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ABSTRACT This study proposes two denoising autoencoder models with discrete cosine transform and
discrete wavelet transform, to remove electrode motion artifacts in noisy electrocardiography. Initially,
the discrete cosine transform and discrete wavelet transform efficiently removed the high-frequency noise.
The six encoder layers then retain important electrocardiography features, whereas the six decoder layers
reconstruct the clean electrocardiography. To improve the denoising performance, two network layers, the
residual block and pixel adjustment, are added to the encoder and decoder layers to solve the vanishing
gradient and improve subtle feature extraction. The proposed methods were applied to 66,000 real-recorded
noisy electrocardiography fragments. The experimental result indicates that discrete wavelet transform based
denoising autoencoder and discrete cosine transform based denoising autoencoder can improve the signal-
to-noise ratio by 25.29 and 25.13 dB on average when the input signal-to-noise ratio is −6 dB.
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INDEX TERMS Artificial neural networks, biomedical computing, biomedical signal processing, discrete
cosine transforms, deep learning, discrete wavelet transforms, electrocardiography, noise cancellation, neural
networks, signal reconstruction.

I. INTRODUCTION14

The heart is the most important organ in humans. Only15

through continuous heartbeat, relaxation, and contraction can16

blood be transported to the entire body, completing full-17

body blood circulation. The World Trade Organization has18

a dataset that records 55.4 million deaths worldwide [1]. Car-19

diovascular diseases ranked first in the survey of the top ten20

causes of death from non-communicable diseases in 2019 and21

2020 [1]. People have pinned their hopes for vaccines and22

hoped that the pandemic would recede as soon as possible,23

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

given that it has ravaged the world in the last two years. How- 24

ever, the vaccine has side effects, including pain at the point 25

of injection, fatigue, headache, fever, and other symptoms. 26

Additionally, the vaccine may cause blood clots, myocardi- 27

tis, or pericarditis in severe cases. Severe myocarditis and 28

pericarditis can result in death. These cardiovascular-related 29

diseases are all diagnosed using electrocardiography (ECG), 30

which graphically records the electrophysiological activity 31

of the heart. From an electrocardiogram, changes in the 32

heartbeat can be observed to determine whether the heart 33

is functioning normally. However, ECG measured using 34

an acquisition instrument generally contains noise. There 35

are four main categories of noise: baseline-wander (BW) 36
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noise [2], muscle artifacts (MA) [3], electrode motion (EM)37

artifacts [4], and powerline interference (PLI) [5]. BW is the38

low-frequency artifact generated during respiration; MA is39

the high-frequency noise generated by muscle vibration; EM40

is the potential change generated by the friction between the41

electrode patch and skin; and PLI is caused by AC interfer-42

ence (e.g., 60 Hz or 50 Hz) owing to the alternating current in43

the power equipment. This noise may reduce quality and lead44

to misdiagnosis. Therefore, to improve the accuracy of the45

diagnosis, it is necessary to reconstruct a clean ECG signal,46

which preserves the characteristics of the ECG signal and47

removes noise interference.48

Many researchers have proposed state-of-the-art methods49

to enhance ECG quality, which can be separated into two50

main categories: traditional and deep learning algorithms.51

In traditional algorithms, adaptive filters have been proven52

to eliminate simple noise, which can be categorized as either53

linear or nonlinear. The nonlinear adaptive filter has powerful54

noise cancellation ability and high computational complexity.55

Therefore, in practice, a linear adaptive filter is used. The56

noisy ECG and reference noise are fed into the adaptive filter57

simultaneously; then, the reference noise can be adjusted58

by the filter to make it similar to the noise magnitude in59

a noisy ECG. Finally, after subtracting the two signals, a60

denoised ECG was obtained. It is worth noting that the filter61

coefficient is updated according to the error of the noisy ECG62

and reference noise; therefore, it is more dynamically adapted63

to various noises than the fixed filter. For example, several64

approaches use the least mean square (LMS) [6], [7], [8],65

[9] and Kalman filter [10], [11] as the basis for developing66

denoising algorithms. The approach in [8] used the LMS67

algorithm to determine the filter coefficient and generate the68

minimum mean square of the error signal. The result demon-69

strates better noise suppression than recursive least squares70

and normalized LMS. However, determining a suitable step71

parameter in any scenario is a significant challenge. A study72

has been conducted [9] in which discrete wavelet transform73

(DWT) was performed to remove BW and an infinite impulse74

response notch filter was used to eliminate PLI. In addi-75

tion, the author reported that white Gaussian noise can be76

effectively removed by three LMS-based approaches with77

adjustable step parameters: genetic algorithm (GA)-LMS;78

particle swarm optimization (PSO)-LMS; and GA-PSO-79

LMS. The approach in [11] applied two Kalman filters to80

remove the high-frequency noise of the QRS complex and81

the low-frequency noise of the P-wave and T-wave, respec-82

tively. The results demonstrated that the approach effectively83

removed noise at a low input SNR. The aforementioned adap-84

tive filters exhibit the advantages of low complexity. How-85

ever, because a noise reference is necessary in the adaptive86

filter, it is not the best practice. In another technique, the87

time-frequency analysis tool of the discrete wavelet transform88

(DWT) with a threshold is also adopted in noise filtering [12],89

[13], [14], [15]. The DWT decomposes the noisy ECG into90

different frequency components. Then, the noise could be91

eliminated by giving these components the threshold, such92

as the hard and soft thresholds. However, the hard threshold 93

leads to oscillation of the reconstructed ECG, and the soft 94

threshold may reduce the amplitude of the ECG features. 95

The approaches in [12], [14], and [15] proposed an improved 96

threshold to eliminate noise from ECG. The improved thresh- 97

old not only avoided the reconstructed ECG oscillation but 98

also effectively preserved the original features of the ECG. 99

The approach in [13] adopted a nonlocal wavelet with a 100

shrinkage threshold to remove the Gaussian noise of the 101

ECG. Each matrix was further decomposed into many fre- 102

quency components by a nonlocal wavelet, and the noise was 103

removed by the shrinkage threshold. Combining the DWT 104

with a threshold can effectively remove the noise of the ECG 105

without a noise reference signal, which is necessary for adap- 106

tive filter approaches. However, in practice, it is difficult to 107

fit any scenario by providing a suitable threshold. Empirical 108

mode decomposition (EMD) [16], [17], [18], [19] on the other 109

hand, decomposes a signal into several independent intrinsic 110

mode functions (IMFs). Because ECG and noise have dif- 111

ferent IMFs, a clean ECG can be reconstructed by excluding 112

noisy IMFs. Thework [16] decomposed the IMFs of the noisy 113

ECG using the Hilbert–Huang transform (HHT). The MA 114

can then be identified by analyzing the entropy, mean, and 115

variance of the F-IMF. The results showed that MAs could 116

be effectively detected with a sensitivity and specificity of 117

96.63% and 94.73%, respectively. The approaches in [18] 118

and [19] adopted the DWT threshold with variational mode 119

decomposition (VMD), which is a variation of EMD. VMD 120

is achieved by decomposing a noisy ECG concurrently into 121

various variational mode functions (VMF). Then, lower-order 122

modes containing noise were decomposed into several fre- 123

quency components using DWT. Finally, the noise compo- 124

nent was rejected by the threshold. Because each type of noise 125

may exist in several discontinuous frequency bands, decom- 126

posing the noisy ECG into various independent components 127

according to its characteristics using EMD or VMD is more 128

effective than the frequency transform technique. However, 129

the noise is often dispersed into several IMFs because of 130

the mode-mixing separation problem in HHT, which makes 131

analysis difficult. 132

Deep learning-based approaches have recently reported 133

excellent results in noise filtering [20], [21], [22], [23], par- 134

ticularly the well-known denoising algorithm based on the 135

denoising autoencoder (DAE) [24], [25], [26], [27], [28], 136

[29], [30], [31]. Xiong et al. first eliminated the noise in the 137

ECG by DWT, and the remaining noise was further removed 138

using a deep neural network (DNN)–DAE [24]. In [25] and 139

[26], a DAE architecture with a convolution neural network 140

(CNN) was applied to remove noise in the ECG. The result 141

reveals that the convolution layer extracts the clean feature 142

effectivity more than the DNN and reduces the number of 143

parameters. The literature in [27] added the adaptive param- 144

eter (AP), rectified linear unit (ReLU) and dual attention 145

module (DAM) to the CNN–DAE. AP–ReLU can retain all 146

data better than ReLU. DAM improves noise suppression 147

by focusing on the information in each channel and space 148
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using two different types of attention layers. The work in149

[28] consisted of a long short-term memory cell (LSTM) in150

a CNN–DAE. Because the ECG is a type of sequential data,151

the LSTM cell compares the relational surnames over time152

and provides the sequential characteristics of the CNN–DAE.153

The results [25], [26], [27], [28] revealed that traditional154

approaches performed better at noise removal. However,155

because DNN–DAE, CNN–DAE, and CNN–LSTM–DAE156

contain several fully connected layers, a larger amount of157

memory is required during the training phase. In [29], a fully158

convolutional network (FCN)–DAE was applied to recon-159

struct a clean ECG from a noisy ECG. The FCN-DAE160

requires significantly less memory than the approaches in161

because it only consists of convolution layers [25], [26],162

[27], [28]. However, the large kernel in the convolution layer163

loses its detailed features and incurs enormous computational164

complexity. In addition, with the significant achievement of165

generative adversarial networks (GAN) in generating fake166

data, some scholars have recently applied this concept to167

ECGnoise suppression [32]. TheGANconsists of a generator168

and a discriminator. The generator generates a reconstructed169

ECG by inputting a noisy ECG. The discriminator determines170

whether the input ECG is from the generator or real-world171

recorded data. If the ECG reconstructed by the generator172

can completely fool the discriminator, the reconstructed ECG173

will be very similar to a clean ECG. Therefore, it is possible174

to use a trained generator to eliminate the ECG noise. The175

results showed effective noise reduction under various noise176

conditions. However, because most of the ECG patterns in177

the database are normal rhythms, the GAN destroys the fea-178

tures under abnormal heart rhythms, and the overly complex179

network architecture makes it a huge challenge to build a180

lightweight model.181

To solve the above problems, this study aims to provide182

a high-efficiency, high-noise-reduction performance and a183

DAE-based method that guarantees the quality of the recon-184

structed signal.We propose twoDAEmethods with DWT and185

a discrete cosine transform (DCT), called DWT–DAE and186

DCT–DAE, respectively. Both DAEs can effectively elimi-187

nate EM signals using lightweight architectures, and their low188

complexity enables them to be executed on low-cost CUDA189

devices. Because high-frequency signals are generally not the190

main feature of ECG, DCT and DWT are used for signal191

preprocessing to suppress high-frequency noise in the input192

layer of DAEs. The Residual block (Res.) is then applied to193

both the encoding and decoding ends to extract the features194

of the signal and avoid gradient vanishing. Meanwhile, pixel195

adjustment (PA) with pointwise convolution (PW Conv.) is196

used to expand features, merge channels without losing fea-197

tures, and increase the importance of the detailed features.198

In addition, detailed features can increase the accuracy of the199

reconstructed signal. The experiment shows that DWT–DAE200

and DCT–DAE can effectively remove noise from noisy ECG201

signals, and maintain full ECG characteristics at low noise202

levels. Compared to the methods mentioned above, the con-203

tributions of the new methods proposed herein are as follows:204

• Using DCT and DWT to effectively eliminate 205

high-frequency noise significantly reduces computation 206

and memory usage, and using DAE to extract features 207

from the remaining low-frequency signals and recon- 208

struct clean ECG signals. 209

• A residual block and pixel adjustment layer are added 210

to the encoder and decoder layers of each layer in the 211

DAE to minimize the problem of gradient vanishing and 212

improve subtle feature extraction. 213

II. METHODOLOGY 214

A. AUTOENCODER AND DENOISING AUTOENCODER 215

The DAE [33] is an extension of the AutoEncoder 216

(AE, [34]), and its primary function is to remove noise 217

from the input signal. The AE comprises two main parts: 218

an encoder and a decoder. First, high-dimensional data (x) 219

is first input into the encoder to automatically learn the fea- 220

tures, discard the unimportant information, and output the 221

low-dimensional feature code (z). Subsequently, the code was 222

used as the input of the decoder to reconstruct the original 223

signal (x̃). Because unimportant features may be lost, AE is 224

commonly used in lossy data compression. The formulae for 225

the encoder and decoder can be expressed as (1) and (2): 226

z = φ(wx+ b) (1) 227

x̃ = ϕ(w̃z+ b̃) (2) 228

where x is the input signal, z is the output of the encoder 229

(code), and x̃ is the reconstructed signal. In particular, xand x̃ 230

have the same signal length.w and b represent the weight and 231

bias of the encoder, respectively. Similarly, w̃ and b̃ represent 232

the weights and biases of the decoder, respectively. φ and ϕ 233

are the activation functions of the encoder and decoder. 234

The DAE applies the AE structure to perform noise cancel- 235

lation. The relationship between the interfered signal (x̂), the 236

noise (n), and the original signal can be written as x̂ = x+n. 237

In contrast to AE, x̂ is the input of DAE, and features of 238

the original signal are obtained from the interfered signal 239

through the encoder. Then, the decoder reconstructs the signal 240

x̃ according to the features. If the DAE is sufficiently trained, 241

the code (z) of the encoder only contains the features of the 242

original signal. The reconstructed signal was then similar to 243

the original signal. For the DAE or AE to effectively train 244

parameters, the mean square error (MSE) is usually used to 245

calculate the loss, as shown in (3). whereM denotes the signal 246

length. DAE and AE can adjust their weights and biases using 247

a suitable optimizer according to the loss value. 248

Loss =
1
M

M−1∑
i=0

(xi − x̃i)2 (3) 249

B. DISCRETE WAVELET TRANSFORM 250

DWT [35] is a widely used variable time-frequency analy- 251

sis tool in signal processing. It has lower complexity and 252

better time-frequency analysis characteristics. In particular, 253

multi-resolution can be achieved because the frequency res- 254

olution can be changed by changing the window length. 255
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FIGURE 1. Block diagram of the DWT analysis.

First, the DWT inputs the signal into a series of low-pass256

and high-pass filters. Low-frequency signals are retained257

after passing through the low-pass filter, and then half258

of the signals are removed through down-sampling. Sim-259

ilarly, after passing through the high-pass filter, the high-260

frequency signal also undergoes downsampling for half of261

the signals to be removed. After repeating this process, the262

signal of the desired frequency band was retained. Accord-263

ingly, subsequent analyses of signals at different frequencies264

can be performed individually. The final output low- and265

high-frequency component signals are called approximation266

coefficients and detail coefficients, respectively, and the pro-267

cess is shown in Fig. 1.268

Here, g[n] is the filter coefficient of the low-pass filter,269

h[n] is the filter coefficient of the high-pass filter, x1,L[n] and270

x1,H [n] are the level-1 approximation coefficients and detail271

coefficients, respectively. x2,L[n] and x2,H [n] are the level-2272

approximation and detail coefficients, respectively.273

C. DISCRETE COSINE TRANSFORM274

DCT [36] is similar to the Fourier transform and is widely275

used in lossy compression or noise reduction; however, it only276

uses the real part, which is equivalent to performing a discrete277

Fourier transform (DFT) on even functions and discarding278

the imaginary part. Although DFT can reduce the compu-279

tation complexity by using fast Fourier transform (FFT),280

such as Cooley–Tukey FFT, prime-factor FFT, and so on,281

the imaginary part must be calculated, making the signal and282

image processing more complicated. The DCT and inverse283

DCT (IDCT) formulas are defined in equations (4) and (5),284

respectively, whereas xm and Xm are the signals in the time285

and frequency domains, respectively. n and m represent the286

signal lengths in the time and frequency domains, respec-287

tively. Cm is the coefficient.288

Xm=
n−1∑
k=0

Cmxk cos
[
π

n
m(k+

1
2
)
]
, Cm=

{√
1/n, m = 0
√
2/n, else

289

(4)290

xk =
n−1∑
m=0

CkXm cos
[
π

n
m(k+

1
2
)
]
, Ck=

{√
1/n, m = 0
√
2/n, else

291

(5)292

III. PROPOSED METHODS293

The structures of the proposed DCT–DAE and DWT–DAE294

systems are shown in Fig. 2. The DCT–DAE and DWT–DAE295

only have different operations in the input and output 296

layers, whereas the encoder and decoder are essentially 297

the same. As for the execution sequence, DWT–DAE and 298

DCT–DAE first input the ECG signal with noise (noisy 299

ECG) into the specified input layer to eliminate part of the 300

high-frequency noise and amplify the features. The encoder 301

then compresses and encodes the ECG signal features into 302

Code (z). In contrast, the decoder restores the signal and 303

amplifies the features according to Code (z). Finally, the 304

DWT–DAE andDCT–DAE are input into the exclusive output 305

layer to reconstruct a clean ECG. 306

A. INPUT LAYER 307

The noisy ECG first filters out high-frequency signals and 308

then amplifies the number of channels through the input layer 309

to meet the channel size required by the encoder. The noisy 310

ECG first performs DWT with the db1 mother wavelet to 311

obtain the level-1 approximation in DWT-DAE (Fig. 3 (a)). 312

Pointwise convolution (PW Conv.) expanded the channel to 313

the number of channels required by the encoder. Finally, the 314

features were learned using residual blocks (Res.). 315

In the DCT–DAE, there are six steps in the input layer, and 316

the process is shown in Fig. 3 (b). The DCTwas calculated by 317

using (4) to obtain the frequencymagnitude of the noisy ECG. 318

Then, zero padding (ZP) sets the latter half of the frequency 319

magnitude to zero, retaining only the low-frequency energy 320

of the first half. Finally, after converting the signal back 321

to the time domain, the high-frequency noise energy can 322

be suppressed by using (5) to calculating the inverse-DCT 323

operation. Next, PW Conv and Res. also need to execute 324

channels that meet the encoder requirements at the end of the 325

input layer of the DCT–DAE. 326

Here, PW Conv. is typically used to amplify or combine 327

channel features. By providing a kernel size of 1× 1, convo- 328

lution only captures the single-point feature of each channel, 329

as shown in Fig. 4. 330

In convolution architecture, it is difficult to update the 331

weight when the gradient vanishes, which means it cannot 332

efficiently pass from the deeper layer. To solve this problem, 333

a residual block (Res.) is widely used in deep neural networks 334

[37]. The Res. consists of two convolutions with an additional 335

shortcut path, as illustrated in Fig. 5. If the gradient of the 336

convolution layer is too small, it can still be passed to the 337

shallower layer via the shortcut [38]. 338

B. ENCODER 339

After the operations in the input layer are completed, the 340

encoder is used to reduce the dimensions of the high- 341

dimensional feature signals. In this study, the encoders of 342

DWT–DAE and DCT–DAE consist of five encoder layers. 343

They are used to extract the key features of the ECG in noisy 344

ECG and to compress them into low-dimensional features 345

(Code Z). As shown in Fig. 6, each encoder layer consists 346

of the Res., PA, and PW Conv, where an is the input signal 347

of the nth layer. an+1 is the output signal of the nth layer and 348

the input signal of the n+ 1th layer. C represents the number 349
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FIGURE 2. System Architecture Diagram of DCT–DAE and DWT–DAE. Two proposed DAE models have different operations in the input and output layers.
For the Encoder and the Decoder, the same network structurals are adopted in the proposed two DAEs.

FIGURE 3. Operation of the input layer. (a) DWT–DAE. (b) DCT–DAE.

of channels, and N is the number of signal samples. The350

Res. was used to extract the features. PA and PW Conv. were351

used to reduce the feature lengths for encoding. After passing352

through the five encoder layers, DWT–DAE outputs 20 ×353

16 features, whereas DCT–DAE outputs 20 × 32 features.354

The PA block rearranges the signal such that the channel355

is doubled and the signal length is halved. As shown in (6),356

P’ is acquired after mixing the features P, whereas the channel357

size × feature size of P’ and P are 2C × N/2 and C × N .358

P’[i, j] = P [bi/2c , 2j+ (i mod 2)] ,359

where i=0, 1, · · · , 2C−1; j = 0, 1, · · · ,
N
2
−1;

N
2
∈ N360

(6)361

C. DECODER362

When the encoder obtains ECG features from the noisy ECG,363

the decoder can be used to reconstruct a clean ECG based364

on the features. The decoder consists of five decoder layers,365

and the architecture is completely symmetrical with that of366

FIGURE 4. The Scenario of Pointwise Convolution (PW Conv.). (a) one
channel extends to three channels through 3 × 1 × 1 convolutional
kernel. (b) three channels combine into one channel through 1 × 1 ×
1 convolutional kernel.

FIGURE 5. Architecture of residual block (Res.). The identity mapping is
added between the start and end of the convolutional layer to solve the
gradient vanishing.

the encoder. As shown in Fig. 7, the decoder layer consists 367

of the Res., PW Conv., and inverse pixel adjustment (IPA). 368

When the C×N feature (an) is input to the decoder layer, 369

it is reconstructed into the C × 2N feature an+1, and the 370
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FIGURE 6. Block diagram of encoder layer. The feature size decreases to
half while passing one encoder layer.

FIGURE 7. Block diagram of decoder layer. The feature size doubles while
passing one decoder layer.

reconstructed feature is used as the input feature of the next371

decoder layer. Similar to the encoder operation, Res. was used372

to reconstruct the features, followed by PW Conv. and IPA,373

to double the size of the reconstructed features (C × 2N).374

The IPA equation is shown in (7), where P’ and P represent375

the feature values before and after the adjustment, respec-376

tively, and their sizes are C × N and C/2 × 2N, respectively.377

i and j represent the index values of the channel and feature,378

respectively. Finally, after five decoder layers, DWT–DAE379

outputs 20 × 512 features, whereas DCT–DAE outputs 20380

× 1024 features.381

P[i, j] = P′
[
2i+ (jmod2) ,

⌊
j
2

⌋]
,382

where i=0, 1, · · · ,
C
2
− 1; j=0, 1, · · · , 2N−1;

C
2
∈ N383

(7)384

D. OUTPUT LAYER385

Because the ECG features are scattered in different channels,386

the output layer can obtain the reconstructed ECG signal387

by combining the signal features into one channel through388

Res. and PW Conv. However, because half of the features389

of DWT–DAE have already been lost in the input layer of390

DWT–DAE, it needs to perform additional interpolation to391

fill the reconstructed ECG back to the original size, as shown392

in Fig. 8 (a).393

E. DETAIL LAYER INFORMATION AND PARAMETERS394

The detailed layer information for DWT–DAE and395

DCT–DAE is listed in Tables I and II. When the noisy ECG396

of 1 × 1024 is input into the DWT–DAE, a low-frequency397

signal of size 1 × 512 is obtained after passing through the398

DWT. The output size of the encoder was 20× 16 pixels, and399

that of the decoder was 20 × 512 pixels. Finally, the output400

layer performs channel merging and patching, and the final401

output signal is 1× 1024. In DCT–DAE, the noisy ECG with402

an input size of 1 × 1024 is input, and after the input layer,403

1 × 1024 features are output. The output of the encoder was404

20 × 32, and that of the decoder was 20 × 1024. Finally,405

PW. Conv. was used to generate the reconstructed ECG data.406

Because DWT–DAE and DCT–DAE use the same network407

layers, the number of trainable parameters is 56,841. How-408

ever, because the feature size of DCT–DAE after the input409

layer is double that of DWT–DAE, the operations in multiply 410

accumulate operations (MACs) are also doubled. In this 411

study, we set the number of channels to 20 to conform to 412

the lightweight network design, and the kernel size of the two 413

convolutions in all Res. was set to 5, and the paddingswere set 414

to 2 to ensure the same size of the input feature. To retain only 415

the ECG features for DAEs, the ReLU nonlinear function 416

was inserted in the convolution of Res. to enhance the ECG 417

features and discard noise. 418

IV. EXPERIMENT RESULT 419

A. DATASET SELECTION 420

Two ECG databases were used to train and evaluate the 421

performance of noise reduction, namely, the MIT-BIH Noise 422

Stress Test Database (NSTDB, [39]) and the MIT-BIH Nor- 423

mal Sinus Rhythm Database (NSRDB, [40]). The NSTDB 424

has been widely used to test the denoising performance under 425

different noise sources. The database contains three actual 426

recorded noises, namely BW, EM, and MA, and 12 pre- 427

mixed noisy ECG recordings. These signals were digitized 428

by an 11-bit ADC at 360 Hz sampling points per second 429

to digitize the voltage value. In this study, we used 12 pre- 430

mixed noisy ECG recordings, which mixed six levels of 431

EM noise (−6, 0, 6, 12, 18, and 24 dB) with the two 432

ECG signals of record 118 and record 119 of the MIT-BIH 433

arrhythmia database (MITDB, [41]). Because these data have 434

been published on the PhysioNet official website, the same 435

noisy ECG and experimental environment can be recreated. 436

In another dataset, the NSRDB included 18 long-term ECG 437

data points, all of which were normal heart rhythms. In this 438

study, we mixed the 13-minute data of each record in the 439

NSRDBwith EMnoise of six intensities (−6, 0, 6, 12, 18, and 440

24 dB) in the NSTDB so that 108 noisy ECG recordings were 441

produced. Finally, 66,000 ECG segments of length 1024 were 442

generated in this experiment, 80% of which were divided into 443

a training set to train the parameters of the DAEs (52,800), 444

and the remaining 20% were used as the testing set to test 445

the evaluation indicators of the denoising performance of the 446

proposed DAEs. 447

B. PERFORMANCE CRITERIA 448

In this study, improvement in the signal-to-noise ratio 449

(SNRimp), root mean square error (RMSE), and percentage 450

root-mean-square difference (PRD) are the three criteria used 451

to quantify the noise reduction effect of various DAEs. 452

SNRimp shows an improvement in the SNR performance 453

of noisy ECG and filtered ECG. When the index is high, 454

the algorithm can suppress more noise. The equation can be 455

written as 456

SNRimp = SNRout − SNRin (8) 457

SNRin = 10× log10

( ∑M−1
i=0 x2i∑M−1

i=0 (x̃i − xi)2

)
(9) 458

SNRout = 10× log10

( ∑M−1
i=0 x2i∑M−1

i=0 (x̂i − xi)2

)
(10) 459
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FIGURE 8. Operation of the output layer. (a) DWT–DAE. (b) DCT–DAE.

TABLE 1. Information of each layer in the Proposed DWT-DAE.

TABLE 2. Information of each layer in the Proposed DCT-DAE.

where SNRin and SNRout represent the SNR of noisy and460

reconstructed ECG, respectively. xi is the voltage value of461

the clean ECG at sampling point i. Similarly, x̃i and x̂i are the462

values of the noisy ECG and reconstructed ECG at sampling463

point (i), respectively. Finally, M is the length of the input 464

fragment, which was fixed at 1024 in this experiment. 465

RMSE represents the error value between the reconstructed 466

ECG and the clean ECG. This equation can be written as (11). 467
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When the value of RMSE is lower, the signals of the two were468

more similar.469

RMSE =

√∑M−1

i=0
(x̂i − xi)2

/
M (11)470

PRD can be used to evaluate the restoration quality of the471

ECG signal. The lower the PRD value, the closer the recon-472

structed ECG and clean ECG signals are, and the equation473

can be written as (12). Compared with RMSE, the PRD also474

considers the energy of the clean ECG and presents the values475

using percentages. However, because the DC value of the476

clean ECG in each fragment may differ, it is necessary to477

remove the direct current of the clean ECG before calculating478

the PRD to achieve a fair PRD evaluation [42].479

PRD =

√∑M−1

i=0
(x̂i − xi)2

/∑M−1

i=0
x2i × 100% (12)480

C. EVALUATION METHODS481

Four DAE algorithms, DNN–DAE, CNN–DAE, FCN–DAE482

[29], and CNN–LSTM–DAE, were [28] used to evaluate483

the proposed DAEs under the same test conditions. The484

FCN–DAE and CNN–LSTM–DAE are state-of-the-art algo-485

rithms, and the rest are widely used DAE architectures.486

DNN–DAE has 10 fully connected layers, and the number of487

nodes is 512, 256, 128, 64, 32, 64, 128, 256, 512, and 1024,488

respectively. In each fully connected layer, a ReLU nonlinear489

function is inserted between them to eliminate non-ECG490

features. The CNN–DAE has a total of six convolution layers491

in the encoder, which are used to extract and compress ECG492

features and finally output 32 features. Next, six transpose493

convolution layers and two fully connected layers were used494

to reconstruct the features of the ECG, and the ReLU was495

inserted into each layer to preserve the features. FCN–DAE496

[29] has an architecture similar to that of CNN–DAE, using497

six convolution layers for the encoder and seven transpose498

convolution layers for the decoder to reconstruct a clean ECG,499

and an exponential linear unit (ELU) is inserted between500

every layer to preserve ECG features. The CNN–LSTM–501

DAE [28] uses eight convolution layers and five maximum502

pooling layers to obtain the ECG features for the encoder.503

Because ECG is a sequential signal, the CNN–LSTM–DAE504

adds 8 LSTM cells and a fully connected layer at the end of505

the encoder to learn the relevant features of the sequential506

signal. For the decoder, eight convolutions, six up-sampling,507

and one fully connected layer were used to reconstruct the508

ECG signal. A hyperbolic tangent was used as the activation509

function to limit the features between −1–1.510

D. EXPERIMENT DESIGN AND RESULTS511

All DAEs were trained and validated using Python 3.6.9 with512

Pytorch 1.9.1, a framework for machine learning. The513

adopted CPU, RAM, and GPU in the experiment were AMD514

R9-5950x, 96GB, andNvidia RTX3090, 24GB, respectively.515

The detailed training parameters are presented in Table 3. The516

loss function is commonly used in unsupervised learning with517

TABLE 3. Hyperparameters in the experiment.

mean square error (MSE), and the batch size is set to 32 to 518

speed up training. The learning rate (LR) was initially 1 × 519

10−4 and was halved every 200 epochs. The epochs were set 520

to 1000 to ensure that the training parameters of all DAEs 521

were stable. Fig. 9 shows the loss chart for each epoch of each 522

algorithm during the training phase. The results show that 523

the loss performances of DWT–DAE and DCT–DAE during 524

training and testing are equivalent, CNN–DAE has the lowest 525

loss value, and DNN–DAE and CNN–LSTM–DAE cannot 526

effectively remove EM noise. Finally, it can be observed from 527

the loss trend of the training phase that all algorithms tend 528

to converge after 600 epochs. Therefore, in this experiment, 529

we stopped the training at epochs = 1000 and verified the 530

denoising performance during the testing phase in the last 531

epoch. 532

In the last epoch, we recorded the SNRimp, PRD, and 533

RMSE of all DAEs in the testing phase, and we presented 534

the distribution of each index of each DAE through a block 535

diagram. The results are presented in Figs. 10 – 12. The x-axis 536

represents the SNR of the noisy ECG signal. Fig. 10 shows 537

the block diagram of the SNRimp. When the noise level is 538

much stronger than that of the ECG (SNRin = −6 dB), each 539

DAE has a good noise-reduction capability, and the average 540

has an improvement of more than 22 dB. However, when 541

SNRin gradually increases, it is observed from the results 542

that the two DAEs, DNN–DAE and CNN–LSTM–DAE, can- 543

not effectively remove EM noise. Moreover, when SNRin is 544

greater than 18 dB, nearly half of SNRin has negative values 545

of SNRimp, which means that the reconstructed ECG has 546

more noise than the noisy ECG. On average, CNN–DAE, 547

FCN–DAE, DWT–DAE, and DCT–DAE all had positive 548

values for any SNRin. However, the FCN–DAE has twice 549

the number of outliers as other DAEs, indicating that the 550

FCN-DAE has poor stability. 551

The reconstruction quality and error value of the two sig- 552

nals, reconstructed ECG and clean ECG, can be determined 553

using the indicators of PRD and RMSE. Fig. 11 shows a 554

box plot of RMSE. The RMSE distributions of DNN–DAE 555

and CNN–LSTM–DAE were higher, and the interquartile 556

range (IQR) was relatively wider than that of the other four 557

DAEs. The RMSE did not decrease significantly with an 558

increase in SNRin. The RMSE distributions of DCT–DAE and 559

DWT–DAE were similar to those of CNN–DAE, but the IQR 560

of the proposed twoDAEswas wider than that of CNN–DAE, 561

and CNN–DAE had fewer outliers after SNRin > 6 dB. 562

Therefore, in the RMSE evaluation, the CNN–DAE had more 563

advantages. 564
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FIGURE 9. Average loss per epoch of all evaluated methods. (a) Training
Phase. (b) Testing Phase.

FIGURE 10. Box plots for SNRimp group by six levels of SNRin. The box
plots include outliers (dot), minimum, interquartile range, median,
maximum, and average (dotted line). All DAEs significantly improve in
SNRin = −6 – 12 dB. However, DNN–DAE and CNN–LSTM–DAE cannot
effectively improve SNR at 18 and 24 dB.

Fig. 12 shows the box plot of the PRD. When the noise565

level exceeds the ECG (SNRin = −6 dB), the subtle features566

of the ECG are covered by noise, and all DAEs have difficulty567

retaining the characteristics of the ECG from the noisy ECG,568

resulting in high PRD values. Conversely, if the noise is569

much smaller than that of the ECG (SNRin = 24 dB), the570

features of the ECG are very obvious, and all DAEs easily571

capture the features, resulting in the reconstructed ECG being572

closer to the clean ECG. The results reveal that quartile 1573

(Q1) of DNN–DAE and CNN–LSTM–DAE is significantly574

higher than the others when SNRin = −6 dB, which means575

that 75% of the denoising results of the PRD are greater576

than 85%. Furthermore, even if the SNRin is increased to577

24 dB, the PRD of these two algorithms is still not reduced,578

which means that DNN–DAE and CNN–LSTM–DAE cannot579

FIGURE 11. Box plots for RMSE group by six levels of SNRin. The box
plots include outliers (dot), minimum, interquartile range, median,
maximum, and average (dotted line). When SNRin = −6 dB, all
reconstructed ECGs are significantly different than clean ECG. However,
when SNRin is 6 – 24 dB, the quartile 3 (Q3) of CNN–DAE, FCN–DAE,
DCT–DAE and DWT–DAE have declined.

FIGURE 12. Box plots for PRD group by six levels of SNRin. The box plots
include outliers (dot), minimum, interquartile range, median, maximum,
and average (dotted line). Similar to the PRD metrics, the Q3 of CNN–DAE,
FCN–DAE, DCT–DAE, and DWT–DAE are significantly reduced when
SNRin = 6 – 24 dB. However, DNN–DAE and CNN–LSTM–DAE are
substantially different from the clean ECG in any SNRin.

effectively remove the noise in noisy ECG. On the other hand, 580

when SNRin gradually increases, the PRD distributions of 581

CNN–DAE, FCN–DAE, DCT–DAE, and DWT–DAE grad- 582

ually decrease, which means that the reconstructed signal 583

quality of these four DAEs is higher when there is lower 584

noise. The performances of CNN–DAE, DWT–DAE, and 585

DCT–DAE were similar. With SNRin = 24 dB, half of 586

the PRD values of CNN–DAE, DWT–DAE, and DCT–DAE 587

between 21.58% – 34.51%, 22.41% – 33.84%, and 17.82% 588

– 33.74%, respectively. When the range of IQR is narrow, 589

it means that the quality of reconstruction is more stable; 590

therefore, DCT–DAE has the best performance in this eval- 591

uation. In summary, the DAE and CNN–LSTM–LDAE can- 592

not effectively remove the EM noise of ECG signals, and 593

the performance of the FCN–DAE [29] is balanced. However, 594

the RMSE index of CNN–DAE shows that its reconstructed 595

ECG signal is closer to the clean ECG, and it is also similar 596

to the proposed DWT–DAET and DCT–DAE. It is worth 597

mentioning that the proposed DCT–DAE has significantly 598

better reconstruction quality than CNN–DAE in terms of 599

PRD. 600
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TABLE 4. Performance comparison for proposed DAEs and state-of-the-art.

Table 4 lists the average SNRimp and average PRD of601

all DAEs. When SNRin = −6 – 12 dB, CNN–DAE has602

the best performance, and DWT–DAE is about 1 dB behind603

CNN–DAE; DCT–DAE has the best performance at SNRin =604

18 and 24 dB; FCN–DAE has an improvement with any605

SNRin. DNN–DAE and CNN–LSTM–DAE have no signif-606

icant reduction in PRD with any SNRin. When SNRin is607

small, CNN–DAE is slightly better than DWT–DAE and608

DCT–DAE.609

Table 5 lists the Trainable Parameters (TPs), MACs, mem-610

ory usage, and average runtimes of all the compared DAEs.611

The first and second values for each metric are highlighted612

in red and blue, respectively. DNN–DAE, CNN–DAE, and613

CNN–LSTM–DAE have much larger TPs than FCN–DAE,614

DWT–DAE, and DCT–DAE because they have fully con-615

nected layers. DNN–DAE has far smaller MACs than the616

other DAEs because it does not have a convolution layer.617

TheDWT–DAE andDCT–DAEuse fewer convolution layers,618

and thus the MACs are smaller than those of FCN–DAE [29]619

and CNN–LSTM–DAE [28] Although DCT–DAE has the620

same number of parameters as DWT–DAE, in the input layer,621

the number of features output by DWT is only half that of622

DCT, so the MACs of DWT–DAE are half that of DCT–DAE.623

Regarding memory usage, only 1.06 MB of memory is624

required for one-time inference in FCN–DAE. The mem-625

ory usage of DWT–DAE and DCT–DAE is slightly higher626

than that of FCN–DAE. Because Res. is adopted in every627

encoder and decoder layer, it requires additional memory to628

retain the features of the short path in Res. The memories629

of DNN-DAE, CNN–DAE, and CNN–LSTM–DAE are all630

greater than 5 MB because of the large number of TPs in the631

fully connected layer. In terms of the average runtime, DNN-632

DAE required the shortest average runtime of the two phases.633

DWT–DAE and DCT–DAE were 0.1342 ms and 0.1482 ms,634

respectively, during the testing phase. The remaining DAEs635

are all greater than 0.2ms. Although This indicates that the636

CNN–DAE performs better in terms of average SNRimp637

and PRD in Table 4. However, CNN–DAE uses more than638

1.1 million parameters, which is 19 times that of the proposed639

DWT–DAE and DCT–DAEmethods. Moreover, compared to640

FCN–DAE, both DWT–DAE and DCT–DAE can use fewer641

parameters and MACs to achieve better results.642

Fig. 13 shows the experimental results for the three ECG643

fragments. The three noisy ECGs show that it could be of644

great help in the diagnosis of abnormal rhythms if the clean645

ECG could be restored through DAE. When SNRin = 0 dB646

TABLE 5. Computational comparison for proposed DAEs and
state-of-the-art.

(Fig. 13 (a)), the CNN–DAE is the closest to the clean 647

ECG, but one QRS complex is distorted. Neither DNN–DAE 648

nor CNN–LSTM–DAE can effectively obtain ECG features; 649

FCN-DAE can restore R peak features, but there is a slight 650

level shift and T wave distortion; DWT–DAE and DCT–DAE 651

can effectively reconstruct all ECG features, but the distor- 652

tion is found in the first QRS complex; and DCT–DAE can 653

effectively reconstruct all ECG features. The experimental 654

results in Fig. 13 (b) show that DNN–DAE can restore ECG 655

features due to the weakening of noise, but there is still a sig- 656

nificant difference between the reconstructed ECG signal and 657

clean ECG; CNN–DAE can effectively suppress noise, but 658

the reconstructed signal has some high-frequency noise; the 659

reconstructed ECG by FCN–DAE has slightly suppressed the 660

amplitude of T waves; CNN–LSTM–DAE and DNN–DAE 661

can only restore part of the ECG features, but high-frequency 662

noise is still corrupted the reconstructed ECG. DWT–DAE 663

and clean ECG almost fully overlap, almost perfectly remov- 664

ing EM noise. DCT–DAE is also very similar to clean ECG, 665

and the energy at the R peak can be completely restored. 666

With a SNRin of 12 dB (Fig. 13 (c)), the ECG reconstructed 667

by DNN–DAE is broken, and only the features of the QRS 668

complex can be seen; CNN–DAE performs well in terms 669

of noise reduction, but high-frequency noise still exists; The 670

level of FCN–DAE is slightly shifted, and the first T wave is 671

not correctly restored. CNN–LSTM–DAE can only correctly 672

restore one QRS complex, and other waveforms show obvi- 673

ous destruction; DWT–DAE and DCT–DAE both provide 674

reasonable reconstructions. 675

V. DISCUSSION AND CONCLUSION 676

In the overall evaluation, the ECG reconstructed using 677

DNN–DAE, CNN–DAE, and CNN–LSTM–DAE showed 678

high-frequency signal jitter. According to the ECG features, 679

because the ECGonly exhibits significant changes in theQRS 680
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FIGURE 13. The reconstructed ECG of the evaluated models under. (a) SNRin = 0 dB. Due to the intense noise of noisy ECG, the ECG features are
obscured. FCN-DAE, DWT-DAE, and DCT-DAE are able to distinguish the QRS complex. (b)In SNRin = 6 dB, noisy ECG, the QRS Complex feature is more
prominent, but there is baseline drift, and the P wave and T wave have interfered. The ECG reconstructed by CNN-DAE, DWT-DAE, and DCT-DAE is the
most similar to Clean ECG. (c) With less noise at SNRin = 12 dB, CNN-DAE, FCN-DAE, DWT-DAE, and DCT-DAE can effectively reconstruct ECG signals.

complex, the rest of the time is stable. Therefore, if a fully681

connected layer is used, the strong features of the R-peak682

may generate high-frequency noise in the reconstructed ECG.683

Similarly, the amplitude of the predicted R peak is lower684

than that of the original R peak owing to the reference to685

the remaining lower features (e.g., Fig. 13 (b)). In contrast,686

FCN–DAE, DWT–DAE, and DCT–DAE only consist of the687

convolution layer, so the reconstructed ECG only refers to688

the signal features of the region. However, owing to the lack689

of a fully connected layer, DAEs, which only consist of a690

convolution layer, can only use a very few parameters to691

reconstruct the features of ECG details. This indicates that692

FCN–DAE, DWT–DAE, and DCT–DAE can not efficiently693

reconstruct the ECG compared to CNN–DAE in the scenario694

of high-level noise.695

In this study, because high-frequency signals are often696

not the main source of ECG features, DCT and DWT,697

in which only a small amount of calculation is required,698

are initially used to effectively reduce the high-frequency699

noise of noisy ECG. Subsequently, we use the encoder to700

preserve the ECG features and the decoder to reconstruct701

the ECG signal. To enhance the effect of feature extraction,702

we used techniques such as residual block and pixel adjust-703

ment to avoid gradient vanishing and to enhance the effect704

of detailed feature extraction. The results demonstrate that705

the proposed DAE can effectively eliminate MA noise. When706

SNRin = −6 and 0 dB, DWT–DAE and DCT–DAE use 707

fewer parameters that only decrease 0.5 dB with CNN–DAE 708

in SNRimp, and the PRD error falls within 6%. It is worth 709

noting that when the level of noise is small, the proposed 710

DCT–DAE and DWT–DAE can perfectly retain the clean 711

ECG signal. Because the level of noise is unknown during 712

the measurement process, noise removal methods for prac- 713

tical applications should not destroy the ECG signal during 714

low-level noise and should suppress the noise during high- 715

level noise. Hence, the proposed DWT–DAE and DCT–DAE 716

can more effectively handle noise at any moment in time. 717
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