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ABSTRACT This study proposes two denoising autoencoder models with discrete cosine transform and
discrete wavelet transform, to remove electrode motion artifacts in noisy electrocardiography. Initially,
the discrete cosine transform and discrete wavelet transform efficiently removed the high-frequency noise.
The six encoder layers then retain important electrocardiography features, whereas the six decoder layers
reconstruct the clean electrocardiography. To improve the denoising performance, two network layers, the
residual block and pixel adjustment, are added to the encoder and decoder layers to solve the vanishing
gradient and improve subtle feature extraction. The proposed methods were applied to 66,000 real-recorded
noisy electrocardiography fragments. The experimental result indicates that discrete wavelet transform based
denoising autoencoder and discrete cosine transform based denoising autoencoder can improve the signal-
to-noise ratio by 25.29 and 25.13 dB on average when the input signal-to-noise ratio is —6 dB.

INDEX TERMS Artificial neural networks, biomedical computing, biomedical signal processing, discrete
cosine transforms, deep learning, discrete wavelet transforms, electrocardiography, noise cancellation, neural
networks, signal reconstruction.

I. INTRODUCTION given that it has ravaged the world in the last two years. How-

The heart is the most important organ in humans. Only
through continuous heartbeat, relaxation, and contraction can
blood be transported to the entire body, completing full-
body blood circulation. The World Trade Organization has
a dataset that records 55.4 million deaths worldwide [1]. Car-
diovascular diseases ranked first in the survey of the top ten
causes of death from non-communicable diseases in 2019 and
2020 [1]. People have pinned their hopes for vaccines and
hoped that the pandemic would recede as soon as possible,
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ever, the vaccine has side effects, including pain at the point
of injection, fatigue, headache, fever, and other symptoms.
Additionally, the vaccine may cause blood clots, myocardi-
tis, or pericarditis in severe cases. Severe myocarditis and
pericarditis can result in death. These cardiovascular-related
diseases are all diagnosed using electrocardiography (ECG),
which graphically records the electrophysiological activity
of the heart. From an electrocardiogram, changes in the
heartbeat can be observed to determine whether the heart
is functioning normally. However, ECG measured using
an acquisition instrument generally contains noise. There
are four main categories of noise: baseline-wander (BW)
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noise [2], muscle artifacts (MA) [3], electrode motion (EM)
artifacts [4], and powerline interference (PLI) [S]. BW is the
low-frequency artifact generated during respiration; MA is
the high-frequency noise generated by muscle vibration; EM
is the potential change generated by the friction between the
electrode patch and skin; and PLI is caused by AC interfer-
ence (e.g., 60 Hz or 50 Hz) owing to the alternating current in
the power equipment. This noise may reduce quality and lead
to misdiagnosis. Therefore, to improve the accuracy of the
diagnosis, it is necessary to reconstruct a clean ECG signal,
which preserves the characteristics of the ECG signal and
removes noise interference.

Many researchers have proposed state-of-the-art methods
to enhance ECG quality, which can be separated into two
main categories: traditional and deep learning algorithms.
In traditional algorithms, adaptive filters have been proven
to eliminate simple noise, which can be categorized as either
linear or nonlinear. The nonlinear adaptive filter has powerful
noise cancellation ability and high computational complexity.
Therefore, in practice, a linear adaptive filter is used. The
noisy ECG and reference noise are fed into the adaptive filter
simultaneously; then, the reference noise can be adjusted
by the filter to make it similar to the noise magnitude in
a noisy ECG. Finally, after subtracting the two signals, a
denoised ECG was obtained. It is worth noting that the filter
coefficient is updated according to the error of the noisy ECG
and reference noise; therefore, it is more dynamically adapted
to various noises than the fixed filter. For example, several
approaches use the least mean square (LMS) [6], [7], [8],
[9] and Kalman filter [10], [11] as the basis for developing
denoising algorithms. The approach in [8] used the LMS
algorithm to determine the filter coefficient and generate the
minimum mean square of the error signal. The result demon-
strates better noise suppression than recursive least squares
and normalized LMS. However, determining a suitable step
parameter in any scenario is a significant challenge. A study
has been conducted [9] in which discrete wavelet transform
(DWT) was performed to remove BW and an infinite impulse
response notch filter was used to eliminate PLI. In addi-
tion, the author reported that white Gaussian noise can be
effectively removed by three LMS-based approaches with
adjustable step parameters: genetic algorithm (GA)-LMS;
particle swarm optimization (PSO)-LMS; and GA-PSO-
LMS. The approach in [11] applied two Kalman filters to
remove the high-frequency noise of the QRS complex and
the low-frequency noise of the P-wave and T-wave, respec-
tively. The results demonstrated that the approach effectively
removed noise at a low input SNR. The aforementioned adap-
tive filters exhibit the advantages of low complexity. How-
ever, because a noise reference is necessary in the adaptive
filter, it is not the best practice. In another technique, the
time-frequency analysis tool of the discrete wavelet transform
(DWT) with a threshold is also adopted in noise filtering [12],
[13], [14], [15]. The DWT decomposes the noisy ECG into
different frequency components. Then, the noise could be
eliminated by giving these components the threshold, such
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as the hard and soft thresholds. However, the hard threshold
leads to oscillation of the reconstructed ECG, and the soft
threshold may reduce the amplitude of the ECG features.
The approaches in [12], [14], and [15] proposed an improved
threshold to eliminate noise from ECG. The improved thresh-
old not only avoided the reconstructed ECG oscillation but
also effectively preserved the original features of the ECG.
The approach in [13] adopted a nonlocal wavelet with a
shrinkage threshold to remove the Gaussian noise of the
ECG. Each matrix was further decomposed into many fre-
quency components by a nonlocal wavelet, and the noise was
removed by the shrinkage threshold. Combining the DWT
with a threshold can effectively remove the noise of the ECG
without a noise reference signal, which is necessary for adap-
tive filter approaches. However, in practice, it is difficult to
fit any scenario by providing a suitable threshold. Empirical
mode decomposition (EMD) [16], [17], [18], [19] on the other
hand, decomposes a signal into several independent intrinsic
mode functions (IMFs). Because ECG and noise have dif-
ferent IMFs, a clean ECG can be reconstructed by excluding
noisy IMFs. The work [16] decomposed the IMFs of the noisy
ECG using the Hilbert—-Huang transform (HHT). The MA
can then be identified by analyzing the entropy, mean, and
variance of the F-IMF. The results showed that MAs could
be effectively detected with a sensitivity and specificity of
96.63% and 94.73%, respectively. The approaches in [18]
and [19] adopted the DWT threshold with variational mode
decomposition (VMD), which is a variation of EMD. VMD
is achieved by decomposing a noisy ECG concurrently into
various variational mode functions (VMF). Then, lower-order
modes containing noise were decomposed into several fre-
quency components using DWT. Finally, the noise compo-
nent was rejected by the threshold. Because each type of noise
may exist in several discontinuous frequency bands, decom-
posing the noisy ECG into various independent components
according to its characteristics using EMD or VMD is more
effective than the frequency transform technique. However,
the noise is often dispersed into several IMFs because of
the mode-mixing separation problem in HHT, which makes
analysis difficult.

Deep learning-based approaches have recently reported
excellent results in noise filtering [20], [21], [22], [23], par-
ticularly the well-known denoising algorithm based on the
denoising autoencoder (DAE) [24], [25], [26], [27], [28],
[29], [30], [31]. Xiong et al. first eliminated the noise in the
ECG by DWT, and the remaining noise was further removed
using a deep neural network (DNN)-DAE [24]. In [25] and
[26], a DAE architecture with a convolution neural network
(CNN) was applied to remove noise in the ECG. The result
reveals that the convolution layer extracts the clean feature
effectivity more than the DNN and reduces the number of
parameters. The literature in [27] added the adaptive param-
eter (AP), rectified linear unit (ReLU) and dual attention
module (DAM) to the CNN-DAE. AP-ReLU can retain all
data better than ReLU. DAM improves noise suppression
by focusing on the information in each channel and space
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using two different types of attention layers. The work in
[28] consisted of a long short-term memory cell (LSTM) in
a CNN-DAE. Because the ECG is a type of sequential data,
the LSTM cell compares the relational surnames over time
and provides the sequential characteristics of the CNN-DAE.
The results [25], [26], [27], [28] revealed that traditional
approaches performed better at noise removal. However,
because DNN-DAE, CNN-DAE, and CNN-LSTM-DAE
contain several fully connected layers, a larger amount of
memory is required during the training phase. In [29], a fully
convolutional network (FCN)-DAE was applied to recon-
struct a clean ECG from a noisy ECG. The FCN-DAE
requires significantly less memory than the approaches in
because it only consists of convolution layers [25], [26],
[27], [28]. However, the large kernel in the convolution layer
loses its detailed features and incurs enormous computational
complexity. In addition, with the significant achievement of
generative adversarial networks (GAN) in generating fake
data, some scholars have recently applied this concept to
ECG noise suppression [32]. The GAN consists of a generator
and a discriminator. The generator generates a reconstructed
ECG by inputting a noisy ECG. The discriminator determines
whether the input ECG is from the generator or real-world
recorded data. If the ECG reconstructed by the generator
can completely fool the discriminator, the reconstructed ECG
will be very similar to a clean ECG. Therefore, it is possible
to use a trained generator to eliminate the ECG noise. The
results showed effective noise reduction under various noise
conditions. However, because most of the ECG patterns in
the database are normal rhythms, the GAN destroys the fea-
tures under abnormal heart rhythms, and the overly complex
network architecture makes it a huge challenge to build a
lightweight model.

To solve the above problems, this study aims to provide
a high-efficiency, high-noise-reduction performance and a
DAE-based method that guarantees the quality of the recon-
structed signal. We propose two DAE methods with DWT and
a discrete cosine transform (DCT), called DWT-DAE and
DCT-DAE, respectively. Both DAEs can effectively elimi-
nate EM signals using lightweight architectures, and their low
complexity enables them to be executed on low-cost CUDA
devices. Because high-frequency signals are generally not the
main feature of ECG, DCT and DWT are used for signal
preprocessing to suppress high-frequency noise in the input
layer of DAEs. The Residual block (Res.) is then applied to
both the encoding and decoding ends to extract the features
of the signal and avoid gradient vanishing. Meanwhile, pixel
adjustment (PA) with pointwise convolution (PW Conv.) is
used to expand features, merge channels without losing fea-
tures, and increase the importance of the detailed features.
In addition, detailed features can increase the accuracy of the
reconstructed signal. The experiment shows that DWT-DAE
and DCT-DAE can effectively remove noise from noisy ECG
signals, and maintain full ECG characteristics at low noise
levels. Compared to the methods mentioned above, the con-
tributions of the new methods proposed herein are as follows:
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o« Using DCT and DWT to effectively eliminate
high-frequency noise significantly reduces computation
and memory usage, and using DAE to extract features
from the remaining low-frequency signals and recon-
struct clean ECG signals.

o A residual block and pixel adjustment layer are added
to the encoder and decoder layers of each layer in the
DAE to minimize the problem of gradient vanishing and
improve subtle feature extraction.

Il. METHODOLOGY

A. AUTOENCODER AND DENOISING AUTOENCODER

The DAE [33] is an extension of the AutoEncoder
(AE, [34]), and its primary function is to remove noise
from the input signal. The AE comprises two main parts:
an encoder and a decoder. First, high-dimensional data (x)
is first input into the encoder to automatically learn the fea-
tures, discard the unimportant information, and output the
low-dimensional feature code (z). Subsequently, the code was
used as the input of the decoder to reconstruct the original
signal (X). Because unimportant features may be lost, AE is
commonly used in lossy data compression. The formulae for
the encoder and decoder can be expressed as (1) and (2):

z = ¢p(wx + b) (D
X = o(Wz+b) )

where x is the input signal, z is the output of the encoder
(code), and X is the reconstructed signal. In particular, xand X
have the same signal length. w and b represent the weight and
bias of the encoder, respectively. Similarly, w and b represent
the weights and biases of the decoder, respectively. ¢ and ¢
are the activation functions of the encoder and decoder.

The DAE applies the AE structure to perform noise cancel-
lation. The relationship between the interfered signal (), the
noise (n), and the original signal can be written as X = x +n.
In contrast to AE, X is the input of DAE, and features of
the original signal are obtained from the interfered signal
through the encoder. Then, the decoder reconstructs the signal
X according to the features. If the DAE is sufficiently trained,
the code (z) of the encoder only contains the features of the
original signal. The reconstructed signal was then similar to
the original signal. For the DAE or AE to effectively train
parameters, the mean square error (MSE) is usually used to
calculate the loss, as shown in (3). where M denotes the signal
length. DAE and AE can adjust their weights and biases using
a suitable optimizer according to the loss value.

1 M—1
Loss =+ X(;(xi —%)? 3)
1=

B. DISCRETE WAVELET TRANSFORM

DWT [35] is a widely used variable time-frequency analy-
sis tool in signal processing. It has lower complexity and
better time-frequency analysis characteristics. In particular,
multi-resolution can be achieved because the frequency res-
olution can be changed by changing the window length.

VOLUME 10, 2022



M.-H. Sheu et al.: Lightweight Denoising Autoencoder Design for Noise Removal in Electrocardiography

IEEE Access

low-pass level-2 approximation

a
low-pass level-1 approximation Xy [n]

x.[n] high-pass level-2 detail

x[n]

level-1 detail X;,u[”]

high-pass

x;ln]

FIGURE 1. Block diagram of the DWT analysis.

First, the DWT inputs the signal into a series of low-pass
and high-pass filters. Low-frequency signals are retained
after passing through the low-pass filter, and then half
of the signals are removed through down-sampling. Sim-
ilarly, after passing through the high-pass filter, the high-
frequency signal also undergoes downsampling for half of
the signals to be removed. After repeating this process, the
signal of the desired frequency band was retained. Accord-
ingly, subsequent analyses of signals at different frequencies
can be performed individually. The final output low- and
high-frequency component signals are called approximation
coefficients and detail coefficients, respectively, and the pro-
cess is shown in Fig. 1.

Here, g[n] is the filter coefficient of the low-pass filter,
h[n] is the filter coefficient of the high-pass filter, x; 1 [n] and
x1,m[n] are the level-1 approximation coefficients and detail
coefficients, respectively. x2 1 [n] and x2 g[n] are the level-2
approximation and detail coefficients, respectively.

C. DISCRETE COSINE TRANSFORM

DCT [36] is similar to the Fourier transform and is widely
used in lossy compression or noise reduction; however, it only
uses the real part, which is equivalent to performing a discrete
Fourier transform (DFT) on even functions and discarding
the imaginary part. Although DFT can reduce the compu-
tation complexity by using fast Fourier transform (FFT),
such as Cooley—Tukey FFT, prime-factor FFT, and so on,
the imaginary part must be calculated, making the signal and
image processing more complicated. The DCT and inverse
DCT (IDCT) formulas are defined in equations (4) and (5),
respectively, whereas x,, and X,, are the signals in the time
and frequency domains, respectively. n and m represent the
signal lengths in the time and frequency domains, respec-
tively. Cm is the coefficient.

n—1
T 1 J1/n, m=0
X = —_ k — =
m kX:(:)mekcos[nm( +2)i|, Cn { . else
)
n—1
T 1 J1/n, m=0
= Cie X, —mk+=)|, Cr=
xk ';) k mcos|:nm( +2):| k {«/Z/n, else
)

Ill. PROPOSED METHODS
The structures of the proposed DCT-DAE and DWT-DAE
systems are shown in Fig. 2. The DCT-DAE and DWT-DAE
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only have different operations in the input and output
layers, whereas the encoder and decoder are essentially
the same. As for the execution sequence, DWT-DAE and
DCT-DAE first input the ECG signal with noise (noisy
ECQG) into the specified input layer to eliminate part of the
high-frequency noise and amplify the features. The encoder
then compresses and encodes the ECG signal features into
Code (z). In contrast, the decoder restores the signal and
amplifies the features according to Code (z). Finally, the
DWT-DAE and DCT-DAE are input into the exclusive output
layer to reconstruct a clean ECG.

A. INPUT LAYER

The noisy ECG first filters out high-frequency signals and
then amplifies the number of channels through the input layer
to meet the channel size required by the encoder. The noisy
ECG first performs DWT with the dbl mother wavelet to
obtain the level-1 approximation in DWT-DAE (Fig. 3 (a)).
Pointwise convolution (PW Conv.) expanded the channel to
the number of channels required by the encoder. Finally, the
features were learned using residual blocks (Res.).

In the DCT-DAE, there are six steps in the input layer, and
the process is shown in Fig. 3 (b). The DCT was calculated by
using (4) to obtain the frequency magnitude of the noisy ECG.
Then, zero padding (ZP) sets the latter half of the frequency
magnitude to zero, retaining only the low-frequency energy
of the first half. Finally, after converting the signal back
to the time domain, the high-frequency noise energy can
be suppressed by using (5) to calculating the inverse-DCT
operation. Next, PW Conv and Res. also need to execute
channels that meet the encoder requirements at the end of the
input layer of the DCT-DAE.

Here, PW Conv. is typically used to amplify or combine
channel features. By providing a kernel size of 1 x 1, convo-
lution only captures the single-point feature of each channel,
as shown in Fig. 4.

In convolution architecture, it is difficult to update the
weight when the gradient vanishes, which means it cannot
efficiently pass from the deeper layer. To solve this problem,
aresidual block (Res.) is widely used in deep neural networks
[37]. The Res. consists of two convolutions with an additional
shortcut path, as illustrated in Fig. 5. If the gradient of the
convolution layer is too small, it can still be passed to the
shallower layer via the shortcut [38].

B. ENCODER

After the operations in the input layer are completed, the
encoder is used to reduce the dimensions of the high-
dimensional feature signals. In this study, the encoders of
DWT-DAE and DCT-DAE consist of five encoder layers.
They are used to extract the key features of the ECG in noisy
ECG and to compress them into low-dimensional features
(Code Z). As shown in Fig. 6, each encoder layer consists
of the Res., PA, and PW Conv, where a” is the input signal
of the n™ layer. @+ is the output signal of the nth layer and
the input signal of the n + 1™ layer. C represents the number

98107



IEEE Access

M.-H. Sheu et al.: Lightweight Denoising Autoencoder Design for Noise Removal in Electrocardiography

Input Layer

Output Layer

=== 1x1024 —> of > 20<M 20 x M = of = 1x1024 F===
R DWT-DAE DWT-DAE [
d 1 M=512 M=512 1 Q‘
£l Ve
21 12
: Encoder Decoder .
3 (3 1 p!
Noisy ECG . Reconstructed ECG
-
2
o
8
—
—_— J— JR— p— S —_—
=N
8
1x 1024 M = 1x 1024
N
0x33 M
20 20 xﬁ =) 20 XM M
T 20 X X6 1 16 20x g 0 M T
: XE 0xM 20xM|
2 / 12
o 1A
Bl s
E 1 Input Layer Output Layer 1A
' == 11024 > of —> 20xM 20 x M = of — 11024 F---!
DCT-DAE DCT-DAE
M=1024 M=1024

FIGURE 2. System Architecture Diagram of DCT-DAE and DWT-DAE. Two proposed DAE models have different operations in the input and output layers.
For the Encoder and the Decoder, the same network structurals are adopted in the proposed two DAEs.
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FIGURE 3. Operation of the input layer. (a) DWT-DAE. (b) DCT-DAE.

of channels, and N is the number of signal samples. The
Res. was used to extract the features. PA and PW Conv. were
used to reduce the feature lengths for encoding. After passing
through the five encoder layers, DWT-DAE outputs 20 x
16 features, whereas DCT-DAE outputs 20 x 32 features.
The PA block rearranges the signal such that the channel
is doubled and the signal length is halved. As shown in (6),
P’ is acquired after mixing the features P, whereas the channel
size x feature size of P’ and P are 2C x N/2 and C x N.

Pli, jl

where i=0,1, - --

= P[li/2],2j+ (i mod 2)],
72C—1; j=0717"' 5

C. DECODER

When the encoder obtains ECG features from the noisy ECG,
the decoder can be used to reconstruct a clean ECG based
on the features. The decoder consists of five decoder layers,
and the architecture is completely symmetrical with that of
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FIGURE 4. The Scenario of Pointwise Convolution (PW Conv.). (a) one
channel extends to three channels through 3 x 1 x 1 convolutional
kernel. (b) three channels combine into one channel through 1 x 1 x
1 convolutional kernel.

. 1D |Rew | 1D N
Conv. Conv.

an+1

FIGURE 5. Architecture of residual block (Res.). The identity mapping is
added between the start and end of the convolutional layer to solve the
gradient vanishing.

the encoder. As shown in Fig. 7, the decoder layer consists
of the Res., PW Conv., and inverse pixel adjustment (IPA).
When the CxN feature (an) is input to the decoder layer,
it is reconstructed into the C x 2N feature a®*!, and the

VOLUME 10, 2022



M.-H. Sheu et al.: Lightweight Denoising Autoencoder Design for Noise Removal in Electrocardiography

IEEE Access

Pixel- Point-wise !

N —— Res. . N
a Adjustment [ 2cx~v2|  Convolution | ¢xn2

CxN CxN

FIGURE 6. Block diagram of encoder layer. The feature size decreases to
half while passing one encoder layer.

Point-wise
Convolution [ 2cx¥

Inverse Pixel- antl

n Res. L
a o Adjustment | cx2n

CxN CxN

FIGURE 7. Block diagram of decoder layer. The feature size doubles while
passing one decoder layer.

reconstructed feature is used as the input feature of the next
decoder layer. Similar to the encoder operation, Res. was used
to reconstruct the features, followed by PW Conv. and IPA,
to double the size of the reconstructed features (C x 2N).
The IPA equation is shown in (7), where P’ and P represent
the feature values before and after the adjustment, respec-
tively, and their sizes are C x N and C/2 x 2N, respectively.
i and j represent the index values of the channel and feature,
respectively. Finally, after five decoder layers, DWT-DAE
outputs 20 x 512 features, whereas DCT-DAE outputs 20
x 1024 features.

Pli,j] = P’ [2i+ (jmod2) , Bﬂ ,
c
I j=0.1- 2N—1; Z€N
@)

C
where i=0,1,---, — —
2

D. OUTPUT LAYER

Because the ECG features are scattered in different channels,
the output layer can obtain the reconstructed ECG signal
by combining the signal features into one channel through
Res. and PW Conv. However, because half of the features
of DWT-DAE have already been lost in the input layer of
DWT-DAE, it needs to perform additional interpolation to
fill the reconstructed ECG back to the original size, as shown
in Fig. 8 (a).

E. DETAIL LAYER INFORMATION AND PARAMETERS

The detailed layer information for DWT-DAE and
DCT-DAE is listed in Tables I and II. When the noisy ECG
of 1 x 1024 is input into the DWT-DAE, a low-frequency
signal of size 1 x 512 is obtained after passing through the
DWT. The output size of the encoder was 20 x 16 pixels, and
that of the decoder was 20 x 512 pixels. Finally, the output
layer performs channel merging and patching, and the final
output signal is 1 x 1024. In DCT-DAE, the noisy ECG with
an input size of 1 x 1024 is input, and after the input layer,
1 x 1024 features are output. The output of the encoder was
20 x 32, and that of the decoder was 20 x 1024. Finally,
PW. Conv. was used to generate the reconstructed ECG data.
Because DWT-DAE and DCT-DAE use the same network
layers, the number of trainable parameters is 56,841. How-
ever, because the feature size of DCT-DAE after the input
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layer is double that of DWT-DAE, the operations in multiply
accumulate operations (MACs) are also doubled. In this
study, we set the number of channels to 20 to conform to
the lightweight network design, and the kernel size of the two
convolutions in all Res. was set to 5, and the paddings were set
to 2 to ensure the same size of the input feature. To retain only
the ECG features for DAEs, the ReLU nonlinear function
was inserted in the convolution of Res. to enhance the ECG
features and discard noise.

IV. EXPERIMENT RESULT

A. DATASET SELECTION

Two ECG databases were used to train and evaluate the
performance of noise reduction, namely, the MIT-BIH Noise
Stress Test Database (NSTDB, [39]) and the MIT-BIH Nor-
mal Sinus Rhythm Database (NSRDB, [40]). The NSTDB
has been widely used to test the denoising performance under
different noise sources. The database contains three actual
recorded noises, namely BW, EM, and MA, and 12 pre-
mixed noisy ECG recordings. These signals were digitized
by an 11-bit ADC at 360 Hz sampling points per second
to digitize the voltage value. In this study, we used 12 pre-
mixed noisy ECG recordings, which mixed six levels of
EM noise (—6, 0, 6, 12, 18, and 24 dB) with the two
ECG signals of record 118 and record 119 of the MIT-BIH
arrhythmia database (MITDB, [41]). Because these data have
been published on the PhysioNet official website, the same
noisy ECG and experimental environment can be recreated.
In another dataset, the NSRDB included 18 long-term ECG
data points, all of which were normal heart rhythms. In this
study, we mixed the 13-minute data of each record in the
NSRDB with EM noise of six intensities (—6, 0, 6, 12, 18, and
24 dB) in the NSTDB so that 108 noisy ECG recordings were
produced. Finally, 66,000 ECG segments of length 1024 were
generated in this experiment, 80% of which were divided into
a training set to train the parameters of the DAEs (52,800),
and the remaining 20% were used as the testing set to test
the evaluation indicators of the denoising performance of the
proposed DAE:s.

B. PERFORMANCE CRITERIA
In this study, improvement in the signal-to-noise ratio
(SNRjnp), root mean square error (RMSE), and percentage
root-mean-square difference (PRD) are the three criteria used
to quantify the noise reduction effect of various DAEs.
SNRjmp shows an improvement in the SNR performance
of noisy ECG and filtered ECG. When the index is high,
the algorithm can suppress more noise. The equation can be
written as

SNRimmp = SNRou: — SNRiy ®)
Yo'
SNRjy = 10 x log)o | =———— )
" S G — )
Yo
SNRyu = 10 x logjo [ =——=2—— (10)
. Z?iol (xi — x)?
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Decoder layer 1] CP::v. nterpolation |— ECG Decoder layer 1 Res PW ECG
20x 512 20 % 512 1x512 1 x 1024 20 % 1024 0% 1024] €™ | |+ 1004
(2 (b)
FIGURE 8. Operation of the output layer. (a) DWT-DAE. (b) DCT-DAE.
TABLE 1. Information of each layer in the Proposed DWT-DAE.
Annotation — Type 1D NN Layer name No. ﬁltctr 5 Paddings Reglqn / *AF No. trainable Output size
kernel size unit size parameter
Input — Noisy ECG 1 x 1024
DWT - - 12 - - 1 x512
Input Layer PW Conv. 20 x 1 0 120 - 40 20 x 512
Res. 20 x5 2 - ReLU 4,040 20 x 512
Encoder Layer 1 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 256
Encoder Layer 2 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 128
Encoder Layer 3 Res. + PA +PW Conv. 20 x5 2 12 ReLU 4,860 20 x 64
Encoder Layer 4 Res. + PA + PW Conv. 20%x5 2 12 ReLU 4,860 20 x 32
Encoder Layer 5 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 16
Decoder Layer 5 Res. + PW Conv. + IPA 20%x5 2 12 ReLU 4,880 20 x 32
Decoder Layer 4 Res. + PW Conv. + IPA 20%x5 2 12 ReLU 4,880 20 x 64
Decoder Layer 3 Res. + PW Conv. + IPA 20 x5 2 12 ReLU 4,880 20 x 128
Decoder Layer 2 Res. + PW Conv. + IPA 20 x5 2 12 ReLU 4,880 20 x 256
Decoder Layer 1 Res. + PW Conv. +IPA 20 x5 2 12 ReLU 4,880 20 x 512
Res. 20 x5 2 120 ReLU 4,040 20 x 512
Output Layer PW Conv. 20 x 1 0 - - 21 1x512
Interpolation — - — - — 1 x1024
Output — Reconstructed ECG 1 x 1024
Total parameters: 56,841 Total MACs: 11.05 M Forward/Backward memory size: 1.13 MB
*AF: activation function; |: down-sampling; 1: up-sampling
TABLE 2. Information of each layer in the Proposed DCT-DAE.
Annotation — Type 1D NN Layer name No. ﬁlte.r * Paddings Reglqn / *AF No. trainable Output size
kernel size unit size parameter
Input — Noisy ECG 1 x1024
DCT - - - - - 1 x1024
Reserve low freq. bins + ZP  — - - - - 1x1024
Input Layer IDCT - - - - - 1x1024
PW Conv. 20x1 0 120 - 40 20 x 1024
Res. 20 x5 2 - ReLU 4,040 20 x 1024
Encoder Layer 1 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 512
Encoder Layer 2 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 256
Encoder Layer 3 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 128
Encoder Layer 4 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 64
Encoder Layer 5 Res. + PA + PW Conv. 20 x5 2 12 ReLU 4,860 20 x 32
Decoder Layer 5 Res. + PW Conv. + IPA 20 x5 2 12 ReLU 4,880 20 x 64
Decoder Layer 4 Res. + PW Conv. + IPA 20 x5 2 12 ReLU 4,880 20 x 128
Decoder Layer 3 Res. + PW Conv. + IPA 20 x5 2 12 ReLU 4,880 20 x 256
Decoder Layer 2 Res. + PW Conv. + IPA 20 x5 2 12 ReLU 4,880 20 x 512
Decoder Layer 1 Res. + PW Conv. + IPA 20 x5 2 12 ReLU 4,880 20 x 1024
Output Layer Res. 20 x5 2 120 ReLU 4,040 20 x 1024
PW Conv. 20 x 1 0 — - 21 1x1024
Output — Reconstructed ECG 1x1024

Total parameters: 56,841

Total MACs: 22.1

M

Forward/Backward memory size: 2.26 MB

*AF: activation function; !: down-sampling; T: up-sampling

where SNR;, and SNR, represent the SNR of noisy and
reconstructed ECG, respectively. x; is the voltage value of
the clean ECG at sampling point i. Similarly, X; and X; are the
values of the noisy ECG and reconstructed ECG at sampling
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point (i), respectively. Finally, M is the length of the input

fragment, which was fixed at 1024 in this experiment.
RMSE represents the error value between the reconstructed

ECG and the clean ECG. This equation can be written as (11).
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When the value of RMSE is lower, the signals of the two were
more similar.

RMSE = \/Zgl Gi — xi)Z/M (11)

PRD can be used to evaluate the restoration quality of the
ECG signal. The lower the PRD value, the closer the recon-
structed ECG and clean ECG signals are, and the equation
can be written as (12). Compared with RMSE, the PRD also
considers the energy of the clean ECG and presents the values
using percentages. However, because the DC value of the
clean ECG in each fragment may differ, it is necessary to
remove the direct current of the clean ECG before calculating
the PRD to achieve a fair PRD evaluation [42].

M—-1 M—1
PRD = \/Zi_o (x; _Xi)2/zi_o xiz x 100% (12)

C. EVALUATION METHODS

Four DAE algorithms, DNN-DAE, CNN-DAE, FCN-DAE
[29], and CNN-LSTM-DAE, were [28] used to evaluate
the proposed DAEs under the same test conditions. The
FCN-DAE and CNN-LSTM-DAE are state-of-the-art algo-
rithms, and the rest are widely used DAE architectures.
DNN-DAE has 10 fully connected layers, and the number of
nodes is 512, 256, 128, 64, 32, 64, 128, 256, 512, and 1024,
respectively. In each fully connected layer, a ReL.U nonlinear
function is inserted between them to eliminate non-ECG
features. The CNN-DAE has a total of six convolution layers
in the encoder, which are used to extract and compress ECG
features and finally output 32 features. Next, six transpose
convolution layers and two fully connected layers were used
to reconstruct the features of the ECG, and the ReLU was
inserted into each layer to preserve the features. FCN-DAE
[29] has an architecture similar to that of CNN-DAE, using
six convolution layers for the encoder and seven transpose
convolution layers for the decoder to reconstruct a clean ECG,
and an exponential linear unit (ELU) is inserted between
every layer to preserve ECG features. The CNN-LSTM—
DAE [28] uses eight convolution layers and five maximum
pooling layers to obtain the ECG features for the encoder.
Because ECG is a sequential signal, the CNN-LSTM-DAE
adds 8 LSTM cells and a fully connected layer at the end of
the encoder to learn the relevant features of the sequential
signal. For the decoder, eight convolutions, six up-sampling,
and one fully connected layer were used to reconstruct the
ECG signal. A hyperbolic tangent was used as the activation
function to limit the features between —1-1.

D. EXPERIMENT DESIGN AND RESULTS

All DAEs were trained and validated using Python 3.6.9 with
Pytorch 1.9.1, a framework for machine learning. The
adopted CPU, RAM, and GPU in the experiment were AMD
R9-5950x%, 96 GB, and Nvidia RTX3090, 24 GB, respectively.
The detailed training parameters are presented in Table 3. The
loss function is commonly used in unsupervised learning with
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TABLE 3. Hyperparameters in the experiment.

Hyperparameters Value

Loss function Mean Square Error (MSE)
Batch Size 32

Learning Rate (LR) 1x10*

Learning Rate Scheduler Step-LR ( LR/2L" ofepoch/200] y
Epochs 1000

mean square error (MSE), and the batch size is set to 32 to
speed up training. The learning rate (LR) was initially 1 x
10~* and was halved every 200 epochs. The epochs were set
to 1000 to ensure that the training parameters of all DAEs
were stable. Fig. 9 shows the loss chart for each epoch of each
algorithm during the training phase. The results show that
the loss performances of DWT-DAE and DCT-DAE during
training and testing are equivalent, CNN-DAE has the lowest
loss value, and DNN-DAE and CNN-LSTM-DAE cannot
effectively remove EM noise. Finally, it can be observed from
the loss trend of the training phase that all algorithms tend
to converge after 600 epochs. Therefore, in this experiment,
we stopped the training at epochs = 1000 and verified the
denoising performance during the testing phase in the last
epoch.

In the last epoch, we recorded the SNRjyp, PRD, and
RMSE of all DAEs in the testing phase, and we presented
the distribution of each index of each DAE through a block
diagram. The results are presented in Figs. 10 — 12. The x-axis
represents the SNR of the noisy ECG signal. Fig. 10 shows
the block diagram of the SNRjy,. When the noise level is
much stronger than that of the ECG (SNR;, = —6 dB), each
DAE has a good noise-reduction capability, and the average
has an improvement of more than 22 dB. However, when
SNR;, gradually increases, it is observed from the results
that the two DAEs, DNN-DAE and CNN-LSTM-DAE, can-
not effectively remove EM noise. Moreover, when SNRj; is
greater than 18 dB, nearly half of SNR;, has negative values
of SNRimp, which means that the reconstructed ECG has
more noise than the noisy ECG. On average, CNN-DAE,
FCN-DAE, DWT-DAE, and DCT-DAE all had positive
values for any SNR;,  However, the FCN-DAE has twice
the number of outliers as other DAEs, indicating that the
FCN-DAE has poor stability.

The reconstruction quality and error value of the two sig-
nals, reconstructed ECG and clean ECG, can be determined
using the indicators of PRD and RMSE. Fig. 11 shows a
box plot of RMSE. The RMSE distributions of DNN-DAE
and CNN-LSTM-DAE were higher, and the interquartile
range (IQR) was relatively wider than that of the other four
DAEs. The RMSE did not decrease significantly with an
increase in SNR;,. The RMSE distributions of DCT-DAE and
DWT-DAE were similar to those of CNN-DAE, but the IQR
of the proposed two DAEs was wider than that of CNN-DAE,
and CNN-DAE had fewer outliers after SNRj, > 6 dB.
Therefore, in the RMSE evaluation, the CNN-DAE had more
advantages.
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FIGURE 9. Average loss per epoch of all evaluated methods. (a) Training
Phase. (b) Testing Phase.
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FIGURE 10. Box plots for SNR;y,, group by six levels of SNRin. The box
plots include outliers (dot), minimum, interquartile range, median,
maximum, and average (dotted line). All DAEs significantly improve in
SNR;,, = —6 - 12 dB. However, DNN-DAE and CNN-LSTM-DAE cannot
effectively improve SNR at 18 and 24 dB.

Fig. 12 shows the box plot of the PRD. When the noise
level exceeds the ECG (SNR;, = —6 dB), the subtle features
of the ECG are covered by noise, and all DAEs have difficulty
retaining the characteristics of the ECG from the noisy ECG,
resulting in high PRD values. Conversely, if the noise is
much smaller than that of the ECG (SNR;j, = 24 dB), the
features of the ECG are very obvious, and all DAEs easily
capture the features, resulting in the reconstructed ECG being
closer to the clean ECG. The results reveal that quartile 1
(Q1) of DNN-DAE and CNN-LSTM-DAE is significantly
higher than the others when SNR;j, = —6 dB, which means
that 75% of the denoising results of the PRD are greater
than 85%. Furthermore, even if the SNR;, is increased to
24 dB, the PRD of these two algorithms is still not reduced,
which means that DNN-DAE and CNN-LSTM-DAE cannot

98112

[© DNN-DAE CNN-DAE FCN-DAE [ CNN LSTM-DAE DWT-DAE DCT-DAE

0.08 + - A
:i! s : T
0.07 i; - o
! s 543 LR .1 Y
X LT T SR TR

] B H ' P i
2 f i b 1N
€ 0.0s |} . I : '
& il i ‘ i | | ‘
0.04 . | : ‘

H s I . 3

i : IJ !

0.03 H H H i :
e T l@[ ;,1
-6 0 18 24

6 12
SNR;, (dB)

FIGURE 11. Box plots for RMSE group by six levels of SNR;,. The box
plots include outliers (dot), minimum, interquartile range, median,
maximum, and average (dotted line). When SNR;, = —6 dB, all
reconstructed ECGs are significantly different than clean ECG. However,
when SNR;, is 6 - 24 dB, the quartile 3 (Q3) of CNN-DAE, FCN-DAE,
DCT-DAE and DWT-DAE have declined.
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FIGURE 12. Box plots for PRD group by six levels of SNR;,,. The box plots
include outliers (dot), minimum, interquartile range, median, maximum,
and average (dotted line). Similar to the PRD metrics, the Q3 of CNN-DAE,
FCN-DAE, DCT-DAE, and DWT-DAE are significantly reduced when

SNR;,, = 6 - 24 dB. However, DNN-DAE and CNN-LSTM-DAE are
substantially different from the clean ECG in any SNR;;,.

effectively remove the noise in noisy ECG. On the other hand,
when SNR;, gradually increases, the PRD distributions of
CNN-DAE, FCN-DAE, DCT-DAE, and DWT-DAE grad-
ually decrease, which means that the reconstructed signal
quality of these four DAEs is higher when there is lower
noise. The performances of CNN-DAE, DWT-DAE, and
DCT-DAE were similar. With SNR;, = 24 dB, half of
the PRD values of CNN-DAE, DWT-DAE, and DCT-DAE
between 21.58% — 34.51%, 22.41% — 33.84%, and 17.82%
— 33.74%, respectively. When the range of IQR is narrow,
it means that the quality of reconstruction is more stable;
therefore, DCT-DAE has the best performance in this eval-
uation. In summary, the DAE and CNN-LSTM-LDAE can-
not effectively remove the EM noise of ECG signals, and
the performance of the FCN-DAE [29] is balanced. However,
the RMSE index of CNN-DAE shows that its reconstructed
ECG signal is closer to the clean ECG, and it is also similar
to the proposed DWT-DAET and DCT-DAE. It is worth
mentioning that the proposed DCT-DAE has significantly
better reconstruction quality than CNN-DAE in terms of
PRD.
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TABLE 4. Performance comparison for proposed DAEs and state-of-the-art.

SNRp (dB) PRD (%)

DAE Method | SNR,, SNRn, SNR, SNR, SNR, SNR, | SNR, SNR, SNR, SNR, SNR, SNR;
6dB_0dB_6dB_ 12dB 18dB 24dB| -6dB_ 0dB__ 6dB 12dB 18dB 24dB

DNN 2341 1805 1215 647 066 -562 | 8507 8039 7886 77.78 7617 77.95
CNN 2545 2321 1947 1483 9.9  3.09 | 71.12 4822 3620 31.01 29.54 29.82
FCN [29] 2416 2069 1675 1223 693  1.06 | 80.79 6250 4920 4232 39.15 38.58
CNN-LSTM [28] | 22.55 1746 11.65 598  0.10 -621 | 93.05 8475 8224 8079 79.79 82.10
DWT 2529 2313 1880 1390 823 250 | 7253 5384 4216 3653 33.18  32.09
DCT 2513 2290 1924 1472 944 474 | 7271 5440 4145 3451 2930  24.85

Table 4 lists the average SNRiyp and average PRD of
all DAEs. When SNR;;, = —6 — 12 dB, CNN-DAE has
the best performance, and DWT-DAE is about 1 dB behind
CNN-DAE; DCT-DAE has the best performance at SNR;, =
18 and 24 dB; FCN-DAE has an improvement with any
SNRj;,. DNN-DAE and CNN-LSTM-DAE have no signif-
icant reduction in PRD with any SNR;,. When SNR;, is
small, CNN-DAE is slightly better than DWT-DAE and
DCT-DAE.

Table 5 lists the Trainable Parameters (TPs), MACs, mem-
ory usage, and average runtimes of all the compared DAE:s.
The first and second values for each metric are highlighted
in red and blue, respectively. DNN-DAE, CNN-DAE, and
CNN-LSTM-DAE have much larger TPs than FCN-DAE,
DWT-DAE, and DCT-DAE because they have fully con-
nected layers. DNN-DAE has far smaller MACs than the
other DAEs because it does not have a convolution layer.
The DWT-DAE and DCT-DAE use fewer convolution layers,
and thus the MACs are smaller than those of FCN-DAE [29]
and CNN-LSTM-DAE [28] Although DCT-DAE has the
same number of parameters as DWT-DAE, in the input layer,
the number of features output by DWT is only half that of
DCT, so the MACs of DWT-DAE are half that of DCT-DAE.
Regarding memory usage, only 1.06 MB of memory is
required for one-time inference in FCN-DAE. The mem-
ory usage of DWT-DAE and DCT-DAE is slightly higher
than that of FCN-DAE. Because Res. is adopted in every
encoder and decoder layer, it requires additional memory to
retain the features of the short path in Res. The memories
of DNN-DAE, CNN-DAE, and CNN-LSTM-DAE are all
greater than 5 MB because of the large number of TPs in the
fully connected layer. In terms of the average runtime, DNN-
DAE required the shortest average runtime of the two phases.
DWT-DAE and DCT-DAE were 0.1342 ms and 0.1482 ms,
respectively, during the testing phase. The remaining DAEs
are all greater than 0.2ms. Although This indicates that the
CNN-DAE performs better in terms of average SNRimp
and PRD in Table 4. However, CNN-DAE uses more than
1.1 million parameters, which is 19 times that of the proposed
DWT-DAE and DCT-DAE methods. Moreover, compared to
FCN-DAE, both DWT-DAE and DCT-DAE can use fewer
parameters and MACs to achieve better results.

Fig. 13 shows the experimental results for the three ECG
fragments. The three noisy ECGs show that it could be of
great help in the diagnosis of abnormal rhythms if the clean
ECG could be restored through DAE. When SNR;;, = 0 dB
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TABLE 5. Computational comparison for proposed DAEs and
state-of-the-art.

Average Runtime
# of #of M (ms)
DAE Method Trainable ° emory — -
MACs usage  Training Testing
Parameters

phase  phase

DNN 1,399,712 14M 5.63MB 0.5034 0.1151
CNN 1,116,478 1327M 532MB  0.6537 0.1790
FCN [29] 78,444 25.08M 1.06 MB 0.6437 0.2006
CNN-LSTM [28] | 10,920,532 46.69M 45.02MB 0.8329 0.3935
DWT 56,841 I11.L1I0M 136 MB 0.5934 0.1342
DCT 56,841 2220M 249MB  0.6241 0.1482

(Fig. 13 (a)), the CNN-DAE is the closest to the clean
ECG, but one QRS complex is distorted. Neither DNN-DAE
nor CNN-LSTM-DAE can effectively obtain ECG features;
FCN-DAE can restore R peak features, but there is a slight
level shift and T wave distortion; DWT-DAE and DCT-DAE
can effectively reconstruct all ECG features, but the distor-
tion is found in the first QRS complex; and DCT-DAE can
effectively reconstruct all ECG features. The experimental
results in Fig. 13 (b) show that DNN-DAE can restore ECG
features due to the weakening of noise, but there is still a sig-
nificant difference between the reconstructed ECG signal and
clean ECG; CNN-DAE can effectively suppress noise, but
the reconstructed signal has some high-frequency noise; the
reconstructed ECG by FCN-DAE has slightly suppressed the
amplitude of T waves; CNN-LSTM-DAE and DNN-DAE
can only restore part of the ECG features, but high-frequency
noise is still corrupted the reconstructed ECG. DWT-DAE
and clean ECG almost fully overlap, almost perfectly remov-
ing EM noise. DCT-DAE is also very similar to clean ECG,
and the energy at the R peak can be completely restored.
With a SNR;, of 12 dB (Fig. 13 (¢)), the ECG reconstructed
by DNN-DAE is broken, and only the features of the QRS
complex can be seen; CNN-DAE performs well in terms
of noise reduction, but high-frequency noise still exists; The
level of FCN-DAE is slightly shifted, and the first T wave is
not correctly restored. CNN-LSTM-DAE can only correctly
restore one QRS complex, and other waveforms show obvi-
ous destruction; DWT-DAE and DCT-DAE both provide
reasonable reconstructions.

V. DISCUSSION AND CONCLUSION

In the overall evaluation, the ECG reconstructed using
DNN-DAE, CNN-DAE, and CNN-LSTM-DAE showed
high-frequency signal jitter. According to the ECG features,
because the ECG only exhibits significant changes in the QRS
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FIGURE 13. The reconstructed ECG of the evaluated models under. (a) SNR;, = 0 dB. Due to the intense noise of noisy ECG, the ECG features are
obscured. FCN-DAE, DWT-DAE, and DCT-DAE are able to distinguish the QRS complex. (b)In SNR;, = 6 dB, noisy ECG, the QRS Complex feature is more
prominent, but there is baseline drift, and the P wave and T wave have interfered. The ECG reconstructed by CNN-DAE, DWT-DAE, and DCT-DAE is the
most similar to Clean ECG. (c) With less noise at SNRin = 12 dB, CNN-DAE, FCN-DAE, DWT-DAE, and DCT-DAE can effectively reconstruct ECG signals.

complex, the rest of the time is stable. Therefore, if a fully
connected layer is used, the strong features of the R-peak
may generate high-frequency noise in the reconstructed ECG.
Similarly, the amplitude of the predicted R peak is lower
than that of the original R peak owing to the reference to
the remaining lower features (e.g., Fig. 13 (b)). In contrast,
FCN-DAE, DWT-DAE, and DCT-DAE only consist of the
convolution layer, so the reconstructed ECG only refers to
the signal features of the region. However, owing to the lack
of a fully connected layer, DAEs, which only consist of a
convolution layer, can only use a very few parameters to
reconstruct the features of ECG details. This indicates that
FCN-DAE, DWT-DAE, and DCT-DAE can not efficiently
reconstruct the ECG compared to CNN-DAE in the scenario
of high-level noise.

In this study, because high-frequency signals are often
not the main source of ECG features, DCT and DWT,
in which only a small amount of calculation is required,
are initially used to effectively reduce the high-frequency
noise of noisy ECG. Subsequently, we use the encoder to
preserve the ECG features and the decoder to reconstruct
the ECG signal. To enhance the effect of feature extraction,
we used techniques such as residual block and pixel adjust-
ment to avoid gradient vanishing and to enhance the effect
of detailed feature extraction. The results demonstrate that
the proposed DAE can effectively eliminate MA noise. When
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SNRi;, = —6 and 0 dB, DWT-DAE and DCT-DAE use
fewer parameters that only decrease 0.5 dB with CNN-DAE
in SNRjnp, and the PRD error falls within 6%. It is worth
noting that when the level of noise is small, the proposed
DCT-DAE and DWT-DAE can perfectly retain the clean
ECG signal. Because the level of noise is unknown during
the measurement process, noise removal methods for prac-
tical applications should not destroy the ECG signal during
low-level noise and should suppress the noise during high-
level noise. Hence, the proposed DWT-DAE and DCT-DAE
can more effectively handle noise at any moment in time.
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