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ABSTRACT Electromyography (EMG) signals are commonly used for the development of Muscle Machine
Interfaces. EMG-based solutions provide intuitive and often hand-free control in a wide range of applications
that range from the decoding of human intention in classification tasks to the continuous decoding of
human motion employing regression models. In this work, we compare various machine learning and
feature extraction methods for the creation of EMG based control frameworks for dexterous robotic
telemanipulation. Various models are needed that can decode dexterous, in-hand manipulation motions and
perform hand gesture classification in real-time. Three different machine learning methods and eight different
time-domain features were evaluated and compared. The performance of the models was evaluated in terms
of accuracy and time required to predict a data sample. The model that presented the best performance
and prediction time trade-off was used for executing in real-time a telemanipulation task with the New
Dexterity Autonomous Robotic Assistance (ARoA) platform (a humanoid robot). Various experiments have
been conducted to experimentally validate the efficiency of the proposed methods. The robotic system is
shown to successfully complete a series of tasks autonomously as well as to efficiently execute tasks in a
shared control manner.

INDEX TERMS Muscle-machine interfaces, electromyography, shared control, intention decoding, telema-
nipulation, machine learning.

I. INTRODUCTION

Recent advances in the development of muscle-machine
interfaces (MuMI) have made possible its use in several appli-
cations. One of the most used and successful approaches is to
employ electromyography (EMG) signals to develop MuMIs.
These electrical signals are generated during muscle contrac-
tion and carry vital information intrinsic to the movement
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of the muscles that are triggered to accomplish the motion
performed by the subject. MuMIs based on EMG signals
usually provide a hands-free, unobstructive solution, offering
intuitive and natural operation of robotic devices in complex
applications [1], such as the execution of teleoperation and
telemanipulation tasks with robot arm hand systems [2], [3],
[4], as shown in Fig. 1.

Machine learning (ML) techniques have been employed
to decode EMG signals to perform both classification (e.g.
decoding discrete human gestures) [5], [6], [7], [8] and
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FIGURE 1. Example of a user teleoperating the new dexterity ARoA
humanoid robot using an EMG based shared control framework for the
execution of complex tasks.

regression (e.g. decoding continuous human motions) [9],
[10], [11]. Classification results in a discrete output, for
example, the discrete decision on the user’s intention. In our
previous work, we employed a Random Forest (RF) classi-
fier in a framework that switches between autonomous and
manual operation of robot systems to complete a task in a
synergistic manner [2]. We also employed regression-based
models to perform continuous decoding of the human motion
using sSEMG signals as input [12].

Classic machine learning techniques such as RF employ
preprocessed signals and hand-crafted features as input to
obtain the desired output. EMG features can be extracted
from raw signals using Time Domain (TD) features, Fre-
quency Domain (FD) features, or Time-Frequency Domain
(TFD) features methods [13]. Past studies show that TD
features result in more consistent performance over time than
FD [14], [15]. In our previous study [16], we compared
the performance of eight TD feature extraction techniques
in discriminating between different grasping postures and
gestures executed by the user of an EMG-based MuMI using
five different ML techniques. It was found that the RF model
presented the most consistent results. More robust models
introduced in the deep learning (DL) [17], [18], [19] era
can identify and incorporate patterns from processed data
resulting in an increasingly complex system, often presenting
a better performance in terms of correlation and accuracy
compared to classic ML models [7], [20] at the cost of requir-
ing greater computational power and potentially sacrificing
real-time performance.

In this paper, we assess the ability of ML and DL models
to solve regression and classification problems and enable the
development of more functional MuMIs. To do this, we assess
which hand-extracted features are most relevant for decod-
ing dexterous, in-hand manipulation motions, and decod-
ing human hand gestures. The performance of RF models,
a Convolutional Neural Network (CNN) benchmark model,
and a novel DL technique called Temporal Multi-Channel
Transformers (TMC-T) are compared for eight different
TD features. The TMC-T model is shown in Fig. 2. The
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models are evaluated in terms of accuracy and speed of
calculation. In the second step, the model that presented the
best performance for online applications (considering the
trade-off between accuracy and processing time) is employed
to develop a shared control framework for intuitive robotic
telemanipulation.

Il. EXPERIMENTS

In this section we present experiments conducted to eval-
uate the performance of the decoding models that were
developed for the regression and the classification tasks.
To do this, three different experiments were designed to
evaluate the EMG-based decoding models in the regres-
sion and classification use cases: i) Decoding of Dexterous,
In-Hand Manipulation Motions, ii) Hand Gesture Classi-
fication, and iii) Robotic Telemanipulation using the New
Dexterity Autonomous Robotic Assistant (ARoA) humanoid
platform [21].

A. DECODING OF DEXTEROUS, IN-HAND

MANIPULATION MOTIONS

In this subsection, we present the guidelines employed for
training the RF, CNNs, and TMC-T-based regression mod-
els to perform decoding of dexterous, in-hand manipulation
motions using EMG signals as input.

1) DATASET

The regression models were trained on the dataset collected
by the New Dexterity research group [12]. For this dataset,
before the start of data collection, each participant was asked
about any disabilities that may affect the quality of the data.
Finally, myoelectric activations were acquired from 11 non-
disabled subjects from 16 different muscles (8 on the hand
and 8 on the forearm of the subject). For the hand, three
electrodes were placed on the palm measuring the activity
of the Lumbrical muscles, four electrodes were placed at the
back of the palm measuring the activity of the Interossei and
one electrode was placed on the base of the thumb to measure
the myoelectric activations of the Opponens Pollicis muscle.
For the forearm, three electrodes were placed on the Extensor
Digitorum site, three were placed on the Flexor Digitorum
site, one was placed on Abductor Pollicis Longus, and the
final one was placed to measure the myoelectric activations of
the Extensor Pollicis Brevis. The ground electrode was placed
on the elbow, where the muscular activity becomes minimal.
For data acquisition, two double-differential EMG electrodes
were employed to measure the myoelectric activations. The
EMG signals were acquired at a sampling rate of 1200 Hz
by the bioamplifier, which bandpass filtered the data using a
Butterworth filter (5 Hz - 500 Hz). The electric line noise was
filtered out using a notch filter of 50 Hz.

For each subject, ten trials were recorded for each motion.
For each trial, the subjects performed a 3-dimensional
equilibrium point manipulation task using a Rubik’s cube,
a chips can from the Yale-CMU-Berkeley (YCB) grasping
object set [22], and a custom-made off-centered mass cube.
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FIGURE 2. TMC-T model. The feature vector obtained using the feature extraction methods is provided to four convolutional layers, which extract
features and learn embeddings from the input feature vector. Batch normalization layers follow the convolutional layers. Two max-pooling layers reduce
the EMG channels dimension while keeping the most relevant information. After the convolutional blocks, the output is reshaped and provided to
transformer blocks and fully-connected layers. The output from the TMC-T model is the Row, Pitch, and Yaw motions.
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FIGURE 3. CNN model. Conv stands for convolutional and fc for fully-connected. First, the feature vector is obtained using the feature
extraction methods discussed in Section I1I-A. Three convolutional layers extract features using convolutional kernels. The convolutional
layers are followed by batch normalization and dropout layers. After the convolutional blocks, the output is flattened and provided to
fully-connected layers. The output from the CNN model is the roll, pitch, and yaw motions.

Each trial started with 5 seconds of rest (where the object is
held in a stationary pose) and was followed by five repetitions
of each motion. The manipulation tasks performed during the
experiments were:

« Pitch: a coordinated movement of the fingers that creates
the pitch motion;

« Roll: a coordinated movement of the fingers that creates
a roll motion;

o Yaw: a coordinated movement of the fingers that creates
a yaw motion.

In the dataset, the myoelectric activations are the independent
variables, and the motion of the object while being manipu-
lated in the hands of the subjects is the dependent variable.
The motion of the object refers to its rotation along the
X-axis, y-axis, and z-axis, where the origin of the motions is
set to the center of the object when it was in the stationary
pose during the 5 seconds rest period.

2) TRAINING AND EVALUATION
Our models were trained on a Google Colab Pro virtual
machine with GPU. The models were developed in Python
using Tensorflow and Keras. The DL models employed the
mean squared error (MSE) loss function and Adam as the
optimizer [23]. Leave-one-out cross-validation was used to
evaluate the RF, CNN, and TMC-T models.

The trained RF, CNN and TMC-T models’ efficiency was
assessed using the Pearson correlation coefficient and the per-
centage of the Normalized Mean Square Error (NMSE) for
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accuracy. The NMSE value of 0% implies a bad fit, whereas
the NMSE value of 100% implies that the two motions are
identical. The NMSE value is defined as follows:

1y — x5l ) "
[, — mean(x,)||?
where |1l indicates the 2-norm of a vector, x, is the actual
reference motion and x,, refers to the predicted motion.

NMSE(%) = 100 % (1 -

B. HAND GESTURE CLASSIFICATION

In this subsection, we present the experiments that were
conducted to evaluate the efficiency of the hand gesture clas-
sification models.

1) DATASET

For this set of experiments, we utilize the dataset collected
by the New Dexterity research group in [16]. In this dataset,
each subject was instructed to alternate between a rest state
and a gesture state. In total, six gestures were recorded: i) a
pinch grasp, ii) a tripod grasp, iii) a power grasp, iv) an open
hand configuration with abducted fingers, v) co-contraction
of all muscles, and vi) rest state. The myoelectric activations
were acquired from 8 different muscle groups of the human
arm and hand. The details regarding the electrode placement
can be found in [16].

For data acquisition, an appropriate package in the robot
operating system (ROS) [24] based framework was imple-
mented. The beginning and termination of each gesture were
prompted to the subject with a visual cue on a computer
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FIGURE 4. The robot system operates autonomously using the autonomous control module, whereas the manual operation of the robot is achieved
through the user control module. The robot interface connects to the robot hardware. Shared control of the robot system is provided by the control
blending module that merges the autonomous and user control modules.

screen in the form of a three-second timer. For the labeling
of the data, a software trigger was sent to the data record-
ing script to isolate the rest phase from the gesture phase,
when the visual cues were presented to the subject. For each
performed gesture, ten seconds of rest state were recorded
followed by another ten seconds of gesture execution with
five repetitions each.

2) TRAINING AND EVALUATION

The sparse categorical cross-entropy loss function was
employed to develop the DL hand gesture decoding mod-
els. Once again, leave-one-out cross-validation was used for
model evaluation. For models performance, the percentage of
correct classifications (accuracy) was used as metric.

In order to choose the best model for robotic telemanip-
ulation, we defined a metric o to evaluate the accuracy and
execution time trade-off. To do this, we selected two thresh-
olds: the minimum desired accuracy (A) and the maximum
accepted execution time (E). These two threshold values may
vary depending on the application. For our robotic telema-
nipulation task, accuracy higher than 90% and an execution
time (in ms) faster than the EMG data collection, so the
user does not experience latency, are desired. Hence, for our
application, A = 0.9 and E = 0.0833.

For a 84 o — A and S E — € where o is the
accuracy obtained and € is the execution time of the model,
the accuracy-execution time trade-off is defined as follows:

54+ 18al
2584

S + 19|
20

o

o(a, A, €,E) = ()

€

The first two terms of Equation 2 guarantee that the model
meets the requirements. If the obtained accuracy is smaller
than the accuracy threshold, the first term of the equation is
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zero, making the proposed evaluation metric o = 0. If the
model presents an execution time bigger than the desired,
the second term, again making o 0. If both accuracy
and execution time requirements are met, o is the ratio
between o and €. Hence, the higher the accuracy and the
lower the execution time obtained by the model, the higher
the accuracy-execution time trade-off metric.

C. ROBOTIC TELEMANIPULATION USING THE

ARoA PLATFORM

In this subsection, we present the experiments performed to
evaluate a shared control framework for the real-time oper-
ation of the ARoA humanoid platform in the execution of
telemanipulation tasks. To do this, the EMG-based shared
control framework presented in Fig. 4 was developed so as
to allow the user to take control of the robot platform and
perform complex tasks whenever autonomous execution is
not feasible. The proposed framework is divided into four
main modules, namely, the Autonomous Control Module,
the User Control Module, the Robot Interface Module and
the Control Blending Module. Each module is represented
in block layout, where each block conceptually corresponds
to a node implemented within ROS.

1) AUTONOMOUS CONTROL MODULE

This module facilitates task execution without human inter-
vention. To do this, it utilizes the Perception and Grasp Pose
Estimation sub-modules. The Perception sub-module allows
it to identify objects in 3D space and map the environment so
as to build the obstacle space needed for an effective interac-
tion with the robot surroundings. The Grasp Pose Estimation
sub-module takes the poses of the objects and derives the goal
pose of the robot end-effector for successfully grasping the
object.

VOLUME 10, 2022
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FIGURE 5. State machine scheme. Control actions based on different grasp types allow the robot arm and hand control to be switched between

autonomous and user-operated, when needed.

2) USER CONTROL MODULE

This module enables the user to take manual control of the
robot to execute tasks. It comprises of two sub-modules:
Gesture Identification and Motion Tracking and Mapping.
Using the Gesture Identification sub-module, the intention
of the user can be interpreted. The Motion Tracking and
Mapping sub-module is used to map the user’s motion to the
robot. This is done by tracking two fiducial (ArUco) markers
attached on the clothes of the user (one at the back of the hand
and the other one on the shoulder), using a head-mounted
camera. Using the tracked poses of the ArUco markers, the
relative position of the user’s hand can be calculated with
respect to their shoulder. This relative motion of the user’s
hand can be mapped on the robot. More information about
the mapping can be found in [2].

3) CONTROL BLENDING MODULE

This module is responsible for switching between the
autonomous task execution and the manual control of the
robot by a user (teleoperation mode). It receives high level
user requirements as inputs regarding the autonomous task
execution (e.g., tidy the table or wipe the whiteboard). It also
comprises of the Control State Machine block, which keeps
track of the current state of the task execution and is updated
by the user through execution of different gestures. When user
control is active, both the hand and arm controls are enabled
simultaneously. The robot hand used in this experiment is
the New Dexterity NDX-A anthropomorphic robot hand [25]
and can be controlled in the execution of pinch, power, and
tripod gestures and grasps while decoding of the rest gesture
maintains the previous state. To bring the hand in an open
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state, the extension gesture should be executed. When the
arm control is enabled, the user can control the motion of
the robot. To enable and disable the manual control of the
robot arm, the co-contraction gesture is used. When manual
control of the arm control is disabled, the control can be
handed over to the robot using a power gesture that triggers
autonomous operation. When manual control is disabled, the
robot’s current end-effector pose is maintained and used as
the start reference frame. An overview of the control state
machine is presented in Fig. 5.

4) ROBOT INTERFACE MODULE

This module enables communication with the robot hardware
of the ARoA platform. The robot interface module com-
prises the Path Planning and Navigation sub-module, which
is responsible for autonomous task execution and collision
avoidance, and the Robot Control Interface, an interface to the
robot hardware. The Control State Machine communicates
with the Path Planning and Navigation for autonomous task
executions, which passes goal trajectories to the Robot Con-
trol Interface. In the case of manual user control, the Control
State Machine communicates directly with the Robot Control
Interface.

lIl. METHODS

This section describes the TD features extracted from the
raw EMG data, along with the different ML methods used
to develop intention decoding models. The ML model that
achieves the best predicting performance in terms of accuracy
and processing speed, evaluated through the o metric, is the
RF classification. The RF model was then used to perform
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TABLE 1. Summary of the features employed with corresponding formulae and descriptions.

Feature Extraction

RMS WL 7C IEMG
Methods
T, <0 && Tp+1 >0
i
Formula RMS = /£ 3N 22 WEL=YN a0 — 2 >0 && w1 <0 | IEMG =N |z
&&
[zx — ppa| > Vi
Represents the Measure of Indicator of Detects the
Description average power complexity of fatigue in onset of
of the signal. the EMG signal. muscles. muscle activity.
Feature Extraction
MAV WAMP VAR LogD
Methods
WAMP = 35 (f(lan = 2nsa )]
AV = L3N g i=1 noTmt — Ly 2 — e® Ty tog(lail)
Formula MAV = 537 | 1 2> threshold VAR = 5 > i1 %5 LOG = ev 2i=1
0 otherwise
Measures Measures the MUAP Measure of Provides an estimate
Description the contraction and the contraction EMG signal of the muscle
level of muscles. level of muscles. power. contraction force.

in a shared control manner robotic telemanipulation with the
New Dexterity ARoA platform.

A. FEATURE EXTRACTION

To extract meaningful information from the raw EMG sig-
nals, eight TD features were extracted. To do this, the raw
EMG signals were segmented using a sliding window of
166.67 ms with increments of 16.67 ms [26]. The perfor-
mance of the decoding models depends on the window size
and the stride. A very large window size is not ideal for
real-time applications since the response rate of the system
becomes slower, while a very small window leads to noisy
predictions due to high biases and variance [13]. The eight
different TD features were extracted from each EMG channel
to develop machine learning-based models for decoding dif-
ferent hand gestures. The features examined are as follows:
Root Mean Square Value (RMS), Waveform Length (WL),
Zero Crossings (ZC), Integrated EMG (IEMG), Mean Abso-
lute Value (MAV), Willison Amplitude (WAMP), Variance
(VAR), and Log Detector (LogD) [12], [27], [28], [29], [30].

1) Root Mean Square: The RMS of the EMG signal is
one of the most commonly used values in the TD.
It represents the square root of the average power of
the signal for the given time period.
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2)

3)

4)

)

6)

7

Waveform Length: WL measures the complexity of
the signal. It represents the waveform’s amplitude, fre-
quency, and duration in a single parameter.

Zero Crossings: ZC provides rough FD information
and represents the number of times the signal crosses
the zero value in a given time period. ZC can also be
used to estimate the fatigue in the muscles.

Integrated EMG: IEMG is the summation of the abso-
lute values of the EMG signal amplitude. It is generally
used as onset index to detect muscle activity.

Mean Absolute Value: MAV can be calculated by taking
the average of the absolute value of the EMG signal.
It is similar to IEMG, which detects the onset of muscle
activity. It also provides information regarding muscle
contraction levels.

Willison Amplitude: WAMP represents the number
of times that the difference between EMG signal
amplitude among two consecutive values exceed a pre-
defined threshold. WAMP is related to the firing of
motor unit action potentials (MUAP) and the muscle
contraction level.

Variance: VAR of the myoelectric activations measures
the power of the signal. Variance is the mean value of
the square of the deviation of that variable.
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TABLE 2. Average motion decoding correlation (C) and accuracy (A) across all subjects for RF-based models developed for specific objects using 1, 25, 50,
75, and 100 trees for each TD feature investigated in this study. For 1 tree, random forests behave like a classic decision tree. The highest accuracy for

each object and feature is highlighted in blue while the lowest in yellow.

Cube
Trees RMS WL 7cC IEMG MAV WAMP VAR LogD
C A C A C A C A C A C A C A C A
1 65.25 | 37.63 | 68.93 | 42.92 | 47.96 | 18.46 | 65.62 | 38.76 | 66.22 | 39.23 | 63.01 35.56 | 65.76 | 38.81 | 65.38 | 38.22
25 78.85 | 59.32 | 80.71 | 62.15 | 61.64 | 37.83 | 79.24 | 59.62 | 79.21 | 59.55 | 75.35 | 54.55 | 78.81 | 59.28 | 77.79 | 57.39
50 79.45 | 59.97 | 80.93 | 62.57 | 62.26 | 38.47 | 79.64 | 60.16 | 79.61 | 60.09 | 75.64 | 54.91 | 79.42 | 59.87 | 78.25 | 57.94
75 79.21 | 60.42 | 80.51 | 63.05 | 64.99 | 41.88 | 75.79 | 63.01 | 77.30 | 60.38 | 75.99 56.11 | 79.17 | 60.24 | 76.92 | 56.92
100 79.70 | 56.17 | 81.11 | 58.73 | 62.47 | 35.64 | 79.86 | 56.66 | 79.84 | 56.65 | 75.77 ‘ 52.13 | 79.66 | 56.14 | 78.43 | 55.51
Cylinder
Trees RMS WL 7C IEMG MAV WAMP VAR LogD
C A C A C A C A C A c [ A C A C A
1 55.88 | 24.19 | 59.29 | 28.54 | 40.99 | 12.49 | 56.32 | 25.12 | 56.61 | 25.39 | 55.96 24.39 | 55.44 | 24.17 | 55.70 | 24.83
25 70.38 | 49.30 | 72.89 | 52.70 | 56.42 | 31.68 | 70.49 | 49.41 | 70.61 | 49.62 | 68.71 | 46.77 | 70.61 | 49.58 | 69.23 | 47.85
50 70.92 | 49.98 | 73.36 | 53.32 | 57.10 | 32.33 | 71.10 | 50.15 | 71.23 | 50.28 | 69.15 | 47.40 | 71.04 | 50.14 | 69.80 | 48.45
75 68.69 | 47.03 | 72.26 | 51.74 | 54.61 | 29.51 | 70.33 | 47.95 | 69.24 | 47.88 | 67.59 | 45.53 | 68.70 | 47.05 | 68.49 | 46.63
100 71.34 | 52.38 | 73.42 | 55.46 | 57.45 | 36.55 | 71.43 | 52.62 | 71.39 | 52.57 | 69.27 49.67 | 71.13 | 52.36 | 70.09 | 50.79
OffCenterCube
Trees RMS WL 7C IEMG MAV WAMP VAR LogD
C A C A C A C A C A C A C A C A
1 5827 | 28.25 | 61.04 | 31.98 | 44.20 | 14.87 | 58.53 | 28.59 | 58.70 | 28.81 | 58.36 29.24 | 57.05 | 26.48 | 58.35 | 27.93
25 74.18 | 52.92 | 76.29 | 56.40 | 59.37 | 33.61 | 74.45 | 53.48 | 74.47 | 53.48 | 72.02 | 50.95 | 74.28 | 52.99 | 73.59 | 52.09
50 74.79 | 53.65 | 76.94 | 57.20 | 60.15 | 34.37 | 75.03 | 54.19 | 75.05 | 54.19 | 72.57 | 51.58 | 74.81 | 53.66 | 73.93 | 52.54
75 72.50 | 50.31 | 75.20 | 54.94 | 59.16 | 32.67 | 73.44 | 51.95 | 73.42 | 51.94 | 71.52 | 50.29 | 72.51 | 50.31 | 73.24 | 51.59
100 74.97 | 53.53 | 77.07 | 57.34 | 60.47 | 37.30 | 75.31 | 53.85 | 75.31 | 53.87 | 72.83 52.60 | 75.00 | 53.57 | 74.22 | 52.40

8) Log Detector: LogD also provides an estimate of the
muscle contraction force.

A summary of all the different features that were calculated
and examined in this study along with details regarding the
calculation of each feature can be found in Table 1.

B. MACHINE LEARNING METHODS

To decode dexterous in-hand manipulation motions and hand
gestures, we trained a series of regression and classifica-
tion models using three different machine learning methods:
RF, CNN, and TMC-T. For each learning method exam-
ined, eight different decoding models were developed using
each one of the extracted features at a time. The ability of
the models to discriminate between the different grasping
postures and gestures was evaluated employing the leave-
one-out cross-validation method, testing on each subject at
the time and training for the rest of them. The DL hyper-
parameters were tuned by executing cross-validation with
10% of the available training data for optimization by empir-
ical evaluation. The DL classification and regression models
share the same hyperparameters. The difference between DL
classification and regression models is in the loss function
used (as explained in Sections II-A2 and II-B2) and in the
last layer: the classification models employ a softmax layer
with six neurons (to discriminate between six gestures). The
regression models employ a dense layer with linear activation
and three neurons (to decode the three motions).
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1) RANDOM FOREST

RF is an ensemble regression method that is based on a
combination of multiple decision trees. This is a classic ML
technique in which the output is the most popular class among
the decisions of the individual trees for the classification case
or the average of the estimations of the individual trees in
the regression case [12], [31], [32]. RF models offer good
predictive performance and are extremely fast, at the cost of
not being as robust as most DL techniques.

2) CNN

CNN is a well-established DL technique, representing the
state-of-the-art in several tasks and application fields due to
its ability to identify patterns and extract spatial character-
istics of the data. In this work, we employed the CNN as
a DL benchmark model to be compared with the RF and
TMC-T models, since this technique is widely used for both
classification and regression using EMG signals as input [8],
[20], [33], [34]. The proposed CNN model is composed of
three convolutional blocks. Each convolution block contains a
convolutional layers, followed by a batch normalization [35]
and a 0.1 dropout layer [36]. The filters sizes are shown in
Fig. 3. A stride of (1,1) was used, and padding was applied so
the output has the same size as the input. After the convolu-
tional blocks, four dense layers employed with 256, 128, 64,
and 32 neurons. A final linear with three neurons performs
the motion decoding. The CNN model is shown in Fig. 3.
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TABLE 3. Pearson correlation (C) and accuracy (A) for tested models employing 8 TD features as input for the cube.

Cube

Subject RMS 7C IEMG

MAV WAMP VAR LogD

C

A

C

A

C

A

C

A

C

A

C

A

C

A
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80.80

90.90
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84.35
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76.37
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24.88
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82.44
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81.79

63.94
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84.11
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63.72
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78.79
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81.68

59.91

82.46

61.89

11 79.69

52.64

77.88

50.59

46.63

2291
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80.93

52.74

75.33

45.32
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51.78
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50.79
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80.93

62.57
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79.64

[ 60.16 [ 79.61 | 60.09 | 75.64 | 5491 [ 79.42 [ 59.87

78.25

57.94

3) TEMPORAL MULTI-CHANNEL TRANSFORMERS
The TMC-T [37] is a novel DL technique based on the
Transformer architecture [38]. The TMC-T was adapted to
use temporal signals with multiple channels as input, such
as EMG. For this, convolution layers are used over the raw
data to extract the embeddings supplied to the Transformer
blocks. Along with convolution layers, max-pooling layers
are employed to reduce the input data size. This step is
of paramount importance since the attention mechanisms
scale quadratically with the input length. The Transformer
blocks are based only on attention mechanisms, which creates
attention-based representation for each element in the input
sequence.

Transformer-based models are designed to process sequen-
tial data without suffering from vanishing gradients like
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the recurrent neural networks and without presenting such
complexity as the Long-short term memory (LSTM) net-
works or the impossibility of parallelization inherent to these
recurrent techniques. Our TMC-T models benefit from the
ability of the convolution layers to learn the spatial and tem-
poral characteristics of the input data and the Transformer’s
ability to perform parallel computing and a faster training
time. The TMC-T model is shown in Fig. 2.

IV. RESULTS
In this section, we present the results of the three sets of exper-

iments conducted in this study. The three experiments are:
i) Decoding of Dexterous, In-Hand Manipulation Motions,
ii) Hand Gesture Classification, and iii) Robotic Telemanip-
ulation with the New Dexterity ARoA Humanoid Platform.
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TABLE 4. Pearson correlation (C) and accuracy (A) of tested models employing 8 TD extracted features as input for the cylinder.

Cylinder

Subject RMS WL 7C IEMG

MAV WAMP VAR LogD

C

A

C

A

C

A

C

A

C

A

C

A

C

A

C

A

TMC-T
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59.21
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84.44

57.08

32.96
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58.61

76.20

57.80

72.54

57.88
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A. DECODING OF DEXTEROUS, IN-HAND

MANIPULATION MOTIONS

This subsection presents and discusses the results for decod-
ing dexterous, in-hand manipulation motions. Results will be
discussed focusing on accuracy (A), correlation (C), and time
required to predict the output. To do this, two different DL
methods and RF-based regression methods were compared.

1) DL MODELS
The two DL models compared in this experiment are CNNs

and TMC-T. Details about these models are discussed in
Section I1I-B2 and Section III-B3.

2) RF MODELS
Five models were developed to select the appropriate number
of trees for the RF-based models, using a different number
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of trees for each subject, object, and one TD EMG feature
per model as input. The trees evaluated in this study are: 1,
25, 50, 75, and 100. For 1 tree, Random Forests behave like
a classic decision tree. The results obtained are presented in
Table 2. Due to a consistent performance by RF-based models
developed using 50 trees across all the conditions, they were
selected to be compared with the DL models.

3) COMPARISON BETWEEN RF AND DL MODELS

Table 3, Table 4, and Table 5 present correlation and accu-
racy of the decoded motion with the actual motion for the
two DL models and the RF-based models developed using
50 trees. In most cases, the DL models perform better in
terms of correlation and accuracy than the RF model. The
model that presents the best correlation and accuracy was
the TMC-T.
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TABLE 5. Pearson correlation (C) and accuracy (A) for tested models using 8 TD features as input for the off-center object.

Table 6 presents the time taken (in ms) by the RF models

Off-Center

Subject

RMS

WL

7C

IEMG

MAV

WAMP

VAR

LogD

C

A

C

A

C

A

C

A

C

A

C

A

C

A

C

A

TMC-T

88.47

76.54

82.00

91.55

70.39

45.77

88.25

76.26

88.52

76.30

87.57

74.04

87.39

74.65

85.52

70.02

90.56

80.42

79.10

89.95

63.96

36.35

88.99

77.23

90.08

79.34

85.85
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71.79
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66.97
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81.00
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50.81
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56.83

79.79

60.20

75.60

54.29

60.70

78.83

57.81

31.66

77.03

56.52

76.80

56.34

68.28

44.16

72.70

48.10

74.66

52.84

59.42

33.56

36.71

62.39

39.18

11.17

60.44

34.33

57.67

30.37

46.95

18.39

57.39

31.00

58.23

32.48

N=RE-CNIEN BN N0 B I NS SR SR

78.57

59.01

0.78

58.35

66.31

40.68

78.92

58.45

79.16

59.99

72.73

49.29

75.43

54.88

78.56

59.55

80.28

62.47

0.80

58.82

56.87

31.04

80.52

61.02

81.73

64.77

81.07

62.80

77.92

58.45

80.01

61.81

73.49

46.83

0.87

72.23

69.82

46.49

73.86

47.95

75.61

51.37

79.15

58.67

67.43

41.55

77.21

55.41

Z
@

77.44

58.43

45.68

75.27

59.88

| 3425

| 77.53

| 5827

[ 7775

| 59.09

[ 74.29

| 53.55

| 7440

53.76

| 75.99

| 5623

CNN

86.84

72.54

90.86

80.13

67.97

42.98

87.06

73.36

87.46

74.07

86.10

72.09

85.92

71.50

83.86

67.69

88.09

76.61

89.03

78.32

63.21

37.46

88.97

77.84

88.67

77.62

82.74

67.45

85.90

68.67

83.62

67.86

71.54

50.87

77.02

58.71

67.03

43.11

70.31

50.13

70.31

50.32

68.74

46.47

66.10

44.15

68.09

47.46

76.08

58.42

82.22

66.23

65.72

44.49

74.67

56.36

74.08

55.73

79.55

62.78

73.53

54.30

71.36

52.42

78.02

59.85

78.85

61.30

53.35

28.58

74.67

56.36

79.88

62.81

68.51

46.27

77.31

58.78

77.23

58.84

79.59

59.32

79.78

59.85

51.14

22.34

79.80

62.88

79.23

58.41

71.57

56.92

66.33

39.74

78.13

56.78

75.99

54.71

75.56

55.47

57.90

31.85

78.62

57.60

75.30

54.16

65.49

41.97

72.62

49.49

71.95

49.39

59.48

33.09

64.79

38.69

37.28

12.58

7591

55.64

59.85

33.72

84.02

67.78

64.49

38.93

60.33

33.77

78.04

57.58

80.43

61.46

63.93

36.73

59.00

32.56

78.02

58.26

72.89

49.30

62.82

40.86

78.43

58.12

82.02

64.05

84.91

69.73

56.29

30.77

83.76

67.58

83.62

66.45

80.32

61.45

71.37

56.68

81.76

63.70

67.58

37.71

86.61

70.97

68.18

44.88

61.39

23.34

59.49

22.12

77.08

53.91

67.43

41.55

62.12

29.75

z
@

76.66

56.80

80.91

63.72

59.27

[ 34.16

[ 75.83

[ 55.79

[ 75.99

[ 55.79

| 76.09

| 56.95

| 1271

51.33

[ 74.26

| 5325

RF

85.60

69.67

86.14

70.69

67.26

42.70

85.84

70.15

85.82

70.10

81.11

64.11

85.37

69.36

84.20

66.94

78.46

59.93

85.14

70.78

60.45

35.11

79.56

61.28

79.79

61.66

81.62

65.29

77.81

59.02

77.97

58.79

64.76

44.57

73.04

52.98

54.12

31.82

65.46

45.99

65.79

46.25

64.89

42.85

64.86

44.67

65.69

46.60

73.05

53.84

83.12

67.94

69.54

48.90

70.65

50.68

70.57

50.64

79.72

64.12

73.23

54.01

71.36

51.86

75.65

55.02

73.74

53.41

53.10

28.41

76.13

56.28

76.53

56.83

69.53

47.41

76.00

55.53

71.57

50.47

79.51

58.47

80.00

60.66

63.17

29.83

80.05

58.50

80.28

58.86

71.74

57.09

79.55

58.43

80.15

57.69

70.76

46.85

73.57

52.69

58.89

32.75

72.68

49.42

72.16

48.49

68.50

46.60

71.01

47.15

71.26

46.91

57.86

31.36

55.45

28.47

43.65

18.25

56.14

28.88

55.94

28.57

45.41

19.76

58.02

31.50

58.27

31.88

75.35

51.44

73.03

50.27

64.93

35.22

76.28

53.31

75.88

52.81

70.06

45.54

75.29

51.27

75.27

52.48

80.41

60.68

81.15

62.76

58.18

32.10

81.20

62.58

81.29

62.60

80.41

60.11

80.46

60.74

78.34

58.61

81.28

58.39

81.95

58.53

68.31

43.00

81.39

59.04

81.56

59.31

79.23

54.54

81.36

58.59

79.18

55.76

7479 | 53.65

76.94 | 57.20 | 60.15

| 3437

| 75.03
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TABLE 6. Time (in ms) for predicting one sample achieved by the

and DL models to predict one sample. The RF-based models
have a very high response rate (~800 Hz), allowing them
to function in real-time even in the presence of unaccounted
time delays (e.g., un-optimized code, processing delays). The
TMC-T model, despite having a better accuracy and correla-
tion than the RF model, takes approximately 13 times longer
to predict a sample.

B. HAND GESTURE CLASSIFICATION

In this subsection, we present the gesture decoding per-
formance of TMC-T, CNN, and RF-based classifiers. This
set of experiments develops the gesture decoding models
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regression models.

Model Prediction time (ms)
RF 50 Trees 0.00124
CNN 0.01204
TMC-T 0.01624

using each extracted EMG feature. The gesture classes were
balanced for each gesture to avoid any biases due to an
imbalanced dataset. Therefore, it was ensured that the training
validation sets have the same number of data points for each
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FIGURE 6. Confusion matrices for the three assessed learning models. The TMC-T and CNN were trained using WL feature as input, whereas RF used VAR

feature as input.

grasp type. The presented results are the average values cal-
culated using the 5-fold cross-validation. The accuracies of
decoding the gestures are shown in Table 7. The best and the
worst performing features are highlighted for each decoding
model (which are trained for each subject using only one
feature at a time). The performance of each feature was
independently tested to isolate the ones with low performance
to make informed decisions in the future regarding feature
selection. It can be noticed that MAV and IEMG have similar
performances for five of six tested subjects. This can be
attributed to MAV being just a scaled version of IEMG. It can
also be noticed that models developed using ZC as the input
feature have the worst performance. The two features that
presented the best average classification accuracy for the DL
models are WL and WAMP. For the RF model, the best fea-
tures were VAR and IEMG. In Fig. 6 we show the confusion
matrices for each tested machine learning technique.

Table 8 presents the time taken (in ms) by the RF models
and DL models to predict one sample. Table 8 also show
the accuracy-execution time trade-off metric o. This metric
was measured for the best model of each ML technique. The
RF-based models have a very high response rate (~800 Hz).
The TMC-T model took approximately 13 times longer to
predict a sample. The RF model achieved the highest o,
followed by the CNN and TMC-T models. Even though the
DL models showed better classification and regression accu-
racy, by evaluating the trade-off metric, RF-based models
were selected for real-time robotic telemanipulation experi-
ments because of its combination of accuracy and speed of
code execution that are of paramount importance for real-
time applications. However, in applications where real-time
requirements are not strict but accuracy of predictions is
a key performance evaluation metric, then, TMC-T models
should be employed. It must also be noted that a shared
control scheme has the human operator in the loop who can
compensate for any decoding errors. This has been tested for
the hand gesture classification case. Future work will focus on
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TABLE 7. Gesture classification accuracy for TMC-T, CNN, and RF using
each extracted feature. The best and worst performing features are
highlighted for each subject. Highest accuracy for each subject is bold
and highlighted in blue while the lowest accuracy is highlighted in yellow.

| Subjects | RMS | WL [ ZC | MAV [ IEMG | WAMP | VAR | LogD |
TMC-T
1 96.63 | 96.89 [ 81.81 [ 96.89 | 97.03 | 9626 | 96.77 | 96.46
2 94.83 | 95.17 | 87.85 | 95.62 | 95.13 | 91.84 | 9493 | 9500
3 86.64 | 91.07 | 79.59 | 8629 | 87.39 | 9198 | 85.88 | 84.78
4 | 9395|9696 | 77.61 | 93.60 | 94.16 | 9557 | 9043 | 9291
5 97.81 | 98.38 | 9146 | 97.87 | 97.95 | 9835 |97.93 | 97.77
6 97.09 | 97.70 | 85.44 | 97.53 | 9741 | 97.76 | 97.02 | 97.15
AVG [ 94.49 ] 96.03 | 83.96 | 94.63 | 94.85 | 9529 [ 93.83 | 94.01 |
CNN
1 95.84 | 96.49 [ 82.03 [ 96.40 | 9659 | 96.10 | 9677 [ 96.70
2 9432 | 94.84 | 8750 | 94.65 | 9497 | 9226 | 9422 | 93.77
3 85.65 | 89.97 | 7837 | 8593 | 8410 | 9134 | 80.99 | 83.93
4 | 9382|9658 | 7670 | 92.89 | 92.19 | 94.95 | 92.41 | 91.60
5 9775 | 98.24 | 9137 | 98.19 | 97.87 | 9820 | 97.81 | 97.83
6 96.89 | 97.66 | 8539 | 97.28 | 9695 | 97.89 | 9634 | 97.35
AVG [ 94.05 [ 95.63 [ 83.56 [ 94.22 [ 93.78 | 95.12 [ 93.09 | 93.53 |
RF
1 9476 | 95.12 [ 8495 [ 9505 | 9521 | 96.55 | 9481 | 9562
2 90.15 | 85.92 | 84.16 | 90.35 | 9054 | 8379 | 91.62 | 90.28
3 83.83 | 8617 | 73.90 | 84.06 | 8434 | 8509 | 8379 | 82.97
4 90.86 | 93.36 | 72.82 | 90.44 | 9024 | 9252 | 9033 | 89.32
5 93.82 | 94.48 | 9123 | 93.62 | 93.69 | 96.40 | 9471 | 93.62
6 93.12 | 87.99 | 86.12 | 91.09 | 9517 | 90.63 | 94.68 | 87.86
AVG ][ 91.09 | 90.51 | 8220 | 90.77 | 91.53 | 90.83 | 91.66 | 89.95 |

real-time EMG-based execution
tasks with the ARoA platform.

of dexterous manipulation

C. TELEMANIPULATION WITH AN INTELLIGENT

ROBOT SYSTEM

In this experiment, we validate the performance of the
selected RF-based gesture classification models in a real-time
shared control framework for the intuitive control of the
New Dexterity ARoA humanoid platform in the execution
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FIGURE 7. Task sequence from the shared task execution experiment. The experiments were conducted using the New Dexterity ARoA platform [21].
Subfigures a), b), and c) show the user controlling the motion of the robot platform to reach the object to be grasped. In subfigure d) we see the user
executing “Pinch” gesture to grasp the object. After the successful grasp the user executes “Power” gesture (subfigure e) to hand-over the control back to

the Autonomous Control Module to complete the task execution (subfigure f).

TABLE 8. Time (in ms) for predicting one sample achieved by the
classification models. The accuracy-execution time trade-off is shown for
the each model.

Accuracy-execution

Model Prediction time (ms) time trade-off ()
RF 50 Trees 0.00126 72746
CNN 0.01362 7021
TMC-T 0.01765 5440

of complex telemanipulation tasks. The performance of the
proposed framework was validated in five different scenarios.

1) HEAD MOTION COMPENSATION AND ARM

MOTION TRACKING

In the first scenario, we show the effects of the user’s head
motion on the motion of the robot’s end-effector. The motion
of the head results in the shifting of the estimated marker
poses in the image frame. This motion is compensated in
practice by considering the relative pose between the shoulder
and the wrist marker instead of taking an absolute pose of
a marker. This experiment also demonstrates the robot arm
teleoperation in one and two dimensions.

2) ENABLING AND DISABLING ARM MOTION TRACKING

In this scenario, we demonstrate the use of the muscle
co-contraction action to enable and disable the teleoperation
function of the robot arm.

3) GRASP BASED RELINQUISHING OF MANUAL CONTROL

For this scenario, the hand-over by the user from the manual
teleoperation control of the robot system to an autonomous
task execution is demonstrated. This is done by first dis-
abling the manual teleoperation by executing the muscle
co-contraction gesture, followed by a power grasp gesture
to hand-over the control to the autonomous system. In this
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case, the robot finishes the task in a completely autonomous
manner without requiring any user intervention.

4) AUTONOMOUS TASK EXECUTION

In order to test the autonomous task execution capabilities of
the proposed framework and the employed platform, the robot
was given the task of tidying up a table, where the objective
was to grasp and move all the objects that were on the table
into a bin.

5) SHARED CONTROL BASED TASK EXECUTION

Finally, the complete shared control framework was tested in
the fifth scenario. In this case, the human and the robot con-
troller complete the task in a synergistic manner. To demon-
strate the capabilities of the proposed framework, a special
table cleaning task was considered where the perception of
the robot system fails due to a transparent or irregular object.
In such a case, the robot system is unable to execute the task
in an autonomous manner since it is not capable to identify
where the object is on the table or it is unable to find an
efficient grasping strategy to execute the task. Therefore,
assistance from a human-in-the-loop is required to help the
robot grasp the object and then pass the control back to the
robot for autonomous task execution. Fig. 7 shows instances
of the experiment to demonstrate the real-time teleoperation
performance of the proposed shared control framework.

6) VIDEO OF EXPERIMENTAL VALIDATION

All the experiments were recorded, and the compiled video is

available in HD quality at the following URL.:
www.newdexterity.org/emgtelemanipulation

V. CONCLUSION

We compared various machine learning and feature extraction
methods for the creation of EMG-based telemanipulation
frameworks, and we showed that although TMC-T provided
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the best decoding performance, the RF model combined very
good decoding performance with excellent speed of execu-
tion that is needed for real-time applications.

More precisely, eight time-domain features extracted from
EMG were tested as input for the first experiment. The
TMC-T presented the best correlation and accuracy results
between the tested models, however taking approximately
13 times more time to generate a sample output. The RF
model presented consistently good results with a very high
response rate (approximately 800 Hz). The TMC-T, CNN,
and RF models performed human hand gesture decoding in
the second set of experiments. The models were evaluated
in terms of accuracy and execution time. We also defined
an accuracy-execution time trade-off metric to further assess
the models. Even though the TMC-T achieved the highest
accuracy, based on the trade-off metric, the RF-based model
was selected for real-time telemanipulation experiments exe-
cuted with the New Dexterity ARoA humanoid platform.
The discussed shared control framework allows the user to
switch between manual and autonomous control of the robot
system employing EMG-based gesture decoding and fiducial
markers-based pose tracking. The efficiency of all different
components was assessed, and the framework was experi-
mentally validated in the execution of complex everyday life
tasks.

Regarding future work and directions, the same experi-
ments could be performed using alternative MuMIs, such
as wearable forcemyography and lightmyography armbands.
Moreover, the TMC-T model can be optimized in order
to reduce the prediction time, making it a good candidate
method for real-time applications.
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