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ABSTRACT Sparse Bayesian learning (SBL) has been extended to estimate acoustic channel impulse
responses (CIRs) at low frequencies, where matched filter (MF)-based CIR estimation suffers from low
resolution due to a limited frequency band. In this study, the extended SBL was developed to account
for nonuniform noise power in a signal model for the CIR via a formulation that considers inconsistent
noise and multiple measurements, which cannot be handled in the conventional SBL. The extended SBL is
applied to simulated and measured acoustic data and then compared with the MF and existing SBLs. With
the advancement in the schemes, the time resolution and denoising are enhanced; especially, the results of the
extended SBL on the simulated data show that it clearly distinguishes the two adjacent arrivals with moderate
errors in the estimated time delays. Additionally, as a result of applying it to the measured array data, the
extended SBL can achieve a high resolution in the CIR estimation, which retains assured arrivals with a
single measurement, while some arrivals are weakened by the insufficient measurement for the extended
SBL.
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INDEX TERMS Acoustic channel impulse response, nonuniform noise distribution, sparse Bayesian
learning, time-delay estimation.

I. INTRODUCTION15

When a wave travels in a medium, the useful information of16

the medium between the source and receiver is embedded17

in channel impulse responses (CIRs) and transfer functions18

(TFs). Several applications, which include radar and sonar19

systems, exploit the CIR (or TF) for target-range estimation20

(time-delay estimation) and communication (channel param-21

eter estimation) [1].22

When a source waveform is known and its autocorrelation23

is compressed, a matched filter (MF), which correlates the24

source waveform with the received signal, is conventionally25

used for the CIR estimation. The MF improves the time26

resolution via the pulse compression and reduces noise that27
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is uncorrelated with the source waveform, which is better for 28

identifying the arrivals that compose of the CIR [2]. However, 29

the time resolution is inversely proportional to the bandwidth 30

of the source waveform, which restricts the application of the 31

MF to high-frequency sources with broad bandwidths [3]. 32

Compressive sensing (CS), which was expected to solve 33

an underdetermined linear system by imposing a sparsity 34

condition on the solution [4], [5], was used to improve the 35

CIR estimation [6]. Ekanadham et al. [7] solved the linear 36

system for CIRs using a modified CS, which is referred to 37

as continuous basis pursuit (CBP), where time-shifted source 38

waveforms are linearly combined to express the time-domain 39

signal. The CBP that interpolates the time-shifted source 40

waveforms by using the Taylor approximation or trigono- 41

metric spline outperforms the conventional CS which suffers 42

from a basis mismatch caused by the arrivals with time delays 43
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that do not belong to the time-shifted source waveforms.44

Fyhn et al. [8] estimated the amplitudes and the time delays45

of arrivals in the CIRs using a CS with polar interpolation,46

which outperformed the CBP.47

In underwater acoustics, the CS has been predominantly48

applied to estimate the direction of arrivals (DOAs) from49

underwater targets [9], [10], [11], [12], [13], [15], [15] and50

was introduced in the underwater acoustic channel param-51

eter estimation by several researchers [6], [16], [17], [18],52

whereas the MF-based CIR estimation is a conventional53

approach that was employed for active sonar systems [1], [2].54

The sparse solutions in the CS literature help estimate the55

parameters with super-resolution [12], [17], [19]. However,56

manually determined hyperparameters in the schemes that are57

associated with measurement noise are sensitive to sparsity.58

They affect the performance of the schemes, which hinder59

their practical applications.60

Sparse Bayesian learning (SBL) has been introduced to61

address the DOA or the channel parameter-estimation prob-62

lem in underwater acoustics. The SBL was originally devised63

for classification and regression in machine learning [20].64

In the SBL framework, the probability models for unknowns65

and measurement are derived using Bayesian inference with66

hyperparameters that are related to noise and source variances67

(or powers), which are automatically evaluated during the68

iterative process to update the probability models and the69

variances.70

The SBL can be applied to determine a solution for a71

linear system, which is similar to the CS. The SBL has72

been primarily used for the DOA estimation in underwater73

acoustics due to its well-established linear system that relates74

DOAs with measurements along multiple sensors in an array.75

Furthermore, a sparse solution that was obtained via the SBL76

provides a high-resolution DOA with suppressed noise [21],77

[22], [23], [24], [25]. In the DOA estimation using the SBL,78

the standard SBL has been extended for more accurate and79

reliable evaluation of the DOAs using multiple measure-80

ments, the interpolation between the discretized bases, and81

complex noisemodels with different variances along themea-82

surements [21], [22], [23], [26], [27]. In the SBL-based DOA83

estimation using multiple measurements, the common sup-84

ports of the unknowns along multiple measurements (i.e., the85

estimated DOAs) have been found due to the arrivals having86

consistent directions over multiple measurements [23], [27].87

An inherent limitation of the SBL-based scheme arises88

from the discretized bases, which leads to a basis mismatch.89

A signal representation via interpolation using adjacent bases90

around the true arrival in the off-grid direction was adopted91

to mitigate the basis-mismatch problem, and a mismatch92

from the predefined bases was evaluated during the iterative93

process in the SBL [21], [22]. Meanwhile, most studies that94

used the SBL operated on the basic assumption of uniform95

noise variance over the measurement. This assumption was96

relaxed by Gerstoft et al. [26] with an approximated updating97

rule for heteroscedastic noise, which enables the treatment of98

nonuniform noise with the SBL [27].99

The CS has been previously used to estimate acoustic CIRs 100

by utilizing the sparse arrivals in acoustic channels [6], [12], 101

[16], [17], [19]. Meanwhile, the CS-based DOA estimations 102

were recently advanced by the SBL, which can find the 103

DOAs into sensor array without additional post-processing 104

[21], [22], [23], [24], [25], [26], [27]. To the best of our 105

knowledge, the SBL has not been used in estimating the CIRs. 106

Thus, in this study, to extract the CIRs from a measurement 107

(a signal emitted by a transducer, transmitted through the 108

ocean waveguide, and received by a hydrophone), the SBL 109

is adopted due to its properties that are exhibited in the DOA 110

estimation as well as free manual hyperparameters and the 111

properties of SBL are demonstrated in the CIR estimation. 112

A linear system for the CIR estimation is established by 113

expressing the frequency domain, which is the TF and the 114

candidate arrivals have distinct time delays. Note that noise 115

in the linear system is scaled by the source spectrum, which 116

results in nonuniform noise powers over the measurements 117

that are relative to the frequency response of the received sig- 118

nal. The conventional SBL should be modified to accommo- 119

date the nonuniform noise, which was attempted by several 120

researchers [26], [27], [28]. In the present study, a rigorous 121

mathematical expression that accounts for the nonuniform 122

noise is derived, and the associated updating rule is obtained, 123

which is different from the previous studies by using the 124

heuristic approach [26], [27] or considering only the real val- 125

ues and a single measurement [28]. Particularly, in [26] and 126

[27], the previously established stochastic likelihood function 127

was exploited, which provided an asymptotically efficient 128

estimate of noise. To the best of our knowledge, no studies 129

have been conducted on the SBL where the basic expres- 130

sions for noise are rigorously extended for nonuniform noise 131

to estimate the amplitudes and the time delays of arrivals 132

in the CIRs. In Section II, the linear system for the CIRs 133

is derived in the frequency domain using the definition of 134

the TF. The conventional SBL is extended to account for 135

the nonuniform noise powers in the linear system, which is 136

discussed in Section III. The novel SBL is examined in terms 137

of the time resolution enhancement and the noise reduction 138

with simulated and measured acoustic data, which are shown 139

in Sections IV and V, and the results are compared with the 140

results from the MF and the existing SBLs. To investigate the 141

performances of the conventional and the extended SBLs for 142

uniform and nonuniform noise cases, we performed numer- 143

ical experiments and discuss the validation regions of the 144

SBLs. Section VI summarizes the present study. 145

II. UNDERWATER ACOUSTIC CHANNEL 146

IMPULSE RESPONSE 147

A. ACOUSTIC CHANNEL IMPULSE RESPONSE 148

USING AN MF 149

When underwater sound that is emitted from a source is 150

transmitted through the ocean, the signal that arrives at the 151

receiver contains multiple signals that pass through differ- 152

ent paths that arise from the waveguide from the interfaces 153
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(sea bottom and surface) and the scatterers (submerged154

objects and fish schools). An impulse response of the acous-155

tic channel (acoustic CIR) is approximated by assuming an156

insignificant dispersion of acoustic waves during sound prop-157

agation (particularly, the Doppler effect is ignored because158

our attention is limited to the low frequency region), as fol-159

lows [2], [6], [12], [16], [18], [19], [30]:160

h (t) =
∑K

k=1
akδ (t − τk), (1)161

where ak and τk are the amplitude and time delay of arrival,162

respectively, and K is the number of (dominant) arrivals.163

The received signal, y (t), is represented by the convolution164

between the source waveform s (t) and the acoustic CIR h (t)165

with ubiquitous noise n(t) as follows:166

y (t) =
∑K

k=1
aks (t − τk)+ n(t). (2)167

A known source waveform is exploited to estimate the CIR168

when operating an active sonar system, which uses a trans-169

ducer and a receiver that have almost flat frequency responses170

in the source bandwidth. By using the Fourier transform (FT),171

(2) is denoted in the frequency domain as follows:172

Y (ω) = S (ω)H (ω)+ N (ω), (3)173

where S (ω),H (ω), and Y (ω) are the FTs of the sourcewave-174

form, CIR, and received signal, respectively. For a received175

signal without noise, the CIRs can be obtained via the inverse176

FT of Y (ω) /S (ω). However, the CIR cannot be directly eval-177

uated due to the ubiquitous noise,N (ω). Alternatively, anMF178

using cross-correlation between the source and the received179

signals is applied to estimate the CIR. The MF exhibits180

both advantages in regards to distinguishing the arrivals and181

enhancing the SNR by exploiting the frequency band of the182

source signal (pulse compression), whereas its performance is183

degraded at low frequencies due to the utilization of a limited184

frequency band.185

B. ACOUSTIC CHANNEL ESTIMATION USING SBL186

To overcome the limitation of the MF, an SBL applicable187

to solve a linear system is used for a high-resolution CIR188

estimation at low frequencies that uses its sparse solution. The189

linear system in this study is derived with the approximation190

of H (ω) in (3) as follows [2], [6], [12], [16], [18], [19], [30]:191

Ŷ (ω)=H (ω)+N̂ (ω)≈
∑N

n=1
xne−jωn1τ+N̂ (ω), (4)192

where Ŷ (ω) and N̂ (ω) are Y (ω) /S (ω) and N (ω) /S (ω),193

respectively. For the approximation, the time delay in the194

continuous domain is discretized with the grid of 1τ , which195

is equal to 1/fs, where fs is the sampling frequency and N1τ196

the largest observation time of the received signal.When n1τ197

in (4) matches τk in (1) with a sufficiently fine grid, the198

corresponding amplitude xn is equivalent to ak ; otherwise,199

xn becomes zero. The number of non-zero elements is the200

number of arrivals K . By arranging (4) according to the201

source frequency band, the linear system is established as 202

follows: 203 Ŷ1
...

ŶM

 =
 e−jω11τ · · · e−jω1N1τ

...
. . .

...

e−jωM1τ · · · e−jωMN1τ


 x1
...

xN

 204

+

 N̂1
...

N̂M

. (5) 205

Equation (5) is rearranged by adopting the following vector 206

and matrix notation: y = Ax+n, where y, x, n, and A are the 207

measurement, unknown, noise, and transformation matrix, 208

respectively. It is worth noting that the signal model cannot 209

be in the form of a linear system without dividing S (ω) 210

in (3), because the corresponding unknown that has S (ω) xn 211

as an element varies according to the equality conditions. 212

The measurement element Ŷm and the noise element N̂m are 213

Ŷ (ω) and N̂ (ω) at the angular frequency ωm, respectively. 214

ω1 and ωM correspond to the lowest and highest frequencies, 215

respectively, which are used for the SBL-based CIR estima- 216

tion and belong to the source frequency band. The number of 217

equations,M, is smaller than the number of unknowns, N. The 218

SBL is used to determine a solution of the underdetermined 219

linear system (i.e., the amplitudes and the time delays of 220

arrivals that constitute of the CIR). 221

In contrast, a linear system can be constructed in the time 222

domain, where the transformation matrix comprises of the 223

time-shifted source waveforms as its columns and M is equal 224

to N. In this study, the solution of the frequency domain linear 225

system is preferred because less equality conditions cause a 226

more refined CIR with a sparser solution by recovering less 227

meaningful arrivals than the given equality conditions. 228

Note that the noise powers in (5) (i.e., variances of N̂m) 229

are inconsistent due to the fluctuating ocean noise spectrum 230

being scaled by the source spectrum [29], which violates the 231

assumption of constant noise power over themeasurements in 232

the conventional SBL [20]. Therefore, the conventional SBL 233

should be modified to treat the nonuniform noise powers, 234

which is described in the following section. Hereafter, the 235

conventional and expanded SBL are referred to as uniform 236

noise SBL (UN-SBL) and nonuniform noise SBL (NN-SBL), 237

respectively. 238

III. SBL FOR NONUNIFORM NOISE POWER 239

An SBL was first introduced by Tipping [20] for classifica- 240

tion and regression in machine learning. It was later adopted 241

for high-resolution beamforming in underwater acoustics, 242

where noise powers over measurements (frequency domain 243

signals at sensors in array) are assumed to be constant, as in 244

the original paper, except for a few studies [26], [27], where 245

the formulations in the SBL were modified approximately to 246

treat the nonconstant noise. However, in this study, the SBL 247

is rigorously expanded by deriving mathematical expressions 248

for the probabilities in the SBL for inconsistent noise powers 249
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regarding complex value and multiple measurements. After-250

wards, the results for the SBL using different approaches for251

the nonconstant noise are compared with each other.252

In the SBL framework, the unknown (x) and noise (n)253

are treated as random vectors, which consist of independent254

random variables, and they are assumed to follow a zero-255

mean Gaussian distribution that has different variances (or256

different powers), which are hidden variables inferred using257

measurement (y). A linear system in the SBL is solved by258

finding x, which maximizes the probability as follows [20]:259

xest = argmax
x

p
(
x, γ s, γ n|y

)
260

= argmax
x

p
(
x | y, γ s, γ n

)
p
(
γ s, γ n | y

)
. (6)261

In this study, γ s is a vector that comprises of the signal262

powers along the time delays, and γ n is a vector that com-263

prises of the noise powers along the frequencies that belong264

to the source frequency band. Unlike the previous studies265

[20], [21], [22], [23], a constant noise power in the UN-SBL266

is replaced with vector γ n in the NN-SBL to account for267

the different noise variances over the source frequency band.268

As displayed in the second line in (6), the estimation is con-269

ducted in two phases. First, using a given measurement y, the270

variances are obtained by maximizing p
(
γ s, γ n | y

)
, which is271

equivalent to maximizing p
(
y | γ s, γ n

)
when γ s and γ n are272

uniformly distributed, which is the situation in this study, and273

there are no preferences for specific components in γ s and γ n274

[20]. The solution xest is then obtained with the maximum a275

posteriori estimate of p
(
x | y, γ s, γ n

)
using the measurement276

with the variances from the previous phase.277

A. PROBABILITY MODELS FOR NN-SBL278

The NN-SBL starts by deriving an analytic expression for the279

posterior probability p
(
x | y, γ s, γ n

)
, which is denoted below280

using Bayes’ theorem:281

p
(
x | y, γ s, γ n

)
=
p
(
y | x, γ n

)
p
(
x | γ s

)
p
(
y | γ s, γ n

) , (7)282

where p
(
y | x, γ n

)
is the likelihood function, and p

(
x | γ s

)
is283

the prior function. Furthermore, p
(
y | γ s, γ n

)
is the evidence284

(marginal likelihood) that is used to evaluate the hidden vari-285

ables of the variances.286

The noise is an independent random variable that follows a287

zero-mean circularly symmetric complex Gaussian distribu-288

tion, so the likelihood function is expressed as follows using289

the relation between the measurement and the noise, which is290

based on (5):291

p
(
y | x, γ n

)
=

1

πM
∏M

m=1
(
γ n
)
m

292

× exp

{
−

∑M

m=1

∣∣(y− Ax)m
∣∣2(

γ n
)
m

}
293

=
1

πM |0n|
exp

{
− (y− Ax)H0−1n (y− Ax)

}
,294

(8)295

where (v)m and (v)H denote themth element and the conjugate 296

transpose (or Hermitian transpose) of vector v, respectively. 297

0n is a diagonal matrix that results from the independent 298

noise making off-diagonal components zeros, and its diag- 299

onal components are γ n (i.e., 0n= diag
(
γ n
)
). 300

The prior corresponds to the distribution of the unknown 301

comprising independent random variables as follows: 302

p
(
x | γ s

)
=

1

πN
∏N

n=1
(
γ s
)
n

exp

{
−

∑M

m=1

(x)2n(
γ s
)
n

}
303

=
1

πN |0s|
exp

(
−xH0−1s x

)
, (9) 304

where 0s is a diagonal matrix whose diagonal components 305

equal γ s (i.e., 0s= diag
(
γ s
)
). The components of x are acti- 306

vated when the corresponding components of γ s have non- 307

zero values. During the application of the SBL for solving the 308

linear system, γ s appears sparsely, which is advantageous to 309

enhance the resolution and suppressing noise [21], [22], [23], 310

[26], [27]. 311

The evidence can be derived using γ s and γ n with a linear 312

system. The Gaussian-distributed unknown and noise in the 313

linear system render the evidence normally distributed as 314

follows: 315

p
(
y | γ s, γ n

)
=

1

πM
∣∣6y

∣∣exp (−yH6−1y y
)
. (10) 316

The mean of y is equal to a zero vector because each mean of 317

the unknown and noise is the zero vector, 〈y〉 = A〈x〉+〈n〉 = 318

0.6y is calculatedwith the definition of the covariancematrix 319

as follows: 320

6y = 〈(Ax+ n)(Ax+ n)H 〉 = A0sAH
+ 0n. (11) 321

Note that the nonuniform noise power leads to different forms 322

of the likelihood function and the evidence from them in the 323

UN-SBL, which subsequently result in a distinct posterior 324

probability. 325

By substituting (8)–(10) in (7), the posterior probability 326

that considers the inconsistent noise variances is derived 327

using the Woodbury matrix identity as follows: 328

p
(
x | y, γ s, γ n

)
=

1
πN |6x|

329

× exp
{
−
(
x− µx

)H
6−1x

(
x− µx

)}
, 330

(12) 331

where 6x =
(
0−1s + AH0−1n A

)−1
and µx = 6xAH0−1n y. 332

As expected, the posterior probability follows a Gaussian 333

distribution, and its mean and covariance matrix are calcu- 334

lated using the estimated γ s and γ n with measurement y. 335

xest is equivalent to µx, where the posterior probability is the 336

maximum. 337

B. ESTIMATE OF THE VARIANCES γs AND γn 338

As previously described, γ s and γ n must be estimated to 339

obtain the solution via the SBL. The variances that best 340
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describe the given measurement are used for the solution, and341

they are calculated as follows:342

(γ̆s, γ̆n) = argmax
γ s,γ n

p
(
γ s, γ n | y

)
. (13)343

p
(
γ s, γ n | y

)
equals p

(
y | γ s, γ n

)
p
(
γ s
)
p
(
γ n
)
. When there344

are no preferences over the signal and noise, which is the345

situation in this study (i.e., both p
(
γ s
)
and p

(
γ n
)
follow a346

uniform distribution) [20], (13) becomes the same problem347

of finding γ s and γ n to maximize p
(
y | γ s, γ n

)
as follows:348

(γ̆s, γ̆n) = argmax
γ s,γ n

p
(
y | γ s, γ n

)
. (14)349

Herein, the expectation-maximization (EM) algorithm is350

applied to estimate γ s and γ n, where x is treated as a latent351

variable. The formulation for the EM-based estimation is as352

follows [20], [21], [22]:353

Q
(
γ s, γ n

)
= Ex|y,γ s,γ n

{
lnp

(
y, x|γ s, γ n

)}
354

= Ex|y,γ s,γ n
{
lnp

(
x|γ s

)
p
(
y|x,γ n

)}
. (15)355

Equation (15) is equivalent to (14). The second line enables356

the variances to be estimated separately, so the conditional357

probabilities for x and y are used to evaluate γ s and γ n,358

respectively.359

The expectation of lnp
(
x|γ s

)
in the perspective of the360

posterior probability is stated as follows, which omits the361

terms that are irrelevant to γ s:362

Qs
(
γ s
)
= − ln |0s| − 〈xH0−1s x〉363

= − ln |0s| − tr
{
0−1s

(
6x+µxµ

H
x

)}
, (16)364

where tr (M) is the trace of matrix M. γ s is achieved by365

determining the vector that corresponds to the maximum of366

Qs
(
γ s
)
as follows:367 (

γ s
)
n = (6x)nn +

∣∣(µx)n∣∣2 . (17)368

Mnn is the nth diagonal component of the matrix M. Using369

(17), γ s (or 0s) is computed element-wise.370

The expectation of lnp
(
y|x, γ n

)
from the perspective of the371

posterior probability is denoted as follows, which the terms372

relevant to γ n are retained:373

Qn
(
γ n
)
= − ln |0n| − 〈(y− Ax)H0−1n (y− Ax)〉374

= − ln |0n| −
(
y−Aµx

)H
0−1n

(
y− Aµx

)
375

− tr
(
6xAH0−1n A

)
. (18)376

The extremum of the function Qn
(
γ n
)
is obtained as377

follows:378 (
γ n
)
m =

∣∣(y− Aµx
)
m

∣∣2 + Am:6xAH
m:, (19)379

where Mm: ismth row ofmatrixM. The noise variance
(
γ n
)
m380

is the noise power in the mth measurement, and it comprises381

of two terms. The first is about the difference between the382

mth measurement and the associated estimation, and the other383

is related to the remnant weighted by the mth row of the384

transformation matrix. When the noise powers have the same385

value as in the UN-SBL, the constant noise power γ̄n is 386

expressed as follows: 387

γ̄n =
1
M

{∥∥y− Aµx
∥∥2
2 + tr

(
A6xAH

)}
. (20) 388

‖v‖2 is the Euclidean norm of the vector v. This is the 389

average of the noise powers over the measurement (i.e., 390

γ̄n =
∑M

m=1
(
γ n
)
m /M ) and it equals the previous result 391

((22) in Ref. [21] for a single measurement). The noise 392

power was previously estimatedwith a representative value as 393

the average, whereas, the power was expressed individually 394

according to the measurement component in this study.When 395

the variation of the noise powers is noticeable, (19) should 396

accommodate the probabilities of y, which was considered in 397

this study. This is achieved at the cost of the increased number 398

of variables (the noise variances), and it is proportional to the 399

equality conditions in (5). 400

To estimate γ s and γ n, the posterior probability 401

p
(
x | y, γ s, γ n

)
(orµx and6x) is required, and it is expressed 402

using γ s and γ n with the measurement, which they are 403

entangled to each other. Thus, the first step in the EM 404

algorithm is to generate p
(
x | y, γ s, γ n

)
with initial small 405

values γ s and γ n (initial guesses for γ s and γ n), which 406

allows 6x to be non-singular. In the next step, using µx 407

and 6x in the posterior probability, γ̆ s and γ̆ n are computed 408

using (17) and (19), respectively, which are used to update 409

the posterior probability. The expectation and maximization 410

steps are iterated until convergence, and they correspond to 411

the first and second terms in the second line of (6). The final 412

γ̆s and γ̆n are used to evaluate xest , which is equivalent to the 413

final µx. 414

C. EXTENSION OF NN-SBL FOR MULTIPLE 415

MEASUREMENTS 416

Unlike the previous studies [20], [21], [22], [23], the noise 417

power is estimated using the corresponding element in the 418

measurement vector, which reduces the performance of the 419

NN-SBL at low SNRs. To alleviate this problem, multiple 420

measurements can be exploited when the underwater sounds 421

are repeatedly emitted from a transducer for a relatively short 422

duration or in a stationary ocean environment. 423

The NN-SBL that uses a single measurement has been 424

expanded to exploit the common time delays of arrivals over 425

the multiple measurements [22], [23]. The first step for the 426

expansion is to modify the posterior probability to accommo- 427

date the multiple measurements as follows: 428

p
(
X |Y,γ s, γ n

)
=
p
(
Y |X,γ n

)
p
(
X | γ s

)
p
(
Y | γ s, γ n

) , (21) 429

where the measurement matrix Y comprises of the mea- 430

surement vectors as its columns and an unknown matrix 431

X comprises of the corresponding unknown vectors 432

Y =
[
y1, . . . , yL

]
and X = [x1, . . . , xL]. L is the number of 433

measurements that are used for the estimation. The random 434

vectors of xl and yl are assumed to be independent of each 435
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other, and the likelihood function, which is the prior proba-436

bility, and evidence for multiple measurements can then be437

stated as follows:438

p
(
Y |X,γ n

)
=

∏L

l=1

1
πM |0n|

439

× exp
{
−
(
yl−Axl

)H
0−1n

(
yl−Axl

)}
.440

(22)441

p
(
X | γ s

)
=

∏L

l=1

1
πN |0s|

exp
(
−xHl 0

−1
s xl

)
. (23)442

p
(
Y | γ s, γ n

)
=

∏L

l=1

1

πM
∣∣6y

∣∣exp (−yHl 6−1y yl
)
.443

(24)444

The measurement yl and the corresponding unknown xl445

vary over the duration of the measurement due to noise and446

subtle variations in the ocean environment. However, 0n, 0s,447

and 6y (or γ s and γ n) remain constant (hereafter, subscript l448

indicates the dependence of the measurement). By substitut-449

ing (22)–(24) in (21), the posterior probability for themultiple450

measurements is derived as follows:451

p
(
X |Y, γ s, γ n

)
=

∏L

l=1

1
πN |6x|

452

× exp
{
−
(
xl−µxl

)H
6−1x

(
xl − µxl

)}
.453

(25)454

µxl is the lth column of µX = 6xAH0−1n Y: µxl =455

6xAH0−1n yl . As in the single-measurement SBL, the poste-456

rior probability is used for deriving γ̆ s and γ̆ n.457

Updating rules for γ̆ s and γ̆ n in the multiple measure-458

ment SBL are based on the expectations of lnp
(
X|γ s

)
and459

lnp
(
Y|X,γ n

)
from the perspective of the posterior proba-460

bility, respectively, and their maxima are at γ s and γ n, as461

follows:462 (
γ s
)
n = (6x)nn +

1
L

∥∥(µX)n:
∥∥2
2 . (26)463 (

γ n
)
m =

1
L

∥∥(Y− AµX)m:
∥∥2
2
+ Am:6xAH

m:. (27)464

As shown in (26) and (27), the means of the signal and the465

noise powers over multiple measurements are used for the466

update, which benefits the estimation at low SNRs. In con-467

trast, the average of the noise variances over frequency com-468

ponents and multiple measurements can be used to derive the469

updating rule for the uniform noise power case as follows:470

γ̄n =
1
M

{
1
L
‖Y− AµX‖

2
F +tr

(
A6xAH

)}
, (28)471

where ‖M‖F is the Frobenius norm of matrixM.472

When multiple measurements are exploited, µX obtained473

using γ̆ s and γ̆ n from the EM algorithm, which comprises474

columns that have non-zero elements at the same locations.475

In the SBL using multiple measurements, xest is computed476

with the average of µX along the measurements (column477

axis), and the shared common supports improve the robust-478

ness of the NN-SBL.479

TABLE 1. NN-SBL algorithm.

IV. PERFORMANCE OF THE CHANNEL IMPULSE 480

RESPONSE ESTIMATOR USING NONUNIFORM NOISE SBL 481

A. IDEAL TF WITH UNIFORM AND NONUNIFORM 482

NOISE POWER 483

The performance of the CIR estimator using the NN-SBL is 484

examined using simulated data that considers two different 485

situations with constant and nonconstant noise variances in 486

the measurements. When generating synthetic data (mea- 487

surement), an ideal TF using (5) neglecting acoustic wave 488

distortion during propagation is applied, and the time delay of 489

arrival is on the grid of the observation time discretized with 490

a sampling frequency. This experimental setup allows for 491

the direct performance demonstration of the SBL-based CIR 492

estimator according to the SNR, which excludes the pulse 493

distortion and the basis-mismatch effects on the estimator, 494

which is shown in the later numerical experiments. 495

A single arrival is presumably in a received signal for 496

the convenient evaluation of the errors from the SBLs. The 497

longest observation time was 200 ms, and the signal with a 498

frequency band between 250 Hz and 750 Hz, which corre- 499

spond to the lowest and highest frequencies in (5), respec- 500

tively, randomly arrives between 20 ms and 180 ms in the 501

simulation. The ideal TF without noise is produced with the 502

transformation matrix multiplied by x, which comprises of 503

a single non-zero element (value of one) that corresponds to 504

the random arrival time. The transformation matrix is formed 505

with the discretized time delays (along columns) and the 506

angular frequencies (along rows) using a sampling frequency 507

of 3,000 Hz (four times the maximum frequency). There are 508

601 unknowns (N ) and 100 equality conditions (M ). 509

The following noise is added to the noise-free ideal TF to 510

examine the robustness of the SBL-based estimator. 511

N̂m,l = N̂P (ωm) {U (−0.5,+0.5)+ iU (−0.5,+0.5)}, 512

(29) 513

where U (a, b) is the uniform distribution between a and b. 514

The subscripts m and l denote the lth measurement at ωm. 515

N̂P (ωm) determines the SNR of the measurement at ωm. The 516

noise variances are constant over multiple measurements due 517

to the stationary ocean environment, so N̂P (ωm) is indepen- 518

dent of the measurement time (or measurement number l). 519

For a simulation with uniform noise power, N̂P (ωm) becomes 520
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FIGURE 1. The conventional and the extended sparse Bayesian learning (UN-SBL and NN-SBL) using simulated data, which included noise with
constant variance over measurements along the frequency. An ideal transfer function is used for the simulation. (a) The mean estimation error
evaluated by the difference between the true and the estimated time delays. (b) Channel impulse responses from the SBLs at an SNR of
approximately −14 dB. The vertical dash-dotted line indicates the true arrival. (c) The corresponding noise variances along the frequency, which are
compared to the measured noise variances using (30).

constant over the angular frequencies as well as the measure-521

ment time.522

As mentioned earlier, N̂m,l is defined by the FT of the523

time-domain noise divided by that of the source waveform.524

Thus, N̂m,l is used to compute the SNR in the simulation.525

A specific SNR at ωm and an average SNR over ωm are cal-526

culated using the random noise with the equations as follows527

(the SNRs are referred as SNRm and SNRa):528

SNRm = −10log10

(
1
L

∑L

l=1

∣∣N̂m,l ∣∣2). (30)529

SNRa = −10log10

(
1
ML

∑M

m=1

∑L

l=1

∣∣N̂m,l ∣∣2). (31)530

SNRm and SNRa represent the variation in the SNR along the531

angular frequencies and the representative SNR for a trial in532

the simulation, respectively.533

First, the NN-SBL is applied to the CIR estimation when534

uniform noise power exists along the frequency components535

of the measurement, and the result from the NN-SBL is536

compared with that the result from the UN-SBL. Twenty537

multiplemeasurements (L = 20) were used for the estimation538

of the CIRs. The received signal with a random arrival time539

was contaminated with uniform random noise for each trial,540

which N̂P is a constant. An error is evaluated with the absolute541

difference of the true time delay from the estimated time542

delay that corresponds to the maximum amplitude from the543

SBL. The errors are calculated according to the various values544

of N̂P to examine the robustness of the SBLs (Fig. 1(a)).545

For a fixed N̂P, the trial is repeated 50 times; the means of546

SNRa and estimation error are values on the x and y axes of547

Fig. 1(a), respectively. While the noise that follows uniform548

distribution in the simulation deviates from the assumption of549

SBL (Gaussian distribution), the SBLs show superior perfor-550

mances as in [26], [27], and [28]. Some estimation results at551

SNRs less than−11 dB for both SBLs have the largest peaks552

at time delays that are different from the true values, which553

increase the estimation error. As expected, the error becomes 554

insignificant with an increase in the SNR (or a decrease 555

in N̂P). At the SNRs above −11 dB, the SBLs accurately 556

estimate the time delays, and the estimation error becomes 557

almost zero, which the order of error is 10−14 ms. Fig. 1(b) 558

shows the CIR from the SBLs for a specific trial with an 559

SNRa of approximately −14 dB. While minor peaks appear 560

and the maximum amplitude is considerably less than the true 561

value of 1 in the CIR, the arrival can be clearly distinguished 562

from the noise, and the time delay that corresponds to the 563

maximum amplitude matched the true value (vertical dash- 564

dotted line in Fig. 1(b)). 565

Fig. 1(c) includes the corresponding noise variances of 566

the CIRs in Fig. 1(b). They are calculated using (27) and 567

(28) for the NN-SBL and the UN-SBL, respectively. They 568

are then compared with the measured noise variances based 569

on (30). N̂P is independent of the frequency, so the measured 570

noise variances fluctuate slightly around −14 dB, which is 571

in good agreement with the results from the NN-SBL. The 572

constant noise variances from the UN-SBL are located at 573

the center of the fluctuation. While the NN-SBL requires 574

more noise variances to be estimated using the EM algorithm 575

with the same number of equality conditions, it delivers a 576

performance that is similar to that the performance of the 577

UN-SBL in the environment of uniform noise power due to 578

the sufficient measurements, as shown in Fig. 1. The two 579

SBLs show different trends in regards to estimating the CIRs 580

under insufficient measurements. The NN-SBL underesti- 581

mates the arrival amplitudes, which the opposite happens in 582

the UN-SBL. Furthermore, the UN-SBL inclines to include 583

the fake arrivals by noise due to the simplified uniform noise 584

assumption. Each scheme has pros and cons when using 585

insufficient measurements, which are shown in Fig. 6. 586

As described in (4), the noise with the TF is scaled by 587

the FT of the source waveform, which incurs nonuniform 588

noise variances over the measurement along the frequency. 589
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FIGURE 2. The UN-SBL and NN-SBL that use simulated data that includes noise with nonconstant variance over measurements along the frequency.
An ideal TF is used for the simulation. (a) The mean estimation error evaluated with a difference between the true and the estimated time delays. At a
low SNR, the NN-SBL results are better than the results with constant noise variance due to the selective use of relatively high SNR measurement
components. (b) The CIRs from the SBLs at an SNR of approximately −14 dB. The vertical dash-dotted line indicates the true arrival. (c) The
corresponding noise variances along the frequency, which are compared to the measured noise variances using (30).

A frequency-dependent N̂P (ωm) is used to generate the ran-590

dom noise, which is given by591

N̂P (ωm) = N̂C (0.8U (0, 1)+0.2). (32)592

N̂C determines the SNR of the trial. The constant, which is593

0.2, ensures that SNRm is not too large.594

From Fig. 2(a), the NN-SBL, which considers different595

noise variances, outperforms the UN-SBL, which has the596

largest estimation errors at SNRs less than −11 dB, which597

occurred in the previous case. The NN-SBL also exhibits an598

improved result for inconsistent noise power, when compared599

with Fig. 1(a), where all the measurements over the frequency600

are corrupted by significant noise. However, in Fig. 2(a), the601

nonuniform noise variances induce relatively high SNRs in602

parts of themeasurement, which is also illustrated in Fig. 2(c),603

and the NN-SBL can impose more priority on the high SNR604

measurements when evaluating the signal powers using the605

EM algorithm, which leads to a better result. In contrast, the606

UN-SBL cannot utilize the fine measurement components by607

treating the complex noise with the simple noise model, and608

its performance is similar to the performance that is illustrated609

in Fig. 1(a).610

While the UN-SBL has a maximum peak, which corre-611

sponds to the true arrival time discriminated from minor612

peaks, it underestimates the arrival amplitude at a low SNR of613

approximately −14 dB (Fig. 2(b)). This problem is amelio-614

rated by the NN-SBL exploiting the high SNR measurement615

components, which is shown in Fig. 2(c), where the noise616

powers oscillate significantly along the measurement. The617

noise variances from the NN-SBL are in good agreement with618

themeasured noise variances, whereas they are simplified as a619

single value in the UN-SBL and deviate from the true values.620

At this time, (2) is used for a more realistic simulation,621

where a chirp signal with a center frequency of 500 Hz (see622

Figs. 3(a) and 3(b)) randomly arrives at the receiver on the623

grids between 20ms and 180mswith additive white Gaussian624

noise (AWGN) and outliers (intensive impulse signals). Three 625

percentages of the simulated signal are the randomly emerg- 626

ing outliers, and their amplitudes follow uniform distribution 627

between five and ten times the largest value of the transmitted 628

signal. The ideal TF with a flat response along the frequency 629

is substituted with a TF with an uneven response that reflects 630

the frequency-dependent attenuation [30]. The amplitudes of 631

the TF in the frequency band that are used for the estimation 632

are random numbers that are uniformly selected between 633

0.9 and 1.1. The FT of the received signal divided by that of 634

the chirp signal is the measurement, and 20 measurements 635

are applied for the estimation via the SBLs. As shown in 636

Fig. 3(c), considerable peaks in the MF result arising from 637

the noise with the outliers are significantly diminished by 638

the NN-SBL, whereas the sparse solution from the UN-SBL 639

also provides a clearer CIR compared to the MF result, which 640

the noticeable peaks remain, and they are detrimental to the 641

accurate evaluation of the true arrival. The inset displays the 642

difference between the NN-SBL and the UN-SBL results near 643

the true arrival. 644

As expected, the source spectrum causes the AWGN to 645

have different SNRs along the frequency (Fig. 3(d)). A source 646

frequency component with a larger value tends to yield a 647

higher SNRm and vice versa, which results in SNRm having 648

a similar shape to that of the source spectrum. 649

B. BASIS-MISMATCH EFFECTS ON THE PERFORMANCE 650

OF NONUNIFORM NOISE SBL 651

When a sound wave propagates in the ocean, it arrives at a 652

receiver with a time delay in the continuous domain. Fur- 653

thermore, the predefined on-grid bases (or columns) of the 654

transformation matrix induce inevitable errors in the linear 655

system. Tomitigate the problem due to the basismatch, a finer 656

grid with a higher sampling frequency can be adopted, but it 657

increases the computational burden as well as the similarity of 658

the adjacent bases in the transformation matrix, which leads 659
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FIGURE 3. A chirp signal is used as a source waveform for the simulation, and additive white Gaussian noise (AWGN) with outliers is added to the
simulated data for a realistic numerical experiment. An ideal TF is modified to reflect a frequency-dependence attenuation in the ocean. (a) A chirp
signal that has a center frequency of 500 Hz, (b) a frequency response of the chirp signal, and (c) CIRs from the MF and SBLs at an SNR of
approximately −15 dB. The vertical dash-dotted line denotes the true arrival. The considerable peaks in the MF result arise from the noise with the
outliers, and they are significantly diminished by the SBLs (in particular, the NN-SBL). The inset displays the difference between the NN-SBL and the
UN-SBL results near the true arrival. (d) The corresponding noise variances along the frequency, which are compared with the measured noise
variances using (30). The measured noise variances resemble the frequency response of the chirp signal.

to a very inefficient way to solve the linear system. Alterna-660

tively, the first-order Taylor expansion for the linear system661

can be used [21], [22], where an additional unknown vector662

(N dimension) for the difference between a true off-grid time663

delay and an estimated on-grid time delay is evaluated.664

While the basis mismatch hinders the exact estimation of665

the CIRs, an estimated arrival from the SBL appears near666

a true arrival due to the orthogonal-like bases of the linear667

system for the CIR estimation. Thus, an on-grid SBL is668

adopted in this study, which uses a sampling frequency that is669

associated with the desired time resolution at the cost of the670

estimation error.671

The similarity of two bases calculated via their inner prod-672

uct after normalization is given by673

S (1n) =

∣∣∣∣ 1M ∑M−1

m=0
e−j2π

m
N 1n

∣∣∣∣ ≈ ∣∣∣∣sinc(MN 1n
)∣∣∣∣,674

(33)675

where 1n is the index difference between the time delays676

that corresponds to the bases. sinc (x) is the normalized sinc677

function, which is defined as sinc (x) = sinπx/πx. The exact678

expression for similarity is approximatedwith the assumption679

of 1n � N for a convenient analysis. M/N is directly680

proportional to the ratio of the source frequency band to681

the largest frequency for the discretized signal, so the sinc682

function becomes sharp for a broadband source signal, which683

forms more orthogonal-like bases. The broadband source is684

better for an SBL-based CIR estimation, which is similar to 685

an MF. 686

The similarity decreases with an increase in 1n, which is 687

shown in Fig. 4(a), and it includes similarities for all pairs 688

of two columns in the transformation matrix, which is used 689

for Figs. 1–3. Thus, the arrival with an off-grid time delay is 690

represented by the bases near the arrival. 691

To demonstrate the orthogonal-like property of the bases 692

in the CIRs, the estimation errors are computed using two 693

different sampling frequencies of 3,000 Hz and 6,000 Hz, 694

as shown in Fig. 4(b), where the chirp signal, as shown in 695

Fig. 3, is used for the source waveform, and AWGN is added 696

to the received signal that is computed from the convolution 697

of the source waveform with the CIRs that have a time delay 698

in the continuous domain as well as an uneven frequency 699

response, as shown in Fig. 3. The overall estimation errors 700

increase due to the basis mismatch as opposed to Fig. 2(a), 701

where an ideal TF with an on-grid time delay is used for the 702

simulation. However, the largest estimation error of 0.16 ms 703

occurs at an SNRa of−16 dB with a low sampling frequency. 704

It is approximately half of the time difference between the 705

two consecutive samples (sampling interval 1t = 1/fs) 706

discretized with a sampling frequency of 3,000 Hz. This 707

indicates that the major arrivals that were estimated from 708

the SBL are located near the true arrival even at the lowest 709

SNR of the simulation. As the SNR increases, both estimation 710

errors for the different sampling frequencies decrease and 711

converge to 0.08 ms and 0.04 ms, which are equal to a 712
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quarter of the sampling intervals that corresponds to the sam-713

pling frequencies of 3,000 Hz and 6,000 Hz. As previously714

mentioned, a time delay in the simulation is random in the715

continuous domain, and its absolute time difference from the716

closest discrete time delay is between 0 and 0.51t . When717

the estimated arrivals from the SBL are on the nearest grids718

of true arrivals at a specific SNRa, the average of their time719

delays becomes a quarter of the sampling interval due to the720

absolute time difference between the true and the estimated721

arrivals following a uniform distribution of U (0, 0.51t).722

While the sampling frequency determines the time resolution723

with respect to the ability to separate the adjacent arrivals724

in the SBL, a low sampling frequency (coarse bases) does725

not result in the incorrect detection of a signal far from the726

true arrival. The SBL can determine the best solution of the727

linear system at a sufficient SNR, and it is irrespective of728

the sampling frequency, as shown in Fig. 4(b). It also suffers729

less from the basismismatch, which is unlike the sparse signal730

reconstruction-based beamforming [9], [13], [14], [15], [21],731

[22], [23], [24], [25], [26], [27].732

C. EXAMINING TIME RESOLUTION OF NONUNIFORM733

NOISE SBL AT LOW FREQUENCY734

When transmitting and receiving soundwaves in a water tank,735

a low-frequency source waveform with a limited frequency736

band is not preferred due to the insufficient pulse compression737

that prevents the separation of the arrivals that are in close738

proximity. However, to investigate the low-frequency acous-739

tic impedance of a submerged object in a water tank, a low-740

frequency source is indispensable, and a scheme to overcome741

the problem of the MF is required, which is the motivation742

for the present study.743

To examine the time resolution of the NN-SBL at low fre-744

quencies, a numerical experiment to distinguish two adjacent745

arrivals is conducted. In the numerical experiment, a trans-746

ducer and a hydrophone are 2 m and 1 m away from the747

center of the rigid target (thin steel plate with 1.5 m× 1.5 m),748

respectively. Also, the sound speed of the surrounding target749

is constant at 1500 m/s, and the high- and the low-frequency750

Hanning-weighted four period sine signals that have the same751

frequency bands as their center frequencies are used as the752

source waveforms, in which is similar to the study that was753

conducted by Choo and Song [31] that enabled a convenient754

comparison of the time resolutions at two different source755

frequencies (1 kHz and 10 kHz). To simulate a scattered756

signal from the target, the Helmholtz integral was used with757

the Kirchhoff approximation for both frequencies, which was758

valid in the high-frequency region. Equation (4) in Ref. [31]759

was modified to account for the rigid boundary condition of760

the target.761

AWGN is added to the noise-free time-domain simulated762

signals. Fifty trials were repeated with randomly generated763

noise for each source signal, which twenty multiple mea-764

surements were used for each trial for the estimations, and765

the estimation means from the MF and SBLs are presented766

in Fig. 5. They are normalized with their maximum values767

FIGURE 4. (a) Gram matrix displaying similarities of columns in the
transformation matrix for Figs. 1–3. The similarity decreases with increase
in distance between the columns, which makes the Gram matrix
resemble the identity matrix. (b) The mean estimation error according to
the SNR for simulations using different sampling frequencies of 3,000 Hz
and 6,000 Hz. Off-grid arrival times in the simulation lead to a basis
mismatch resulting in performance degradation of the NN-SBL. However,
the orthogonal-like columns enable the NN-SBL to have the estimated
arrivals near the true ones even at the lower sampling frequency with
less time resolution.

for a convenient comparison, where both SNRa high and 768

low frequencies are approximately −4.5 dB. In particular, 769

the existing SBLs [26], [27], which can treat heteroscedastic 770

noise, are applied to the same data for a comparison, which 771

are hereinafter referred to as heteroscedastic-noise SBL 772

(HN-SBL). The vertical dash-dotted lines indicate the true 773

arrival time delays that correspond to the direct (the first) and 774

the scattered (the second) signals. 775

At high frequencies (sampling frequency of 80 kHz), the 776

MF can separate two arrivals due to the broadband signal 777

whereas the overall offsets are induced by the noise. The 778

noise also weakened the second arrival from the UN-SBL, 779
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FIGURE 5. The high frequency (10 kHz) and low frequency (1 kHz) synthetic acoustic data are contaminated by additive white Gaussian noise
(AWGN), and the SNR is approximately −4.5 dB. (a) The mean estimation results from the MF, UN-SBL, NN-SBL, and HN-SBL at 10 kHz. The AWGN
deteriorates the performances of the SBLs. The direct arrival is divided into two arrivals in HN-SBL. Furthermore, as shown in the inset, the noise
weakens the scattered signals in the SBL results. In particular, the scattered signals from the HN-SBL are distributed over the time delay, and it
results in the weakest scattered signal. On the other hand, the NN-SBL recovers the arrivals clearly from the contaminated synthetic data, whereas
the amplitude of the scattered signal is slightly reduced. (b) The mean estimation results from the MF, UN-SBL, NN-SBL, and HN-SBL at 1 kHz. At a
low frequency, the estimation results are different according to the trials, and their mean is spread over the time delay, so the UN-SBL results are
more distributed, which makes the mean blunt. Furthermore, the first arrival from the HN-SBL is considerably deviated from the true one, which is
displayed in the inset, and the fictitious peak emerges ahead of scattered signal. As in the high frequency case, the NN-SBL demonstrates the best
performance among the SBLs.

whereas that the second arrival from the NN-SBL remained780

almost the same due to the exploitation of the fair measure-781

ment components. While the major arrivals from the HN-782

SBL are near the true ones, the direct arrival in the synthetic783

data is divided into two arrivals, and the amplitude of the784

scattered signal is evaluated to be significantly lower than785

the true value, as displayed in the inset of Fig. 5(a). The786

NN-SBL exhibits the best performance in regards to handling787

the nonuniform noise at a high frequency. Meanwhile, at the788

high frequency, theMF can distinguish the two arrivals by the789

sufficient source bandwidth and the sophisticated approaches790

like the SBLs are unnecessary. Thus, most examinations for791

the CIR estimation in the present study were conducted at low792

frequency regions that included the following experiments,793

where the MF suffers from separating adjacent arrivals and794

the advanced schemes are required.795

At a low frequency (sampling frequency of 16 kHz),796

the narrower frequency band deteriorates the estimation of797

the time delay. The MF cannot distinguish the direct and the798

scattered arrivals (overlapped two arrivals) due to a narrower799

frequency band (one tenth of that the frequency band for800

the high frequency) inducing the insufficient time resolution.801

The SBLs enable the arrivals to be separated due to their802

sparse solutions. However, the UN-SBL results are inconsis-803

tent according to the trials, which makes the mean estimation804

widespread over a time delay. Furthermore, the HN-SBL805

estimates the first arrival that is the farthest from the true806

one, as displayed in the inset of Fig. 5(b), and the fictitious807

peak emerges ahead of the scattered signal. The deterioration808

is mitigated by the NN-SBL, which estimates the arrivals809

more consistently along the trials and displays the higher 810

time resolution with the sharpened arrival evaluations. The 811

estimations are within one sample from the closest samples 812

to the true arrivals and provide the most useful information 813

among the schemes. 814

It is worth noting that the conventional SBL is corrected to 815

treat the heteroscedastic noise heuristically in Refs. [26] and 816

[27], and the performance degradation might be attributed to 817

the heuristic derivation. In this study, the rigorous expansion 818

of the conventional SBL is derived to consider the nonuni- 819

form noise exactly, which leads to the clearest CIR estimation 820

among the SBLs. 821

V. APPLYING NONUNIFORM NOISE SBL 822

TO THE IN-SITU DATA 823

A. REAL MEASUREMENT DATA IN THE OCEAN: SAVEX15 824

The shallow-water acoustic variability experiment 2015 825

(SAVEX15) was conducted in the northeastern East China 826

Sea [32], and the sound waves that were traveling within a 827

shallow acoustic waveguide were measured at high and low 828

frequencies. In this study, the low-frequency signals, which 829

were recorded with a sampling frequency of 100 kHz, were 830

used to examine the NN-SBL by comparing its results with 831

the results from the MF and the existing SBLs, such as the 832

UN-SBL and the HN-SBL. 833

When measuring the low-frequency signal, a transducer at 834

a depth of 50 m transmitted a 100 ms-length linear frequency 835

modulated (LFM) pulse waveform with a frequency band in 836

the range of 0.5–2 kHz, and a vertical line array (VLA) that 837

was comprised of evenly spaced 16 hydrophones (3.75 m) 838
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FIGURE 6. The CIRs along depths of the sensors in vertical line array (VLA): (a) MF, (b) UN-SBL, (c) NN-SBL, and (d) HN-SBL.
A single acoustic measurement is used for the estimation. The schemes are more sophisticated, so the acoustic structures
(e.g., ‘x’ shapes that are formed by the upward and downward incoming arrivals to the VLA) are observed more clearly. The
noise in the MF result is noticeably removed in the SBL results. In particular, the most possible arrivals remain in the NN-SBL
result at the cost of their weakening due to the insufficient measurement. Meanwhile, the HN-SBL estimates the CIRs too
sparsely and filters out almost all the true arrivals except for intensive arrivals in the middle of the water column. Afterwards,
the CIRs around the dotted lines are used for a performance comparison in terms of resolution and reestablishment of the CIR
from the measurement.

was separated from the transducer at a distance of approx-839

imately 1.8 km for the recording. Different waveforms for840

underwater communications were subsequently transmitted841

from the transducer, so a single measurement for the LFM842

signal is available to estimate the CIRs of the SAVEX15.843

B. ESTIMATED CHANNEL IMPULSE RESPONSE844

OF SAVEX15845

To demonstrate the usability and feasibility of the NN-SBL846

in the CIR estimation, it was applied to the real measure-847

ment data, and the results were compared with the results848

from the other schemes. The MF was applied to the VLA849

data, whereas the UN-SBL, NN-SBL, and HN-SBL were850

applied to the VLA data after the downsampling to avoid851

the computational burden with a small N in (5). A sampling852

interval of 10 in the original VLA data was used for the853

SBLs, and the sampling frequency is reduced to 10 kHz,854

which is sufficient to prevent aliasing at a low frequency.855

The CIRs along the hydrophone depths produced acoustic856

structures by the waveguide, which included the ‘x’ shapes857

that were formed by the incoming arrivals to the VLA from858

the upward and downward directions. They appeared more859

clearly with the improvement of the scheme (Fig. 6). The860

source waveform is cross-correlated with the VLA data in the861

MF, and the corresponding envelopes, which were based on862

the Hilbert transform, were used for the CIRs. This process863

leads to pulse compression for the LFM signal and allows864

for better observation of the acoustic structures with higher865

time resolutions as well as noise reduction. In contrast, the866

SBLs inherently derive a high-resolution CIR with less noise 867

by solving the linear system of (5). For the visualization in 868

this study, the SBL results were purposely convolved with 869

an autocorrelation of the LFM signal, and the corresponding 870

envelopes were used, which is illustrated in Fig. 6. The direct 871

results for the SBLs were subsequently compared with the 872

results from the MF in Fig. 7. 873

While the arrivals around 80 ms and 105 ms have high 874

intensities due to the refractive sound speed profile in the 875

SAVEX15, the arrivals that form the ‘x’ shapes are more 876

focused on the performance comparison. The major arrivals 877

were found to use the MF, but they entailed noise overall. 878

The noise around the ‘x’ shapes caused the arrivals to appear 879

stretched over the relative time delay. The noise near the lower 880

left part of the second ‘x’ shape masked the arrivals. These 881

are detrimental to the clear detection of the arrival directions 882

to the VLA when time-domain beamforming is performed. 883

The SBLs tend to select bases of the transformation matrix 884

that correspond to the actual arrivals, so the noise in the 885

measurement is suppressed during the iterative estimation of 886

the signal powers in the SBLs. Thus, in the UN-SBL result, 887

the noise is remarkably removed, and the masked arrivals 888

around the second ‘x’ shape are more clearly observed. The 889

performance in terms of the noise reduction is improved 890

by the extended SBL, which is due to the more complex 891

approach to noise in the measurement. Most of the noise in 892

the MF result is diminished with the more advanced scheme, 893

as shown in Figs. 6(a) and 6(c). This is achieved at the cost 894

of the weakened arrivals. The NN-SBL estimates multiple 895
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FIGURE 7. The CIRs around the dotted lines in Fig. 6. The triangles indicate the arrivals from the upward and downward directions.
The closest arrivals that are not resolved by an MF can be separated by both the UN-SBL and NN-SBL. As expected, most of the noise
in the MF result is cleared by the NN-SBL, which is traded with the weakened arrivals. On the other hand, the arrivals are too
diminished in the HN-SBL result. In particular, the arrival near 84 ms that comprise of the acoustic structure of ‘x’ shape is absent.

noise powers according to the frequencies here using a single896

measurement. This should not be sufficient for an accurate897

estimation, and it induces the weak arrivals. The HN-SBL898

estimates the CIRs too sparsely and filters out almost all the899

true arrivals except for the intensive arrivals in the middle of900

the water column. The upward and downward arrivals that901

form the ‘x’ shapes are either absent or weakly present.902

As mentioned before, the ‘x’ shapes are formed by the903

upward and downward incoming arrivals getting closer at first904

and farther apart afterwards, which are merged at the VLA905

center. Themeasured signal at the sensor just above the center906

is used to examine the performance of the schemes in terms907

of the time resolution. Figure 7 shows parts of the CIRs from908

the MF and the SBLs that correspond to the dotted lines in909

Fig. 6. The MF result and the direct estimates from the SBLs910

are used here for the comparison after the normalization.911

The triangles indicate the arrivals that are relevant to the ‘x’912

shapes. The MF cannot distinguish the closest two arrivals913

near 85 ms, which is due to the lower time resolution by914

an insufficient frequency band at a low frequency, whereas915

the sparse estimations of the SBLs enable the arrivals to be916

separated, which included the other arrivals. The noise in917

the MF result, which has an intensity that is comparable to918

that the intensity of the arrivals, is noticeably reduced by the919

SBL-based CIR estimators (more by the NN-SBL). On the920

other hand, the arrivals are too diminished in the HN-SBL921

result. The arrival near 84 ms that comprised of the acoustic922

structure of the ‘x’ shape is absent, and it hinders the recovery923

of the true CIR from the measurement.924

VI. SUMMARY925

TheMF that generally uses the cross-correlation of the source926

waveform with the measured signal is used to estimate a CIR927

that display the arrivals via the pulse compression and the928

suppression of uncorrelated noise. However, its application929

is limited by the insufficient frequency band of the source930

waveform, which leads to the broadening of the arrivals,931

which makes it difficult to distinguish the adjacent arrivals.932

The SBL, which was originally developed for classification933

and regression, was extended to estimate a high-resolution 934

CIR with a limited frequency band. 935

In this study, the SBL was used to solve a linear system of 936

CIRs, which were established by the physics of underwater 937

sound propagation. The omnipresent noise was scaled using 938

the source spectrum, which resulted in nonuniform noise 939

powers in the measurement violating a basic assumption in 940

the conventional SBL. To treat the inconsistent noise, the SBL 941

was expanded mathematically to accommodate the noise, 942

which was examined using simulated data that included a 943

single arrival. The expanded SBL (referred to as theNN-SBL) 944

delivered a superior performance with a more apparent arrival 945

estimation than the existing SBLs (referred to as the UN-SBL 946

and the HN-SBL) at a low SNR. 947

An inherent problem of the SBL is the basis mismatch 948

that was caused by the discretized columns corresponding 949

to the on-grid arrival times that did not precisely match the 950

true off-grid arrival times. The orthogonal-like bases of the 951

transformation matrix in the linear system fortunately ensure 952

that the estimated arrival is close to the true value. The syn- 953

thetic data, which was sampled with two different sampling 954

frequencies, was used to support the properties of the bases. 955

The NN-SBL has an arrival around the true one even at a low 956

sampling rate with less time resolution. 957

A numerical experiment was conducted to demonstrate the 958

high-resolution CIR via the SBLs, where a scattered signal 959

from a finite submerged target was simulated with the direct 960

arrival. When a low-frequency source was used with a fre- 961

quency band of 1 kHz, the MF could not distinguish between 962

the two arrivals with a travel distance difference of 2m, which 963

was due to its low time resolution being proportional to the 964

source frequency band. On the contrary, the SBLs separated 965

the scattered signal from the direct signal via the sparse 966

estimation of the CIR linear system. The NN-SBL exhibited 967

a better noise-reduction performance when the multiple mea- 968

surements that were obtained over time were available. 969

The extended SBL was applied to the SAVEX15 data 970

that was measured using a VLA at low frequencies 971

(0.5–2 kHz) with the other schemes (MF, UN-SBL, and 972
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HN-SBL). The noise smearing actual arrivals in theMF result973

was remarkably diminished by improving the schemes.While974

the arrivals are weakened by the insufficient measurements in975

the CIRs from the NN-SBL, it retained the highest possible976

arrivals and provided the most apparent estimation. Further-977

more, the time resolution via the SBL was examined with the978

received signal that was measured by the sensor just above979

the VLA center, which had close arrivals from the upward980

and downward directions before the merging. As expected,981

all the close arrivals were separated with less noise using the982

sparse estimation.983
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