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ABSTRACT Sparse Bayesian learning (SBL) has been extended to estimate acoustic channel impulse
responses (CIRs) at low frequencies, where matched filter (MF)-based CIR estimation suffers from low
resolution due to a limited frequency band. In this study, the extended SBL was developed to account
for nonuniform noise power in a signal model for the CIR via a formulation that considers inconsistent
noise and multiple measurements, which cannot be handled in the conventional SBL. The extended SBL is
applied to simulated and measured acoustic data and then compared with the MF and existing SBLs. With
the advancement in the schemes, the time resolution and denoising are enhanced; especially, the results of the
extended SBL on the simulated data show that it clearly distinguishes the two adjacent arrivals with moderate
errors in the estimated time delays. Additionally, as a result of applying it to the measured array data, the
extended SBL can achieve a high resolution in the CIR estimation, which retains assured arrivals with a
single measurement, while some arrivals are weakened by the insufficient measurement for the extended
SBL.

INDEX TERMS Acoustic channel impulse response, nonuniform noise distribution, sparse Bayesian
learning, time-delay estimation.

I. INTRODUCTION

When a wave travels in a medium, the useful information of
the medium between the source and receiver is embedded
in channel impulse responses (CIRs) and transfer functions
(TFs). Several applications, which include radar and sonar
systems, exploit the CIR (or TF) for target-range estimation
(time-delay estimation) and communication (channel param-
eter estimation) [1].

When a source waveform is known and its autocorrelation
is compressed, a matched filter (MF), which correlates the
source waveform with the received signal, is conventionally
used for the CIR estimation. The MF improves the time
resolution via the pulse compression and reduces noise that
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is uncorrelated with the source waveform, which is better for
identifying the arrivals that compose of the CIR [2]. However,
the time resolution is inversely proportional to the bandwidth
of the source waveform, which restricts the application of the
MF to high-frequency sources with broad bandwidths [3].
Compressive sensing (CS), which was expected to solve
an underdetermined linear system by imposing a sparsity
condition on the solution [4], [5], was used to improve the
CIR estimation [6]. Ekanadham et al. [7] solved the linear
system for CIRs using a modified CS, which is referred to
as continuous basis pursuit (CBP), where time-shifted source
waveforms are linearly combined to express the time-domain
signal. The CBP that interpolates the time-shifted source
waveforms by using the Taylor approximation or trigono-
metric spline outperforms the conventional CS which suffers
from a basis mismatch caused by the arrivals with time delays
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that do not belong to the time-shifted source waveforms.
Fyhn et al. [8] estimated the amplitudes and the time delays
of arrivals in the CIRs using a CS with polar interpolation,
which outperformed the CBP.

In underwater acoustics, the CS has been predominantly
applied to estimate the direction of arrivals (DOAs) from
underwater targets [9], [10], [11], [12], [13], [15], [15] and
was introduced in the underwater acoustic channel param-
eter estimation by several researchers [6], [16], [17], [18],
whereas the MF-based CIR estimation is a conventional
approach that was employed for active sonar systems [1], [2].
The sparse solutions in the CS literature help estimate the
parameters with super-resolution [12], [17], [19]. However,
manually determined hyperparameters in the schemes that are
associated with measurement noise are sensitive to sparsity.
They affect the performance of the schemes, which hinder
their practical applications.

Sparse Bayesian learning (SBL) has been introduced to
address the DOA or the channel parameter-estimation prob-
lem in underwater acoustics. The SBL was originally devised
for classification and regression in machine learning [20].
In the SBL framework, the probability models for unknowns
and measurement are derived using Bayesian inference with
hyperparameters that are related to noise and source variances
(or powers), which are automatically evaluated during the
iterative process to update the probability models and the
variances.

The SBL can be applied to determine a solution for a
linear system, which is similar to the CS. The SBL has
been primarily used for the DOA estimation in underwater
acoustics due to its well-established linear system that relates
DOAs with measurements along multiple sensors in an array.
Furthermore, a sparse solution that was obtained via the SBL.
provides a high-resolution DOA with suppressed noise [21],
[22], [23], [24], [25]. In the DOA estimation using the SBL,
the standard SBL has been extended for more accurate and
reliable evaluation of the DOAs using multiple measure-
ments, the interpolation between the discretized bases, and
complex noise models with different variances along the mea-
surements [21], [22], [23], [26], [27]. In the SBL-based DOA
estimation using multiple measurements, the common sup-
ports of the unknowns along multiple measurements (i.e., the
estimated DOAs) have been found due to the arrivals having
consistent directions over multiple measurements [23], [27].

An inherent limitation of the SBL-based scheme arises
from the discretized bases, which leads to a basis mismatch.
A signal representation via interpolation using adjacent bases
around the true arrival in the off-grid direction was adopted
to mitigate the basis-mismatch problem, and a mismatch
from the predefined bases was evaluated during the iterative
process in the SBL [21], [22]. Meanwhile, most studies that
used the SBL operated on the basic assumption of uniform
noise variance over the measurement. This assumption was
relaxed by Gerstoft et al. [26] with an approximated updating
rule for heteroscedastic noise, which enables the treatment of
nonuniform noise with the SBL [27].
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The CS has been previously used to estimate acoustic CIRs
by utilizing the sparse arrivals in acoustic channels [6], [12],
[16], [17], [19]. Meanwhile, the CS-based DOA estimations
were recently advanced by the SBL, which can find the
DOAs into sensor array without additional post-processing
[21], [22], [23], [24], [25], [26], [27]. To the best of our
knowledge, the SBL has not been used in estimating the CIRs.
Thus, in this study, to extract the CIRs from a measurement
(a signal emitted by a transducer, transmitted through the
ocean waveguide, and received by a hydrophone), the SBL
is adopted due to its properties that are exhibited in the DOA
estimation as well as free manual hyperparameters and the
properties of SBL are demonstrated in the CIR estimation.

A linear system for the CIR estimation is established by
expressing the frequency domain, which is the TF and the
candidate arrivals have distinct time delays. Note that noise
in the linear system is scaled by the source spectrum, which
results in nonuniform noise powers over the measurements
that are relative to the frequency response of the received sig-
nal. The conventional SBL should be modified to accommo-
date the nonuniform noise, which was attempted by several
researchers [26], [27], [28]. In the present study, a rigorous
mathematical expression that accounts for the nonuniform
noise is derived, and the associated updating rule is obtained,
which is different from the previous studies by using the
heuristic approach [26], [27] or considering only the real val-
ues and a single measurement [28]. Particularly, in [26] and
[27], the previously established stochastic likelihood function
was exploited, which provided an asymptotically efficient
estimate of noise. To the best of our knowledge, no studies
have been conducted on the SBL where the basic expres-
sions for noise are rigorously extended for nonuniform noise
to estimate the amplitudes and the time delays of arrivals
in the CIRs. In Section II, the linear system for the CIRs
is derived in the frequency domain using the definition of
the TF. The conventional SBL is extended to account for
the nonuniform noise powers in the linear system, which is
discussed in Section III. The novel SBL is examined in terms
of the time resolution enhancement and the noise reduction
with simulated and measured acoustic data, which are shown
in Sections IV and V, and the results are compared with the
results from the MF and the existing SBLs. To investigate the
performances of the conventional and the extended SBLs for
uniform and nonuniform noise cases, we performed numer-
ical experiments and discuss the validation regions of the
SBLs. Section VI summarizes the present study.

Il. UNDERWATER ACOUSTIC CHANNEL

IMPULSE RESPONSE

A. ACOUSTIC CHANNEL IMPULSE RESPONSE

USING AN MF

When underwater sound that is emitted from a source is
transmitted through the ocean, the signal that arrives at the
receiver contains multiple signals that pass through differ-
ent paths that arise from the waveguide from the interfaces
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(sea bottom and surface) and the scatterers (submerged
objects and fish schools). An impulse response of the acous-
tic channel (acoustic CIR) is approximated by assuming an
insignificant dispersion of acoustic waves during sound prop-
agation (particularly, the Doppler effect is ignored because
our attention is limited to the low frequency region), as fol-
lows [2], [6], [12], [16], [18], [19], [30]:

h =Y s -, M

where ay and t; are the amplitude and time delay of arrival,
respectively, and K is the number of (dominant) arrivals.
The received signal, y (¢), is represented by the convolution
between the source waveform s (¢) and the acoustic CIR % (t)
with ubiquitous noise n(t) as follows:

YO =Y as— )+ ). @)

A known source waveform is exploited to estimate the CIR
when operating an active sonar system, which uses a trans-
ducer and a receiver that have almost flat frequency responses
in the source bandwidth. By using the Fourier transform (FT),
(2) is denoted in the frequency domain as follows:

Y () =S (0) H (0) + N (), 3

where S (w), H (w),and Y (w) are the FTs of the source wave-
form, CIR, and received signal, respectively. For a received
signal without noise, the CIRs can be obtained via the inverse
FTof Y (w) /S (w). However, the CIR cannot be directly eval-
uated due to the ubiquitous noise, N (w). Alternatively, an MF
using cross-correlation between the source and the received
signals is applied to estimate the CIR. The MF exhibits
both advantages in regards to distinguishing the arrivals and
enhancing the SNR by exploiting the frequency band of the
source signal (pulse compression), whereas its performance is
degraded at low frequencies due to the utilization of a limited
frequency band.

B. ACOUSTIC CHANNEL ESTIMATION USING SBL

To overcome the limitation of the MF, an SBL applicable
to solve a linear system is used for a high-resolution CIR
estimation at low frequencies that uses its sparse solution. The

linear system in this study is derived with the approximation
of H (w) in (3) as follows [2], [6], [12], [16], [18], [19], [30]:

P @)=H @V @~ e 1N ). @

where ¥ (@) and N (w) are Y (w) /S (w) and N (o) /S (@),
respectively. For the approximation, the time delay in the
continuous domain is discretized with the grid of At, which
is equal to 1/f;, where f; is the sampling frequency and N At
the largest observation time of the received signal. When nAt
in (4) matches 7 in (1) with a sufficiently fine grid, the
corresponding amplitude x, is equivalent to ai; otherwise,
x, becomes zero. The number of non-zero elements is the
number of arrivals K. By arranging (4) according to the
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source frequency band, the linear system is established as
follows:

f/l e—ja)lA‘L’ e—jwlNA‘[ x|
Py o—jom At o—JomN AT Xy
N
+ . 5)
Ny

Equation (5) is rearranged by adopting the following vector
and matrix notation: y = Ax +n, where y, x, n, and A are the
measurement, unknown, noise, and transformation matrix,
respectively. It is worth noting that the signal model cannot
be in the form of a linear system without dividing S (w)
in (3), because the corresponding unknown that has S (w) x,,
as an element varies according to the equality conditions.
The measurement element IA/m and the noise element ﬁm are
Y (») and N () at the angular frequency w,,, respectively.
w1 and wyy correspond to the lowest and highest frequencies,
respectively, which are used for the SBL-based CIR estima-
tion and belong to the source frequency band. The number of
equations, M, is smaller than the number of unknowns, N. The
SBL is used to determine a solution of the underdetermined
linear system (i.e., the amplitudes and the time delays of
arrivals that constitute of the CIR).

In contrast, a linear system can be constructed in the time
domain, where the transformation matrix comprises of the
time-shifted source waveforms as its columns and M is equal
to N. In this study, the solution of the frequency domain linear
system is preferred because less equality conditions cause a
more refined CIR with a sparser solution by recovering less
meaningful arrivals than the given equality conditions.

Note that the noise powers in (5) (i.e., variances of ﬁm)
are inconsistent due to the fluctuating ocean noise spectrum
being scaled by the source spectrum [29], which violates the
assumption of constant noise power over the measurements in
the conventional SBL [20]. Therefore, the conventional SBL
should be modified to treat the nonuniform noise powers,
which is described in the following section. Hereafter, the
conventional and expanded SBL are referred to as uniform
noise SBL (UN-SBL) and nonuniform noise SBL (NN-SBL),
respectively.

Ill. SBL FOR NONUNIFORM NOISE POWER

An SBL was first introduced by Tipping [20] for classifica-
tion and regression in machine learning. It was later adopted
for high-resolution beamforming in underwater acoustics,
where noise powers over measurements (frequency domain
signals at sensors in array) are assumed to be constant, as in
the original paper, except for a few studies [26], [27], where
the formulations in the SBL were modified approximately to
treat the nonconstant noise. However, in this study, the SBL
is rigorously expanded by deriving mathematical expressions
for the probabilities in the SBL for inconsistent noise powers
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regarding complex value and multiple measurements. After-
wards, the results for the SBL using different approaches for
the nonconstant noise are compared with each other.

In the SBL framework, the unknown (x) and noise (n)
are treated as random vectors, which consist of independent
random variables, and they are assumed to follow a zero-
mean Gaussian distribution that has different variances (or
different powers), which are hidden variables inferred using
measurement (y). A linear system in the SBL is solved by
finding x, which maximizes the probability as follows [20]:

Xest = argmax p (xv Vs> Ynly)
X
= argmax p (x [y, Y5, ¥u) P (Ys: ¥u 1¥).  (6)
X

In this study, y, is a vector that comprises of the signal
powers along the time delays, and y,, is a vector that com-
prises of the noise powers along the frequencies that belong
to the source frequency band. Unlike the previous studies
[20], [21], [22], [23], a constant noise power in the UN-SBL
is replaced with vector y, in the NN-SBL to account for
the different noise variances over the source frequency band.
As displayed in the second line in (6), the estimation is con-
ducted in two phases. First, using a given measurement y, the
variances are obtained by maximizing p (y s Vnl y), which is
equivalent to maximizing p (y | 4. ¥,,) when y and y,, are
uniformly distributed, which is the situation in this study, and
there are no preferences for specific components in y; and y,,
[20]. The solution X, is then obtained with the maximum a
posteriori estimate of p (x |y, Vs, ¥ ,,) using the measurement
with the variances from the previous phase.

A. PROBABILITY MODELS FOR NN-SBL

The NN-SBL starts by deriving an analytic expression for the
posterior probability p (x |y, Vs, ¥ n) , which is denoted below
using Bayes’ theorem:

pIx,v,)p(xly,)
PO 1Ys va)

where p (y | x, y,,) is the likelihood function, and p (x | p) is
the prior function. Furthermore, p (y | ys, ¥ n) is the evidence
(marginal likelihood) that is used to evaluate the hidden vari-
ables of the variances.

The noise is an independent random variable that follows a
zero-mean circularly symmetric complex Gaussian distribu-
tion, so the likelihood function is expressed as follows using
the relation between the measurement and the noise, which is
based on (5):

Py vs va) = 7

pylx,y,) = M+
M [ =1 (y’l)m
oyl henE)
_ nM;lrnlexp{— v - A0T; 0 - An),
(®)
99014

where (v),, and (H denote the mth element and the conjugate
transpose (or Hermitian transpose) of vector v, respectively.
I',, is a diagonal matrix that results from the independent
noise making off-diagonal components zeros, and its diag-
onal components are y,, (i.e., I',= diag (yn)).

The prior corresponds to the distribution of the unknown
comprising independent random variables as follows:

1 Mo (x)?
= —exp —_
T[N nyzl (}’s)n { Zm:] (ys)n }

= - N1|rs| exp (—+'T;'x), ©)
where Ty is a diagonal matrix whose diagonal components
equal y, (i.e., I'y= diag (ys)). The components of x are acti-
vated when the corresponding components of y have non-
zero values. During the application of the SBL for solving the
linear system, y, appears sparsely, which is advantageous to
enhance the resolution and suppressing noise [21], [22], [23],
[26], [27].

The evidence can be derived using y and p,, with a linear
system. The Gaussian-distributed unknown and noise in the
linear system render the evidence normally distributed as
follows:

p(xlyy)

1
POy = rses (—7%). (o

The mean of y is equal to a zero vector because each mean of
the unknown and noise is the zero vector, (y) = A{x)+ (n) =
0. X, is calculated with the definition of the covariance matrix
as follows:

¥, = (Ax + m)(Ax + n)) = AT,AY +T,. (1)

Note that the nonuniform noise power leads to different forms
of the likelihood function and the evidence from them in the
UN-SBL, which subsequently result in a distinct posterior
probability.

By substituting (8)—(10) in (7), the posterior probability
that considers the inconsistent noise variances is derived
using the Woodbury matrix identity as follows:

1
N | Xy ]
xexp|— (v = ) 27 (v - ) .
(12)

pxIy. Vs ¥n) =

where X, = (T;! +AHF;1A)_1 and p, = T, ATT,ly.
As expected, the posterior probability follows a Gaussian
distribution, and its mean and covariance matrix are calcu-
lated using the estimated y¢ and p, with measurement y.
Xest 1S equivalent to p,, where the posterior probability is the
maximum.

B. ESTIMATE OF THE VARIANCES ys AND yp
As previously described, y and y, must be estimated to
obtain the solution via the SBL. The variances that best
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describe the given measurement are used for the solution, and
they are calculated as follows:

(s, Vn) = argmax p (yg, ¥, 1y)- (13)
Ys:¥n

P (Y5 ¥ |y) equals p (v | ¥, ¥) P (¥5) P (¥1)- When there
are no preferences over the signal and noise, which is the

situation in this study (i.e., both p (y,) and p (y,) follow a
uniform distribution) [20], (13) becomes the same problem
of finding y, and y,, to maximize p (y |ys, ¥ ,,) as follows:

(Vs Vn) = argmax p (y | ¥y, ¥)- (14)
Vs:Vn
Herein, the expectation-maximization (EM) algorithm is
applied to estimate y, and y,,, where x is treated as a latent
variable. The formulation for the EM-based estimation is as
follows [20], [21], [22]:

O (Y5 ¥u) = Exyyyy, (100 (v, X175, ¥u) }
= Exlyy,p, (00 (*1¥5) P 0IX,70) ). (15)

Equation (15) is equivalent to (14). The second line enables
the variances to be estimated separately, so the conditional
probabilities for x and y are used to evaluate y, and y,,
respectively.

The expectation of Inp (x|ys) in the perspective of the
posterior probability is stated as follows, which omits the
terms that are irrelevant to p:

O (v5) = —In|Ty| — T 'x)
—in Tyl = {1 (Bt )) a6)

where tr (M) is the trace of matrix M. y; is achieved by
determining the vector that corresponds to the maximum of
Qs () as follows:

(ys)n = (Zx)’m + |(I'l’x)n

M,,, is the nth diagonal component of the matrix M. Using
(17), y (or T'y) is computed element-wise.

The expectation of Inp (ylx, yn) from the perspective of the
posterior probability is denoted as follows, which the terms
relevant to y,, are retained:

0u (yn) = —In |yl — (v — AT, (y — Ax))
= —In Tyl — (y—Ape)" T, (v — Any)
—tr ():xAHr;lA). (18)

? 17)

The extremum of the function Q, (y,) is obtained as
follows:

(ad = |0 = Aws), [+ AnZeAl. (19)

where M,,,. is mth row of matrix M. The noise variance (y ,,)m
is the noise power in the mth measurement, and it comprises
of two terms. The first is about the difference between the
mth measurement and the associated estimation, and the other
is related to the remnant weighted by the mth row of the
transformation matrix. When the noise powers have the same
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value as in the UN-SBL, the constant noise power y, is
expressed as follows:

0 = ]li/l {”y — Ap |l (A):xAH>}. (20)

|Ivll, is the Euclidean norm of the vector v. This is the
average of the noise powers over the measurement (i.e.,
Vn = Z%:l (yn)m /M) and it equals the previous result
((22) in Ref. [21] for a single measurement). The noise
power was previously estimated with a representative value as
the average, whereas, the power was expressed individually
according to the measurement component in this study. When
the variation of the noise powers is noticeable, (19) should
accommodate the probabilities of y, which was considered in
this study. This is achieved at the cost of the increased number
of variables (the noise variances), and it is proportional to the
equality conditions in (5).

To estimate y, and p,, the posterior probability
p (x1y. vg. ¥n) (or pp and Xy) is required, and it is expressed
using y, and p, with the measurement, which they are
entangled to each other. Thus, the first step in the EM
algorithm is to generate p (x |y, Vs y,,) with initial small
values y, and p, (initial guesses for y, and y,), which
allows X, to be non-singular. In the next step, using pu,
and X, in the posterior probability, ¥, and p,, are computed
using (17) and (19), respectively, which are used to update
the posterior probability. The expectation and maximization
steps are iterated until convergence, and they correspond to
the first and second terms in the second line of (6). The final
s and y, are used to evaluate x5, which is equivalent to the
final p.

C. EXTENSION OF NN-SBL FOR MULTIPLE
MEASUREMENTS

Unlike the previous studies [20], [21], [22], [23], the noise
power is estimated using the corresponding element in the
measurement vector, which reduces the performance of the
NN-SBL at low SNRs. To alleviate this problem, multiple
measurements can be exploited when the underwater sounds
are repeatedly emitted from a transducer for a relatively short
duration or in a stationary ocean environment.

The NN-SBL that uses a single measurement has been
expanded to exploit the common time delays of arrivals over
the multiple measurements [22], [23]. The first step for the
expansion is to modify the posterior probability to accommo-
date the multiple measurements as follows:

p(YIX,y.)p (X1¥y)
p(Y1¥s.7n)

p(XIY.p0v,) = , @

where the measurement matrix Y comprises of the mea-
surement vectors as its columns and an unknown matrix
X comprises of the corresponding unknown vectors
Y =[y.....y ] and X = [xy, ..., x.]. L is the number of
measurements that are used for the estimation. The random
vectors of x; and y; are assumed to be independent of each
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other, and the likelihood function, which is the prior proba-
bility, and evidence for multiple measurements can then be
stated as follows:

L 1
p(YIXyn) =1, 7o

xexp |~ (v—Ax) T, (v -Ax) .
(22)
L 1

p(Xlys) = l_[z:1 nN—Il"sleXp (—xfl"s_lxz). (23)

L 1
p(Ylyevn) = 1_[1:1 WCXP (‘J’{{Z;IYI)-

(24)

The measurement y; and the corresponding unknown x;
vary over the duration of the measurement due to noise and
subtle variations in the ocean environment. However, I',, I,
and X, (or y¢ and y,,) remain constant (hereafter, subscript 1
indicates the dependence of the measurement). By substitut-
ing (22)—(24) in (21), the posterior probability for the multiple
measurements is derived as follows:

L 1
p(XlY, yS’ }'n) = 1_[l=1 m

X exXp {_ (xl_”'xl)HE;l (xl - ﬂx;)}'
(25)

My, is the Ith column of px = X AAT'Y: p, =
T AT, ly,. As in the single-measurement SBL, the poste-
rior probability is used for deriving y and p,,.

Updating rules for y¢ and yp, in the multiple measure-
ment SBL are based on the expectations of Inp (X|y;) and
Inp (Y[X,y,,) from the perspective of the posterior proba-
bility, respectively, and their maxima are at y, and y,,, as
follows:

¥s), =

1 2
)y = 7 1V = ArxO]| |+ AmZxAL. 2D

As shown in (26) and (27), the means of the signal and the
noise powers over multiple measurements are used for the
update, which benefits the estimation at low SNRs. In con-
trast, the average of the noise variances over frequency com-
ponents and multiple measurements can be used to derive the
updating rule for the uniform noise power case as follows:

Vo= 1%4 {% IY - Anxl} +tr (AZA") } (28)
where ||M||¢ is the Frobenius norm of matrix M.

When multiple measurements are exploited, iy obtained
using p, and p,, from the EM algorithm, which comprises
columns that have non-zero elements at the same locations.
In the SBL using multiple measurements, X.s is computed
with the average of mux along the measurements (column
axis), and the shared common supports improve the robust-
ness of the NN-SBL.

1 2
(E)n + 7 [0, - (26)

99016

TABLE 1. NN-SBL algorithm.

Initialize: ¥5 = 0.001, ¥, = 0.001, €min = 1075, jiax = 200

1 while (€ > €pin) and (§ < jmax)
2 j=i+ 1,y =y, yd = eV, T = diag(yse™),
I, = diag(¥a*")
3 z, = (I + APr;tA) T
4 Hy = 2:xAHrn_ly
5 @3 = Ean + ()l (17)
6 a)im = |V = Ap)m|* + A Z,AT, (19)
T e= ey e,
8

Output: p,, 5", ¥a°"

IV. PERFORMANCE OF THE CHANNEL IMPULSE
RESPONSE ESTIMATOR USING NONUNIFORM NOISE SBL
A. IDEAL TF WITH UNIFORM AND NONUNIFORM

NOISE POWER

The performance of the CIR estimator using the NN-SBL is
examined using simulated data that considers two different
situations with constant and nonconstant noise variances in
the measurements. When generating synthetic data (mea-
surement), an ideal TF using (5) neglecting acoustic wave
distortion during propagation is applied, and the time delay of
arrival is on the grid of the observation time discretized with
a sampling frequency. This experimental setup allows for
the direct performance demonstration of the SBL-based CIR
estimator according to the SNR, which excludes the pulse
distortion and the basis-mismatch effects on the estimator,
which is shown in the later numerical experiments.

A single arrival is presumably in a received signal for
the convenient evaluation of the errors from the SBLs. The
longest observation time was 200 ms, and the signal with a
frequency band between 250 Hz and 750 Hz, which corre-
spond to the lowest and highest frequencies in (5), respec-
tively, randomly arrives between 20 ms and 180 ms in the
simulation. The ideal TF without noise is produced with the
transformation matrix multiplied by x, which comprises of
a single non-zero element (value of one) that corresponds to
the random arrival time. The transformation matrix is formed
with the discretized time delays (along columns) and the
angular frequencies (along rows) using a sampling frequency
of 3,000 Hz (four times the maximum frequency). There are
601 unknowns (N) and 100 equality conditions (M).

The following noise is added to the noise-free ideal TF to
examine the robustness of the SBL-based estimator.

Nt = Np (@) {U (=0.5, 4+0.5) 4 iU (=0.5, +0.5)},
(29)

where U(a, b) is the uniform distribution between a and b.
The subscripts m and ! denote the /th measurement at wy,.
N p (wy,) determines the SNR of the measurement at w,,. The
noise variances are constant over multiple measurements due
to the stationary ocean environment, so ﬁp (wp) is indepen-
dent of the measurement time (or measurement number /).
For a simulation with uniform noise power, N p (wy,;,) becomes
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FIGURE 1. The conventional and the extended sparse Bayesian learning (UN-SBL and NN-SBL) using simulated data, which included noise with
constant variance over measurements along the frequency. An ideal transfer function is used for the simulation. (a) The mean estimation error
evaluated by the difference between the true and the estimated time delays. (b) Channel impulse responses from the SBLs at an SNR of
approximately —14 dB. The vertical dash-dotted line indicates the true arrival. (c) The corresponding noise variances along the frequency, which are

compared to the measured noise variances using (30).

constant over the angular frequencies as well as the measure-
ment time.

As mentioned earlier, ﬁmJ is defined by the FT of the
time-domain noise divided by that of the source waveform.
Thus, 1/\7,41,1 is used to compute the SNR in the simulation.
A specific SNR at w,, and an average SNR over w,, are cal-
culated using the random noise with the equations as follows
(the SNRg are referred as SNR,, and SNR,):

1 L |~
—10log (Z o |Nm,l|2>.
1 M L~
—10log;, (E Zm=1 lel INm,z|2)~ (31)

SNR, and SNR, represent the variation in the SNR along the
angular frequencies and the representative SNR for a trial in
the simulation, respectively.

First, the NN-SBL is applied to the CIR estimation when
uniform noise power exists along the frequency components
of the measurement, and the result from the NN-SBL is
compared with that the result from the UN-SBL. Twenty
multiple measurements (L = 20) were used for the estimation
of the CIRs. The received signal with a random arrival time
was contaminated with uniform random noise for each trial,
which N, p is a constant. An error is evaluated with the absolute
difference of the true time delay from the estimated time
delay that corresponds to the maximum amplitude from the
SBL. The errors are calculated according to the various values
of ﬁp to examine the robustness of the SBLs (Fig. 1(a)).
For a fixed ﬁp, the trial is repeated 50 times; the means of
SNR; and estimation error are values on the x and y axes of
Fig. 1(a), respectively. While the noise that follows uniform
distribution in the simulation deviates from the assumption of
SBL (Gaussian distribution), the SBLs show superior perfor-
mances as in [26], [27], and [28]. Some estimation results at
SNRs less than —11 dB for both SBLs have the largest peaks
at time delays that are different from the true values, which

SNR,, = (30)

SNR,
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increase the estimation error. As expected, the error becomes
insignificant with an increase in the SNR (or a decrease
in ﬁp). At the SNRs above —11 dB, the SBLs accurately
estimate the time delays, and the estimation error becomes
almost zero, which the order of error is 10~ ms. Fig. 1(b)
shows the CIR from the SBLs for a specific trial with an
SNR, of approximately —14 dB. While minor peaks appear
and the maximum amplitude is considerably less than the true
value of 1 in the CIR, the arrival can be clearly distinguished
from the noise, and the time delay that corresponds to the
maximum amplitude matched the true value (vertical dash-
dotted line in Fig. 1(b)).

Fig. 1(c) includes the corresponding noise variances of
the CIRs in Fig. 1(b). They are calculated using (27) and
(28) for the NN-SBL and the UN-SBL, respectively. They
are then compared with the measured noise variances based
on (30). ﬁp is independent of the frequency, so the measured
noise variances fluctuate slightly around —14 dB, which is
in good agreement with the results from the NN-SBL. The
constant noise variances from the UN-SBL are located at
the center of the fluctuation. While the NN-SBL requires
more noise variances to be estimated using the EM algorithm
with the same number of equality conditions, it delivers a
performance that is similar to that the performance of the
UN-SBL in the environment of uniform noise power due to
the sufficient measurements, as shown in Fig. 1. The two
SBLs show different trends in regards to estimating the CIRs
under insufficient measurements. The NN-SBL underesti-
mates the arrival amplitudes, which the opposite happens in
the UN-SBL. Furthermore, the UN-SBL inclines to include
the fake arrivals by noise due to the simplified uniform noise
assumption. Each scheme has pros and cons when using
insufficient measurements, which are shown in Fig. 6.

As described in (4), the noise with the TF is scaled by
the FT of the source waveform, which incurs nonuniform
noise variances over the measurement along the frequency.
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FIGURE 2. The UN-SBL and NN-SBL that use simulated data that includes noise with nonconstant variance over measurements along the frequency.
An ideal TF is used for the simulation. (a) The mean estimation error evaluated with a difference between the true and the estimated time delays. At a
low SNR, the NN-SBL results are better than the results with constant noise variance due to the selective use of relatively high SNR measurement
components. (b) The CIRs from the SBLs at an SNR of approximately —14 dB. The vertical dash-dotted line indicates the true arrival. (c) The
corresponding noise variances along the frequency, which are compared to the measured noise variances using (30).

A frequency-dependent Np (wp) is used to generate the ran-
dom noise, which is given by

Np (wm) = Nc (0.8U (0, 1) +0.2). (32)

ﬁc determines the SNR of the trial. The constant, which is
0.2, ensures that SNR,, is not too large.

From Fig. 2(a), the NN-SBL, which considers different
noise variances, outperforms the UN-SBL, which has the
largest estimation errors at SNRs less than —11 dB, which
occurred in the previous case. The NN-SBL also exhibits an
improved result for inconsistent noise power, when compared
with Fig. 1(a), where all the measurements over the frequency
are corrupted by significant noise. However, in Fig. 2(a), the
nonuniform noise variances induce relatively high SNRs in
parts of the measurement, which is also illustrated in Fig. 2(c),
and the NN-SBL can impose more priority on the high SNR
measurements when evaluating the signal powers using the
EM algorithm, which leads to a better result. In contrast, the
UN-SBL cannot utilize the fine measurement components by
treating the complex noise with the simple noise model, and
its performance is similar to the performance that is illustrated
in Fig. 1(a).

While the UN-SBL has a maximum peak, which corre-
sponds to the true arrival time discriminated from minor
peaks, it underestimates the arrival amplitude at a low SNR of
approximately —14 dB (Fig. 2(b)). This problem is amelio-
rated by the NN-SBL exploiting the high SNR measurement
components, which is shown in Fig. 2(c), where the noise
powers oscillate significantly along the measurement. The
noise variances from the NN-SBL are in good agreement with
the measured noise variances, whereas they are simplified as a
single value in the UN-SBL and deviate from the true values.

At this time, (2) is used for a more realistic simulation,
where a chirp signal with a center frequency of 500 Hz (see
Figs. 3(a) and 3(b)) randomly arrives at the receiver on the
grids between 20 ms and 180 ms with additive white Gaussian
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noise (AWGN) and outliers (intensive impulse signals). Three
percentages of the simulated signal are the randomly emerg-
ing outliers, and their amplitudes follow uniform distribution
between five and ten times the largest value of the transmitted
signal. The ideal TF with a flat response along the frequency
is substituted with a TF with an uneven response that reflects
the frequency-dependent attenuation [30]. The amplitudes of
the TF in the frequency band that are used for the estimation
are random numbers that are uniformly selected between
0.9 and 1.1. The FT of the received signal divided by that of
the chirp signal is the measurement, and 20 measurements
are applied for the estimation via the SBLs. As shown in
Fig. 3(c), considerable peaks in the MF result arising from
the noise with the outliers are significantly diminished by
the NN-SBL, whereas the sparse solution from the UN-SBL
also provides a clearer CIR compared to the MF result, which
the noticeable peaks remain, and they are detrimental to the
accurate evaluation of the true arrival. The inset displays the
difference between the NN-SBL and the UN-SBL results near
the true arrival.

As expected, the source spectrum causes the AWGN to
have different SNRs along the frequency (Fig. 3(d)). A source
frequency component with a larger value tends to yield a
higher SNR, and vice versa, which results in SNRy, having
a similar shape to that of the source spectrum.

B. BASIS-MISMATCH EFFECTS ON THE PERFORMANCE
OF NONUNIFORM NOISE SBL

When a sound wave propagates in the ocean, it arrives at a
receiver with a time delay in the continuous domain. Fur-
thermore, the predefined on-grid bases (or columns) of the
transformation matrix induce inevitable errors in the linear
system. To mitigate the problem due to the basis match, a finer
grid with a higher sampling frequency can be adopted, but it
increases the computational burden as well as the similarity of
the adjacent bases in the transformation matrix, which leads

VOLUME 10, 2022



Y. Choo, H. Yang: Estimation of Acoustic Channel Impulse Response at Low Frequencies Using SBL

IEEE Access

~_~
=
~'

0.2

0.1

""" - Measured
--o---UN-SBL
(d) ——NN-SBL

Amplitude

-0.1

-0.2

o
»

4 6 8 10
Time (ms)

Amplitude

(b)

Spectrum

300 400 500 600 700

Frequency (Hz)

SNR (dB)

100 150 200 300 400 500 600 700

0 Time delay (ms)

Frequency (Hz)

FIGURE 3. A chirp signal is used as a source waveform for the simulation, and additive white Gaussian noise (AWGN) with outliers is added to the
simulated data for a realistic numerical experiment. An ideal TF is modified to reflect a frequency-dependence attenuation in the ocean. (a) A chirp
signal that has a center frequency of 500 Hz, (b) a frequency response of the chirp signal, and (c) CIRs from the MF and SBLs at an SNR of
approximately —15 dB. The vertical dash-dotted line denotes the true arrival. The considerable peaks in the MF result arise from the noise with the
outliers, and they are significantly diminished by the SBLs (in particular, the NN-SBL). The inset displays the difference between the NN-SBL and the
UN-SBL results near the true arrival. (d) The corresponding noise variances along the frequency, which are compared with the measured noise
variances using (30). The measured noise variances resemble the frequency response of the chirp signal.

to a very inefficient way to solve the linear system. Alterna-
tively, the first-order Taylor expansion for the linear system
can be used [21], [22], where an additional unknown vector
(N dimension) for the difference between a true off-grid time
delay and an estimated on-grid time delay is evaluated.

While the basis mismatch hinders the exact estimation of
the CIRs, an estimated arrival from the SBL appears near
a true arrival due to the orthogonal-like bases of the linear
system for the CIR estimation. Thus, an on-grid SBL is
adopted in this study, which uses a sampling frequency that is
associated with the desired time resolution at the cost of the
estimation error.

The similarity of two bases calculated via their inner prod-

uct after normalization is given by
! (M )
sinc | —An
N

where An is the index difference between the time delays
that corresponds to the bases. sinc (x) is the normalized sinc
function, which is defined as sinc (x) = sin wx/mx. The exact
expression for similarity is approximated with the assumption
of An « N for a convenient analysis. M /N is directly
proportional to the ratio of the source frequency band to
the largest frequency for the discretized signal, so the sinc
function becomes sharp for a broadband source signal, which
forms more orthogonal-like bases. The broadband source is

1 M—1 _ . m
I —2m i An| o
S (An) = ‘M Do ¢ :

(33)
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better for an SBL-based CIR estimation, which is similar to
an MF.

The similarity decreases with an increase in An, which is
shown in Fig. 4(a), and it includes similarities for all pairs
of two columns in the transformation matrix, which is used
for Figs. 1-3. Thus, the arrival with an off-grid time delay is
represented by the bases near the arrival.

To demonstrate the orthogonal-like property of the bases
in the CIRs, the estimation errors are computed using two
different sampling frequencies of 3,000 Hz and 6,000 Hz,
as shown in Fig. 4(b), where the chirp signal, as shown in
Fig. 3, is used for the source waveform, and AWGN is added
to the received signal that is computed from the convolution
of the source waveform with the CIRs that have a time delay
in the continuous domain as well as an uneven frequency
response, as shown in Fig. 3. The overall estimation errors
increase due to the basis mismatch as opposed to Fig. 2(a),
where an ideal TF with an on-grid time delay is used for the
simulation. However, the largest estimation error of 0.16 ms
occurs at an SNR,, of —16 dB with a low sampling frequency.
It is approximately half of the time difference between the
two consecutive samples (sampling interval At = 1/f;)
discretized with a sampling frequency of 3,000 Hz. This
indicates that the major arrivals that were estimated from
the SBL are located near the true arrival even at the lowest
SNR of the simulation. As the SNR increases, both estimation
errors for the different sampling frequencies decrease and
converge to 0.08 ms and 0.04 ms, which are equal to a
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quarter of the sampling intervals that corresponds to the sam-
pling frequencies of 3,000 Hz and 6,000 Hz. As previously
mentioned, a time delay in the simulation is random in the
continuous domain, and its absolute time difference from the
closest discrete time delay is between 0 and 0.5Af. When
the estimated arrivals from the SBL are on the nearest grids
of true arrivals at a specific SNR,, the average of their time
delays becomes a quarter of the sampling interval due to the
absolute time difference between the true and the estimated
arrivals following a uniform distribution of U (0, 0.5Af).
While the sampling frequency determines the time resolution
with respect to the ability to separate the adjacent arrivals
in the SBL, a low sampling frequency (coarse bases) does
not result in the incorrect detection of a signal far from the
true arrival. The SBL can determine the best solution of the
linear system at a sufficient SNR, and it is irrespective of
the sampling frequency, as shown in Fig. 4(b). It also suffers
less from the basis mismatch, which is unlike the sparse signal
reconstruction-based beamforming [9], [13], [14], [15], [21],
[22], [23], [24], [25], [26], [27].

C. EXAMINING TIME RESOLUTION OF NONUNIFORM
NOISE SBL AT LOW FREQUENCY

When transmitting and receiving sound waves in a water tank,
a low-frequency source waveform with a limited frequency
band is not preferred due to the insufficient pulse compression
that prevents the separation of the arrivals that are in close
proximity. However, to investigate the low-frequency acous-
tic impedance of a submerged object in a water tank, a low-
frequency source is indispensable, and a scheme to overcome
the problem of the MF is required, which is the motivation
for the present study.

To examine the time resolution of the NN-SBL at low fre-
quencies, a numerical experiment to distinguish two adjacent
arrivals is conducted. In the numerical experiment, a trans-
ducer and a hydrophone are 2 m and 1 m away from the
center of the rigid target (thin steel plate with 1.5 m x 1.5 m),
respectively. Also, the sound speed of the surrounding target
is constant at 1500 m/s, and the high- and the low-frequency
Hanning-weighted four period sine signals that have the same
frequency bands as their center frequencies are used as the
source waveforms, in which is similar to the study that was
conducted by Choo and Song [31] that enabled a convenient
comparison of the time resolutions at two different source
frequencies (1 kHz and 10 kHz). To simulate a scattered
signal from the target, the Helmholtz integral was used with
the Kirchhoff approximation for both frequencies, which was
valid in the high-frequency region. Equation (4) in Ref. [31]
was modified to account for the rigid boundary condition of
the target.

AWGN is added to the noise-free time-domain simulated
signals. Fifty trials were repeated with randomly generated
noise for each source signal, which twenty multiple mea-
surements were used for each trial for the estimations, and
the estimation means from the MF and SBLs are presented
in Fig. 5. They are normalized with their maximum values
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FIGURE 4. (a) Gram matrix displaying similarities of columns in the
transformation matrix for Figs. 1-3. The similarity decreases with increase
in distance between the columns, which makes the Gram matrix
resemble the identity matrix. (b) The mean estimation error according to
the SNR for simulations using different sampling frequencies of 3,000 Hz
and 6,000 Hz. Off-grid arrival times in the simulation lead to a basis
mismatch resulting in performance degradation of the NN-SBL. However,
the orthogonal-like columns enable the NN-SBL to have the estimated
arrivals near the true ones even at the lower sampling frequency with
less time resolution.

for a convenient comparison, where both SNR, high and
low frequencies are approximately —4.5 dB. In particular,
the existing SBLs [26], [27], which can treat heteroscedastic
noise, are applied to the same data for a comparison, which
are hereinafter referred to as heteroscedastic-noise SBL
(HN-SBL). The vertical dash-dotted lines indicate the true
arrival time delays that correspond to the direct (the first) and
the scattered (the second) signals.

At high frequencies (sampling frequency of 80 kHz), the
MF can separate two arrivals due to the broadband signal
whereas the overall offsets are induced by the noise. The
noise also weakened the second arrival from the UN-SBL,
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FIGURE 5. The high frequency (10 kHz) and low frequency (1 kHz) synthetic acoustic data are contaminated by additive white Gaussian noise
(AWGN), and the SNR is approximately —4.5 dB. (a) The mean estimation results from the MF, UN-SBL, NN-SBL, and HN-SBL at 10 kHz. The AWGN
deteriorates the performances of the SBLs. The direct arrival is divided into two arrivals in HN-SBL. Furthermore, as shown in the inset, the noise
weakens the scattered signals in the SBL results. In particular, the scattered signals from the HN-SBL are distributed over the time delay, and it
results in the weakest scattered signal. On the other hand, the NN-SBL recovers the arrivals clearly from the contaminated synthetic data, whereas
the amplitude of the scattered signal is slightly reduced. (b) The mean estimation results from the MF, UN-SBL, NN-SBL, and HN-SBL at 1 kHz. At a
low frequency, the estimation results are different according to the trials, and their mean is spread over the time delay, so the UN-SBL results are
more distributed, which makes the mean blunt. Furthermore, the first arrival from the HN-SBL is considerably deviated from the true one, which is
displayed in the inset, and the fictitious peak emerges ahead of scattered signal. As in the high frequency case, the NN-SBL demonstrates the best

performance among the SBLs.

whereas that the second arrival from the NN-SBL remained
almost the same due to the exploitation of the fair measure-
ment components. While the major arrivals from the HN-
SBL are near the true ones, the direct arrival in the synthetic
data is divided into two arrivals, and the amplitude of the
scattered signal is evaluated to be significantly lower than
the true value, as displayed in the inset of Fig. 5(a). The
NN-SBL exhibits the best performance in regards to handling
the nonuniform noise at a high frequency. Meanwhile, at the
high frequency, the MF can distinguish the two arrivals by the
sufficient source bandwidth and the sophisticated approaches
like the SBLs are unnecessary. Thus, most examinations for
the CIR estimation in the present study were conducted at low
frequency regions that included the following experiments,
where the MF suffers from separating adjacent arrivals and
the advanced schemes are required.

At a low frequency (sampling frequency of 16 kHz),
the narrower frequency band deteriorates the estimation of
the time delay. The MF cannot distinguish the direct and the
scattered arrivals (overlapped two arrivals) due to a narrower
frequency band (one tenth of that the frequency band for
the high frequency) inducing the insufficient time resolution.
The SBLs enable the arrivals to be separated due to their
sparse solutions. However, the UN-SBL results are inconsis-
tent according to the trials, which makes the mean estimation
widespread over a time delay. Furthermore, the HN-SBL
estimates the first arrival that is the farthest from the true
one, as displayed in the inset of Fig. 5(b), and the fictitious
peak emerges ahead of the scattered signal. The deterioration
is mitigated by the NN-SBL, which estimates the arrivals
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more consistently along the trials and displays the higher
time resolution with the sharpened arrival evaluations. The
estimations are within one sample from the closest samples
to the true arrivals and provide the most useful information
among the schemes.

It is worth noting that the conventional SBL is corrected to
treat the heteroscedastic noise heuristically in Refs. [26] and
[27], and the performance degradation might be attributed to
the heuristic derivation. In this study, the rigorous expansion
of the conventional SBL is derived to consider the nonuni-
form noise exactly, which leads to the clearest CIR estimation
among the SBLs.

V. APPLYING NONUNIFORM NOISE SBL
TO THE IN-SITU DATA
A. REAL MEASUREMENT DATA IN THE OCEAN: SAVEX15
The shallow-water acoustic variability experiment 2015
(SAVEX15) was conducted in the northeastern East China
Sea [32], and the sound waves that were traveling within a
shallow acoustic waveguide were measured at high and low
frequencies. In this study, the low-frequency signals, which
were recorded with a sampling frequency of 100 kHz, were
used to examine the NN-SBL by comparing its results with
the results from the MF and the existing SBLs, such as the
UN-SBL and the HN-SBL.

When measuring the low-frequency signal, a transducer at
a depth of 50 m transmitted a 100 ms-length linear frequency
modulated (LFM) pulse waveform with a frequency band in
the range of 0.5-2 kHz, and a vertical line array (VLA) that
was comprised of evenly spaced 16 hydrophones (3.75 m)
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FIGURE 6. The CIRs along depths of the sensors in vertical line array (VLA): (a) MF, (b) UN-SBL, (c) NN-SBL, and (d) HN-SBL.

A single acoustic measurement is used for the estimation. The schemes are more sophisticated, so the acoustic structures
(e.g., 'x" shapes that are formed by the upward and downward incoming arrivals to the VLA) are observed more clearly. The
noise in the MF result is noticeably removed in the SBL results. In particular, the most possible arrivals remain in the NN-SBL
result at the cost of their weakening due to the insufficient measurement. Meanwhile, the HN-SBL estimates the CIRs too
sparsely and filters out almost all the true arrivals except for intensive arrivals in the middle of the water column. Afterwards,
the CIRs around the dotted lines are used for a performance comparison in terms of resolution and reestablishment of the CIR
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from the measurement.

was separated from the transducer at a distance of approx-
imately 1.8 km for the recording. Different waveforms for
underwater communications were subsequently transmitted
from the transducer, so a single measurement for the LFM
signal is available to estimate the CIRs of the SAVEX15.

B. ESTIMATED CHANNEL IMPULSE RESPONSE

OF SAVEX15

To demonstrate the usability and feasibility of the NN-SBL
in the CIR estimation, it was applied to the real measure-
ment data, and the results were compared with the results
from the other schemes. The MF was applied to the VLA
data, whereas the UN-SBL, NN-SBL, and HN-SBL were
applied to the VLA data after the downsampling to avoid
the computational burden with a small N in (5). A sampling
interval of 10 in the original VLA data was used for the
SBLs, and the sampling frequency is reduced to 10 kHz,
which is sufficient to prevent aliasing at a low frequency.
The CIRs along the hydrophone depths produced acoustic
structures by the waveguide, which included the ‘x’ shapes
that were formed by the incoming arrivals to the VLA from
the upward and downward directions. They appeared more
clearly with the improvement of the scheme (Fig. 6). The
source waveform is cross-correlated with the VLA data in the
MF, and the corresponding envelopes, which were based on
the Hilbert transform, were used for the CIRs. This process
leads to pulse compression for the LFM signal and allows
for better observation of the acoustic structures with higher
time resolutions as well as noise reduction. In contrast, the

99022

SBLs inherently derive a high-resolution CIR with less noise
by solving the linear system of (5). For the visualization in
this study, the SBL results were purposely convolved with
an autocorrelation of the LFM signal, and the corresponding
envelopes were used, which is illustrated in Fig. 6. The direct
results for the SBLs were subsequently compared with the
results from the MF in Fig. 7.

While the arrivals around 80 ms and 105 ms have high
intensities due to the refractive sound speed profile in the
SAVEX15, the arrivals that form the ‘X’ shapes are more
focused on the performance comparison. The major arrivals
were found to use the MF, but they entailed noise overall.
The noise around the ‘x’ shapes caused the arrivals to appear
stretched over the relative time delay. The noise near the lower
left part of the second ‘x’ shape masked the arrivals. These
are detrimental to the clear detection of the arrival directions
to the VLA when time-domain beamforming is performed.
The SBLs tend to select bases of the transformation matrix
that correspond to the actual arrivals, so the noise in the
measurement is suppressed during the iterative estimation of
the signal powers in the SBLs. Thus, in the UN-SBL result,
the noise is remarkably removed, and the masked arrivals
around the second ‘x’ shape are more clearly observed. The
performance in terms of the noise reduction is improved
by the extended SBL, which is due to the more complex
approach to noise in the measurement. Most of the noise in
the MF result is diminished with the more advanced scheme,
as shown in Figs. 6(a) and 6(c). This is achieved at the cost
of the weakened arrivals. The NN-SBL estimates multiple
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FIGURE 7. The CIRs around the dotted lines in Fig. 6. The triangles indicate the arrivals from the upward and downward directions.
The closest arrivals that are not resolved by an MF can be separated by both the UN-SBL and NN-SBL. As expected, most of the noise
in the MF result is cleared by the NN-SBL, which is traded with the weakened arrivals. On the other hand, the arrivals are too
diminished in the HN-SBL result. In particular, the arrival near 84 ms that comprise of the acoustic structure of ‘x’ shape is absent.

noise powers according to the frequencies here using a single
measurement. This should not be sufficient for an accurate
estimation, and it induces the weak arrivals. The HN-SBL
estimates the CIRs too sparsely and filters out almost all the
true arrivals except for the intensive arrivals in the middle of
the water column. The upward and downward arrivals that
form the ‘x’ shapes are either absent or weakly present.

As mentioned before, the ‘x’ shapes are formed by the
upward and downward incoming arrivals getting closer at first
and farther apart afterwards, which are merged at the VLA
center. The measured signal at the sensor just above the center
is used to examine the performance of the schemes in terms
of the time resolution. Figure 7 shows parts of the CIRs from
the MF and the SBLs that correspond to the dotted lines in
Fig. 6. The MF result and the direct estimates from the SBLs
are used here for the comparison after the normalization.

The triangles indicate the arrivals that are relevant to the ‘x’
shapes. The MF cannot distinguish the closest two arrivals
near 85 ms, which is due to the lower time resolution by
an insufficient frequency band at a low frequency, whereas
the sparse estimations of the SBLs enable the arrivals to be
separated, which included the other arrivals. The noise in
the MF result, which has an intensity that is comparable to
that the intensity of the arrivals, is noticeably reduced by the
SBL-based CIR estimators (more by the NN-SBL). On the
other hand, the arrivals are too diminished in the HN-SBL
result. The arrival near 84 ms that comprised of the acoustic
structure of the ‘x’ shape is absent, and it hinders the recovery
of the true CIR from the measurement.

VIi. SUMMARY

The MF that generally uses the cross-correlation of the source
waveform with the measured signal is used to estimate a CIR
that display the arrivals via the pulse compression and the
suppression of uncorrelated noise. However, its application
is limited by the insufficient frequency band of the source
waveform, which leads to the broadening of the arrivals,
which makes it difficult to distinguish the adjacent arrivals.
The SBL, which was originally developed for classification

VOLUME 10, 2022

and regression, was extended to estimate a high-resolution
CIR with a limited frequency band.

In this study, the SBL was used to solve a linear system of
CIRs, which were established by the physics of underwater
sound propagation. The omnipresent noise was scaled using
the source spectrum, which resulted in nonuniform noise
powers in the measurement violating a basic assumption in
the conventional SBL. To treat the inconsistent noise, the SBL.
was expanded mathematically to accommodate the noise,
which was examined using simulated data that included a
single arrival. The expanded SBL (referred to as the NN-SBL)
delivered a superior performance with a more apparent arrival
estimation than the existing SBLs (referred to as the UN-SBL
and the HN-SBL) at a low SNR.

An inherent problem of the SBL is the basis mismatch
that was caused by the discretized columns corresponding
to the on-grid arrival times that did not precisely match the
true off-grid arrival times. The orthogonal-like bases of the
transformation matrix in the linear system fortunately ensure
that the estimated arrival is close to the true value. The syn-
thetic data, which was sampled with two different sampling
frequencies, was used to support the properties of the bases.
The NN-SBL has an arrival around the true one even at a low
sampling rate with less time resolution.

A numerical experiment was conducted to demonstrate the
high-resolution CIR via the SBLs, where a scattered signal
from a finite submerged target was simulated with the direct
arrival. When a low-frequency source was used with a fre-
quency band of 1 kHz, the MF could not distinguish between
the two arrivals with a travel distance difference of 2 m, which
was due to its low time resolution being proportional to the
source frequency band. On the contrary, the SBLs separated
the scattered signal from the direct signal via the sparse
estimation of the CIR linear system. The NN-SBL exhibited
a better noise-reduction performance when the multiple mea-
surements that were obtained over time were available.

The extended SBL was applied to the SAVEX15 data
that was measured using a VLA at low frequencies
(0.5-2 kHz) with the other schemes (MF, UN-SBL, and

99023



IEEE Access

Y. Choo, H. Yang: Estimation of Acoustic Channel Impulse Response at Low Frequencies Using SBL

HN-SBL). The noise smearing actual arrivals in the MF result
was remarkably diminished by improving the schemes. While
the arrivals are weakened by the insufficient measurements in
the CIRs from the NN-SBL, it retained the highest possible
arrivals and provided the most apparent estimation. Further-
more, the time resolution via the SBL was examined with the
received signal that was measured by the sensor just above
the VLA center, which had close arrivals from the upward
and downward directions before the merging. As expected,
all the close arrivals were separated with less noise using the
sparse estimation.
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