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ABSTRACT Malware detection plays a crucial role in cyber-security with the increase in malware growth
and advancements in cyber-attacks. Previously unseen malware which is not determined by security vendors
are often used in these attacks and it is becoming inevitable to find a solution that can self-learn from
unlabeled sample data. This paper presents SHERLOCK, a self-supervision based deep learning model
to detect malware based on the Vision Transformer (ViT) architecture. SHERLOCK is a novel malware
detection method which learns unique features to differentiate malware from benign programs with the use
of image-based binary representation. Experimental results using 1.2 million Android applications across
a hierarchy of 47 types and 696 families, shows that self-supervised learning can achieve an accuracy of
97% for the binary classification of malware which is higher than existing state-of-the-art techniques. Our
proposed model is also able to outperform state-of-the-art techniques for multi-class malware classification
of types and family with macro-F1 score of .497 and .491 respectively.

INDEX TERMS Self-supervised learning, deep learning, malware detection, Android security.

I. INTRODUCTION
Artificial intelligence has gained significant popularity over
the recent years, serving in many applications since its
inception. Currently, it dominates in the imaging field - in
particular, image classification [1]. Advancements in deep
learning technology has further improved the accuracy and
reliability of models that use deep learning architectures.
One can be impressed by the performance of Deep Neural
Networks (DNNs) which takes advantage of the proliferation
of large data-sets in addition to the increase in computa-
tional power. Despite state-of-the-art performance achieved
by DNNs, recent research reveals that such models are prone
to adversarial attacks which alters the output of the DNN
and degrades the performance [2]. Adversarial perturbation
is a well-known problem, due to the nature of deep neural
networks which are highly sensitive to slight modifications
that are imperceptible to human eye. Recently, many works
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have been proposed to generate diverse set of adversarial
examples, which have been used as benchmarks to evaluate
the robustness of deep learning models [3]. Similarly, several
strategies are also bought forward in the literature to thwart
such attacks [4].

In the realm of software security, malware detection poses
an increasingly challenging task [5], which is to identifymali-
cious software programs by differentiating such programs
apart from benign applications. According to recent stud-
ies [6], malicious software is increasing at an alarming rate,
where some or most hide inside popular applications using
obfuscation techniques that evades traditional signature-
based detection methods. In particular, Android malware
detection plays a vital role which seriously threatens the
integrity of Android applications. Statistics shows that more
than 3.25 million malicious Android apps have been found in
2016 [7], indicating that a new malware app is found every
10 seconds. Android malware detection needs more atten-
tion and research to prevent malware from being released in
the wild through Android application marketplaces. Malware
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authors use common obfuscation techniques such as encryp-
tion, oligomorphic, polymorphic, metamorphic, stealth and
packaging methods to make the task of detection difficult [8].
Themalware detection problem can be seen as a classification
problem whereby the algorithm needs to correctly categorize
a given program into one of the classes: malware or benign.
Most existing approaches to detect Android malware rely on
extraction of application features and using prior knowledge
to train a machine learning classifier to distinguish between
benign and malicious applications. Despite the high accu-
racy, these models are ineffective as attackers bypass such
detection by adding features commonly used by benign apps.
Such simple addition of benign functionality to malicious
apps, such as pop-up messages and logging, can change the
detection class from malicious to benign.

Recent malware programs are written with the objective
of being highly similar to benign applications by incorpo-
rating features of popular applications, having only slight
differences which is difficult for humans to perceive [9].
DNNs can detect such imperceptible changes, and by training
with a large data-set we can detect features of malicious
applications despite having a large amount of benign features
embedded. In fact, previous research has shown that malware
can be detected using image classifiers made of deep learning
models [10]. Malware variants belonging to the same family
exhibits visual similarity in the byteplot images, which can be
used to train deep learning models to detect specific features
which can then be used to detect the existence of similar
variant in other applications. These images are generated
based on visualization in the spatial domain by converting
bytes to pixels. The works typically convert malware binaries
to digital images and pass them into a neural network in
order to detect malware. Machine learning is widely applied
in the detection of Android malware, whether based on static,
dynamic or hybrid analysis approaches. Comparedwith tradi-
tional methods, such as signature-based detection, machine-
learning based approaches provide better performance in
detection efficacy and efficiency, in addition to the ability
to detect previously unseen types of malware i.e. zero-shot
learning.

In this paper, we present a novel technique building on self-
supervised representation learning to detect malware with
high-accuracy surpassing state-of-the-art techniques on one
of the largest malware data-sets containing 1.2 million binary
images across a hierarchy of 47 types and 696 families of
malware. Self-supervised learning is capable of adopting self-
defined pseudo-labels as supervision and use the learned
representations to avoid the cost of annotating large-scale
data-sets. Traditional supervised learning methods heavily
depend on the availability of annotated large-scale training
data, which is impractical with the ever-evolving nature of
malware programs. Even though there are plethora of data
available in a limited scale, the learning can suffer from issues
such as generalization error, spurious correlations and adver-
sarial attacks. This is where self-supervised methods play a
vital role in reaping the benefits of deep learning without

the expense of heavy annotations and learn feature repre-
sentations where data provides the supervision. We show
that our proposed technique is able to achieve 97% accuracy
in detecting malware and with 87% precision in correctly
identifying the malware family, outperforming state-of-the-
art techniques for one of the largest data-set consisting of
millionAndroid apps curated fromAndroZoo [11] repository.
The main contributions of this study are as follows:

• Implementation of a Transformer based computer vision
model utilizing self-supervised learning for Android
malware detection. To the best of our knowledge this
is the first work to utilize self-supervised learning and
vision transformers for the purpose of detectingmalware
on a large-scale data-set.

• A comprehensive evaluation of the effectiveness in
detecting a malware and multi-class malware classifica-
tion into malware type and malware family. Our results
demonstrate that self-supervised learning can effectively
classify 47 types and 696 families of malware with a
macro-F1 score of 0.497 and 0.491 respectively.

• Contributing to the understanding of self-supervised
computer vision models, specifically the Vision Trans-
former architectures, and their performance on synthetic
imagery.

The rest of the article is organized as follows: Section II
provides a background to malware detection and self-
supervised learning. Next, Section III details the methodol-
ogy while Section IV elaborates on the evaluation and the
results. Section V gives an overview of related work with
Section VI discussing important insights. Finally, the conclu-
sion is given at the end of the article.

II. BACKGROUND
In this section, we summarize the important background
details for self-supervised malware detection using byteplot
grayscale images. First, we describe the process for the
image generation where the malware executable is converted
to a byteplot grayscale image. These converted images of
binary executables can be used to automatically identify
visual patterns that can be used in static malware analysis.
We then describe the necessary background on image classifi-
cation using machine learning and self-supervision for image
classification.

A. BYTEPLOT VISUALIZATION
Transforming a binary executable into an image was first
described by Conti et al [12] to represent binary data objects
as grayscale images, where a pixel value of the image corre-
sponds to a byte in the binary. Since a byte range is 0-255,
the image pixel color is rendered as a grayscale where zero
is black and 255 is white other values representing interme-
diate shades of gray. This representation provides a visual
analysis of binary data to distinguish structurally different
regions of data and thus enabling wide range of static analysis
such as file type identification, inference of primitive data
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type, fragment classification and other tasks that required
special reverse engineering effort for the binary data. Nataraj
et al proposed to transform malware samples into byteplot
imageswith the observation that significant visual similarities
exists in malware belonging to the same family [13]. The
transformation consist of reading the binary as a vector of
8-bit unsigned integers organized into a 2D array, where the
width is defined based on empirical observations and height
is varied depending on the file size.

Freitas et al extended this work for Android applications by
constructing the image representation using DEX file (byte-
code) obtained from the Android APK [14]. The extracted
DEX file was converted to a 1D array (instead of 2D) of
8-bit unsigned integers. The vector is then used in a 3-phase
conversion process of 1) converting the 1D array to a 2D
image representation 2) scaling the image to a standard size
and 3) encoding semantic information into the RGB chan-
nels. Similar to the approach presented by Nataraj et al [13]
the first step is to convert the data array into a grayscale
image, where the width is fixed and height is varied based
on the file size. The transformed image is then scaled to
256 × 256 using a standard Lanczos filter from the Pillow
library. Once the scaled grayscale image is obtained the final
step is encoding semantic information that can further assist
the differentiation of distinctive texture patterns. By coloring
each byte according to its usage in the malware executable
file, the image has an added layer of semantic information
on top of the raw bytecode. Gennissen et al present [15] an
encoding that assigns each byte to a particular RGB color
channel depending on its position in the DEX file structure.
The observation is that the sections in a DEX file should be
distinguished for malware detection as each malware type
utilize each section differently, and such patterns can be easily
recognized in an image visualization. The encoded image
can be decoded back to grayscale by combining each of the
channels.

B. IMAGE CLASSIFICATION
Image classification is a paradigm of machine learning
involving assigning categories to images. Most image clas-
sification problems are multi-class, single label classifica-
tion problems involving multiple potential categories for the
images but with only a single label or category being applied
to an image. However, it is possible to apply multiple labels
to some imagery. For example, images that contain multiple
objects (i.e. a vehicle and a horse) or images that captures
multiple features (i.e. an image of a bird can be labeled based
on its physical features). In the context of malware analysis,
a byteplot image generated from a malware program may
contain different labels such as, if its benign or malware, type
of malware, author of the program andmalware family. These
labels can be explored as categories either independently
(as multiple single-label, multi-class problems) or jointly
(a single multi-label, multi-class problem). A key issue when
performing multiple single-label, multi-class classifications

on the same dataset is the computational cost associated
with training a different network for each problem. Transfer
learning is a commonly used technique to alleviate some
of the computational cost. In transfer learning, a previously
trained neural network is reused to instantiate the weights of
a new neural network that is then trained on the new problem.
By reusing the weights of the previous task the ‘‘knowledge’’
from the previous task is transferred over and reused to some
extent. Rezende et al [10] used transfer learning to train a
DNN using ImageNet dataset which contains 1.28 million
images of 1000 classes (which does not include malware
images) and was able to achieve an accuracy of 92.97% on
a dataset comprising 10,136 malware byteplot images. This
approach was one of the first to show that, without feature
engineering, using raw pixel values of byteplot images, mal-
ware can be classified with high accuracy. The DNN was
initially trained for a different task on a different dataset, yet
was capable to outperform at the time state-of-the-art models
that used specialized reverse engineering efforts. This line
of work depend on the learning from already established,
annotated data-sets despite the disparity between the initial
training data-set used for the weights and the malware data-
set used for testing. However, Freitas et al [14] shows that
transfer learning does not scale when there is a significant
disparity between the training data-set and testing data-set.
Using a ResNet18 model pre-trained on ImageNet and fine
tuning for malware images, they show that the pre-trained
model on ImageNet is less effective than a model trained
from scratch on a malware data. In order to achieve the
full potential of image classification for malware analysis,
the model must learn features from a data-set consisting of
malware images.

The challenge is to generate a large data-set for malware
images with annotations on different labels it can learn.
Generating such a large-scale data-set may not be feasible
as it was for ImageNet because the manual annotation for
images in ImageNet can be often done by individuals with
no special expertise and with minimal time. However, the
classification of a malware requires an expert analyst on aver-
age around 10 hours to characterize a malicious binary [16],
[17]. The expensive effort makes it impractical to generate
a large corpus of malware images that consist of expert-
labeled data that can be used for different tasks such as
classification for malware family, type of malware, author of
malware etc. Given the evolution of software with new API
changes, new code generation techniques and improved com-
piler optimizations, program binaries as a whole changes over
time. Similarly, adversaries design malicious binaries to be
adaptable to these changes while also avoiding detection [18].
This makes it challenging to maintain an up-to-date data-set
consisting of expert-labeled data, that can be used to train
to detect new malware with new features. This is a concept
known a ‘‘conceptual drift’’ where an expert-labeled data-
set for malware detection can quickly be outdated due to the
nature of malware evolution.
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FIGURE 1. A high-level overview of SHERLOCK: self-supervised learning can be used to bootstrap different classification
problems using malware image data.

C. SELF-SUPERVISED LEARNING
When labeled data is scarce, self-supervised learning holds
great promise for improving representation learning. Self
supervision is a paradigm of representation learning which
involves training a model on a pretext task with unlabeled
imagery, but in a supervised manner. The pretext tasks in
this context are a class of tasks which can be automatically
generated from imagery without human intervention. The
goal of self-supervised learning from images is to construct
image representations that have semantic meaning via pretext
tasks that does not require any manual annotations. Examples
of pretext tasks include jigsaw puzzle solving [19] for recon-
structing an image after randomly permuting grid sections,
relative position prediction [20] for predicting the relative
position and orientation of image patches with respect to
each other or image colorization [21] for removing colour
from an image and restoring it. These tasks require the neural
network to learn a generic representation of the dataset in
order to solve the pretext task. A model trained for solving
these pretext tasks learn representations that can be reused
for solving other downstream tasks of interest, such as image
classification.

Purely self-supervised techniques learn visual represen-
tations that may be inferior to those achieved via fully-
supervised techniques on a given downstream task. Thus,
self-supervision alone is insufficient for practical use despite
demonstrations of encouraging results in recent work. To alle-
viate this, self-supervision is combined with transfer learning
or fine-tuning on the downstream task. This is similar to how
humans perform learning. We bring an innate representation
of the world to any new task we learn. In the self-supervised
learning setting, the labelled imagery in the downstream task
provides a supervisory signal (usually by propogating an
error function such as cross entropy) which helps the self-
supervised representation to adapt to the downstream task.
Zhai et al [22] shows that self-supervised learning can dra-
matically benefit from a small amount of labeled examples by
turning self-supervised to semi-supervised learning model.
Such a self-supervised learning can alleviate the need for con-
tinuously generating manually annotated dataset for malware
classification. Moreover, self-supervision can improve sev-
eral aspects of model robustness, including robustness to

adversarial examples, label corruptions and common input
corruptions. Hendrycks et al [23] shows that self-supervised
learning can even surpass fully supervised methods, raising
the question of whether self-supervised learning render large
labeled data-sets needless. However, in this work, we investi-
gate the benefits of self-supervised learning combined with a
large-scaled labeled data-set, specifically for malware detec-
tion and classification. In particular, we explore how label-
independent learning can provide efficient workflows for
performing multiple single label classifications on the same
dataset.

While self-supervised computer vision has received con-
siderable attention, most current work is focused on natural
imagery (imagery captured from a camera of a natural scene).
However, many forms of imagery consumed by humans take
on a more abstract form. There are many concepts that are
visually represented as images. The underlying dynamics of
such imagery can be drastically different from that of natural
scene imagery. For example, an image of a natural scene con-
tains semantic cues as to the proximity of an object to the sen-
sor based on the size of the subject. However, such semantics
are noticeably absent or different in more abstract imagery.
Additionally the transferability of knowledge representations
would be further lowered between abstract imagery domains
due to this reason, when compared with natural imagery
domains, which points to an increased utility in develop-
ing approaches such as self-supervised learning for such
domains. Further understanding of how self-supervised learn-
ing operates on such imagery is therefore of considerable
academic interest. Some prior work in this regard [24], [25]
focuses on sketch based abstractions of images, while others
operate on images of maps [26] or digital elevation out-
puts [27]. To the best of our knowledge, no prior work has
performed self-supervised learning on images representing
binaries of programs which falls into this category of imagery
as it is an abstract representation of the underlying software
artifact.

III. METHODOLOGY
In this section we describe the overall architecture of our
model and an overview of our proposed method to detect
and classify malware using self-supervised learning. Next,
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we describe self-supervised learning to synthesise malware
images using a new architecture in computer vision. Finally,
we detail how we fine-tune the model by reusing the learnt
representation from the synthesis task, for the problem of
multi-class labelling in the context of malware classification.

A. OVERVIEW
Wepropose a novel technique formalware detection using the
vision transformer architecture with self-supervised learning.
Compared to existing techniques that use image classification
for malware detection, we interpret a malware image as a
sequence of patches and process it by a standard Transformer
encoder as used in natural language processing. This interpre-
tation combined with pre-training on large data-sets allows
us to re-purpose a trained model effectively for 3 different
classification tasks with minimal computation cost. Figure 1
depicts an overview of our proposed method, SHERLOCK.
The core idea of SHERLOCK is to generate training samples
for the underlying learning task in a fully-supervised manner,
which then can be used by classification models to bootstrap
the training via transfer learning. The learning task is to
synthesise malware images from a limited set of features that
captures the semantics of a malware. This is contrary to the
previous work on malware detection which is entirely based
on supervised learning.

SHERLOCK consists of two main components that can
efficiently synthesise malware images using an optimized
representation of themalware image and a classification com-
ponent that can reuse the optimized representation to identify
the correct label for a specific classification problem. Given
a malware image, SHERLOCK first splits the image into
patches (small pieces of the image) of size 16 × 16 pixels.
These patches are then flattened or concatenated to form
a 1-dimensional vector, which is used to generate a lower
dimensional linear embedding representation of the patches.
As transformers are used for modelling sequences, positional
embedding is used to maintain the 2-dimensional positional
correspondence of the image patches. Using such an embed-
ding we train a model to encode the semantic features of
a malware image in a fully-supervised manner to obtain an
optimized version of the embedding. This optimized embed-
ding is used to bootstrap the classifier component as a base
knowledge that captures the semantic encoding of a mal-
ware, and fine-tune different classification models on mal-
ware image data (i.e. malware detection, type-classification,
family-classification). We use the MalNet dataset [14] in
our analysis as it is the largest publicly available cyber-
security image database (1.2 million images) with multi-
ple labels for each image corresponding to malware/benign
(2 categories), malware type (47 categories) and malware
family (696 categories).

B. MASKED AUTO ENCODER
The recent advent of Vision Transformers [28] (ViTs) provide
an alternate architecture for image processing that is both
simple and scalable. In a Vision Transformer, an image is first

FIGURE 2. Illustration of the transformer encoder [28] that takes a
sequence of patches as input and transforms into an encoding.

split into patches (of sizes such as 8 × 8 or 16 × 16 pixels).
These patches are then transformed into an embedding using
standard transformer encoders as shown in Figure 2. Given
an image, the model encodes a representation which it then
decodes to regenerate the original image. Therefore, the input
to the model is an image, and the output is a reconstruction of
the same image, from a reduced feature space with a perfectly
accurate output being an exact copy of the original image.
Encoding the image into a bottleneck representation (which
is usually a fixed size vector of size 256, 512, 1048 etc.)
enforces the self-supervisory task to learn useful semantic
features for the decoder which is used to reconstruct the
image. This concept can be generalized to other modalities
of data, for example, Natural Language Processing (NLP)
where masked language modelling as a self-supervisory task
has previously led to state of the art results [29].

We utilize masked auto encoding as our pre-text task.
In general masked auto encoding is associated with removing
a portion of the data, and using the remaining data to predict
the removed portion. Thus, given an image, some pixels of
the image are masked prior to self-supervised training and the
neural network must learn how to recover the masked pixels
based on the visible pixels. Recent work [30] has shown that
masking a large portion of pixels in natural images (such
as ImageNet) leads to a challenging self-supervisory task
capable of generating useful representations for downstream
tasks. In the absence of prior work applying masked auto-
encoding to abstract/synthetic imagery, we explore a large
masked pixel percentage (75% of the image), thus forcing
the model to attempt to recover the image based only on
the unmasked 25% of the image, such high percentages have
been shown to work well for natural imagery [30]. Figure 3
depicts the results of the image synthesis for two different
malware types. Importantly, we use Vision Transformers [28]
in our analysis, which are able to effectively incorporate 2-D
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FIGURE 3. Illustration of the image synthesis using images of two
malware types. Using an masked image which masks 75% of the image
our learning model is able to synthesise images almost identical to the
original image.

positional embeddings in order to indicate the location of a
patch within an image. Such incorporation is not straightfor-
ward in convolutional neural networks.

Figure 4 gives an overview of the auto-encoder component
of SHERLOCK that use self-supervised learning to obtain
an optimized embedding to reconstruct masked images with
a higher accuracy. A mask is generated by uniformly sam-
pling 25% of the image to retain. The original image is then
filtered using the generated mask to generate the masked
input image. The masked input image is flattened to generate
embedding for each patch. Each image is 224 × 224 with
3 RGB channels, each patch is 16× 16 leading to 14× 14 =
196 patches in total. Each embedding is a vector of size
3× 16× 16 = 768. The embeddings are shuffled to separate
the masked vs unmasked patches, with only the unmasked
patches being passed through the encoder architecture. The
unmasked embeddings are passed through 12 architecturally
identical blocks which have different weights in order to gen-
erate an embedding of size 768 for each patch. The unmasked
encoder embeddings (size 768) are converted into unmasked
decoder embeddings (size 384) using a linear projection layer
to match the width of the decoder. The unmasked decoder
embeddings are combined with the flattened masked patches,
which are represented by a common, learnable mask token
indicating the presence of a masked patch. This indicates to
the model that such patches are to be predicted in the decod-
ing process. The embeddings andmask tokens are decoded by
the decoder, which contains 4 architecturally identical blocks
with different weights. In order to generate a final embedding
for each patch (size 384). This embedding is passed through a
linear projection which maps it to the number of output pixels
in a patch (3×16×16 = 768. At this stage, a pixel-wise loss
is computed between the original image and the synthesized
image, which is then backpropagated throughout the network.

Importantly, the ability to only encode the unmasked inputs
enables more computationally efficient training in a self-
supervised manner. The decoder is only used during self-
supervised pre-training which allows flexibility in decoder
design. In particular, simpler decoders enforce a better repre-
sentation in the other parts of the architecture as less knowl-
edge/parameters would be stored within the decoder. The
encoder containers 12 blocks while the decoder only has 4,

additionally the embedding dimension for the encoder has
size 768 while the decoder has size 384. To evaluate recon-
struction error, each pixel in a patch is first normalized by
subtracting the mean of pixels in the patch and dividing the
result by the patch standard deviation. The reconstruction loss
is computed by calculating mean standard error over pixels in
the masked patches after normalization.

C. CLASSIFICATION MODELS
One of the major advantage in utilizing a self-supervised
learning in this manner is the possibility to reuse the same
self-supervised representation with minimal additional train-
ing in all 3 downstream tasks - in this case malware classifica-
tion (binary), malware type classification (47 categories) and
malware family classification (696 categories). In contrast,
simple supervised models would need to separately train
from scratch, which would require considerable additional
computational processing. In this regard, as more tasks that
are formulated on the same dataset, self-supervised methods
become more efficient. The self-supervised representations
generated are thus fine-tuned separately on each individual
task with accuracy and macro f1 scores generated for each
task.

Algorithm 1Malware Detection Algorithm
Input: Binary Image, Iraw
Output: Boolean value true/false
Execution:
1. I = resize(Iraw)
2. Lpatches = (I )
3. encoding = encode(Lpatches)
4. P = ComputeProbability(encoding)
5. if p > 50% then

return ‘‘Malicious’’
else

return ‘‘Benign’’
end

Illustrated in Algorithm 1 is the overall workflow in our
proposed technique to detect/classify an image as a malware.
The first step is to resize the image to a size of 224×224. Once
the standard size image is generatedGeneratePatchesmethod
takes as input an image of size 224 × 224 and generates
linearized patches of size 16 × 16. The list of linearized
patches is then provided to our encoder which generates an
embedding of the patches Lpatches capturing complex features.
The feature encoding encoding is provided to our pre-trained
models which computes the probability P for the encoding
which may contain malicious features. If the P is significant
(i.e. p > 50%) the algorithm returns Malware else returns
Benign. Similar workflows are followed for type and family
inference, with the main difference arising from the number
of categories (binary classification for malware detection and
multi-class classification for type and family).
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FIGURE 4. Overview of the masked auto encoder which takes masked images as input and learns to reconstruct the original image using self-supervised
learning. Layer A is the linearization of the patches which is then shuffled in Layer B to separate masked and unmasked pixels. Layer C depicts the
embedding of the masked and unmasked pixels. Layer D represents combined encoding which is the input layer for the decoder to learn. Layer E is the
final embedding for the reconstruction of the original image.

FIGURE 5. Overview of the classification models in SHERLOCK, which
reuse the optimized embedding generated via self-supervised learning to
bootstrap 3 different classification tasks.

We use the transformer based ViT-Base architecture with
a patch size of 16 (ViT-B/16). The ViT-Base architecture
contains 12 model layers or ’blocks’ (as in figure 2, and
86 million parameters, corresponding to the encoder archi-
tecture used for self-supervised learning as described in
Section III-B. The self-supervised encoder from the self-
supervised learning step is reused as-is for each of the
3 downstream classifications (binary, type and family as
per Figure 5). Thus, all the features and weights learned by
the self-supervised model are re-used to initialize most of
the supervised neural network, which is then further trained
to learn improved task-specific features. For each analysis,
a linear layer is constructed mapping from the embedding
of the encoder (768 in size) to the number of output classes
(2, 47 or 696 respectively). The resultant network is fine-
tuned end to end (backpropogating gradients and updating
weights of every parameter of the neural network), thus
enabling the network to learn more specialized features suit-
able for classifying imagery based on task-specific cate-
gories, but building upon the features learned during the
self-supervised task of filling in masked patches.

The classes for malware-type and malware-family has a
direct one-to-one relationship to the binary class malware-
benign. Using this hierarchical relationship we can infer the
classification of a given android app as malicious or benign,
by training the model to classify for a fine granular class such
as malware-type or malware-family. In particular, as shown

FIGURE 6. Using finer granularity tasks to predict coarse granularity
tasks.

in Figure 6 we leverage the training from finer granularity
classification task to infer a classification for coarse granular
class. However, a similar inference cannot be established
from malware-family to malware-type in this data-set since
there is a many-to-many relationship between these two
categories.

IV. EVALUATION
In this section, we evaluate the efficiency of our proposed
malware detection method SHERLOCK on the largest open-
source dataset for Android malware [14]. First, we describe
the configuration setup for our experiment, the data set usage
and evaluation criteria. Next, we evaluate the performance
against state-of-the-art machine learning algorithms, show
the confusion matrix of malware classification and discuss
the comparison results.

A. EXPERIMENTAL SETUP
We evaluate the efficacy of our proposed self-supervised
learning method SHERLOCK on three tasks using the largest
open-source dataset for Android malware [14]. First, we eval-
uate the effectiveness for the pre-training task to synthesise
malware images. Second, we evaluate the performance for
the classification task of correctly identifying the malware
label. Third, we compare our classification performance with
existing state of the art tools, and finally we analyze the
sensitivity of the synthesis process on the overall classifica-
tion performance. For comparison with state of the art deep
learning architectures we consider; ResNet, DensNet and

VOLUME 10, 2022 103127



S. Seneviratne et al.: Self-Supervised Vision Transformers for Malware Detection

FIGURE 7. Quality of the self-supervised image synthesis process where the reconstruction error is aggregated across malware type.

MobileNetV2 with different configurations. All our experi-
ments were conducted in the Spartan Cluster [31] on a single
node with 24 cores(Intel Xeon CPU E5-2650 v4@ 2.20GHz)
and 4 P100 GPU with 12GB of GPU RAM.

For our experiments we use MalNet dataset [14] which:
• includes 1,262,024 malware images extracted from real-
world Android applications in AndroZoo [11]

• contains the largest diverse open-source dataset com-
prising of 47 malware types and 696 malware families
including benign applications

Table 1 provides a detailed breakdown of the number of
images and families in each malware type. Notably, the class
distribution is highly imbalanced across both image type and
family, which is a common property of many real-world
datasets, where a few of the classes contain a majority of the
examples. For all tasks, we report Accuracy, macro Precision,
macro Recall and macro F1 scores, and compare against prior
work by utilizing the same train/test splits from this dataset.

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

F1 =
2× Precision× Recall
Precision+ Recall

(3)

Here, TP stands for True Positive, which represents the
number of samples belonging to class c which are correctly
classified as class c; FP stands for False Positive, which
represents the number of samples not belonging to class c
which are erroneously classified as class c; FN stands for
False Negative, which is the number of samples that belong
to class cwhich are erroneously classified as a different class.
For the classifications of malware, type and family,

we report theMacro-Precision (MP),Macro-Recall (MR) and
Macro-F1 score.

Macro− Precision =

∑
c Precisionc

C
(4)

Macro− Recall =

∑
c Recallc
C

(5)

Macro− F1 =
2×MP×MR
MP+MR

(6)

Themacro criteria are calculated using a class wise average
of the metrics as shown in Equations 4, 5 and 6. HereC repre-
sents the number of classes in each multi-class classification
task. Additionally, we will also make use of visualizations to
better understand the performance of our models. The confu-
sion matrix as well as the Receiver Operating Characteristic
(ROC) curve will be used to understand the nuances of our
model performance.

Wc =
1− 0.999
1− 0.999nc

(7)

For the training process, we used simple cross entropy loss
with class re-balancing. The classes which have fewer train-
ing examples in the dataset are weighted higher in the loss
function. We use the weights suggested in [14] as shown in
Equation 7, where nc is the number of images in class c. These
weights cause a relatively higher loss to be assigned tomiscat-
egorizations for samples originating from under-represented
classes. Therefore, the neural network will prioritize learning
a representation that can more accurately classify such under-
represented classes, compared to a standard (unweighted)
cross-entropy loss.

B. ACCURACY OF MALWARE IMAGE SYNTHESIS
We quantify the ability of the self-supervised representation
to regenerate the images in the test set. As this is a direct
evaluation of the self-supervisory task, it can be interpreted
as an initial evaluation of the ability of the representation and
decoder to capture the semantic features associated with the
binaries of the considered categories.

For each class in malware-type we iterate over each image
and generate 10 random masks for 75% of the image and
generate 10 masked input images containing only 25% of
the pixels from the original image. For each masked input
image, using the trained self-supervised model we generate
an image that is similar to the original image provided. For
each synthesised image we compute the absolute error for
each pixel in comparison to the original image, and average
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TABLE 1. The number of images and families in each type of malware in
MalNet [14].

the error across all 10 randomly generated masked input
images. Finally, the error is averaged across all such images
for each class. The aggregated reconstruction error across
malware type is shown in Figure 7.
The reconstruction error aggregated over malware-type

ranges from 0.27%-1.45% with an overall average of 0.68%.
It is useful to note that the scale of the error computed depends

on the scale of pixel values in the image (ranging between
[0, 255] or [0.0, 1.0] per channel, as we use in this work)
and the proportion of masked pixels in the image. The same
averaging procedure is used across categories and the masked
pixel percentage is constant for each image, the final averages
we generate are comparable across categories (and only differ
from other similar evaluations by some scalar factor). How-
ever, if the masked percentage were to differ between images,
it would be necessary to take the absolute error between only
the masked pixels of the original image and the synthesized
image.

C. MALWARE CLASSIFICATION
We evaluate the efficacy of our proposed self-supervised
model SHERLOCK in correctly identifying the label for
each malware-image in 3 different categories. For each cate-
gory we train a separate classifier for which semantic learn-
ing from the supervised-learning is transferred as shown in
Figure 5. For each category we report the macro-F1, macro-
Precision and macro-Recall as shown in Table 2. For compar-
ison we use 3 popular deep learning architectures–ResNet,
DenseNet and MobileNetV2. The results for the compared
architectures are referenced from the MalNet dataset [14].

SHERLOCK was able to correctly classify the malware-
type and malware-family across 47 and 696 classes respec-
tively. Our model was able to classify both classes correctly
with an accuracy of 83.7% for malware-type and 80.2%
for malware-family, outperforming the state-of-the-art deep
learning models. Furthermore, SHERLOCK recorded the
highest macro-F1 score, macro-precision and macro-recall
in both categories indicating the superiority of using a self-
supervised learning model over existing supervised learn-
ing models. One of the contrasting differences between the
compared models and SHERLOCK is the source for transfer
learning. SHERLOCK is able to directly learn the semantics
of amalware image due to its self-supervised pre-training task
while the compared models are trained from scratch. Prior
work [14] has used transfer learning from ImageNet [32]
to pretrain a model and then fine tune to the training data,
however it performs significantly worse than the one trained
from scratch due to the difference of the semantics between
ImageNet images and MalNet images.

Despite the performance for malware-type and malware-
family, our model SHERLOCK does not perform well for
the binary classification task. Our model reports the best
performance in precision while the worse performance in
recall for the binary classification task, resulting in worse
overall performance in macro-F1 score. Cross comparison
with the performance of our model in all 3 tasks, indicates
the precision of the results are improved from the semantics
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TABLE 2. Results on malware classification on 3 classes against 3 popular architectures ResNet, DenseNet and MobileNetV2—on macro-F1,
macro-precision, and macro-recall. Results for compared architectures are referenced from MalNet dataset [14].

TABLE 3. Efficacy of malware detection against 3 popular architectures
ResNet, DenseNet and MobileNetV2—on its accuracy, macro-F1,
macro-precision, and macro-recall.

learnt from the self-supervised learning, while recall can
be improved with additional fine-tuning. However since the
class imbalance is high (i.e. 2:31) for the binary classification
task the fine-tuning does not have access to enough training
data to accurately learn features for the benign class. How-
ever, with more classes introduced in the tasks for classifying
malware-type and malware-family the imbalance effect is
distributed over multiple classes, and improves overall recall.
This indicates a strong influence from the pre-training task
which learns semantic information for the secondary clas-
sification task. Since the pre-training task in our model is
optimized to synthesise images it learns necessary semantic
features relevant for the synthesis. Additionally due to the
class imbalance problem in our dataset the semantic learning
is skewed towards malware images, resulting in a higher
number of misclassifications as malware.

D. MALWARE DETECTION
We evaluate the overall effectiveness of SHERLOCK to accu-
rately detect a malware application using inference based on
the classification label it generates as described in Figure 6.
Importantly, generating an image from the corresponding
binary takes on average 0.479 seconds, while inferring a
label using Sherlock takes on average 0.003 seconds, for a
total inference time of 0.482 seconds with a single 4 GPU
node containing 24 cores(Intel Xeon CPU E5-2650 v4 @

2.20GHz) and 4 P100 GPUwith 12GB of GPURAM each on
Spartan [31]. A comparative analysis of our inference result
with the state-of-the-art deep learning models is presented
in Table 3, where the results for state-of-the-art is extracted
from recent work [14]. Our model SHERLOCK has the
best performance in all three dimensions in macro F1-score,
macro precision and macro recall. However, inference using
malware-family classifier has the overall best-performance
with an macro F1-score of 0.878, indicating that pre-trained
model with finer granularity can learn distinct features to
differentiate an image between the benign class and malware
class.

For an in-depth analysis we plot the results of our infer-
ence models in Figure 9. Binary classification of a given
byte-plot image trained with coarse-granularity achieves
highest precision but lowest recall. For applications such
as Malware detection where precision is most important,
a model pre-trained with self-supervised learning can achieve
state-of-the-art performance, with the final model trained
on coarse-grained task such as two-class labeling. Whereas
the same pre-trained model with the final model trained
on a finer-grained task such as identifying the malware-
type/malware-family (N classes) will be more effective in
improving recall and overall F1-score. An observation we
make is that with the increasing number of classes for
the final model, the recall is improved while precision is
decreased. Additionally, both malware-type based inference
andmalware-family based inference is able to achieve similar
macro F1-score with the contrasting differences in its preci-
sion and recall values. While malware-type based inference
has the better precision in comparison with malware-family,
recall is better for the latter. To further understand the sig-
nificance of our results, we also plot the Receiver Operating
Characteristics (ROC) curve in Figure 10. Despite having a
better F1-score, malware-type based inference has a lowArea
Under Curve (AUC), indicating the classifier will not perform
well for different thresholds. However, malware-family based
inference model has the highest AUC score as well as for the
macro F1-score.
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FIGURE 8. Confusion Matrix for malware type classification, which visualize the performance in correctly identifying the
actual class label. The darker the shade the stronger the classifier performance and lighter-shade indicates poor
performance. Our model results depict more darker shades for the diagonal entries while lighter-shade for non-diagonal
entries indicating good performance.

FIGURE 9. In-depth analysis of the performance metrics of
SHERLOCK with 3 binary classification models trained on different
granularity.

V. RELATED WORK
A. MALWARE DETECTION AND CLASSIFICATION
Malware detection and classification has become a crucial
task due to the increasing complexity of malware and the

commonality of computing systems. Abusitta et. al. [33]
categorized malware detection and classification approaches
based on features and algorithms used, as shown in Figure 11.

Features used for the analysis can be classified as static
or dynamic. Static features are extracted from the executable
files while dynamic feature extraction methods make use of
a sandbox environment to run the program and collect the
memory image or the behaviors of the program execution
to extract features [34]. Some of the features in literature
include printable strings [35], [36], [37], byte code [38], [39],
[40], [41], assembly code [42], [43], [44], API/DLL system
calls [44], [45], [46], control flow graphs [47], [48], [49]
and function level features [50]. Algorithm used for detection
and classification approaches can be broadly categorized into
signature based approaches and Artificial Intelligence based
approaches. Signature based approaches are the de facto of
current antivirus providers [51]. These signatures are created
by humans and the malware detectors performs a match-
ing between programs and signatures to detect or classify
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FIGURE 10. Receiver Operating Characteristics (ROC) curve for malware
detection with 3 binary classification models trained on different
granularity.

malware [52], [53]. One can argue this method could only
detect known malware and dependent on the manual signa-
ture generation. There is a tendency tomove towardsAI based
malware detection and classificationwhich canmainly be cat-
egorized into supervised [54], [55], unsupervised [56], [57],
[58] and semi supervised [59], [60], [61] methods. In super-
vised malware detection the model learns features from a
labeled dataset, while unsupervised methods extract patterns
from unlabeled data. Semi-supervised methods make use of
both labeled and unlabeled data. While traditional methods
like Naïve Bayes, Decision Trees, K-Nearest Neighbors and
SVM have been extensively used in the past. An analysis
of these classical methods showed SVM performed well for
malware detection [62]. An android specific malware detec-
tion survey by Liu et. al looks at the current MLmethods used
for malware detection [63]. More recently ReLU, LSTM and
CNN based methods have received more attention. A deep
learning based detection method which works with image
data was explored by Yadav et. al. [64]. Due to the ability
to recognize previously unseen malware and the higher per-
formance over traditional methods, these machine learning
based malware detection techniques are becoming widely
researched [65].

Our approach can be classified as a self-supervised learn-
ing based algorithm that make use of static features of the
application. Contrast to existing work, this is the first self-
supervised based learning method that has been studied with
the largest openly-available dataset for Android malware.

B. IMAGE CLASSIFICATION
Imagery such as those generated to represent code or program
binaries broadly fall into the category known as synthetic
imagery. Such imagery is distinct from natural imagery,
which is the standard type of data used in computer vision
in datasets such as ImageNet [32], incorporating images of
real world scenes captured through a camera. Exploration
of the performance of self-supervised methods on complex

synthetic imagery remains under-explored compared to natu-
ral imagery. Some prior work in this area has explored repre-
sentation learning from sketches [24], [25], altitude imagery
[27], synthetic scene imagery [66], and Google map imagery
[26]. Analysis in such domains contributes useful knowledge
regarding the performance of self-supervised methods on
synthetic imagery, which have different visual features to
natural imagery.

VI. PERSPECTIVES
A key advantage of using self-supervision in this imagery
domain (malware imagery) is the ability to initialize a single
general representation in a task-independent manner. This
representation can then be specialized to perform specific
analysis (such as malware detection, malware type catego-
rization and malware family categorization, as well as poten-
tially other tasks). In essence, the representation can be easily
specialized for any different set of labels associated with the
imagery, for example future work could look at labels asso-
ciated with malware authors and attempt to identify unique
‘‘signatures’’ corresponding to authors from the imagery.

Interestingly, the use of coarser labels has improved per-
formance in the malware detection task (classification of
malware images into benign vs malicious). Both malware
family and type predictions can be converted into a malware
detection prediction by performing a lookup. We found that
themodels for family and type prediction, once converted into
the corresponding malware detection category (‘‘malicious’’
or ‘‘benign’’) provided superior performance when compared
with the malware detection prediction, when all models were
trained with the same number of images and identical analyt-
ical settings. Since the only difference between the analyses
was the granularity of the labels (696 for family, 47 for type,
2 for malware detection), we can conclude that the coarser
labels have led to a better characterization of the images for
the malware detection task. In this aspect, while both models
trained on more granular labels show significant improve-
ment in F1 score over the malware detection model, they both
have similar performance to each other (in terms of F1 score).
This suggests that the improvement gained via increased label
granularity has diminishing returns, which may be interesting
for future work to explore.

Upon further consideration, the reason for this improve-
ment can be induced. On a fixed dataset, with fine-grained
labels, the model is forced to create multiple decision bound-
aries to separate instances from different categories from
each other. The number of potential required boundaries will
grow quadratically in the number of categories (n*(n-1)/2),
as each category may be adjacent to every other in the
feature space. This leads to a more granular clustering of
images with a larger number of clusters containing fewer
images in the feature space (as the total number of images
is fixed in all analyses). Additionally, this provides further
reasoning for the muted improvement (in terms of malware
detection results) of increasing the number of categories
from 47 to 696. The malware detection task has 1 decision
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FIGURE 11. Categorization of malware detection and classification [33].

boundary (benign vs malicious), whereas type prediction
47*46/2 = 1081 potential boundaries and family prediction
has 676*675/2 = 228150. Based on the observed results the
granularity of type labels is sufficient to capture the level
of detail required for the binary classification required in
malware detection, and the added granularity of the family
labels does not improve results further. The impact of the
label granularity is also apparent in the ROC curves for
malware detection, with the more granularly labelled family
prediction model showing superior performance to the other
more coarsely labelled models. Future work could explore
this aspect further by exploring the added impact of having
a more complex baseline task (with more than 2 categories).
As the type and family labels do not have a one to one
mapping, we are unable to explore this any further at this
stage. The impact of label granularity of classification has
previously been studied in convolutional neural networks
[67]. The findings in our work further generalize such results
to the Vision Transformer architecture.

VII. CONCLUSION
In this paper, we present a system based on self-supervised
learning for malware classification, SHERLOCK which is a
transformer based computer vision model that utilizes self-
supervised learning to detect Android malware. We evaluate
SHERLOCK on a large-scale data-set of 1.2 million Android
apps consisting of 47 malware types and 696 malware fami-
lies. Compared with state-of-the-art deep learning architec-
tures ResNet, DenseNet and MobileNetV2, our proposed
technique SHERLOCK outperforms all techniques in mal-
ware detection and classification with 97% accuracy for
detection. SHERLOCK was also able to correctly classify
malware type and malware family with a macro-F1 score
of .497 and .491 respectively. This work demonstrates the
efficacy of self-supervised computer vision models, specif-
ically the Vision Transformer architectures in the use for
malware classification. Through this work, we improve static
analysis based malware detection and classification, which
we believe can be further improved with by augmenting
additional features derived from dynamic analysis.

To allow the research community to better replicate and
reproduce the findings in our studies and to extend the work
further, we have open-sourced our model to the community
in Github: https://github.com/sachith500/Sherlock.
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