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ABSTRACT This study proposes a composite nonlinear feedback approach for the robust tracking control
problem of uncertain nonlinear systems with input saturation, Lipschitz nonlinear functions, multivariable
time-delays, and disturbances. The composite nonlinear feedback technique includes two components: a
linear feedback portion constructed in such a way that it changes the damping ratio so as to speed up the
system’s response. A nonlinear feedback controller is designed to further increment the damping ratio in a
way that it ensures the tracking whilst reducing the overshoot created by the linear portion. By creating a
suitable Lyapunov functional and by using the linear matrix inequality (LMI) approach, the LMI conditions
are determined to guarantee system stability and obtain the required design parameters. The performance of
the proposed approach is assessed using a simulation study of a two-dimensional system along with a Chua’s
circuit system. The advantages of the proposed approach are its less-restrictive assumptions, improved
transient performance, and steady-state precision.
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INDEX TERMS Composite nonlinear feedback, input saturation, linear matrix inequality, robust tracking,
time delay.

I. INTRODUCTION14

Dynamic systems can be subjected to time-delays and input15

saturation; problems that can potentially lead to system insta-16

bility and malfunctions [1], [2], [3], [4], [5], [6], [7], [8].17

Time-varying systems are widely encountered in aerospace18

andmilitary applications such as airplanes, satellites, missiles19

and rockets. External disturbances are also other factors that20

may disrupt the desired performance of these systems [9].21

In these systems, since the tracking of the input command is22

of particular importance, the ability of the controller to track23

the input command and remove the effects of perturbations24

from the controlled system is critical [10]. Input saturation25
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is a constraint commonly found in practical systems that do 26

not allow the control input to exceed the specified control 27

bounds. Ignoring the input saturation constraint in the control 28

design stage can lead to undesirable behavior and potential 29

instability of the closed-loop system. Input saturation and 30

time delay frequently appear simultaneously in control sys- 31

tems [11], [12]. Various approaches have been devised in the 32

literature to mitigate these problem, such as adaptive neural 33

tracking control [13], robust tracking control [14], [15], H∞ 34

output tracking control [16], observer-based adaptive fuzzy 35

tracking control [17], quantized state feedback [18], and 36

robust H∞ control [19]. 37

Stabilization and tracking control are critical for systems 38

requiring robust and optimal performance such electron- 39

ics, chemical processes, helicopter flight control systems. 40
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In addition to ensuring system stability and satisfactory41

performance, attributes of an ideal controller are a sim-42

ple structure, high-speed calculation, and robustness against43

uncertainties and unmodelled dynamics. Fast response and44

overshoot features are also considered as important criteria in45

tracking problems. However, the fast response often results in46

high frequency, which is unwanted inmany applications. This47

can be solved via the composite nonlinear feedback (CNF)48

method [20], [21], [22], [23], [24].49

The CNF approach is an effective robust control method50

for improving the tracking performance of uncertain nonlin-51

ear systems with input saturation. A CNF control method52

was proposed in [25]for second-order linear systems subject53

to input saturation. The main features of the CNF are its54

quick response, robustness against uncertainties, and distur-55

bances, high transient performance, and small overshoot [26],56

[27], [28]. A CNF procedure is used in [29] for the semi-57

global stability of discrete-time singular linear systems in the58

presence of saturation. However, the system nonlinearities59

and disturbances have not been considered in that approach.60

An integral sliding mode-based CNF approach was proposed61

in [30] for linear descriptor systems without uncertainties62

and external disturbances. A composite nonlinear feedback63

procedure was proposed in [31] for the robust tracking of64

systems under uncertain parameters and time delays; but,65

this study did not consider nonlinearities. In [32], a design66

process for creating the CNF control is expanded to the tran-67

sient performance in the tracking problems for the switched68

linear systems with input saturation; however, the parameter69

uncertainties and time delays have not been applied to the70

system. In [33], a CNF control method was proposed for71

the tracking control problem of singular linear systems with72

input saturation; however, uncertainties and nonlinearities73

were not investigated. In [34], a CNF controller was applied74

for the tracking control problem of strict-feedback nonlinear75

systems without considering time delays nor nonlinearities.76

A sliding mode-based adaptive composite nonlinear feed-77

back controller was studied in [35] for nonlinear systems;78

however, uncertainties, time delays, and saturations were not79

considered.80

A major problem in control design is the conflict between81

high efficiency and transient response. The CNF method is a82

practical and impressive procedure, which is used to improve83

the uncertain nonlinear system performance and overcome84

the barriers of transient performance [36], [37], [38]. In recent85

papers, there is more enthusiasm in applying this method for86

a variety of systems in comparison with other methods. For87

a specific type of car suspension system, the CNF procedure88

is applied to diminish the chattering effects [39], [40]. The89

robust CNF procedure is expressed in [41] to enhance quick90

and exact set-point tracking for damaged linear systems.91

In [42], the CNF procedure with a nonlinear term has been92

studied in terms of smooth and quick regulation with the93

uncertainty, external disturbances and input saturation ren-94

dezvous for the spacecrafts regardless of the nonlinearities95

and time delays. The CNF control procedure was studied for a96

category of linear/nonlinear systems with parallel distributed 97

recovery via sliding mode control method in [43]. In [44], 98

a quick and precise robust path-following control approxi- 99

mate has been conducted for a fully-actuated marine surface 100

vessel with external disturbances. In [45], the quick and 101

precise chaos synchronization of uncertain chaotic systems 102

with Lipschitz nonlinear terms and disturbances have been 103

investigated. 104

An active front-steering control that combines CNF with 105

a disturbance observer was proposed in [46], to obtain a fast 106

damping rate tracking response and yield robustness to exter- 107

nal disturbances. An adaptive nonlinear gain-based CNF con- 108

troller was proposed in [47] to optimize the system dynamic 109

efficiency. However, disturbances, uncertainties, and time 110

delays were not considered in the design. A CNF technique 111

was proposed in [48] for the tracking problem of a class 112

of single-input single-output nonlinear systems subject to 113

input saturation. The CNF control problem based on the 114

event-triggered strategywas investigated in [49], for saturated 115

systems. In [50], the adaptive tracking control problem of 116

uncertain large-scale nonlinear time-delayed systems in the 117

presence of input saturations is studied. In [51], the bound- 118

edness property of the robust tracking CNF controller has 119

been studied for time-delay uncertain systems with input 120

saturation. In [52], a hybrid controller design for a quar- 121

ter car is developed. A design that combines active distur- 122

bance rejection control with a fuzzy control approach was 123

proposed in [53]. 124

For the intermittent control, its control signal is updated 125

in a continuous manner on control time intervals. To over- 126

come the limitation, time-triggered intermittent control is 127

considered in [54]. In [55], the time-triggered intermittent 128

control is proposed to examine the exponential synchro- 129

nization issue of chaotic Lur’e systems. In [56], a control 130

approach is suggested for the robust stabilization of the iner- 131

tial wheel inverted pendulum, with norm-bounded parametric 132

uncertainties and both motion constraints and actuator satu- 133

ration. The robust stabilization of a class of continuous-time 134

nonlinear systems via an affine state-feedback control law 135

using the linear matrix inequality approach is studied in [57]. 136

In [58], an enhanced composite nonlinear feedback technique 137

using adaptive control is developed for a nonlinear delayed 138

system subject to input saturation and exogenous distur- 139

bances. In [59], the precise tracking problem for electrostatic 140

micromirror systemswith disturbances and input saturation is 141

studied. A composite nonlinear feedback-based adaptive inte- 142

gral sliding mode controller with a reaching law for fast and 143

accurate control of a servo position system subject to external 144

disturbance is presented in [60]. In [61], an L2−L∞/H∞ 145

optimization control issue is studied for a family of non- 146

linear plants by Takagi-Sugeno (T-S) fuzzy approach with 147

actuator failure. In [62], the problem of resilient event- 148

trigger-based security controller design is investigated for 149

nonlinear networked control systems described by interval 150

type-2 fuzzy models subject to non-periodic denial of service 151

attacks. In [63], an adaptive performance guaranteed tracking 152
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control problem is studied for multiagent systems with power153

integrators and measurement sensitivity. To the best of the154

authors knowledge no work has investigated CNF-based155

control designs for systems with the simultaneous presence156

of uncertainties, input saturation, time delay, and Lipschitz157

disturbances.158

This paper presents an LMI-based composite nonlinear159

feedback control method for nonlinear systems subject to160

time delay, uncertainties, external disturbances, and input161

saturation. Its main contributions are as follows:162

• A CNF control design that ensures the system’s robust-163

ness against nonlinearities, parametric uncertainties,164

and external disturbances whilst guaranteeing transient165

performance.166

• Compared to the existing results, the proposed method167

can be applied to a wider class of uncertain systems.168

The rest of the paper is organized as follows: In Section II,169

the problem formulation and required assumptions are pre-170

sented. In Section III, the original theoretical outcomes are171

expanded and proper choice of the nonlinear function in172

CNF is studied. Simulation results are provided in Section IV.173

Conclusions are lastly drawn in Section V.174

II. PROBLEM FORMULATION AND PRELIMINARIES175

Consider the following nonlinear system with time delay,176

input saturation, uncertainties and disturbances:177

ẋ(t) = f (x(t), x (t − (τ )1(t)) , . . . , x (t − τN (t)))178

+ (A+1A (r(t))) x(t)179

+

∑N

i=1

(
Adi +1Adi (ν(t))

)
x (t − τi(t))180

+Bsat(u(t))+W (q(t)), (y(t) = Cx(t), (1)181

where t ∈ [t0,∞) , x(t)∈Rn is the state vector, u(t)∈Rm182

denotes the control signal, A,Adi ,B, and C signify matrices183

of proper dimensions, matrices 1A(.), 1Adi (.), i = 1, · · ·,N184

represent the uncertainties, q (t) , r (t) , ν(t) are uncertain185

scalar functions,W (q(t)) is disturbance, f is an uncertain non-186

linear function and τi∈R+ is the time-delay. The saturation187

function is described by188

sat(u(t)) =


sat(u1(t))
sat(u2(t))

...

sat(um(t))

189

sat(ui(t)) = sign(ui(t))min(|ui(t)|, ui(t)) (2)190

where ui(t) is the maximum value of the ith control input.191

The main control purpose is to synthesize a CNF law so192

that the output y(t) can follow the reference output ym(t),193

as quickly and smoothly as possible. The reference model is194

represented by:195

ẋm(t) = Amxm(t)196

+ fm (xm(t), xm (t − τ1(t)) , . . . , xm (t − τN (t)))197

ym(t) = Cmxm(t), (3)198

whereAm andCm are constant matrices, xm(t)∈Rnm represents 199

the state vector of the reference model with ‖xm(t)‖≤M , 200

whereM is a positive scalar. The reference model is selected 201

so that there exist two matrices G∈Rn×nm and H∈Rm×nm 202

satisfying: 203[
A B
C 0

] [
G
H

]
=

[
GAm
Cm

]
(4) 204

Assumption 1: There are matrices with continuous bound- 205

ary conditions N (.), Ndi (.),Ldi , and W̃ (.) so that 206

1A(r(t)) = BN (r(t)), 207

1Adi (v(t)) = BNdi (v(t)), i = 1, . . . ,N 208

W (q(t)) = W̃ (q(t)) 209

Adi = BLdi , i = 1, . . . ,N (5) 210

which the bounds of the uncertainties are provided by 211

ρr = sup ||N (r(t))||, 212

ρνi = sup
∣∣∣∣Ndi (ν(t))∣∣∣∣ |, i = 1, · · ·,N 213

ρq = sup ||W̃ (q(t))||, (6) 214

Remark 1: Assumption 1 illustrates that the uncertain 215

nonlinear system with time-delay and input saturation (1) 216

contains a special structure which is commonly denominated 217

by a matching condition for parametric uncertainties; a stan- 218

dard assumption in robust control problems. According to 219

the matching conditions, all external disturbances, and uncer- 220

tainties must be controlled in the control vector space, thus 221

limiting the structure of the system. The boundary conditions 222

are continuous and bounded matrix functions, meaning that 223

the arguments of the matrix are bounded and continuous 224

functions. 225

Assumption 2: The nonlinear function f is uncertain and 226

Lipschitz for all x(t)∈Rn and xm(t)∈Rn so that [64], [65]: 227

||f (x(t), x (t − τ1(t)) , . . . , x (t − τN (t))) 228

−Gfm (xm(t), xm (t − τ1(t)) , . . . , xm (t − τN (t)))|| 229

≤ (N + 1) (||L0 (x(t)− Gxm(t)) || 230

+ ||L1(x(t− τ1(t))− Gxm (t − τ1(t))) || 231

+ · · · + ||LN (x(t − τN (t))− Gxm (t − τN (t))) ||) 232

(7) 233

where Li∈Rn×n, i = 0, 1, . . . ,N are constant matrices. 234

In other words, it is stated as 235

(f (x(t), x (t − τ1(t)) , . . . , x (t − τN (t))) 236

−Gfm (xm(t), xm (t − τ1(t)) , . . . , xm(t− τN (t))))T 237

× (f (x(t), x (t − τ1(t)) , . . . , x(t− τN (t))) 238

−Gfm (xm(t), xm(t− τ1(t)) , . . . , xm (t − τN (t)))) 239

≤ (N + 1)((x(t)− Gxm(t))T L0LT0 (x(t)− Gxm(t)) 240

+ (x(t − τ1(t))− Gxm (t − τ1(t)))T LT1 L1(x(t − τ1(t)) 241

−Gxm (t − τ1(t))) 242

+ · · · + (x(t − τN (t))− Gxm (t − τN (t)))T 243

×LTNLN (x(t − τN (t))− Gxm (t − τN (t)))) (8) 244
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The tracking error e(t) and auxiliary vector tilde x̃(t) are245

defined by:246

e(t) = y(t)− ym(t), (9)247

x̃(t) = x(t)− Gxm(t), (10)248

where G is obtained using (4). From (4), (9), and (10),249

we have:250

‖e(t)‖ = ‖y(t)− ym(t)‖251

= ‖Cx(t)− Cmxm(t)‖252

= ‖Cx(t)− CGxm(t)‖253

= ‖Cx̃(t)‖254

≤ ‖C‖ ‖x̃(t)‖ , (11)255

Since ‖C‖ is bounded, then ‖x̃(t)‖ → 0 implies256

‖e(t)‖ → 0. Hence, to prove the perfect tracking one has257

to show that ‖x̃(t)‖ is convergent.258

III. MAIN RESULTS259

The CNF control design method is suggested for the tracking260

control of uncertain nonlinear systems with time delay and261

input saturation. The aim of the tracking controller design is262

to minimize the tracking error. To this end, define the linear263

control part of the system (1) as follows [66]:264

uL(t) = Kx(t)+ (H − KG)xm(t), (12)265

where G and H are obtained from (4), and K denotes a gain266

matrix that is specified in the LMI form. Then define the267

nonlinear function as:268

uN (t) = ψ(x̃(t))BTPx̃(t), (13)269

whereP denotes a positive-symmetricmatrix, andψ(x̃(t)) is a270

selection of non-positive Lipschitz function in tilde x̃(t), that271

is applied to regulate the damping ratio of the system as the272

output converges to the reference to diminish the overshoot273

created by the linear portion. The CNF controller is the sum274

of the linear and nonlinear parts as follows:275

u(t) = uL(t)+ uN (t)276

= Kx(t)+ (H − KG)xm(t)+ ψ(x̃(t))BTPx̃(t). (14)277

From (1), (3), (4), (10), and (14), it can be obtained278

˙̃x(t)279

= f (x(t), x (t − τ1(t)) , . . . , x (t − τN (t)))280

−Gfm (xm(t), xm (t − τ1(t)) , . . . , xm (t − τN (t)))281

+ (A+1A(r(t))+ BK )x̃(t)282

+1A(r(t))Gxm(t)+ Bsat(u(t))+W (q(t))− B (Kx̃(t)283

+Hxm(t))+
∑N

i=1

(
Adi + 1Adi (v(t))

)
(x̃ (t − τi) 284

+Gxm (t − τi)) 285

= f (x(t), x (t − τ1(t)) , . . . , x (t − τN (t))) 286

−Gfm (xm(t), xm (t − τ1(t)) , . . . , xm (t − τN (t))) 287

+ (A+ BN + BK )x̃(t)+
∑N

i=1

(
Adi + BNdi

)
x̃(t − τi(t)) 288

+Bw+ g (r, s, q, v, xm) (15) 289

where 290

g (r, s, q, ν, xm) 291

= 1A (r(t))Gxm(t) 292

+

∑N

i=1
(Adi +1Adi (ν(t)))Gxm(t − τi)+W (q(t)) 293

(16) 294

and 295

w = sat(Kx̃ + Hxm + ψ ˜(x)BTPx̃)− Kx̃ − Hxm. (17) 296

By applying Assumption 1, Eq. (16) is stated as 297

g(r, s, q, ν, xm) = BF(r, s, q, ν, xm) (18) 298

where 299

F(r, s, q, ν, xm) 300

= N (r(t))Gxm(t) 301

+

N∑
i=1

(Ldi + Ndi (ν(t)))Gxm(t − τi)+ W̃ (q(t)). (19) 302

Then, from (6) and (19), and determining the bounds 303

ρ = sup ‖F(r, s, ν, q, xm)‖ and ‖xm(t)‖≤M , the following 304

inequality is obtained 305

ρ≤ρr ‖G‖M +
∑N

i=1
(
∥∥Ldi∥∥+ ρνi) ‖G‖M + ρq. (20) 306

The nonlinear functionψ(x̃(t)) in (13) is defined as in (21), 307

shown at the bottom of the page, where σ (x̃(t))∈R+ is any 308

positive uniform continuous bounded function with 309

lim
t→∞

∫ t

t0
σ (x̃(τ ))dτ≤σ0, (22) 310

where σ0 is a bounded constant. 311

The liberty in choosing a nonlinear expression σ (x̃(t)) 312

causes the control law to be adjusted and the perfor- 313

mance is improved as the system output converges to the 314

reference input. The nonlinear expression σ (x̃(t)) applies to 315

the following features 316

(1) Because σ (x̃(t)) a function of ‖x̃(t)‖, the following 317

equation is established: 318

σ (x̃(t)) = σ (−x̃(t))≥0. (23) 319

ψ(x̃(t)) = −
(ρ + ρr‖x̃(t)‖ +

∑N
i=1 ρνi‖x̃(t − τi)‖)

2

‖BTPx̃(t)‖(ρ + ρr‖x̃(t)‖ +
∑N

i=1 ρνi‖x̃(t − τi)‖)+ σ (x̃(t))
. (21)
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(2) If the system output is not close to the reference out-320

put, the function σ (x̃(t)) becomes larger, as a result,321

the function shrinks and the efficacy of the nonlinear322

portion of the CNF law reduces.323

(3) If the system output converges the reference output,324

σ (x̃(t)) function becomes very small and reaches its325

lowest value, thus increasing the |ψ(x̃(t))| value and326

therefore, the efficacy of the nonlinear controller will327

be evident.328

Since the choice of the nonlinear function σ (x̃(t)) is free so329

it can be expressed in different ways. To compatible alteration330

of the tracking aim, a nonlinear function is defined as follows:331

σ (x̃(t)) = βe
−α0α

‖y(t)−ym(t)‖ , (24)332

where333

α0 =

{
‖y(t0)− ym(t)‖ , y(t0) 6= ym(t)
1, y(t0) = ym(t)

(25)334

The nonlinear expression ψ(x̃(t)) converges from the pri-335

mary value βe−α to the steady state value 0, thus the function336

‖y(t0)− ym(t)‖ converges to zero. From (25), we conclude337

that the parameter α0 changes for different tracking purposes338

ym(t) so the primary value of the nonlinear function is not339

dependent on ym(t).340

Theorem 1: Consider the system (15) with f (0, 0, . . . ,341

0) = 0 and the CNF law of (14) satisfying assumptions 1-2.342

Also, assume that the time delays τi(t) are bounded by343

scalares ζi holding |τ̇i(t)|≤ζi. For any δ∈(0, 1), the following344

properties hold:345

|Kix̃| ≤ (1− δ)ui, i = 1, . . . ,m (26)346

|Hixm| ≤ δui, i = 1, . . . ,m (27)347

If there exist matrices Si > 0, i = 1, · · ·,N , Q = QT > 0,348

and Y with suitable dimensions so that, (28), as shown at the349

bottom of the page, where 6 = AQ+QAT + BY + Y TBT +350 ∑N
i=1 Si and by applying βi = γi

−1, for i = 0, 1, . . . ,N351

and P = Q−1 in (28), the CNF control (14) guarantees that352

the system output y(t) follows the reference output ym(t) as353

a result the tracking error e(t) would be ultimately bounded.354

Then, the control feedback gain K is obtained by K = YQ−1.355

Proof: To prove the sustainability of the system, we con- 356

struct the Lyapunov candidate functional as 357

V (x̃, t) = x̃T (t)Px̃(t)+
N∑
i=1

∫ t

t−τi
x̃T (s)Rix̃(s)ds, (29) 358

where P and Ri, i = 1, · · ·,N are the weighting matrices that 359

is characterized by LMI. By deriving (29) along the directions 360

of the system in (15) outcomes 361

V̇ (x̃, t) 362

= ˙̃xT (t)Px̃(t)+ x̃T (t)P ˙̃x(t) 363

+

∑N

i=1
x̃T (t)Rix̃(t) 364

−

∑N

i=1
(1− ζi)x̃T (t − τi(t))Rix̃(t − τi(t)) 365

= x̃T (t)[(A+ BK )TP+ 366

× (PBN )T + PBN + P(A+ BK )]x̃(t) 367

+FTBTPx̃(t)+ x̃T (t)PBF + (f (x(t), x(t − τ1(t)) 368

, . . . , x(t − τN (t)))− Gfm(xm(t), xm(t − τ1(t)) 369

, . . . , xm(t − τN (t))))TPx̃(t) 370

+ x̃T (t)P(f (x(t), x(t − τ1(t)), . . . , x(t − τN (t)))− 371

×Gm(xm(t), xm(t − τ1(t)), . . . , xm(t − τN (t)))) 372

+ (B
∑N

i=1
Ndi x̃(t − τi(t)))

TPx̃ 373

+ x̃TPB
∑N

i=1
Ndi x̃(t − τi(t)) 374

+

∑N

i=1
Adi x̃

T (t − τi(t))Px̃(t) 375

+ x̃T (t)P
∑N

i=1
Adi x̃(t − τi(t)) 376

+ 2x̃T (t)PBw+
∑N

i=1
x̃T (t)Rix̃(t) 377

−

∑N

i=1
(1− ζi)x̃T (t − τi(t))Rix̃(t − τi(t)) (30) 378

According to Assumption 1, it can obtain that: 379

V̇ (x̃, t) 380

≤ x̃T (t)[PA+ ATP+ PBK + KTBTP]x̃(t) 381

+ x̃T (t)P
∑N

i=1
Adi x̃(t − τi(t)) 382

+ (
∑N

i=1
Adi x̃

T (t − τi(t)))TPx̃(t) 383

−

∑N

i=1
(1− ζi)x̃T (t − τi(t))Rix̃(t − τi(t)) 384

+ 2ρ||BTPx̃(t)|| 385



6 Ad1Q · · · AdNQ β0I 0 0 0
√
N + 1QL0T 0 0 0

∗ − (1− ζ1) S1 0 0 0 β1I 0 0 0
√
N + 1QL1T 0 0

∗ ∗

. . . 0 0 0
. . . 0 0 0

. . . 0
∗ ∗ ∗ − (1− ζN ) SN 0 0 0 βN I 0 0 0

√
N + 1QLN T

∗ ∗ ∗ ∗ −β0I 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −β1I 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗

. . . 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −βN I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −β0I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

. . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −βN I


< 0 (28)
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+ 2ρr ||x̃(t)||||BTPx̃(t)|| + (f (x(t), x(t − τ1(t)),386

. . . , x(t − τN (t)))− Gfm(xm(t), xm(t − τ1(t)),387

. . . , xm(t − τN (t))))TPx̃(t)388

+ x̃T (t)P(f (x(t), x(t − τ1(t)), . . . , x(t − τN (t)))389

−Gfm(xm(t), xm(t − τ1(t)), . . . , xm(t − τN (t))))390

+ 2||BTPx̃(t)||
N∑
i=1

ρvi x̃(t − τi(t))+ 2x̃T (t)PBw391

+

∑N

i=1
x̃T (t)Rix̃(t) (31)392

The following equation holds for all γi, i = 0, 1, . . . ,N393

(f (x(t), x(t − τ1(t)), . . . , x(t − τN (t)))394

−Gfm(xm(t), xm(t − τ1(t))395

, . . . , xm(t − τN (t))))TPx̃(t)396

+ x̃T (t)P(f (x(t), x(t − τ1(t))397

, . . . , x(t − τN (t)))− Gfm(xm(t), xm(t − τ1(t))398

, . . . , xm(t − τN (t)))) ≤
1
γ
x̃T (t)P2x̃(t)399

+ γ (f (x(t), x(t − τ1(t)), . . . , x(t − τN (t)))400

−Gfm(xm(t), xm(t − τ1(t)), . . . , xm(t − τN (t))))T401

× (f (x(t), x(t − τ1(t))402

, . . . , x(t − τN (t)))− Gfm(xm(t), xm(t − τ1(t))403

, . . . , xm(t − τN (t))))404

≤
1
γ
x̃T (t)P2x̃(t)405

+
√
N + 1(γ0x̃T (t)LT0 L0x̃(t)406

+ γ1x̃T (t − τ1(t))LT1 L1x̃(t − τ1(t))407

+ · · · + γN x̃T (t − τN (t)))TLTNLN x̃(t − τN (t))) (32)408

In the following, we investigate four states of the saturation409

function.410

Case 1: In this case, all input channels are higher than the411

upper bound, that is, u > ui for this situation, we have412

Kix̃ + Hixm + ψ ˜(x)BTi Px̃≥ui. (33)413

Given inequality (26) and (27) we obtain414

Kix̃ + Hixm ≤ |Kix̃ + Hixm|415

≤ |Kix̃| + |Hixm|416

≤ (1− δ)ūi + δūi417

≤ ūi (34)418

for all x̃ ∈Xδ , where Xδ signifies an invariant set of dynamics.419

Therefore, all paths from the inside of Xδ will approach the420

reference, and hence421

wi = sat(Kix̃ + Hixm + ψ(x̃)BTi Px̃)− Kix̃ − Hixm422

= ui − Kix̃ − Hixm≥0. (35)423

From (33), we obtain424

ψ ˜(x)BTi Px̃≥ui − Kix̃ − Hixm≥0. (36)425

since ψ(x̃(t)) is a nonpositive expression, it results: 426

BTi Px̃ = x̃TPBi≤0, (37) 427

Case 2: In this case, all input channels are assumed to 428

be smaller than their lower bound, that is, u < −ui then, 429

we have: 430

Kix̃ + Hixm + ψ(x̃)BTPx̃ ≤ −ūi. (38) 431

Similarly, we obtain: 432

Kix̃ + Hixm ≥ −ūi, (39) 433

therefore, we have 434

wi = sat
(
Kix̃ + Hixm + ψ(x̃)BTi Px̃

)
− Kix̃ − Hixm 435

= −ūi − Kix̃ − Hixm ≤ 0, (40) 436

which yields that 437

ψ ˜(x)BTi Px̃≤− ui − (Kix̃ + Hixm)≤0, (41) 438

and 439

BTi Px̃ = x̃TPBi≥0. (42) 440

Case 3: In this case, we will have the combination of 441

modes 1 and 2 which means that some of the control inputs 442

are saturated and some are not. In order to represent the 443

unsaturated factors, we have: 444

x̃TPBiwi = ψ ˜(x)x̃TPBiBTi px̃≤0, (43) 445

and for the saturated factors exceeding their upper bounds, 446

from wi≥0 and x̃TPBi≤0, we have 447

x̃TPBiwi≤0. (44) 448

Eventually, for the unsaturated factors exceeding their 449

lower bounds, from wi≤0 and x̃TPBi≥0, we get: 450

x̃TPBiwi≤0. (45) 451

Case 4: If all input factors are not saturated, that is, |u|≤ui. 452

So, from (17), it gives 453

w = ψ ˜(x)BTPx̃, (46) 454

where substituting (46) into (31) yields 455

V̇ (x̃, t) ≤ 9TQ19 + 2 (ρ + ρr ||x̃(t)|| 456

+

∑N

i=1
ρvi ||x̃ (t − τi(t))| |)||B

TPx̃|| 457

+ 2x̃T (t)PBψ(x̃)BTPx̃ (47) 458

where 459

9 =
[
x̃(t) x̃ (t − τ1(t)) . . . x̃ (t − τN (t))

]T
460

and, (48), as shown at the bottom of the next page, where 461

3 = PA + ATP + PBK + KTBTP +
∑N

i=1 Ri + 462
√
N + 1γ0L0TL0. Substituting (21) into (47), we achieve 463

V̇ (x̃, t) ≤ 9TQ19 + 2
ᾱ||BTPx̃||σ (x̃(t))
ᾱ||BTPx̃|| + σ (x̃(t))

(49) 464

where ᾱ = sup
(
ρ + ρr ||x̃(t)|| +

∑N
i=1 ρvi ||x̃ (t − τi(t))| |

)
. 465
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Considering the following fact:466

0 ≤
σ (x̃(t))θ
σ (x̃(t))+ θ

≤ σ (x̃(t)), ∀σ (x̃(t)) > 0, θ > 0 (50)467

From(49) and (50), we have468

V̇ (x̃, t) ≤ 9TQ19 + 2σ (x̃(t)) (51)469

Then, it follows that470

V̇ (x̃, t) ≤ 9TQ19 + 2σ̄ , ∀x̃ ∈ Xδ (52)471

since σ (x̃(t))≤σ , and overline (σ is a bounded constant.472

Based on the equation (52), all of the responses of the system473

are bounded, and also according to inequality (22), we con-474

clude that tilde x̃(t) −→ 0.475

lim
t→∞

x(t) = Gxm, (53)476

lim
t→∞

u(t)477

= K lim
t→∞

x̃(t)+ Hxm478

+ lim
t→∞

ψ(x̃)BTPx̃(t) = Hxm, (54)479

lim
t→∞

y(t)480

= C lim
t→∞

x̃(t) = CGxm = Cmxm = ym(t). (55)481

so, the auxiliary vector tilde (x(t)) of the system (15) tends 482

uniformly to zero and thereby it follows from (11) that the 483

tracking error e(t) reduces asymptotically to zero. 484

The condition dot V̇ (x̃, t) < 0 holds if there exists a 485

scalar γ so that Q1 < 0. In order to satisfy the inequality 486

(48) with the form of LMIs assuming Q = P−1, K = 487

YQ−1, Si = QRiQ, and pre-and post-multiplying (48) 488

by diag (Q, . . . ,Q, γ0−1I , γ1−1I , . . . , γN−1I ) obtained as in 489

(56), shown at the bottom of the page, where M = AQ + 490

QAT + BY + Y TBT +
∑N

i=1 Si +
√
N + 1γ0QL0TL0Q. 491

By applying the Schur complement, the following inequality 492

is obtained as in (57), shown at the bottom of the page, where 493

6 = AQ + QAT + BY + Y TBT +
∑N

i=1 Si and defining 494

βi = γi
−1 for i = 0, 1, . . . ,N , LMI (28) is achieved. Thus, 495

completing the proof. 496

Note that, the proposed robust tracking controller by CNF 497

improves the transient efficiency and steady-state precision 498

at the same time. Obviously, the CNF control law leads 499

to a linear controller when the nonlinear portion tends to 500

zero. As a result, the added nonlinear expression allows 501

modifying the linear control law to recover system tran- 502

sient performance and the error converges to zero. Selec- 503

tion of the nonlinear feedback part is important because the 504

Q1 =



3 PAd1 · · · PAdN P 0 0 0
∗ − (1− ζ1)R1 +

√
N + 1γ1L1T L1 0 0 0 P 0 0

∗ ∗

. . . 0 0 0 P 0
∗ ∗ ∗ − (1− ζN )RN +

√
N + 1γN LN T LN 0 0 0 P

∗ ∗ ∗ ∗ −γ0I 0 0 0
∗ ∗ ∗ ∗ ∗ −γ1I 0 0

∗ ∗ ∗ ∗ ∗ ∗

. . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γN I


(48)



M Ad1Q · · · AdNQ γ0
−1I 0 0 0

∗ − (1− ζ1) S1 +
√
N + 1γ1QL1T L1Q 0 0 0 γ−11 I 0 0

∗ ∗

. . . 0 0 0
. . . 0

∗ ∗ ∗ − (1− ζN ) SN +
√
N + 1γNQLN T LNQ 0 0 0 γN

−1I
∗ ∗ ∗ ∗ −γ0

−1I 0 0 0
∗ ∗ ∗ ∗ ∗ −γ−11 I 0 0

∗ ∗ ∗ ∗ ∗ ∗

. . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ−1N I


< 0 (56)



6 Ad1Q · · · AdNQ γ0
−1I 0 0 0

∗ − (1− ζ1) S1 0 0 0 γ1
−1I 0 0

∗ ∗
. . . 0 0 0

. . . 0

∗ ∗ ∗ − (1− ζN ) SN 0 0 0 γN
−1I

∗ ∗ ∗ ∗ −γ0
−1I 0 0 0

∗ ∗ ∗ ∗ ∗ −γ1
−1I 0 0

∗ ∗ ∗ ∗ ∗ ∗
. . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γN
−1I

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0
√
N + 1QL0T 0 0 0

0 0
√
N + 1QL1T 0 0

0 0 0
. . . 0

γN
−1I 0 0 0

√
N + 1QLN T

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−γN
−1I 0 0 0 0

∗ −γ0
−1I 0 0 0

∗ ∗ −γ1
−1I 0 0

∗ ∗ ∗
. . . 0

∗ ∗ ∗ ∗ −γN
−1I



< 0 (57)
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nonlinear part affects the performance of various parts of the505

system. In this work, we tried to select a nonlinear function so506

that the system achieves optimum transient and steady state507

performance. The extra nonlinear component aims to help508

the controller further improve the system’s performance and509

ensure its robustness to external disturbances and parametric510

uncertainties.511

IV. SIMULATION RESULTS512

The performance and efficiency of the proposed approach513

are assessed using two different examples. The first example514

considers a two-dimensional system with input saturation,515

time delay in the presence of perturbations, and uncertainties.516

A comparison with the methods proposed in [51] and [31] is517

also carried out. The second example considers the uncertain518

Chua’s circuit system with nonlinearity and compares the519

performance of the proposed method to that of the methods520

proposed in [51] and [31].521

Example 1: The unstable nonlinear system with time522

delays and disturbance are considered as:523

ẋ(t) =
[
0.5 cos x1(t)− 0.5

0.5 sin x2(t)

]
+

([
1 1.5
0.3 −2

]
524

+

[
0 0
r1(t) r2(t)

])
x(t)525

+

∑2

i=1
[Adi +1Adi(v(t))] x (t − τi)526

+

[
0
1

]
u(t)+

[
0
1

]
q(t).527

yt = [1 1]x(t) (58)528

where Adi, i = 1, 2 are constant parameters, r1(t), r2(t) and529

1Adi (ν(t)) , i = 1, 2 are the uncertain parameters and q(t)530

is the disturbance. The disturbance and uncertain bounds are531

as follows:532

(|r1(t)| ≤ 0.5, |r2(t)| ≤ 1, |q(t)| ≤ 0.5, | v(t |≤ 1.5) and533

1Ad1(v(t)) =
[
v1(t) 0
0 v2(t)

]
,1Ad2(v(t)) =

[
v1(t) 0
v2(t) 0

]
.534

Then, from (5) and (58), we have W̃ (q(t)) = q(t), N (r(t)) =535

[r1(t)r2(t)]536

The parameter of reference model is given by537

Am =
[
−10 0
0 −10

]
538

Cm =
[
−2.6 −1.3

]
(59)539

Using (4), the G and H can be determined as G =540 [
−2.206 −1.183
−0.393 −0.116

]
and H =

[
2.486 −1.047

]
. For sim-541

ulation use, take r1(t) = 0.5 sin(3t), r2(t) = sin(3t),542

ν1(t) = sin(2t), ν2(t) = 1 + 0.5 sin(2t), q(t) =543

0.5 cos(5t),Ad1 =
[
1 0
0 −1

]
,Ad2 =

[
0 −1
0 0

]
. The constant544

quantities are considered as α = 0.126,545

β = 1.12, ρ = 0.5, ρr = 1.12, ρν1 = ρν2 = 1.5.546

FIGURE 1. State vector of the reference model.

FIGURE 2. Trajectory of the system states.

The initial values values are considered as 547

x(0) = [−11 11]T , xm(0) = [−4.5 3]T and 548

τ1= 0.5sin(π t)+ 1, τ2 = −cos(2t)+ 1. The Lipschitzian 549

matrix is specified by 550

L0 =
[
0.5 0
0 0.5

]
551

552

The solutions of the LMI (28) are determined using the 553

LMI toolbox inMATLAB R© software as 554

P = 10−4
[

0.0018 −0.0119
−0.0119 0.1224

]
555

K =
[
−28.6102 −15.5797

]
556

R1 = 10−4
[
0.0139 0.0196
0.0196 0.2240

]
557

R2 = 10−5
[
0.1507 0.0672
0.0672 0.2014

]
558

S1 = 108
[
4.9164 0.5316
0.5316 0.0584

]
559

S2 = 108
[
4.1048 0.4105
0.4105 0.0412

]
560

Figure 1 shows the state vector of the reference model. 561

Figure 2 displays a diagram of state vector paths. The trajec- 562

tories of the tracking error are illustrated in Figure 3 and the 563

nonlinear state-feedback controller is depicted in Figure 4. 564

Note that all the state paths approach the origin. So, the 565

simulation results show that the system is resistant to time 566
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FIGURE 3. The tracking errors.

FIGURE 4. Control input.

delays and disturbances, and also the proposed controller567

displays a good convergence efficiency.568

The proposed approach exhibits high tracking accuracy569

and optimum and stable performance compared to the two570

other methods.571

Example 2: Consider the uncertain Chua’s circuit system572

with nonlinearity considered by [67]:573

ẋ(t) =

 f1(x(t))0
0

+
−10 10 0

1 −1 1
0 − 100

7 0

574

+

 0.2 sin(t) 0.3 cos(2t) 0.1 cos(t)
0 0 0
0 0 0

 x(t)575

+

∑2

i=1
[Adi +1Adi(v(t))] x (t − τi)576

+

 1
0
0

 u(t)+
 1
0
0

 q(t).577

y(t) =
[
1 1 1

]
x(t). (60)578

where f1(x(t)) = −5x21 (t) + 11.42 x1(t) + 2.14 (| x1(t)+579

1| − |x1(t)− 1 |) and Adi, i = 1, 2 are fixed parameters,580

r1(t), r2(t) and 1Adi(v(t)), i = 1, 2 are the uncertain param-581

eters and q(t) is the disturbance, and582

1Ad1(v(t)) =

 0.1 cos(t) 0.2 sin(t) 0.2 sin(t)
0 0.2 sin(t) 0
0 0 0.2 sin(t)

 ,583

1Ad2(v(t)) =

 0.1 sin(t) −0.2 cos(t) 0.3 sin(t)
0 0.3 sin(t) 0
0 0 0.3 sin(t)

 . The584

FIGURE 5. State vector of the reference model.

The parameter of reference model is given by 585

Am =

−20 0 0
0 −20 0
0 0 −20

 586

Cm =
[
−5.2 −2.6 0

]
. (61) 587

Using (4), the G and H can be achieved as G = 588−5.2 −2.6 0
0.27 0.13 0
0.19 0.09 0

 and H =
[
49.3 24.7 0

]
. Assuming 589

q(t) = 0.05 cos(0.25 t)+ 1 590

Ad1 =

−1 −1 0
0 0.5 0
0 0 0.1

 , Ad2 =

−1 −1 0.1
0 0.2 0
0 0 0.1

 . 591

The constant parameters are considered as: α = 0.126, β = 592

0.12, ρ = 0.5, ρr = 0.3742, ρν1 = 0.3, ρν2 = 0.3742. The 593

initial values are specified as: 594

x(0) = [0.65 0 0]T , xm(0) = [−2 1.5 0.2]T and 595

τ1 = τ2 = 0.1. 596

The solutions of LMI (28) are determined by the LMI 597

toolbox inMATLAB R© software as 598

P = 10−7

 0.2023 0.2255 −0.0291
0.2255 0.6197 −0.0508
−0.0291 −0.0508 0.0331

 , 599

K =
[
−11.1072 −34.4317 2.4647

]
600

R1 = 10−6

 0.1291 0.1438 −0.0207
0.1438 0.1977 −0.0247
−0.0207 −0.0247 0.0045

 , 601

R2 = 10−6

 0.1335 0.1488 −0.0213
0.1488 0.1874 −0.0250
−0.0213 −0.0250 0.0046

 602

S1 = 108

 3.4429 −0.3206 −0.2625
−0.3206 0.2817 0.0883
−0.2625 0.0883 1.4204

 , 603

S2 = 108

 3.4093 −0.1881 −0.2051
−0.1881 0.1596 0.0486
−0.2051 0.0486 1.4425

 604
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FIGURE 6. Trajectory of the system states.

FIGURE 7. The tracking errors.

FIGURE 8. Control input.

The simulation results are illustrated in Figs. 5 through 8.605

Fig. 5 shows the dynamics of the referencemodel. Fig. 6 illus-606

trates the state estimation. It is clearly shown that the607

estimation error reduces and converges to the reference.608

Fig. 7 demonstrates the tracking error. Fig. 8 displays the con-609

trol input with reasonable and appropriate values. The above610

results confirm the desirable performance and feasibility of611

the proposed approach.612

The obtained outcomes verified the superior perfor-613

mance of the suggested control approach compared to614

[51] and [31].615

V. CONCLUSION616

In this paper, we proposed a robust tracking control proce-617

dure based on the CNF technique for uncertain nonlinear618

systems with time delay and input saturation. The proposed619

control approach provides optimal performance, robustness,620

and stability despite external disturbances, time delays, and621

saturations. The LMI technique guaranteed the asymptotic622

conditions for the tracking controllers and also proved the623

stability of the system and convergence of the tracking errors 624

to the origin. Implementation of the proposed approach to a 625

two-dimensional system and the Chua’s circuit system con- 626

firmed its superior performance and robustness to external 627

disturbances and parametric uncertainties. Addressing the 628

design problem of disturbance observer for nonlinear systems 629

under input saturation using the CNFmethod can be the topic 630

for future investigations. 631
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