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ABSTRACT To better recover a sparse image signal carrying redundant information from many fewer mea-
surements than the Nyquist-Shannon sampling theorem suggested, convolutional neural networks (CNNs)
can be used to emulate a compressed sensing (CS) process. However, the existing CS methods based on
CNNs have the problems of high computational complexity and unsatisfactory reconstruction effect. This
study aims to present a faster algorithm based on CNNs to obtain reconstructed images with finer texture
details from CS measurements. A tree-structured dilated conventional network (TDCN) for image CS is
proposed. To extract the image multi-scale features as much as possible for better image reconstruction, the
TDCN combines tree-structured residual blocks made of three dilation convolution layers with different
dilation factors; the output of each dilated convolution layer is directed to fusion layer to eliminate
information loss due to the multiple cascading dilated convolutions. Moreover, L1 loss is employed as
an objective optimization function instead of L2 loss to improve training results of the network and
achieve better convergence. Extensive CS experiments in the study demonstrate that the proposed TDCN
outperforms existing state-of-the-art methods in terms of both PSNR and SSIM at different sampling
rates while maintaining a fast computational speed. Our code and the trained model are available at
https://github.com/UHADS/TDCN.

INDEX TERMS Compressed sensing, deep learning, dilated convolution, image reconstruction.

I. INTRODUCTION

Compressed sensing (CS) theory [1], [2] shows that the
reconstruction of a sparse signal x € RV*! can be accurately
achieved from its compressed measurements y € RM*! by
solving underdetermined equations. The compressed mea-
surements y = ®x are obtained through measurement matrix
® e RY*N_ Compared with the Nyquist-Shannon sampling
theorem [3], the CS theory suggests that a sparse signal can
be recovered from many fewer measurements based on the
sparsity of the signal.

In addition, the CS process can be seen as a process of ran-
dom subsampling signals. Algorithm can eliminate the arti-
facts caused by random subsampling; thus, the original signal
can be accurately recovered. As a result, the subsampling of
CS reduces the demand for high transmission bandwidth and
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storage space. Due to its simultaneous sampling and compres-
sion at the same time, CS also offers low-cost on-sensor data
compression [4]. CS has been applied in a variety of reali-
ties, including but not limited to radar image acquisition [5],
[6], [7], novel imaging devices [8], [9], magnetic resonance
imaging (MRI) [10], [11], and wireless telemonitoring [12].

It is well known that information carried by images is
redundant and can be sparsely represented in sparse domains.
Therefore, the image can be compressed and reconstructed
accurately according to CS theory. The goal of image CS is
to ensure that an image can be accurately reconstructed from
very few measurements. There are two main challenges that
need to be solved to meet the goal. These include selecting
the sampling matrix and designing appropriate reconstruction
methods.

Most studies [13], [14], [15], [16] select a random matrix,
binary matrix, and structure matrix as the sampling matrix.
However, these sampling matrices are image-independent
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and ignore image features. To make full use of the features of
the image and design a sampling matrix with high correlation
with the image to achieve high-quality results, a convolutional
layer has been proposed in CSNet [17] to simulate the CS
sampling process and adaptively learn the sampling matrix
from the training images.

For the design of the reconstruction method, some studies
[18], [19], [20], [21], [22] use iterative operations to achieve
high-quality results, but these operations often take a long
time to reconstruct an image. Therefore, research [23] adopts
the block-by-block reconstruction method to recover images
in blocks then joins the recovered blocks together to obtain
a final restored image, which can significantly reduce the
reconstruction time and memory storage requirements. Based
on traditional block-by-block CS methods, convolutional
neural networks (CNN5s) have been developed to recover CS
sampling data in blocks, which not only improves the quality
of reconstructed images, but also saves time of recovery
[24], [4]. However, these methods of using CNNs ignore
the linkages between blocks and only rely on intra-block
information to recover the image, and blocking artifacts will
appear. Generally, post-processing methods are required to
eliminate blocking artifacts in the block-based method. Such
post-processing usually increases computational complexity
and affects recovery efficiency.

To address these problems, researchers [17] have proposed
a linear preliminary reconstruction network combined with
a nonlinear deep reconstruction network, which reconstructs
images from CS measurements by end-to-end learning with-
out additional post-processing operations and can quickly and
efficiently obtain high-quality recovered images.

To enhance the quality of the reconstructed images,
MR-CSGAN [25] increases the depth of the recovery network
and uses multi-scale residual blocks (MSRB) made of con-
volution kernels of different sizes to exploit the multi-scale
structural features of the images in the generator network.
Although MR-CSGAN exploits image structural features
through MSRB to obtain more detailed reconstructed images,
the high computational cost limits its practical application.

Exploring the deeper structural features of the original
image while reducing the time of recovery has become an
urgent challenge in image CS. Recently, the use of dilated
convolution (DConv) rather than standard convolution to
extract image features in CNN has become mainstream [26].
Compared with ordinary convolution, dilated convolution for
image recovery tasks can significantly expand the receptive
field under the same computing conditions [27].

Therefore, in the field of image segmentation, TKCN [28]
has been proposed a tree-structured feature aggrega-
tion (TFA) module composed of a tree structure of dilated
convolution and a batch normalization (BN) layer to better
extract multi-scale features of images in complex scenes.
However, research [29] shows that the BN layer can eliminate
network range flexibility by standardizing features; therefore,
the BN layer is harmful if used for image reconstruction.
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Based on the above research results, we propose an
image CS model made of a tree-structured dilated convo-
lutional network (TDCN), in which a tree-structured resid-
ual block (TSRB) is newly designed to learn features of
different scales of images. The TSRB module comes from
removing the BN layer of the TFA module in the TKCN and
selecting dilation factors that are better suited for the dilated
convolution.

The TDCN consists of a sampling network and a recon-
struction network. The sampling network adopts the same
network structure as in CSNet [17], and can obtain CS
measurements through a sampling matrix that is trained
adaptively from training datasets. The reconstruction net-
work, which is established to learn end-to-end mapping
from CS measurements to reconstructed images, contains a
linear preliminary reconstruction network and a nonlinear
deep reconstruction network. The preliminary reconstruction
network results in a preliminary recovery image through
a deconvolutional layer, whereas the deep reconstruction
network uses several TSRB modules to refine the prelimi-
nary reconstruction image further and obtain better recovery
quality.

In addition, instead of the mean square error (MSE) or
L2 loss, the mean absolute error (MAE) or L1 loss is
used as a loss function in the image reconstruction net-
work because the literature [29] suggests that L1 loss can
potentially help achieve better training results on many
occasions.

The experimental results show that the proposed TDCN
can achieve higher PSNR and SSIM values than most
existing methods in image CS because of the following
contributions.

1) We propose a tree-structured convolutional net-
work (TDCN) for image CS. TDCN uses multiple
TSRB modules to learn multi-scale features and then
combines the outputs of each TSRB module through a
feature fusion layer to guarantee high-quality recovery
images.

2) To quickly obtain recovery images from CS measure-
ments, we introduce dilated convolution to the TSRB
modules and dilated convolutions in TSRB made as
a tree structure. Therefore, TSRB can easily obtain
multi-scale features of images and ensure that the
extracted shallow information is not lost in the deep
network.

3) We use the L1 loss function in TDCN instead of the
L2 loss function. Experiments show that L1 loss results
in recovered images with more detail and better visual
effects while achieving better convergence.

The remainder of this paper is organized as fol-
lows. Section II introduces the background of the model.
Section III  introduces the proposed TDCN method.
In Section IV, the performance of TDCN is discussed and
compared with that of some state-of-the-art methods through
experiments, and we conclude the paper in Section V.
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Il. BACKGROUND

A. CNNS FOR IMAGE COMPRESSED SENSING
RECONSTRUCTION

At present, many image CS models based on deep convo-
lutional neural networks (DCNNs) have shown good perfor-
mance on several benchmark test sets [24], [30], [31], [32].
For example, ReconNet [24] proposed by Kulkarni et al.,
where a non-iterative reconstruction architecture based on
a CNN is placed after a random Gaussian sampling matrix
to achieve non-iterative image CS reconstruction, provides a
good trade-off between computational complexity and recon-
struction quality; ISTA-Net [4], which uses a deep network
to replace the iterative threshold algorithm (ISTA [33]) in the
reconstruction process, improves both the quality and speed
of image reconstruction; CSNet [17] uses a convolution layer
to complete the sampling and reconstruction processes simul-
taneously; MR-CSGAN [25] uses perceptual loss as a loss
function and several MSRB modules to exploit multi-scale
structural features of the images in the generator network, and
then all the outputs of each MSRB are integrated through a
fusion layer, as shown in FIGURE 1.

B. DILATED CONVOLUTION

To increase the receptive field, most semantic segmenta-
tion algorithms contain a pooling layer and convolutional
layer [28]. Thus, the resolution of the feature maps is reduced,
and up-sampling is required to restore the image resolution.
Because of the downsampling and upsampling activities in
the process, there is a loss of accuracy. Dilated convolu-
tion [26] has been proposed to solve this problem. With the
size of the feature map unchanged, using a dilated convolu-
tion operation to replace the downsampling and upsampling
operations can increase the receptive field.

Dilated convolution has been also introduced to CNN to
solve super-resolution problems, e.g., DCBI [34] module
shown in FIGURE 1 uses dilated convolutions with different
dilation rates to extract image features simultaneously.

Unlike standard convolutions, dilated convolution intro-
duces a hyper-parameter called the dilation factor m, which
defines the spaces between values processed by the convolu-
tion kernel. k-dilated convolutions of size 3 x 3 with different
dilation factors are shown in FIGURE 2. The gray areas in
FIGURE 2 are receptive fields. It can be seen that dilated
convolution appears in the form of a standard convolution
when dilation factor is 1.

On the premise of occupying the same computing
resources, increasing the dilation factor can obtain a larger
receptive field of the network and detect multi-scale image
features without losing resolution.

C. TREE-STRUCTURED RESIDUAL BLOCK (TSRB)

In TKCN [28], a tree-structured feature aggregation (TFA)
module shown in FIGURE 1 has been proposed for image
segmentation tasks. TFA is composed of several Kronecker
convolution (KConv) layers and BN layers, where the
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FIGURE 1. Tree-structured Feature Aggregation module (TFA), Dilated
Convolution Based Inception module (DCBI), Multi-Scale Residual
Blocks (MSRB) and Tree-Structured Residual Block (TSRB).
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FIGURE 2. Dilation convolutions with different dilation factor k.
The values of m from left to right are 1, 2, 3.

Kronecker convolution layer contains a dilated convolution
layer and a layer to capture local contextual information
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ignored by the dilated convolution, dubbed AvgPool. More
detailed structural information is extracted using TFA.

This study presents a tree-structured residual block (TSRB)
module shown in FIGURE 1. Similar to the TFA module,
the TSRB module adopts a tree structure with three layers of
dilated convolutions of size 3 x 3 of different dilation factors
as shown in FIGURE 1. To compensate for the checkerboard
effect caused by multiple cascade dilated convolutions and
capture local contextual information ignored by dilated con-
volutions, the output of each dilated convolution layer is repli-
cated into two branches: one branch retains the current scale
features, while the other aggregates spatial dependencies over
a larger range; therefore, in complicated circumstances, it can
easily learn representations of multi-scale objects and encode
hierarchical contextual information.

Meanwhile, the output feature maps of the current step are
stacked with the previous feature maps in tandem, and then
a convolution of size 1 x 1 is input for multi-scale feature
fusion. Finally, the input and output are added to form a local
residual block to reduce the network’s loss of local contextual
information; thus, AvgPool is not required for the TSRB.

The TSRB process can be described by Equations
(1) and (2).

Ok = Wi, Op—1 +Br, k=1,2,3 (1)
01

Hj = W + Hj1. (2
Ok

where * represents the convolution operation or an 1-dilated
convolution operation, *; represents k-dilated convolution
operation, Oy is the output of each convolutional layer in
TSRB, W, and B; are its convolutional kernel and biases,
respectively. H; is the output of the j-th TSRB module and W,
is a convolution kernel of 1 x 1. During this process, Oy = Hy.

Compared to MSRB shown in FIGURE 1, TSRB modules
will have same size of receptive field as the traditional con-
volution kernels of size 5 x 5 or 7 x 7 if using 3 x 3 dilated
convolution kernels with dilation rates of 2 or 3. Thus 25 or
49 parameters of traditional convolution kernels are replaced
by 9 parameters of dilated convolution kernels, it brings
down the computational complexity of TSRB compared with
MSRB when receptive field kept same.

TSRB uses tree-structured dilated convolutions to extract
different scale features, which increases the network depth,
while DCBI applied dilated convolutions with different dila-
tion rates to extract image features simultaneously [34]. Fea-
ture fusion is performed through 3 x 3 convolution kernels
in DCBI while 1 x 1 convolution kernels are used in TSRB
architecture to prevent the loss of information caused by the
increase of the network depth.

Furthermore, every convolution in DCBI is followed by an
activation layer, but there is only one activation layer after the
feature fusion operation to effectively prevent network gradi-
ent explosion. So, the computational complexity of TSRB is
much smaller than DCBI while keeping good performances.
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D. MEAN ABSOLUTE ERROR LOSS FUNCTION

In a CNN-based image CS, the choice of loss function is also
essential, and an appropriate loss function can help the model
achieve the best and fastest convergence.

L2 loss is the most widely used loss function in image
recovery and is also the main performance measure (PSNR)
for these problems. However, research [29] reported that 1.2
loss training does not guarantee better performance in terms
of PSNR and SSIM. In their experiments, L1 loss was used as
a loss function, and the experiments showed that the network
trained by L1 loss had better performance than that trained by
L2 loss.

L2 loss function is the mean squared error (MSE) between
the predicted value f (x;) and the target value x;, which is
defined in Equation (3):

1 Y )
MSE = — ; (o —f ()2 3)

L1 loss function is the mean absolute error (MAE) between
the predicted value f (x;) and the target value x;, which is
defined in Equation (4):

1 N
MAE = — ; i — f (). 4

where N the total number of images.

Ill. TREE-STRUCTURED DILATED CONVOLUTIONAL
NETWORKS (TDCN)

The TDCN proposed in this study imitates the image CS
process, as shown in FIGURE 3. Similar to block-based com-
pressive sensing (BCS), TDCN uses a CNN to complete three
operations: compression sampling, preliminary reconstruc-
tion, and deep reconstruction. TDCN has a sampling network
and a reconstruction network, where the sampling network is
used to obtain CS measurements through a learning sampling
matrix, and the reconstruction network is used to obtain
the reconstructed images from the CS measurements. Nor-
mally, a reconstruction network consists of a preliminary
reconstruction network and a deep reconstruction network.
The preliminary reconstruction network is a linear operation
that reconstructs images from the CS measurements initially,
whereas the deep reconstruction network is a nonlinear oper-
ation that can further improve the quality of the preliminary
reconstructed images.

A. SAMPLING NETWORK AND PRELIMINARY
RECONSTRUCTION NETWORK

Traditional sampling matrices mostly use random matrices,
such as a Gaussian matrix or Bernoulli matrix; however, the
sampling matrix has no relevance to the signal. The large
sampling matrix adds computational complexity to the image
CS and requires a large memory space to store. An effi-
cient block-by-block sampling network has been proposed
in CSNet [17], in which the sampling network adaptively
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learns the sampling matrix from the training datasets during
training.

The memory required and computational complexity are
both decreased because each image block-based sampling
matrix is same and has a reduced dimension. And the sam-
pling matrix resulting from training has a high correlation
with the image, so a better image quality of reconstruction
can be obtained from the image CS process.

In this study, the same sampling network as in CSNet [17]
is used, where the input image is initially divided into non-
overlapping blocks of size B x B x [; I is the number of
channels and B x B represents the size of each channel of
block. CS measurements are obtained through a sampling
matrix ®g of size ng x IB%, where ng = sIB? if the sampling
ratio is set as s.

This process can be expressed as y; = ®px;, where ®p
can also be seen as a sampling convolution layer if each row
of ®p is treated as a filter. Thus, the size of each filter in the
sampling network is B x B x [, which is the same as the size
of each image block. The stride of this convolution layer is
B x B to guarantee nonoverlapping sampling. Moreover, the
bias in each filter is zero.

The sampling convolution layer can be described as

Vsamp = fsamp (X) = Wy * x. 5)

where * represents the convolution operation, ysmp is a
1 x 1 x sIB? matrix of the CS measurement for each image
block, W corresponds to np filters of support B x B x [, x is
the input image. In this process, there are all linear operations
without a bias or an activation function, and each column of
the output corresponds to the measurement of an image block.

According to the CS theory [2], the image can only be
reconstructed from measurements under sparse conditions.
We design a preliminary reconstruction network for the pre-
liminary reconstruction from the output of the sampling layer
as in MR-CSGAN. The preliminary reconstruction network
consists of a deconvolution layer, described as:

Yint :ﬁnt (x) = Wi * Ysamp- (6)

where %’ represents the deconvolution operation and y;,; is
the preliminary reconstructed result. W;,; corresponds to the
deconvolution kernel of the support B x B x [, x is the
input image. Similar to the sampling layer, the preliminary
reconstruction network is a linear operation, without bias and
activation functions.

B. DEEP RECONSTRUCTION NETWORK
Because the entire sampling recovery process is a linear trans-
form, the quality of the preliminary reconstructed images is
relatively poor. To improve the reconstruction quality, we add
a deep reconstruction network composed of multiple residual
blocks, each containing a ReLU layer, to prevent the gradient
from vanishing and increase the nonlinearity of the network.
In the deep reconstruction network, we cascade multiple
TSRB modules to increase the non-linearity of the network.
To avoid losses of contextual information learned by TSRB,
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we extract the feature maps from each TSRB for fusion at
layer “Concat”. To reduce the memory cost and increase the
running speed, we add two convolutional layers to reduce the
output dimensions of the feature fusion layer. At the output
of these two convolutional layers, the output of the first con-
volution layer of the deep reconstructed network is added to
form a global residual network module. A feature aggregation
operation is used to obtain the final output images.
The above process can be expressed as:

Your = Wour * (VTSRB + Yint) + Bour- @)

where y,,; is the final recovered high-quality image, y;,; is the
output low-quality image of the preliminary reconstruction
network, W,,; and B,,; correspond to the feature aggregation
operation kernel and biases respectively, yrsgp is the residual
between quality images y;,; and high-quality images y,,;. The
final TDCN is shown in FIGURE 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. IMPLEMENTATION DETAILS

For the purpose of comparison, the network parameters of
TDCN are set as follows: the block size in the sampling pro-
cess is the same as that of CSNet, thatis, B=32and [/ = 1.
We initialize the weights using the method described in [35],
which is a reasonable and effective method for networks
with the ReL U activation function. Training is performed by
optimizing equation (4) using adaptive moment estimation
(Adam) [36], and we use the default settings to initialize the
other parameters of Adam.

All our experiments are conducted by training the network
with a common image super-resolution dataset, DIV2K [37].
The DIV2K dataset includes 800 training images, 100 val-
idation images, which are saved as “‘. png” file. Similar to
CSNet, data augmentation technology has been applied to
increase the training dataset [17]. We crop the training images
with a stride of 32 to obtain a sub-image size of 96 x 96 pixels.
We then randomly choose 96000 sub-images for network
training. A total of 100 epochs are trained, and each epoch
has 3,000 iterations, with a batch size of 32. We set the initial
learning rate to 0.0004 and decay it to half per 10 epochs.
Different sampling rates are used to measure the image.
We use Set5 [30], Setll [24], Setl4 [31], and BSD100 [32]
as test datasets. All experiments are performed on a platform
with an 19-9900k CPU and NVIDIA RTX2080Ti GPU.

B. PERFORMANCE COMPARISON FOR DIFFERENT
NUMBERS OF TSRBS

Experiments with the same settings are used to investigate
the effect of varying numbers of TSRBs on the reconstructed
image at a sampling rate of 0.1 on dataset Set5.

FIGURE 4 shows the effect of different numbers of TSRBs
on the image reconstruction results at a sampling rate of 0.1.
The horizontal axis represents the epoch number in training,
and the vertical axis represents the average PSNR of all
reconstructed images on dataset Set5. It is clear that the
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FIGURE 4. PSNR of reconstructed image with different number of
Tree-Structured Residual Block (TSRB) on dataset Set 5. The sampling rate
is 0.1.

reconstruction performance of the network improves as the
number of TSRBs increases.

Considering the depth and running speed of the network,
we select seven TSRB modules for the subsequent experi-
mental studies.

C. COMPARISON WITH ALGORITHMS FOR IMAGE CS
In this section, the reconstructed image quality and running
speed of TDCN are investigated.

TDCN is compared with four traditional algorithms and
four deep learning-based algorithms. Then, the running
speeds of the different algorithms are compared. The experi-
ments are run in MATLAB 2020b and the Pytorch framework
on a Windows 10 system. Some results for comparison are
obtained from the published literature.

Four traditional algorithms for image CS compared are
total variation (TV) [38], multi-hypothesis (MH) [39],
group sparse representation (GSR) [21], and denoising-based
approximate message passing (D-AMP) [22]. The experi-
mental codes of the compared algorithms are obtained from
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the authors’ websites, and all experiments use the default
parameters. The test on these algorithms is performed on
dataset Setl 1. It is noted that the four traditional algorithms
use random matrix as sampling matrix but the proposed
TDCN uses convolution layer.

Asshown in TABLE 1, TDCN consistently performs better
than all the compared algorithms at different sampling rates
on dataset Setll. In terms of PNSR, on average, our pro-
posed TDCN wins TV, MH, GSR, and D-AMP over 5.72 dB,
3.03 dB, 1.43 dB, and 6.54 dB, respectively.

TABLE 1. Average PSNR of different image CS algorithms on Set11.

SR TV[38] MH[39] GSR[21] D-AMP[22] TDCN
001 1643 17.65 16.79 521 21.62
004 1875 21.64 21.63 18.40 25.76
0.1 2299 2695 27.93 22.64 29.41
025 2792 31.37 33.57 28.46 33.98
0.3 29.23 32.43 34.76 30.39 35.26
04 3146  33.89 36.89 33.56 37.37
0.5 33.55 35.20 38.76 35.92 39.45
Avg. 2576 2845 30.05 24.94 31.48

Five deep-learning-based algorithms, namely, Recon-
Net [24], ISTA-Net* [4], CSNet™ [17], SCSNet [40], and
MR-CSGAN [25], are also compared at their default parame-
ters. For fair comparison, these algorithms are tested on three
datasets: Set5 (5 images), Setl4 (14 images), and BSD100
(100 images). Both objective and subjective evaluations are
performed.

The sampling rates of the image CS measurements are set
as 0.01, 0.04, 0.1, 0.25, 0.3, 0.4 and 0.5 for ISTA-Net* [4],
CSNett [17], SCSNet [40], the sizes of the corresponding
convolution kernels are set as 10, 41, 102, 256, 307, 410 and
512. And the sampling rates of the image CS measurements
are set as 0.01, 0.04, 0.1 and 0.25 for ReconNet [24] and
MR-CSGAN [25] due to studies in article [24] and arti-
cle [25] only provided test results at these sampling rate.
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TABLE 2. Average PSNR (dB) and SSIM comparisons of different image CS algorithms on Set5, Set14 and BSD100.

Algorithm  ReconNet [24] ISTA-Net" [4] CSNet™ [17]

SCSNet [40]

MR-CSGAN [25]  TDCN® TDCN_DCBI* TDCN

Data SR PSNR SSIM PSNR SSIM PSNR SSIM PSNR

SSIM  PSNR  SSIM

PSNR SSIM PSNR SSIM PSNR SSIM

0.01 18.07 041 19.59 051 2418 0.65 24.21
0.04 21.61 055 2345 0.66 28.70 0.82 28.66
0.1 2458 0.68 2997 085 3259 091 3277
Set5 025 27.22  0.77 34.17 093 36.81 0.96 36.71

0.3 - - 36.03 094 3825 096 3845
0.4 - - 38.84 096 40.11 097 4044
0.5 - - 40.77 097 41.79 098 42.22

0.65 24.51 0.67 2451 0.67 2427 0.65 24.61 0.68
0.82  29.28 0.85 2938 086 2759 0.79 2945 0.86
091 3338 093 3355 093 3261 091 3354 093
096 37.74 097 3783 097 3529 095 3785 097

0.97 - - 38.88 097 38.17 097 3895 097
0,98 - - 40.90 098 4022 098 4091 098
0.98 - - 42.79 098 42.14 098 42.84 0.98

0.01 18.09 039 1929 046 2283 0.56 22.87
0.04 20.62 049 22.08 0.57 2638 0.71 26.29
0.1 2291 060 2728 0.75 29.13 0.82 2922
Setl4 0.25 2530 0.71 3028 0.84 3226 091 3225

0.3 - - 3268 0.89 3434 093 3451
0.4 - - 3531 093 36.16 095 36.54
0.5 - - 3733 095 37.89 096 38.41

0.56  23.14 0.58 23.09 058 2285 056 2320 058
072 26.73 0.74  26.83 074 2532 0.69 26.82 0.74
0.82  29.68 0.84 2977 085 29.15 0.83 29.75 0.85
091  33.79 093 3380 093 3157 091 3381 093

0.93 - - 3483 094 3415 094 3493 094
0.95 - - 36.88 096 36.10 095 3693 0.96
0.97 - - 38.83 097 38.00 097 38.83 097

0.01 19.08 040 2036 046 23.76 0.55 23.78
4 2126 049 2226 055 2625 0.67 2636

23.09 059 2641 070 2853 0.78 28.57
0.25 2520 0.70 2899 0.80 3191 0.89 3193

0.0
BSD100 0

0.3 - - 31.07 086 33.08 092 3324
0.4 - - 3326 091 3491 094 3521
0.5 - - 3508 094 3668 096 37.14

0.55 23.89 055 2387 055 2374 054 2395 0.56
0.69  26.49 070 26.51 0.70 25.64 0.66 2653 0.70
0.78  28.77 0.81 2886 0.81 2844 0.80 28.82 0.81
090  32.39 091 3236 091 3077 0.89 3235 091

0.92 - - 3335 093 3284 092 3341 093
0.95 - - 3535 095 3476 095 3536 095
0.96 - - 37.27 097 36.67 097 3729 097

All the subjective evaluation results in terms of average
PSNR and SSIM are shown in TABLE 2, where the best
result is marked in red and the runners-up is marked
in blue.

The experimental results in TABLE 2 show that our pro-
posed TDCN model has good performance at different sam-
pling rates and improves differently from other algorithms in
terms of PSNR. TDCN achieves the highest PSNR value and
SSIM value than other methods at all sampling rate except
one result for sampling rate of 0.25 on dataset BSD100.

In the subjective evaluation, we choose three standard
images as the test images on Setl1 and Set14 to demonstrate
that the TDCN improves the visual performance of the recon-
structed images. FIGURE 5, 6, and 7 show three visualization
examples of images reconstructed using different methods at
sampling rates of 0.01, 0.04, and 0.1, respectively. We can see
that the TDCN presented here achieves the best visual effect
at different sampling rates.

The comparison results of running speed are shown in
TABLE 3, where the average running time (in seconds) and
running conditions of the algorithms for reconstructing a
256 x 256 image are given in detail. The results of Recon-
Net are from their original paper [24] while the remaining
methods are tested using our platform.

It can be seen from TABLE 3, traditional image CS algo-
rithms take several seconds to several minutes to reconstruct

98380

a256 x 256 image. In contrast, deep-learning-based methods,
which take around one second on CPU or less than 0.08 sec-
ond on GPU to reconstruct a 256 x 256 image, run faster than
traditional algorithms.

Specifically, TDCN runs at a similar speed to CSNet™
and SCSNet on a GPU and is much faster than other deep
learning-based methods. And TDCN is about four times
faster than MR-CSGAN because it is a smaller network than
MR-CSGAN.

In summary, TDCN runs much faster than traditional CS
algorithms and is comparable to existing deep learning-based
CS algorithms.

D. ABLATION STUDY
In this section, ablation experiments are given to verify that
our improvements are effective further.

1) We compared the performance differences between
TDCN*, TDCN_DCBI* and TDCN.

TDCN* is a variant of our TDCN, where the convolution,
reshaping and concatenating layers are used at preliminary
reconstruction process instead of the deconvolution layer
used in TDCN. In TDCN_DCBI* network, we replaced
TSRBs in TDCN by residual blocks built from DCBI mod-
ule [34] shown in FIGURE 1. The experimental results are
also shown in TABLE 2 with the best result in red and the
runners-up in blue.
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(a) (b) (c) ‘ (d) (e) ®

FIGURE 5. Comparison of reconstruction effect on Lena from Set11 with 0.01 sampling rate, (a) Original (PSNR / SSIM). (b) ISTA-Net™* (18.54 dB / 0.2557).
(c) CSNett (22.43 dB / 0.6179). (d) SCSNet (22.41 dB / 0.6159). (e) MR-CSGAN (22.84 dB / 0.6446). (f) TDCN (23.33 dB / 0.6646).

FIGURE 6. Comparison of reconstruction effect on Comic from Set14 with 0.04 sampling rate, (a) Original (PSNR / SSIM). (b) ISTA-Net* (17.60 dB /
0.4306). (c) CSNet™* (21.81 dB / 0.5791). (d) SCSNet (21.79 dB / 0.5766). (¢) MR-CSGAN (21.93 dB / 0.6301). (f) TDCN (22.03 dB / 0.6412).
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(b)

FIGURE 7. Compatrison of reconstruction effect on PPT3 from Set14 with 0.1 sampling rate, (a) Original (PSNR / SSIM). (b) ISTA-Net* (24.92 dB / 0.8826).
() CSNet+ (27.94 dB / 0.9493). (d) SCSNet (28.01 dB / 0.9480). (¢) MR-CSGAN (28.70 dB / 0.9650). (f) TDCN (28.83 dB / 0.9680).

TABLE 3. Average running time (in seconds) of various algorithms for reconstructing a 256 x 256 image.

. Ratio=0.01 Ratio=0.1 .
Algorithm CPU GrU CPU GrU Programming Language Platform
TV 0.8510 - 0.9240 -
MH 15.060 - 11.9460 - .
GSR 586.9530 ) 584 3840 ) Matlab Intel Core 19-9900k
D-AMP 6.3180 - 8.3590 -
ReconNet(Author)] 0.5193 0.0244 0.5258 0.0195 Matlab+Caffe Intel Xeon E5-1650 CPU+NVIDIA GTX980 GPU
ISTA-Net" 1.3750 0.0470 1.3750 0.0470 Python+Pytorch
CSNet* 1.1691 0.0103 1.1808 0.0102 Intel Core 19-9900k CPU+
"
SCSNet 07295 | 00101 | 07383 | 0.0201 Matlab+Matconvnet NVIDA RTX2080Ti GPU
MR-CSGAN 1.9508 0.0708 2.0241 0.0722 Python-Pvtorch
TpCN©Ous) | 07191 | 00160 | 07081 | 0.0170 ythontPyt

TABLE 2 shows that TDCN has very tiny advantages that adopting deconvolution layer at the preliminary recon-
than TDCN* in terms of PSNR values. This result shows struction process instead of the linear convolution, reshaping
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and concatenating layers can bring comparable, even slightly
better performance for TDCN.

The fact that TDCN_DCBIt produced worst results than
TDCN in TABLE 2 is an experimental proof that tree-
structured dilated convolutions in TSRB perform better than
DCBI [34] that adopts dilated convolutions with different
dilation rates to extract image features simultaneously.

2) To investigate the effect of the loss function on network
performance, a variant of TDCN, i.e., TDCNT is built, where
L2 loss is used instead of L1 loss.

They are both trained at the sampling rate of 0.1. The train-
ing process for TDCN and TDCN ™ are shown in FIGURE 8,
which demonstrates that training with L1 loss performs bet-
ter than with L2 loss under the same condition of TDCN
structure.

30.0 T T T T T T
295 .
29.0
285
28.0 -

m 275 F

=

g 27.0

n

A~ 265 .
26.0 | 4
25.5 |- .

25.0 s
=+ =TDCN"

24.5 | leee TDCN |

24.0 1 I 1 1 1 1

0 20 40 60 80 100

Epoch

FIGURE 8. PSNR comparison among TDCN and TDCN* on Set11. The
sampling rate is 0.1.

3) To investigate the effect of BN layer, KConv and
DConv layer on network performance, three variants of
TDCN are built as shown in TABLE 4, namely TDCN_TFA,
TDCB_TFA™ and TDCN_TFA*.

TABLE 4. Different measures of improvement for TFA, TFAT, TFA*+, and
TDCN.

TDCN_TFA TDCN_TFA® TDCN_TFA™ TDCN

BN y y
Avgpool v v
DConv RN v v N

TDCN_TFA adopts both BN layer and KConv that
includes Avgpool layer and DConv layer; TDCN_TFA™
adopts both Avgpool layer and DConv layer; TDCN_TFA++
adopts both BN layer and DConv layer. We must also note
that TDCN uses only DConv layer compared with its variants.
These three variants of TDCN are trained separately at the
sampling rate of 0.1. The test results of PSNR vs. Epoch for
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FIGURE 9. PSNR comparison among TDCN_TFA, TDCN_TFA*, TDCN_TFA++
and TDCN on Set11. The sampling rate is 0.1.

TDCN_TFA, TDCN_TFA™, TDCN_TFA ™ and TDCN on
Setl1 are shown in FIGURE 9.

Experimental results show that TDCN_TFA performs bet-
ter than TDCN_TFAt and TDCN_TFA++. However, our
proposed TDCN outperforms other variants in PSNR value.
It proved that using DConv only is the best option compared
with other assumed situations in Table 4.

V. CONCLUSION

In this study, we propose a tree-structured dilated convolu-
tional network for image compressed sensing. The algorithm
uses a tree-structured residual block to recover the detailed
image features in deep reconstructed networks fully. Mean-
while, we use L1 loss rather than L2 loss to train the network.
All experimental results demonstrate that the reconstructed
images of TDCN have more detailed structural information
and a sharper appearance. The proposed TDCN outperforms
the current algorithms in both the PSNR and SSIM metrics,
and the running speed of the algorithm is comparable to
that of the current algorithms. In the future, we will con-
sider applying TDCN to CS in hyperspectral remote sensing
images and study an algorithm that utilizes interspectral cor-
relation to obtain higher reconstruction quality.
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