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ABSTRACT To better recover a sparse image signal carrying redundant information from many fewer mea-
surements than the Nyquist-Shannon sampling theorem suggested, convolutional neural networks (CNNs)
can be used to emulate a compressed sensing (CS) process. However, the existing CS methods based on
CNNs have the problems of high computational complexity and unsatisfactory reconstruction effect. This
study aims to present a faster algorithm based on CNNs to obtain reconstructed images with finer texture
details from CS measurements. A tree-structured dilated conventional network (TDCN) for image CS is
proposed. To extract the image multi-scale features as much as possible for better image reconstruction, the
TDCN combines tree-structured residual blocks made of three dilation convolution layers with different
dilation factors; the output of each dilated convolution layer is directed to fusion layer to eliminate
information loss due to the multiple cascading dilated convolutions. Moreover, L1 loss is employed as
an objective optimization function instead of L2 loss to improve training results of the network and
achieve better convergence. Extensive CS experiments in the study demonstrate that the proposed TDCN
outperforms existing state-of-the-art methods in terms of both PSNR and SSIM at different sampling
rates while maintaining a fast computational speed. Our code and the trained model are available at
https://github.com/UHADS/TDCN.

16 INDEX TERMS Compressed sensing, deep learning, dilated convolution, image reconstruction.

I. INTRODUCTION17

Compressed sensing (CS) theory [1], [2] shows that the18

reconstruction of a sparse signal x ∈ RN×1 can be accurately19

achieved from its compressed measurements y ∈ RM×1 by20

solving underdetermined equations. The compressed mea-21

surements y = 8x are obtained through measurement matrix22

8 ∈ RM×N . Compared with the Nyquist-Shannon sampling23

theorem [3], the CS theory suggests that a sparse signal can24

be recovered from many fewer measurements based on the25

sparsity of the signal.26

In addition, the CS process can be seen as a process of ran-27

dom subsampling signals. Algorithm can eliminate the arti-28

facts caused by random subsampling; thus, the original signal29

can be accurately recovered. As a result, the subsampling of30

CS reduces the demand for high transmission bandwidth and31

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen Chen .

storage space. Due to its simultaneous sampling and compres- 32

sion at the same time, CS also offers low-cost on-sensor data 33

compression [4]. CS has been applied in a variety of reali- 34

ties, including but not limited to radar image acquisition [5], 35

[6], [7], novel imaging devices [8], [9], magnetic resonance 36

imaging (MRI) [10], [11], and wireless telemonitoring [12]. 37

It is well known that information carried by images is 38

redundant and can be sparsely represented in sparse domains. 39

Therefore, the image can be compressed and reconstructed 40

accurately according to CS theory. The goal of image CS is 41

to ensure that an image can be accurately reconstructed from 42

very few measurements. There are two main challenges that 43

need to be solved to meet the goal. These include selecting 44

the samplingmatrix and designing appropriate reconstruction 45

methods. 46

Most studies [13], [14], [15], [16] select a random matrix, 47

binary matrix, and structure matrix as the sampling matrix. 48

However, these sampling matrices are image-independent 49

98374 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5780-6310
https://orcid.org/0000-0002-3258-7278


R. Lu, K. Ye: Tree-Structured Dilated Convolutional Networks for Image Compressed Sensing

and ignore image features. To make full use of the features of50

the image and design a sampling matrix with high correlation51

with the image to achieve high-quality results, a convolutional52

layer has been proposed in CSNet [17] to simulate the CS53

sampling process and adaptively learn the sampling matrix54

from the training images.55

For the design of the reconstruction method, some studies56

[18], [19], [20], [21], [22] use iterative operations to achieve57

high-quality results, but these operations often take a long58

time to reconstruct an image. Therefore, research [23] adopts59

the block-by-block reconstruction method to recover images60

in blocks then joins the recovered blocks together to obtain61

a final restored image, which can significantly reduce the62

reconstruction time andmemory storage requirements. Based63

on traditional block-by-block CS methods, convolutional64

neural networks (CNNs) have been developed to recover CS65

sampling data in blocks, which not only improves the quality66

of reconstructed images, but also saves time of recovery67

[24], [4]. However, these methods of using CNNs ignore68

the linkages between blocks and only rely on intra-block69

information to recover the image, and blocking artifacts will70

appear. Generally, post-processing methods are required to71

eliminate blocking artifacts in the block-based method. Such72

post-processing usually increases computational complexity73

and affects recovery efficiency.74

To address these problems, researchers [17] have proposed75

a linear preliminary reconstruction network combined with76

a nonlinear deep reconstruction network, which reconstructs77

images from CS measurements by end-to-end learning with-78

out additional post-processing operations and can quickly and79

efficiently obtain high-quality recovered images.80

To enhance the quality of the reconstructed images,81

MR-CSGAN [25] increases the depth of the recovery network82

and uses multi-scale residual blocks (MSRB) made of con-83

volution kernels of different sizes to exploit the multi-scale84

structural features of the images in the generator network.85

Although MR-CSGAN exploits image structural features86

throughMSRB to obtain more detailed reconstructed images,87

the high computational cost limits its practical application.88

Exploring the deeper structural features of the original89

image while reducing the time of recovery has become an90

urgent challenge in image CS. Recently, the use of dilated91

convolution (DConv) rather than standard convolution to92

extract image features in CNN has become mainstream [26].93

Compared with ordinary convolution, dilated convolution for94

image recovery tasks can significantly expand the receptive95

field under the same computing conditions [27].96

Therefore, in the field of image segmentation, TKCN [28]97

has been proposed a tree-structured feature aggrega-98

tion (TFA) module composed of a tree structure of dilated99

convolution and a batch normalization (BN) layer to better100

extract multi-scale features of images in complex scenes.101

However, research [29] shows that the BN layer can eliminate102

network range flexibility by standardizing features; therefore,103

the BN layer is harmful if used for image reconstruction.104

Based on the above research results, we propose an 105

image CS model made of a tree-structured dilated convo- 106

lutional network (TDCN), in which a tree-structured resid- 107

ual block (TSRB) is newly designed to learn features of 108

different scales of images. The TSRB module comes from 109

removing the BN layer of the TFA module in the TKCN and 110

selecting dilation factors that are better suited for the dilated 111

convolution. 112

The TDCN consists of a sampling network and a recon- 113

struction network. The sampling network adopts the same 114

network structure as in CSNet [17], and can obtain CS 115

measurements through a sampling matrix that is trained 116

adaptively from training datasets. The reconstruction net- 117

work, which is established to learn end-to-end mapping 118

from CS measurements to reconstructed images, contains a 119

linear preliminary reconstruction network and a nonlinear 120

deep reconstruction network. The preliminary reconstruction 121

network results in a preliminary recovery image through 122

a deconvolutional layer, whereas the deep reconstruction 123

network uses several TSRB modules to refine the prelimi- 124

nary reconstruction image further and obtain better recovery 125

quality. 126

In addition, instead of the mean square error (MSE) or 127

L2 loss, the mean absolute error (MAE) or L1 loss is 128

used as a loss function in the image reconstruction net- 129

work because the literature [29] suggests that L1 loss can 130

potentially help achieve better training results on many 131

occasions. 132

The experimental results show that the proposed TDCN 133

can achieve higher PSNR and SSIM values than most 134

existing methods in image CS because of the following 135

contributions. 136

1) We propose a tree-structured convolutional net- 137

work (TDCN) for image CS. TDCN uses multiple 138

TSRB modules to learn multi-scale features and then 139

combines the outputs of each TSRB module through a 140

feature fusion layer to guarantee high-quality recovery 141

images. 142

2) To quickly obtain recovery images from CS measure- 143

ments, we introduce dilated convolution to the TSRB 144

modules and dilated convolutions in TSRB made as 145

a tree structure. Therefore, TSRB can easily obtain 146

multi-scale features of images and ensure that the 147

extracted shallow information is not lost in the deep 148

network. 149

3) We use the L1 loss function in TDCN instead of the 150

L2 loss function. Experiments show that L1 loss results 151

in recovered images with more detail and better visual 152

effects while achieving better convergence. 153

The remainder of this paper is organized as fol- 154

lows. Section II introduces the background of the model. 155

Section III introduces the proposed TDCN method. 156

In Section IV, the performance of TDCN is discussed and 157

compared with that of some state-of-the-art methods through 158

experiments, and we conclude the paper in Section V. 159
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II. BACKGROUND160

A. CNNS FOR IMAGE COMPRESSED SENSING161

RECONSTRUCTION162

At present, many image CS models based on deep convo-163

lutional neural networks (DCNNs) have shown good perfor-164

mance on several benchmark test sets [24], [30], [31], [32].165

For example, ReconNet [24] proposed by Kulkarni et al.,166

where a non-iterative reconstruction architecture based on167

a CNN is placed after a random Gaussian sampling matrix168

to achieve non-iterative image CS reconstruction, provides a169

good trade-off between computational complexity and recon-170

struction quality; ISTA-Net [4], which uses a deep network171

to replace the iterative threshold algorithm (ISTA [33]) in the172

reconstruction process, improves both the quality and speed173

of image reconstruction; CSNet [17] uses a convolution layer174

to complete the sampling and reconstruction processes simul-175

taneously; MR-CSGAN [25] uses perceptual loss as a loss176

function and several MSRB modules to exploit multi-scale177

structural features of the images in the generator network, and178

then all the outputs of each MSRB are integrated through a179

fusion layer, as shown in FIGURE 1.180

B. DILATED CONVOLUTION181

To increase the receptive field, most semantic segmenta-182

tion algorithms contain a pooling layer and convolutional183

layer [28]. Thus, the resolution of the feature maps is reduced,184

and up-sampling is required to restore the image resolution.185

Because of the downsampling and upsampling activities in186

the process, there is a loss of accuracy. Dilated convolu-187

tion [26] has been proposed to solve this problem. With the188

size of the feature map unchanged, using a dilated convolu-189

tion operation to replace the downsampling and upsampling190

operations can increase the receptive field.191

Dilated convolution has been also introduced to CNN to192

solve super-resolution problems, e.g., DCBI [34] module193

shown in FIGURE 1 uses dilated convolutions with different194

dilation rates to extract image features simultaneously.195

Unlike standard convolutions, dilated convolution intro-196

duces a hyper-parameter called the dilation factor m, which197

defines the spaces between values processed by the convolu-198

tion kernel. k-dilated convolutions of size 3×3 with different199

dilation factors are shown in FIGURE 2. The gray areas in200

FIGURE 2 are receptive fields. It can be seen that dilated201

convolution appears in the form of a standard convolution202

when dilation factor is 1.203

On the premise of occupying the same computing204

resources, increasing the dilation factor can obtain a larger205

receptive field of the network and detect multi-scale image206

features without losing resolution.207

C. TREE-STRUCTURED RESIDUAL BLOCK (TSRB)208

In TKCN [28], a tree-structured feature aggregation (TFA)209

module shown in FIGURE 1 has been proposed for image210

segmentation tasks. TFA is composed of several Kronecker211

convolution (KConv) layers and BN layers, where the212

FIGURE 1. Tree-structured Feature Aggregation module (TFA), Dilated
Convolution Based Inception module (DCBI), Multi-Scale Residual
Blocks (MSRB) and Tree-Structured Residual Block (TSRB).

FIGURE 2. Dilation convolutions with different dilation factor k.
The values of m from left to right are 1, 2, 3.

Kronecker convolution layer contains a dilated convolution 213

layer and a layer to capture local contextual information 214
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ignored by the dilated convolution, dubbed AvgPool. More215

detailed structural information is extracted using TFA.216

This study presents a tree-structured residual block (TSRB)217

module shown in FIGURE 1. Similar to the TFA module,218

the TSRB module adopts a tree structure with three layers of219

dilated convolutions of size 3× 3 of different dilation factors220

as shown in FIGURE 1. To compensate for the checkerboard221

effect caused by multiple cascade dilated convolutions and222

capture local contextual information ignored by dilated con-223

volutions, the output of each dilated convolution layer is repli-224

cated into two branches: one branch retains the current scale225

features, while the other aggregates spatial dependencies over226

a larger range; therefore, in complicated circumstances, it can227

easily learn representations of multi-scale objects and encode228

hierarchical contextual information.229

Meanwhile, the output feature maps of the current step are230

stacked with the previous feature maps in tandem, and then231

a convolution of size 1 × 1 is input for multi-scale feature232

fusion. Finally, the input and output are added to form a local233

residual block to reduce the network’s loss of local contextual234

information; thus, AvgPool is not required for the TSRB.235

The TSRB process can be described by Equations236

(1) and (2).237

Ok = Wk ∗k Ok−1 + Bk , k = 1, 2, 3 (1)238

Hj = Wc ∗

O1
...

Ok

+ Hj−1. (2)239

where ∗ represents the convolution operation or an 1-dilated240

convolution operation, ∗k represents k-dilated convolution241

operation, Ok is the output of each convolutional layer in242

TSRB, Wk and Bk are its convolutional kernel and biases,243

respectively.Hj is the output of the j-th TSRBmodule andWc244

is a convolution kernel of 1×1. During this process,O0 = H0.245

Compared to MSRB shown in FIGURE 1, TSRB modules246

will have same size of receptive field as the traditional con-247

volution kernels of size 5× 5 or 7× 7 if using 3× 3 dilated248

convolution kernels with dilation rates of 2 or 3. Thus 25 or249

49 parameters of traditional convolution kernels are replaced250

by 9 parameters of dilated convolution kernels, it brings251

down the computational complexity of TSRB compared with252

MSRB when receptive field kept same.253

TSRB uses tree-structured dilated convolutions to extract254

different scale features, which increases the network depth,255

while DCBI applied dilated convolutions with different dila-256

tion rates to extract image features simultaneously [34]. Fea-257

ture fusion is performed through 3 × 3 convolution kernels258

in DCBI while 1 × 1 convolution kernels are used in TSRB259

architecture to prevent the loss of information caused by the260

increase of the network depth.261

Furthermore, every convolution in DCBI is followed by an262

activation layer, but there is only one activation layer after the263

feature fusion operation to effectively prevent network gradi-264

ent explosion. So, the computational complexity of TSRB is265

much smaller than DCBI while keeping good performances.266

D. MEAN ABSOLUTE ERROR LOSS FUNCTION 267

In a CNN-based image CS, the choice of loss function is also 268

essential, and an appropriate loss function can help the model 269

achieve the best and fastest convergence. 270

L2 loss is the most widely used loss function in image 271

recovery and is also the main performance measure (PSNR) 272

for these problems. However, research [29] reported that L2 273

loss training does not guarantee better performance in terms 274

of PSNR and SSIM. In their experiments, L1 loss was used as 275

a loss function, and the experiments showed that the network 276

trained by L1 loss had better performance than that trained by 277

L2 loss. 278

L2 loss function is the mean squared error (MSE) between 279

the predicted value f (xi) and the target value xi, which is 280

defined in Equation (3): 281

MSE =
1
N

N∑
i=1

(xi − f (xi))2. (3) 282

L1 loss function is the mean absolute error (MAE) between 283

the predicted value f (xi) and the target value xi, which is 284

defined in Equation (4): 285

MAE =
1
N

N∑
i=1

|xi − f (xi)|. (4) 286

where N the total number of images. 287

III. TREE-STRUCTURED DILATED CONVOLUTIONAL 288

NETWORKS (TDCN) 289

The TDCN proposed in this study imitates the image CS 290

process, as shown in FIGURE 3. Similar to block-based com- 291

pressive sensing (BCS), TDCN uses a CNN to complete three 292

operations: compression sampling, preliminary reconstruc- 293

tion, and deep reconstruction. TDCN has a sampling network 294

and a reconstruction network, where the sampling network is 295

used to obtain CS measurements through a learning sampling 296

matrix, and the reconstruction network is used to obtain 297

the reconstructed images from the CS measurements. Nor- 298

mally, a reconstruction network consists of a preliminary 299

reconstruction network and a deep reconstruction network. 300

The preliminary reconstruction network is a linear operation 301

that reconstructs images from the CS measurements initially, 302

whereas the deep reconstruction network is a nonlinear oper- 303

ation that can further improve the quality of the preliminary 304

reconstructed images. 305

A. SAMPLING NETWORK AND PRELIMINARY 306

RECONSTRUCTION NETWORK 307

Traditional sampling matrices mostly use random matrices, 308

such as a Gaussian matrix or Bernoulli matrix; however, the 309

sampling matrix has no relevance to the signal. The large 310

sampling matrix adds computational complexity to the image 311

CS and requires a large memory space to store. An effi- 312

cient block-by-block sampling network has been proposed 313

in CSNet [17], in which the sampling network adaptively 314
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learns the sampling matrix from the training datasets during315

training.316

The memory required and computational complexity are317

both decreased because each image block-based sampling318

matrix is same and has a reduced dimension. And the sam-319

pling matrix resulting from training has a high correlation320

with the image, so a better image quality of reconstruction321

can be obtained from the image CS process.322

In this study, the same sampling network as in CSNet [17]323

is used, where the input image is initially divided into non-324

overlapping blocks of size B × B × l; l is the number of325

channels and B × B represents the size of each channel of326

block. CS measurements are obtained through a sampling327

matrix 8B of size nB× lB2, where nB = slB2 if the sampling328

ratio is set as s.329

This process can be expressed as yj = 8Bxj, where 8B330

can also be seen as a sampling convolution layer if each row331

of 8B is treated as a filter. Thus, the size of each filter in the332

sampling network is B× B× l, which is the same as the size333

of each image block. The stride of this convolution layer is334

B× B to guarantee nonoverlapping sampling. Moreover, the335

bias in each filter is zero.336

The sampling convolution layer can be described as337

ysamp = fsamp (x) = Ws ∗ x. (5)338

where ∗ represents the convolution operation, ysamp is a339

1 × 1 × slB2 matrix of the CS measurement for each image340

block,Ws corresponds to nB filters of support B× B× l, x is341

the input image. In this process, there are all linear operations342

without a bias or an activation function, and each column of343

the output corresponds to themeasurement of an image block.344

According to the CS theory [2], the image can only be345

reconstructed from measurements under sparse conditions.346

We design a preliminary reconstruction network for the pre-347

liminary reconstruction from the output of the sampling layer348

as in MR-CSGAN. The preliminary reconstruction network349

consists of a deconvolution layer, described as:350

yint = fint (x) = Wint ∗
′ ysamp. (6)351

where ∗′ represents the deconvolution operation and yint is352

the preliminary reconstructed result. Wint corresponds to the353

deconvolution kernel of the support B × B × l, x is the354

input image. Similar to the sampling layer, the preliminary355

reconstruction network is a linear operation, without bias and356

activation functions.357

B. DEEP RECONSTRUCTION NETWORK358

Because the entire sampling recovery process is a linear trans-359

form, the quality of the preliminary reconstructed images is360

relatively poor. To improve the reconstruction quality, we add361

a deep reconstruction network composed of multiple residual362

blocks, each containing a ReLU layer, to prevent the gradient363

from vanishing and increase the nonlinearity of the network.364

In the deep reconstruction network, we cascade multiple365

TSRB modules to increase the non-linearity of the network.366

To avoid losses of contextual information learned by TSRB,367

we extract the feature maps from each TSRB for fusion at 368

layer ‘‘Concat’’. To reduce the memory cost and increase the 369

running speed, we add two convolutional layers to reduce the 370

output dimensions of the feature fusion layer. At the output 371

of these two convolutional layers, the output of the first con- 372

volution layer of the deep reconstructed network is added to 373

form a global residual networkmodule. A feature aggregation 374

operation is used to obtain the final output images. 375

The above process can be expressed as: 376

yout = Wout ∗ (yTSRB + yint)+ Bout . (7) 377

where yout is the final recovered high-quality image, yint is the 378

output low-quality image of the preliminary reconstruction 379

network,Wout and Bout correspond to the feature aggregation 380

operation kernel and biases respectively, yTSRB is the residual 381

between quality images yint and high-quality images yout . The 382

final TDCN is shown in FIGURE 3. 383

IV. EXPERIMENTAL RESULTS AND DISCUSSION 384

A. IMPLEMENTATION DETAILS 385

For the purpose of comparison, the network parameters of 386

TDCN are set as follows: the block size in the sampling pro- 387

cess is the same as that of CSNet, that is, B = 32 and l = 1. 388

We initialize the weights using the method described in [35], 389

which is a reasonable and effective method for networks 390

with the ReLU activation function. Training is performed by 391

optimizing equation (4) using adaptive moment estimation 392

(Adam) [36], and we use the default settings to initialize the 393

other parameters of Adam. 394

All our experiments are conducted by training the network 395

with a common image super-resolution dataset, DIV2K [37]. 396

The DIV2K dataset includes 800 training images, 100 val- 397

idation images, which are saved as ‘‘. png’’ file. Similar to 398

CSNet, data augmentation technology has been applied to 399

increase the training dataset [17].We crop the training images 400

with a stride of 32 to obtain a sub-image size of 96×96 pixels. 401

We then randomly choose 96000 sub-images for network 402

training. A total of 100 epochs are trained, and each epoch 403

has 3,000 iterations, with a batch size of 32. We set the initial 404

learning rate to 0.0004 and decay it to half per 10 epochs. 405

Different sampling rates are used to measure the image. 406

We use Set5 [30], Set11 [24], Set14 [31], and BSD100 [32] 407

as test datasets. All experiments are performed on a platform 408

with an i9-9900k CPU and NVIDIA RTX2080Ti GPU. 409

B. PERFORMANCE COMPARISON FOR DIFFERENT 410

NUMBERS OF TSRBS 411

Experiments with the same settings are used to investigate 412

the effect of varying numbers of TSRBs on the reconstructed 413

image at a sampling rate of 0.1 on dataset Set5. 414

FIGURE 4 shows the effect of different numbers of TSRBs 415

on the image reconstruction results at a sampling rate of 0.1. 416

The horizontal axis represents the epoch number in training, 417

and the vertical axis represents the average PSNR of all 418

reconstructed images on dataset Set5. It is clear that the 419
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FIGURE 3. Tree-structured dilated convolutional networks.

FIGURE 4. PSNR of reconstructed image with different number of
Tree-Structured Residual Block (TSRB) on dataset Set 5. The sampling rate
is 0.1.

reconstruction performance of the network improves as the420

number of TSRBs increases.421

Considering the depth and running speed of the network,422

we select seven TSRB modules for the subsequent experi-423

mental studies.424

C. COMPARISON WITH ALGORITHMS FOR IMAGE CS425

In this section, the reconstructed image quality and running426

speed of TDCN are investigated.427

TDCN is compared with four traditional algorithms and428

four deep learning-based algorithms. Then, the running429

speeds of the different algorithms are compared. The experi-430

ments are run inMATLAB 2020b and the Pytorch framework431

on a Windows 10 system. Some results for comparison are432

obtained from the published literature.433

Four traditional algorithms for image CS compared are434

total variation (TV) [38], multi-hypothesis (MH) [39],435

group sparse representation (GSR) [21], and denoising-based436

approximate message passing (D-AMP) [22]. The experi-437

mental codes of the compared algorithms are obtained from438

the authors’ websites, and all experiments use the default 439

parameters. The test on these algorithms is performed on 440

dataset Set11. It is noted that the four traditional algorithms 441

use random matrix as sampling matrix but the proposed 442

TDCN uses convolution layer. 443

As shown in TABLE 1, TDCN consistently performs better 444

than all the compared algorithms at different sampling rates 445

on dataset Set11. In terms of PNSR, on average, our pro- 446

posed TDCN wins TV, MH, GSR, and D-AMP over 5.72 dB, 447

3.03 dB, 1.43 dB, and 6.54 dB, respectively. 448

TABLE 1. Average PSNR of different image CS algorithms on Set11.

Five deep-learning-based algorithms, namely, Recon- 449

Net [24], ISTA-Net+ [4], CSNet+ [17], SCSNet [40], and 450

MR-CSGAN [25], are also compared at their default parame- 451

ters. For fair comparison, these algorithms are tested on three 452

datasets: Set5 (5 images), Set14 (14 images), and BSD100 453

(100 images). Both objective and subjective evaluations are 454

performed. 455

The sampling rates of the image CS measurements are set 456

as 0.01, 0.04, 0.1, 0.25, 0.3, 0.4 and 0.5 for ISTA-Net+ [4], 457

CSNet+ [17], SCSNet [40], the sizes of the corresponding 458

convolution kernels are set as 10, 41, 102, 256, 307, 410 and 459

512. And the sampling rates of the image CS measurements 460

are set as 0.01, 0.04, 0.1 and 0.25 for ReconNet [24] and 461

MR-CSGAN [25] due to studies in article [24] and arti- 462

cle [25] only provided test results at these sampling rate. 463
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TABLE 2. Average PSNR (dB) and SSIM comparisons of different image CS algorithms on Set5, Set14 and BSD100.

All the subjective evaluation results in terms of average464

PSNR and SSIM are shown in TABLE 2, where the best465

result is marked in red and the runners-up is marked466

in blue.467

The experimental results in TABLE 2 show that our pro-468

posed TDCN model has good performance at different sam-469

pling rates and improves differently from other algorithms in470

terms of PSNR. TDCN achieves the highest PSNR value and471

SSIM value than other methods at all sampling rate except472

one result for sampling rate of 0.25 on dataset BSD100.473

In the subjective evaluation, we choose three standard474

images as the test images on Set11 and Set14 to demonstrate475

that the TDCN improves the visual performance of the recon-476

structed images. FIGURE 5, 6, and 7 show three visualization477

examples of images reconstructed using different methods at478

sampling rates of 0.01, 0.04, and 0.1, respectively.We can see479

that the TDCN presented here achieves the best visual effect480

at different sampling rates.481

The comparison results of running speed are shown in482

TABLE 3, where the average running time (in seconds) and483

running conditions of the algorithms for reconstructing a484

256 × 256 image are given in detail. The results of Recon-485

Net are from their original paper [24] while the remaining486

methods are tested using our platform.487

It can be seen from TABLE 3, traditional image CS algo-488

rithms take several seconds to several minutes to reconstruct489

a 256×256 image. In contrast, deep-learning-based methods, 490

which take around one second on CPU or less than 0.08 sec- 491

ond on GPU to reconstruct a 256×256 image, run faster than 492

traditional algorithms. 493

Specifically, TDCN runs at a similar speed to CSNet+ 494

and SCSNet on a GPU and is much faster than other deep 495

learning-based methods. And TDCN is about four times 496

faster than MR-CSGAN because it is a smaller network than 497

MR-CSGAN. 498

In summary, TDCN runs much faster than traditional CS 499

algorithms and is comparable to existing deep learning-based 500

CS algorithms. 501

D. ABLATION STUDY 502

In this section, ablation experiments are given to verify that 503

our improvements are effective further. 504

1) We compared the performance differences between 505

TDCN∗, TDCN_DCBI+ and TDCN. 506

TDCN∗ is a variant of our TDCN, where the convolution, 507

reshaping and concatenating layers are used at preliminary 508

reconstruction process instead of the deconvolution layer 509

used in TDCN. In TDCN_DCBI+ network, we replaced 510

TSRBs in TDCN by residual blocks built from DCBI mod- 511

ule [34] shown in FIGURE 1. The experimental results are 512

also shown in TABLE 2 with the best result in red and the 513

runners-up in blue. 514
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FIGURE 5. Comparison of reconstruction effect on Lena from Set11 with 0.01 sampling rate, (a) Original (PSNR / SSIM). (b) ISTA-Net+ (18.54 dB / 0.2557).
(c) CSNet+ (22.43 dB / 0.6179). (d) SCSNet (22.41 dB / 0.6159). (e) MR-CSGAN (22.84 dB / 0.6446). (f) TDCN (23.33 dB / 0.6646).

FIGURE 6. Comparison of reconstruction effect on Comic from Set14 with 0.04 sampling rate, (a) Original (PSNR / SSIM). (b) ISTA-Net+ (17.60 dB /
0.4306). (c) CSNet+ (21.81 dB / 0.5791). (d) SCSNet (21.79 dB / 0.5766). (e) MR-CSGAN (21.93 dB / 0.6301). (f) TDCN (22.03 dB / 0.6412).

FIGURE 7. Comparison of reconstruction effect on PPT3 from Set14 with 0.1 sampling rate, (a) Original (PSNR / SSIM). (b) ISTA-Net+ (24.92 dB / 0.8826).
(c) CSNet+ (27.94 dB / 0.9493). (d) SCSNet (28.01 dB / 0.9480). (e) MR-CSGAN (28.70 dB / 0.9650). (f) TDCN (28.83 dB / 0.9680).

TABLE 3. Average running time (in seconds) of various algorithms for reconstructing a 256× 256 image.

TABLE 2 shows that TDCN has very tiny advantages515

than TDCN∗ in terms of PSNR values. This result shows516

that adopting deconvolution layer at the preliminary recon- 517

struction process instead of the linear convolution, reshaping 518
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and concatenating layers can bring comparable, even slightly519

better performance for TDCN.520

The fact that TDCN_DCBI+ produced worst results than521

TDCN in TABLE 2 is an experimental proof that tree-522

structured dilated convolutions in TSRB perform better than523

DCBI [34] that adopts dilated convolutions with different524

dilation rates to extract image features simultaneously.525

2) To investigate the effect of the loss function on network526

performance, a variant of TDCN, i.e., TDCN+ is built, where527

L2 loss is used instead of L1 loss.528

They are both trained at the sampling rate of 0.1. The train-529

ing process for TDCN and TDCN+are shown in FIGURE 8,530

which demonstrates that training with L1 loss performs bet-531

ter than with L2 loss under the same condition of TDCN532

structure.533

FIGURE 8. PSNR comparison among TDCN and TDCN+ on Set11. The
sampling rate is 0.1.

3) To investigate the effect of BN layer, KConv and534

DConv layer on network performance, three variants of535

TDCN are built as shown in TABLE 4, namely TDCN_TFA,536

TDCB_TFA+ and TDCN_TFA++.537

TABLE 4. Different measures of improvement for TFA, TFA+, TFA++, and
TDCN.

TDCN_TFA adopts both BN layer and KConv that538

includes Avgpool layer and DConv layer; TDCN_TFA+539

adopts both Avgpool layer and DConv layer; TDCN_TFA++540

adopts both BN layer and DConv layer. We must also note541

that TDCNuses only DConv layer comparedwith its variants.542

These three variants of TDCN are trained separately at the543

sampling rate of 0.1. The test results of PSNR vs. Epoch for544

FIGURE 9. PSNR comparison among TDCN_TFA, TDCN_TFA+, TDCN_TFA++
and TDCN on Set11. The sampling rate is 0.1.

TDCN_TFA, TDCN_TFA+, TDCN_TFA++ and TDCN on 545

Set11 are shown in FIGURE 9. 546

Experimental results show that TDCN_TFA performs bet- 547

ter than TDCN_TFA+ and TDCN_TFA++. However, our 548

proposed TDCN outperforms other variants in PSNR value. 549

It proved that using DConv only is the best option compared 550

with other assumed situations in Table 4. 551

V. CONCLUSION 552

In this study, we propose a tree-structured dilated convolu- 553

tional network for image compressed sensing. The algorithm 554

uses a tree-structured residual block to recover the detailed 555

image features in deep reconstructed networks fully. Mean- 556

while, we use L1 loss rather than L2 loss to train the network. 557

All experimental results demonstrate that the reconstructed 558

images of TDCN have more detailed structural information 559

and a sharper appearance. The proposed TDCN outperforms 560

the current algorithms in both the PSNR and SSIM metrics, 561

and the running speed of the algorithm is comparable to 562

that of the current algorithms. In the future, we will con- 563

sider applying TDCN to CS in hyperspectral remote sensing 564

images and study an algorithm that utilizes interspectral cor- 565

relation to obtain higher reconstruction quality. 566
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