618

algorithm to predict the mobility of the user vehicle. The619

first local PSO member estimates the following t+1 location620

of the vehicle using a prediction algorithm. If the first local621

PSO member repeats the process, then the requested vehi-622

cle eventually reaches the end of its communication range.623

Therefore, the first local PSO member initiates a search for624

other local PSO members to create a group that contains625

the live-streaming service. The following local PSO mem-626

ber candidates must satisfy several conditions: overlapping627

the communication range with the first local PSO member,628

positioning on the predicted route of the requested vehicle,629

and meeting with minimum communication time to forward630

content data. Theminimum communication time is calculated631

using the link connection time of the requested vehicle, data632

transmission speed, and resource-efficient factor α, depend-633

ing on the PSQ. The equation for minimum communication634

time is as follows: According to these conditions, the first635

local PSO member prioritizes the following local PSO mem-636

ber candidates: the highest priority member is the next local637

PSO member, which contains the link connection from the638

first local PSOmember and receives the content data from the639

route used by the first PSO member. The mentioned process640

for searching the local PSO member is repeated until the641

transmission to the requested vehicle ends.642

H. GLOBAL PSO HANDOVER643

As shown in Fig. 1, when the requested vehicle escapes644

from the first sector where the vehicle is located initially, the645

proposed protocol initiates the handover process to the other 646

global PSO member which belongs to the following sector 647

where the vehicle is located. The handover process begins 648

when the local PSO member recognizes that the sector of 649

the next local PSO member does not match. The previous 650

local PSO member connects the link to the next local PSO 651

member in the next sector and completes the received content 652

data from the global PSO member. After the content data 653

are forwarded to the next sector, the new local PSO member 654

will be the first local PSO member in the next sector. The 655

new member sends a packet that includes the progress of the 656

content file transmission and data request of a new global 657

PSO member. The new global PSO member receives the 658

requested packet, then forwards the content data using the 659

PSQ score and follows the local PSO decision process. 660

IV. PERFORMANCE EVALUATION 661

In this section, we experiment with the proposed protocol 662

in various simulation environments and analyze the per- 663

formance of PSO streaming, compared with different SI 664

protocols [38], [39], [40] and the previous streaming proto- 665

col [23]. BSOGR [39] has represented Bee Swarm Optimiza- 666

tion in VANETs using a fuzzy algorithm for data forwarding. 667

PSOR [38] has described Particle Swarm Optimization in 668

VANETs using an opportunistic routing algorithm for data 669

forwarding. AQRV [40] has represented the Ant Colony 670

Optimization algorithm in VANET using adaptive QoS-based 671

routing. The comparison protocols for performance evalu- 672

ation are for VANETs with single data transmission. The 673

recent works of the video streaming service using Swarm 674

Intelligence in VANETs have not been considered due to 675

the computing resource problem in the previous. However, 676

the network devices in the vehicle and the access points 677

get improved enough to compute the swarm intelligence 678

protocols for optimization recently. This paper proves how 679

properly the proposed protocol shows better results in video 680

streaming services using the Swarm intelligence called PSO 681

compared with other SI protocols with the previous video 682

streaming services. To better explain the results of the pro- 683

posed and compare protocols, we assume that the SI pro- 684

tocols have a pre-learning task to recognize the topology 685

information, such as the number of vehicles in the topology 686

the number of intersections in the map times. We set this 687

assumption because the SI protocols require time to predict 688

the random mobility of vehicles in the topology to develop 689

their algorithms. Otherwise, CLONE does not have time for 690

pre-learning because it has no SI algorithms. 691

A. SIMULATION PARAMETERS 692

In our simulation experiments, the 802.11p standard for 693

ad hoc network QoS was derived. Network Simulator 3 694

(NS-3) was utilized to generate vehicle mobility, geograph- 695

ical information, and topology information. The simulation 696

area was set to 3000 m × 3000 m, comprising 32 intersec- 697

tions and 27 one-lane road segments. The maximum num- 698

ber of vehicles in the topology was 100, and the maximum 699
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TABLE 1. Simulation parameters.

AP number was 200, where the vehicles moved randomly700

at speeds between 30 km/h and 70 km/h. Vehicle density701

is defined as 30 – 70 percent of the maximum number of702

vehicles in the topology. We used a random mobility model703

combined with the Manhattan mobility model for vehicle704

mobility in the experiment. To obtain more realistic results705

from the experiment, we employed three different video res-706

olution, 480p, 720p, and 1080p. Each video resolution had a707

different file size, but counted the same frames per second708

(30Fps). The overall simulation time without pre-learning709

was 600s. We ignored the delay in the topology setting time710

for the overall delay estimation. We repeated each simulation711

30 times to obtain the average data from the experimental712

results. The remaining simulation parameters are presented713

in Table 1.714

B. QoS PARAMETERS715

QoS is a video content quality measurement based on716

user experience. QoS parameters can be categorized as717

opportunities to provide high-performance video-streaming718

services. To maximize the QoS experienced by the user,719

several parameters—bandwidth media, control of jitter and720

controlled period, and decreased packet loss—must be con-721

sidered and tuned. In our simulations, end-to-end delay and722

packet delivery ratios based on the jitter and packet loss723

results while forwarding the video content data were con-724

sidered as QoS parameters. As aforementioned about QoE,725

if video streaming does not consider QoS in packet for-726

warding, the protocol will encounter crucial problems in the727

transfer and routing process of voice and video quality.728

C. QoE PARAMETERS729

The perceived video quality is measured using two commonly730

used QoE parameters: MOS and peak signal-to-noise ratio731

(PSNR). PSNR is the standard metric for measuring objective732

video quality. This parameter is expressed as a function of the733

mean standard error between the original and received video734

frames. If a video frame experiences either transmission or735

overdue loss, it is considered to be dropped and concealed736

FIGURE 4. Average packet delivery ratio for simulation time.

by copying the payload from the last received frame before 737

it. The metric SSIM is utilized as an image/video metric to 738

measure the received frame quality based on its structural, 739

luminance, and contrast similarity. SSIM, measured using 740

MSU tools, improves the MOS and PSNR metrics by reveal- 741

ing the perceived quality of the received video sequences. The 742

SSIM differs from the PSNR because it approximates struc- 743

tural distortion, instead of pixel-by-pixel errors, to evaluate 744

useful information for the human eye. 745

D. SIMULATION RESULTS 746

Figure 4 illustrates the Average Packet Delivery Ratio 747

(APDR) in overall simulation time. During the overall sim- 748

ulation time in 600s with the 720p packet sending rate, the 749

CLONE streaming protocol and other SI protocols indicate 750

different result patterns in the graph. The graph’s average 751

data indicate different SI protocol results during the 30 dif- 752

ferent random positions of the APs and vehicles from the 753

simulation. As the simulation maintains, each SI protocol 754

shows other weak points. AQRV uses ant colony optimization 755

(ACO), which only uses the first searched path to the user 756

vehicle for transmission until the path has a lower level than 757

the other path they find. Although the first path is much 758

longer than the different paths they find later, ant colony 759

optimization in root selection of the video streaming service 760

only chooses the first path for transmission and initiates the 761

data forwarding. If the first path has a low energy level than 762

the other path they find, they move the forwarding path to 763

another path. AQRV is based on the ACO method in SI. 764

Therefore, AQRV takes several hops in data forwarding for 765

video streaming because the large packet size of the data in 766

the transmission costs a lot. Hence, AQRV has to keep chang- 767

ing the path to the user vehicle. It leads to multiple hops and 768

gives a disadvantage to PDR. BSOGR indicates the lowest 769

result in PDR because it does not consider the used path in the 770

data forwarding. BSOGR abandons the used path to the user 771

vehicle when the energy level gets lower, and never considers 772

the used path even though it recovers from the low energy 773

level. Hence, BSOGR cannot choose diverse options for the 774
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FIGURE 5. Average packet delivery ratio for communication range.

forwarding path when the time increases. PSOR adopts a par-775

ticle swarm optimization algorithm as the proposed protocol.776

However, it does not consider a large packet transmission like777

the video streaming service. Although PSOR discovers the778

same forwarding path as the proposed protocol, the PSOR779

has no mobility support for moving vehicles. There is no780

suitable transmission way for video streaming data delivery781

to the user vehicle. The aforementioned challenge leads low782

APDR from the results. CLONE supports the video streaming783

service with mobility support and caching mechanism for784

the user vehicle to discover the path. However, CLONE has785

long-term mobility support based on the trajectory of the786

vehicle. In a randommobility scenario in the simulation back-787

ground, unpredictable mobility of the vehicle that is not in the788

trajectory information leads to a high packet loss, affecting789

the decrement of delivery ratio. However, the proposed pro-790

tocol has a short-term mobility model called the 3D vector791

mobility support, which handles the unpredictable behavior792

of the vehicle, and PSQ searching phase supports the load793

balancing no matter how the time goes. Over the simulation,794

the proposed protocol keeps changing the low energy AP to795

the high energy AP for QoS and QoE based on the PSQ score.796

The video streaming data forwarding consumes high energy797

of the AP in the topology. The comparison protocols in the798

simulation do not have the adaptive data forwarding path799

and AP selection algorithm due to the energy consumption800

over time. Therefore, the mentioned mechanism with particle801

swarm optimization in the proposed protocol leads to a high802

PDR no matter the simulation time.803

Figure 5 illustrates the average packet delivery ratio804

depending on the communication range when the density of805

the AP and vehicle change. As observed in the mechanism806

of the three SI protocols and CLONE, the BSOGR illustrates807

the lowest APDR graph from the figure because it does not808

make use of the path to the user vehicle once used, even809

though the used path gets recovered. When the communi-810

cation range gets increased, BSOGR has a task to broadcast811

and search several paths to the user vehicle. Then the used812

path is abandoned. Eventually, the short path cannot be used813

FIGURE 6. Average delay for communication range.

because the short path to the user vehicle is abandoned. 814

AQRV and PSOR illustrate a similar graph because the two 815

mechanisms derive similar topology searching techniques. 816

However, CLONE indicates a better performance than other 817

SI protocols in the 300 m communication range, but the 818

results are reserved after the 400 m communication range. 819

The reasons for the results can be explained as two reasons: 820

If the density in the communication range gets low, CLONE 821

requires several hops to forward the streaming data to the user 822

vehicle, and it is difficult to determine the excellent condition 823

of nodes in low density and takes much time to search and 824

get a response about the near neighbor information. The 825

proposed protocol can handle the mentioned weak points 826

for the other protocols. PSQ searching technique helps to 827

determine high-quality APs for streaming forwarding to the 828

user vehicle. Even in a low density and large communication 829

range, the proposed protocol can realize the minimum time 830

for video streaming transmission owing to the pre-learning 831

of the topology information. Moreover, the other three SI 832

protocols do not have any short-term mobility support to 833

react to the mobility changes on the roads. Therefore, other 834

SI protocols have trouble with supporting the unexpected 835

mobility changes in the communication. 836

Figure 6 illustrates the average delay depending on com- 837

munication range change and density changes. The proposed 838

protocol indicates the optimal delay in the graph. Although 839

the three SI protocols had pre-learning time to figure out 840

the topology information, the three SI protocols do not have 841

a large data transmission way for video streaming services. 842

The mentioned SI protocols have trouble with supporting 843

video streaming services from moving vehicles. Only sin- 844

gle packet techniques are included in the protocols. These 845

challenges lead to high packet failure, thereby increasing 846

processing recovery mode. CLONE has trouble handling the 847

short-term mobility changes owing to the random mobility 848

that is not based on the vehicle’s trajectory. The vehicles 849

on real-road keep altering the direction and speed while in 850

motion. Even if they have trajectory information, the calcu- 851

lated direction sometimes has to be changed by unpredictable 852
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FIGURE 7. Average delivery ratio for average speed of the vehicle.

factors depending on the road circumstances. CLONE uses853

several resources to recreate CLONE APs, link connection,854

and the path to the user vehicle. It leads to a high average855

delay. However, the proposed protocol has short-term mobil-856

ity support and global and local members to help recreate857

the fixed path to the user vehicle. It decreases the delay of858

the overall protocol in diverse circumstances in density and859

communication range.860

Figure 7 illustrates the ADR depending on the average861

speed of the vehicles from 30 km/h to 70 km/h. The exper-862

iments of the graph were simulated 30 times in every five863

increments of the vehicle speed with a random density score.864

As the graph illustrates, the SI protocols without video865

streaming service and mobility of the vehicle supports, the866

average delivery ratio results are not good enough to service867

the video streaming to the user vehicle. It is difficult to handle868

the large video packet in a real-time streaming service with869

a single packet forwarding mechanism. Moreover, searching870

and linking the moving vehicle in a live video streaming871

service is necessary for tracking and link connectionmethods.872

The proposed protocol uses 3D vector mobility support to873

track the user vehicle moving on the road. Moreover, the874

data-link connection mechanism to moving vehicles is also875

utilized in the proposed protocol. Therefore, the proposed876

protocol indicates better results in vehicle speed and road877

density changes.878

Figure 8 illustrates the average delay depending on the879

average speed of the vehicles on the road. As mentioned880

in the description of Figure 4, BSOGR is not suitable for881

video streaming services even though it has an SI technique882

for data packet forwarding to reduce the number of fuzzy883

rules. The other two SI protocols, AQRV and PSOR indicate884

similar results. The two protocols estimate the vehicle’s route885

by searching the intersection that the user vehicle passed886

through. Therefore, when the vehicle is moving and receiv-887

ing the large video packet, the compared SI protocols lose888

the video streaming packets from tracking the user vehi-889

cle. It leads to high re-transmission requests to the server890

and delays more in finding the moving vehicle in which891

FIGURE 8. Average delay for average speed of the vehicle.

FIGURE 9. Packet delivery ratio for the number of video streams.

intersection the user vehicle is located. CLONE has link 892

connection, mobility support, and caching process to support 893

the video streaming service. Therefore, the results indicate 894

a better performance than other SI protocols. However, the 895

proposed protocol utilizes the 3D vector mobility support. 896

Therefore, the proposed protocol does not need a re-searching 897

message to find the user vehicle moving on the road. The pro- 898

posed protocol contains the link with the user vehicle, owing 899

to the PSQ information with PSO data from the pre-learning 900

phase. It takes a low failure probability to link the connection 901

with the user vehicle. Hence, the proposed protocol indicates 902

the best results in average delay time. 903

Figure 9 illustrates the packet delivery ratio depending 904

on the number of video streams. When the user requests 905

the video streaming services at once to the same AP, the 906

availability of the AP that requested the service from several 907

users decreases. A live video streaming service is required 908

to have a load balancing mechanism to handle the overload 909

circumstance to prevent the issue. BSOGR shows the low 910

level of the packet delivery ratio that it abandons the used path 911

if the energy level gets low. Moreover, there is no load bal- 912

ancing mechanism in the protocol. AQRV and PSOR also do 913
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FIGURE 10. PSNR for image frames.

not support the load balancing for the topology energy level.914

CLONE has CNQI metric to search the topology information915

before the transmission starts, and during the transmission,916

CLONE updates the topology information using the CNQI917

metric. It supports load balancing and handles the overload918

circumstances during the video streaming data transmission.919

However, the CNQI metric leads to high delay than the pro-920

posed PSQ mechanism because of the pre-learning. In the921

pre-learning phase, the proposed protocol calculates the PSQ922

score of the APs in the topology and estimates the optimal923

path to the destination that will be chosen. Therefore, PSQ924

minimizes the delay in searching the other path or other AP925

with better conditions than the used one. However, CLONE926

has to broadcast the neighbor nodes nearby to determine the927

other node to cooperate with the video streaming service.928

Figure 10 illustrates the PSNR depending on the forward-929

ing image frames. PSNR is the standard metric for mea-930

suring objective video quality, and is expressed as a func-931

tion of the mean standard error between the original and932

received video frames. Image frame increment means an933

increment of the file size for the transmission. If the file934

size increases, the resource consumption of the APs that935

participate in the data transmission increases as well. It causes936

the QoS and QoE decrement in video streaming transmission.937

In the figure 10, the data indicate the same order of compared938

protocols with PSOstreaming in APDR results. BSOGR,939

PSOR, and AQRV are not suitable protocols for the video940

streaming service; however, CLONE and PSOstreaming have941

processes for video streaming services in data transmission.942

Therefore the graph illustrates the results of the performance.943

Although BSOGR, PSOR, and AQRV have the SI algorithm944

for the optimal path to the destination, diverse processes945

to help the video streaming transmission, such as mobility946

support, packet distribution, and link connection algorithm,947

PSOstreaming indicates better results than CLONE owing948

to the mobility prediction algorithm difference. Long-term949

mobility prediction of CLONE takes more hop counts and950

delay than the short-term mobility prediction in PSOstream-951

ing, and this leads a better PSNR result.952

FIGURE 11. MOS in mobility depending on the video file resolution.

FIGURE 12. SSIM in mobility depending on the video file resolution.

Figure 11 and 12 illustrate the MOS and SSIM results 953

depending on the video file size in transmission. MOS and 954

SSIM results indicate the QoE experience of users. SSIM 955

results indicate the similarity of visual image quality based 956

on the QoE with human eyes. Moreover, SSIM does not 957

consider a numeric error between the original and transferred 958

video files. MOS values have been graded based on user 959

experienced quality. MOS has been measured by the ‘‘MSU 960

Video Quality Measurement Tool.’’ Both MOS and SSIM 961

results mean high user QoE from the human eyes. In addition, 962

it is affected by the mobility prediction method of the video 963

streaming services. BSOGR, PSOR, and AQRV optimize the 964

route to the destination for video streaming transmission, but 965

do not support the mobility of the user vehicle. Therefore, 966

the three compared protocols indicate lower QoE results than 967

CLONE and PSOstreaming. CLONE has a long-term mobil- 968

ity prediction algorithm based on the trajectory of the vehicle. 969

The mobility data based on the vehicle’s trajectory may not 970

react to the vehicle’s unexpected mobility changes; therefore, 971

the unexpected mobility changes lead to the re-transmission 972

of the streaming video file. Because of the re-transmission, 973

the user QoE gets decreased, and it is critical for the video 974

streaming service. PSO streaming has a 3D vector mobility 975
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prediction algorithm to correspond to the autonomy of the976

user vehicle. This short-term prediction algorithm can react977

to any unexpected mobility change circumstances in video978

streaming transmission. Therefore, PSOstreaming indicates979

better results in terms ofQoE factors, such asMOS and SSIM.980

V. CONCLUSION981

In this study, we proposed PSOstreaming, a video stream-982

ing service scheme based on a particle swarm optimization983

algorithm. The proposed protocol has a topology analysis984

algorithm called PSQ, which is based on PSO. The proposed985

scheme searched for an optimal path depending on the loca-986

tion and provided the best route to the destination. Sectors987

were selected as a result of the topology analysis, and one of988

the APs located in the optimal regional location in the sector989

was proposed to the global PSOmember. Following the selec-990

tion of global PSO members, PSOstreaming selected other991

local PSO members who participated in video data streaming992

transmission. The proposed adopted a 3D vector mobility993

prediction algorithm, which provided short-term mobility994

prediction, making PSOstreaming unconcerned about the tra-995

jectory information of the vehicle and supported the auton-996

omy and free will of the user drivers. The route using global997

PSO members and local PSO members for the user vehicle998

is always changeable because load balancing is maintained999

for user QoE and QoS. Because of the PSO algorithms in1000

gathering the topology information, global PSO members,1001

and local PSO member selection, the load balancing for APs1002

in the topology indicated better results than other compared1003

protocols. PSOstreaming improved the topology informa-1004

tion analysis algorithm compared with other SI protocols,1005

AQRV, BSOGR, and PSOR. Therefore, PSOstreaming exhib-1006

ited 20% better results in the overall experiments. Moreover,1007

compared with CLONE, PSOstreaming yielded better results1008

in mobility prediction using a 3D vector mobility prediction1009

algorithm. Hence, the simulation results indicated 5% to 10%1010

improvements compared with the other protocols.1011
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