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ABSTRACT Electromyography (EMG) signals are commonly used for the development of Muscle Machine
Interfaces. EMG-based solutions provide intuitive and often hand-free control in a wide range of applications
that range from the decoding of human intention in classification tasks to the continuous decoding of
human motion employing regression models. In this work, we compare various machine learning and
feature extraction methods for the creation of EMG based control frameworks for dexterous robotic
telemanipulation. Various models are needed that can decode dexterous, in-hand manipulation motions and
perform hand gesture classification in real-time. Three differentmachine learningmethods and eight different
time-domain features were evaluated and compared. The performance of the models was evaluated in terms
of accuracy and time required to predict a data sample. The model that presented the best performance
and prediction time trade-off was used for executing in real-time a telemanipulation task with the New
Dexterity Autonomous Robotic Assistance (ARoA) platform (a humanoid robot). Various experiments have
been conducted to experimentally validate the efficiency of the proposed methods. The robotic system is
shown to successfully complete a series of tasks autonomously as well as to efficiently execute tasks in a
shared control manner.
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INDEX TERMS Muscle-machine interfaces, electromyography, shared control, intention decoding, telema-
nipulation, machine learning.

I. INTRODUCTION17

Recent advances in the development of muscle-machine18

interfaces (MuMI) havemade possible its use in several appli-19

cations. One of the most used and successful approaches is to20

employ electromyography (EMG) signals to developMuMIs.21

These electrical signals are generated during muscle contrac-22

tion and carry vital information intrinsic to the movement23

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Botter .

of the muscles that are triggered to accomplish the motion 24

performed by the subject. MuMIs based on EMG signals 25

usually provide a hands-free, unobstructive solution, offering 26

intuitive and natural operation of robotic devices in complex 27

applications [1], such as the execution of teleoperation and 28

telemanipulation tasks with robot arm hand systems [2], [3], 29

[4], as shown in Fig. 1. 30

Machine learning (ML) techniques have been employed 31

to decode EMG signals to perform both classification (e.g. 32

decoding discrete human gestures) [5], [6], [7], [8] and 33
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FIGURE 1. Example of a user teleoperating the new dexterity ARoA
humanoid robot using an EMG based shared control framework for the
execution of complex tasks.

regression (e.g. decoding continuous human motions) [9],34

[10], [11]. Classification results in a discrete output, for35

example, the discrete decision on the user’s intention. In our36

previous work, we employed a Random Forest (RF) classi-37

fier in a framework that switches between autonomous and38

manual operation of robot systems to complete a task in a39

synergistic manner [2]. We also employed regression-based40

models to perform continuous decoding of the human motion41

using sEMG signals as input [12].42

Classic machine learning techniques such as RF employ43

preprocessed signals and hand-crafted features as input to44

obtain the desired output. EMG features can be extracted45

from raw signals using Time Domain (TD) features, Fre-46

quency Domain (FD) features, or Time-Frequency Domain47

(TFD) features methods [13]. Past studies show that TD48

features result in more consistent performance over time than49

FD [14], [15]. In our previous study [16], we compared50

the performance of eight TD feature extraction techniques51

in discriminating between different grasping postures and52

gestures executed by the user of an EMG-based MuMI using53

five different ML techniques. It was found that the RF model54

presented the most consistent results. More robust models55

introduced in the deep learning (DL) [17], [18], [19] era56

can identify and incorporate patterns from processed data57

resulting in an increasingly complex system, often presenting58

a better performance in terms of correlation and accuracy59

compared to classic MLmodels [7], [20] at the cost of requir-60

ing greater computational power and potentially sacrificing61

real-time performance.62

In this paper, we assess the ability of ML and DL models63

to solve regression and classification problems and enable the64

development ofmore functionalMuMIs. To do this, we assess65

which hand-extracted features are most relevant for decod-66

ing dexterous, in-hand manipulation motions, and decod-67

ing human hand gestures. The performance of RF models,68

a Convolutional Neural Network (CNN) benchmark model,69

and a novel DL technique called Temporal Multi-Channel70

Transformers (TMC-T) are compared for eight different71

TD features. The TMC-T model is shown in Fig. 2. The72

models are evaluated in terms of accuracy and speed of 73

calculation. In the second step, the model that presented the 74

best performance for online applications (considering the 75

trade-off between accuracy and processing time) is employed 76

to develop a shared control framework for intuitive robotic 77

telemanipulation. 78

II. EXPERIMENTS 79

In this section we present experiments conducted to eval- 80

uate the performance of the decoding models that were 81

developed for the regression and the classification tasks. 82

To do this, three different experiments were designed to 83

evaluate the EMG-based decoding models in the regres- 84

sion and classification use cases: i) Decoding of Dexterous, 85

In-Hand Manipulation Motions, ii) Hand Gesture Classi- 86

fication, and iii) Robotic Telemanipulation using the New 87

Dexterity Autonomous Robotic Assistant (ARoA) humanoid 88

platform [21]. 89

A. DECODING OF DEXTEROUS, IN-HAND 90

MANIPULATION MOTIONS 91

In this subsection, we present the guidelines employed for 92

training the RF, CNNs, and TMC-T-based regression mod- 93

els to perform decoding of dexterous, in-hand manipulation 94

motions using EMG signals as input. 95

1) DATASET 96

The regression models were trained on the dataset collected 97

by the New Dexterity research group [12]. For this dataset, 98

before the start of data collection, each participant was asked 99

about any disabilities that may affect the quality of the data. 100

Finally, myoelectric activations were acquired from 11 non- 101

disabled subjects from 16 different muscles (8 on the hand 102

and 8 on the forearm of the subject). For the hand, three 103

electrodes were placed on the palm measuring the activity 104

of the Lumbrical muscles, four electrodes were placed at the 105

back of the palm measuring the activity of the Interossei and 106

one electrode was placed on the base of the thumb to measure 107

the myoelectric activations of the Opponens Pollicis muscle. 108

For the forearm, three electrodes were placed on the Extensor 109

Digitorum site, three were placed on the Flexor Digitorum 110

site, one was placed on Abductor Pollicis Longus, and the 111

final one was placed tomeasure themyoelectric activations of 112

the Extensor Pollicis Brevis. The ground electrodewas placed 113

on the elbow, where the muscular activity becomes minimal. 114

For data acquisition, two double-differential EMG electrodes 115

were employed to measure the myoelectric activations. The 116

EMG signals were acquired at a sampling rate of 1200 Hz 117

by the bioamplifier, which bandpass filtered the data using a 118

Butterworth filter (5 Hz - 500 Hz). The electric line noise was 119

filtered out using a notch filter of 50 Hz. 120

For each subject, ten trials were recorded for each motion. 121

For each trial, the subjects performed a 3-dimensional 122

equilibrium point manipulation task using a Rubik’s cube, 123

a chips can from the Yale-CMU-Berkeley (YCB) grasping 124

object set [22], and a custom-made off-centered mass cube. 125
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FIGURE 2. TMC-T model. The feature vector obtained using the feature extraction methods is provided to four convolutional layers, which extract
features and learn embeddings from the input feature vector. Batch normalization layers follow the convolutional layers. Two max-pooling layers reduce
the EMG channels dimension while keeping the most relevant information. After the convolutional blocks, the output is reshaped and provided to
transformer blocks and fully-connected layers. The output from the TMC-T model is the Row, Pitch, and Yaw motions.

FIGURE 3. CNN model. Conv stands for convolutional and fc for fully-connected. First, the feature vector is obtained using the feature
extraction methods discussed in Section III-A. Three convolutional layers extract features using convolutional kernels. The convolutional
layers are followed by batch normalization and dropout layers. After the convolutional blocks, the output is flattened and provided to
fully-connected layers. The output from the CNN model is the roll, pitch, and yaw motions.

Each trial started with 5 seconds of rest (where the object is126

held in a stationary pose) and was followed by five repetitions127

of each motion. The manipulation tasks performed during the128

experiments were:129

• Pitch: a coordinatedmovement of the fingers that creates130

the pitch motion;131

• Roll: a coordinated movement of the fingers that creates132

a roll motion;133

• Yaw: a coordinated movement of the fingers that creates134

a yaw motion.135

In the dataset, the myoelectric activations are the independent136

variables, and the motion of the object while being manipu-137

lated in the hands of the subjects is the dependent variable.138

The motion of the object refers to its rotation along the139

x-axis, y-axis, and z-axis, where the origin of the motions is140

set to the center of the object when it was in the stationary141

pose during the 5 seconds rest period.142

2) TRAINING AND EVALUATION143

Our models were trained on a Google Colab Pro virtual144

machine with GPU. The models were developed in Python145

using Tensorflow and Keras. The DL models employed the146

mean squared error (MSE) loss function and Adam as the147

optimizer [23]. Leave-one-out cross-validation was used to148

evaluate the RF, CNN, and TMC-T models.149

The trained RF, CNN and TMC-T models’ efficiency was150

assessed using the Pearson correlation coefficient and the per-151

centage of the Normalized Mean Square Error (NMSE) for152

accuracy. The NMSE value of 0% implies a bad fit, whereas 153

the NMSE value of 100% implies that the two motions are 154

identical. The NMSE value is defined as follows: 155

NMSE(%) = 100 ∗
(
1−

||xr − xp||2

||xr − mean(xr )||2

)
(1) 156

where ||.|| indicates the 2-norm of a vector, xr is the actual 157

reference motion and xp refers to the predicted motion. 158

B. HAND GESTURE CLASSIFICATION 159

In this subsection, we present the experiments that were 160

conducted to evaluate the efficiency of the hand gesture clas- 161

sification models. 162

1) DATASET 163

For this set of experiments, we utilize the dataset collected 164

by the New Dexterity research group in [16]. In this dataset, 165

each subject was instructed to alternate between a rest state 166

and a gesture state. In total, six gestures were recorded: i) a 167

pinch grasp, ii) a tripod grasp, iii) a power grasp, iv) an open 168

hand configuration with abducted fingers, v) co-contraction 169

of all muscles, and vi) rest state. The myoelectric activations 170

were acquired from 8 different muscle groups of the human 171

arm and hand. The details regarding the electrode placement 172

can be found in [16]. 173

For data acquisition, an appropriate package in the robot 174

operating system (ROS) [24] based framework was imple- 175

mented. The beginning and termination of each gesture were 176

prompted to the subject with a visual cue on a computer 177
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FIGURE 4. The robot system operates autonomously using the autonomous control module, whereas the manual operation of the robot is achieved
through the user control module. The robot interface connects to the robot hardware. Shared control of the robot system is provided by the control
blending module that merges the autonomous and user control modules.

screen in the form of a three-second timer. For the labeling178

of the data, a software trigger was sent to the data record-179

ing script to isolate the rest phase from the gesture phase,180

when the visual cues were presented to the subject. For each181

performed gesture, ten seconds of rest state were recorded182

followed by another ten seconds of gesture execution with183

five repetitions each.184

2) TRAINING AND EVALUATION185

The sparse categorical cross-entropy loss function was186

employed to develop the DL hand gesture decoding mod-187

els. Once again, leave-one-out cross-validation was used for188

model evaluation. For models performance, the percentage of189

correct classifications (accuracy) was used as metric.190

In order to choose the best model for robotic telemanip-191

ulation, we defined a metric σ to evaluate the accuracy and192

execution time trade-off. To do this, we selected two thresh-193

olds: the minimum desired accuracy (A) and the maximum194

accepted execution time (E). These two threshold values may195

vary depending on the application. For our robotic telema-196

nipulation task, accuracy higher than 90% and an execution197

time (in ms) faster than the EMG data collection, so the198

user does not experience latency, are desired. Hence, for our199

application, A = 0.9 and E = 0.0833.200

For a δA = α − A and δE = E − ε where α is the201

accuracy obtained and ε is the execution time of the model,202

the accuracy-execution time trade-off is defined as follows:203

σ (α,A, ε,E) =
δA + |δA|

2δA
·
δE + |δE |

2δE
·
α

ε
(2)204

The first two terms of Equation 2 guarantee that the model205

meets the requirements. If the obtained accuracy is smaller206

than the accuracy threshold, the first term of the equation is207

zero, making the proposed evaluation metric σ = 0. If the 208

model presents an execution time bigger than the desired, 209

the second term, again making σ = 0. If both accuracy 210

and execution time requirements are met, σ is the ratio 211

between α and ε. Hence, the higher the accuracy and the 212

lower the execution time obtained by the model, the higher 213

the accuracy-execution time trade-off metric. 214

C. ROBOTIC TELEMANIPULATION USING THE 215

ARoA PLATFORM 216

In this subsection, we present the experiments performed to 217

evaluate a shared control framework for the real-time oper- 218

ation of the ARoA humanoid platform in the execution of 219

telemanipulation tasks. To do this, the EMG-based shared 220

control framework presented in Fig. 4 was developed so as 221

to allow the user to take control of the robot platform and 222

perform complex tasks whenever autonomous execution is 223

not feasible. The proposed framework is divided into four 224

main modules, namely, the Autonomous Control Module, 225

theUser Control Module, theRobot Interface Module and 226

the Control Blending Module. Each module is represented 227

in block layout, where each block conceptually corresponds 228

to a node implemented within ROS. 229

1) AUTONOMOUS CONTROL MODULE 230

This module facilitates task execution without human inter- 231

vention. To do this, it utilizes the Perception and Grasp Pose 232

Estimation sub-modules. The Perception sub-module allows 233

it to identify objects in 3D space and map the environment so 234

as to build the obstacle space needed for an effective interac- 235

tion with the robot surroundings. The Grasp Pose Estimation 236

sub-module takes the poses of the objects and derives the goal 237

pose of the robot end-effector for successfully grasping the 238

object. 239
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FIGURE 5. State machine scheme. Control actions based on different grasp types allow the robot arm and hand control to be switched between
autonomous and user-operated, when needed.

2) USER CONTROL MODULE240

This module enables the user to take manual control of the241

robot to execute tasks. It comprises of two sub-modules:242

Gesture Identification and Motion Tracking and Mapping.243

Using the Gesture Identification sub-module, the intention244

of the user can be interpreted. The Motion Tracking and245

Mapping sub-module is used to map the user’s motion to the246

robot. This is done by tracking two fiducial (ArUco) markers247

attached on the clothes of the user (one at the back of the hand248

and the other one on the shoulder), using a head-mounted249

camera. Using the tracked poses of the ArUco markers, the250

relative position of the user’s hand can be calculated with251

respect to their shoulder. This relative motion of the user’s252

hand can be mapped on the robot. More information about253

the mapping can be found in [2].254

3) CONTROL BLENDING MODULE255

This module is responsible for switching between the256

autonomous task execution and the manual control of the257

robot by a user (teleoperation mode). It receives high level258

user requirements as inputs regarding the autonomous task259

execution (e.g., tidy the table or wipe the whiteboard). It also260

comprises of the Control State Machine block, which keeps261

track of the current state of the task execution and is updated262

by the user through execution of different gestures.When user263

control is active, both the hand and arm controls are enabled264

simultaneously. The robot hand used in this experiment is265

the New Dexterity NDX-A anthropomorphic robot hand [25]266

and can be controlled in the execution of pinch, power, and267

tripod gestures and grasps while decoding of the rest gesture268

maintains the previous state. To bring the hand in an open269

state, the extension gesture should be executed. When the 270

arm control is enabled, the user can control the motion of 271

the robot. To enable and disable the manual control of the 272

robot arm, the co-contraction gesture is used. When manual 273

control of the arm control is disabled, the control can be 274

handed over to the robot using a power gesture that triggers 275

autonomous operation. When manual control is disabled, the 276

robot’s current end-effector pose is maintained and used as 277

the start reference frame. An overview of the control state 278

machine is presented in Fig. 5. 279

4) ROBOT INTERFACE MODULE 280

This module enables communication with the robot hardware 281

of the ARoA platform. The robot interface module com- 282

prises the Path Planning and Navigation sub-module, which 283

is responsible for autonomous task execution and collision 284

avoidance, and theRobot Control Interface, an interface to the 285

robot hardware. The Control State Machine communicates 286

with the Path Planning and Navigation for autonomous task 287

executions, which passes goal trajectories to the Robot Con- 288

trol Interface. In the case of manual user control, the Control 289

State Machine communicates directly with the Robot Control 290

Interface. 291

III. METHODS 292

This section describes the TD features extracted from the 293

raw EMG data, along with the different ML methods used 294

to develop intention decoding models. The ML model that 295

achieves the best predicting performance in terms of accuracy 296

and processing speed, evaluated through the σ metric, is the 297

RF classification. The RF model was then used to perform 298
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TABLE 1. Summary of the features employed with corresponding formulae and descriptions.

in a shared control manner robotic telemanipulation with the299

New Dexterity ARoA platform.300

A. FEATURE EXTRACTION301

To extract meaningful information from the raw EMG sig-302

nals, eight TD features were extracted. To do this, the raw303

EMG signals were segmented using a sliding window of304

166.67 ms with increments of 16.67 ms [26]. The perfor-305

mance of the decoding models depends on the window size306

and the stride. A very large window size is not ideal for307

real-time applications since the response rate of the system308

becomes slower, while a very small window leads to noisy309

predictions due to high biases and variance [13]. The eight310

different TD features were extracted from each EMG channel311

to develop machine learning-based models for decoding dif-312

ferent hand gestures. The features examined are as follows:313

Root Mean Square Value (RMS), Waveform Length (WL),314

Zero Crossings (ZC), Integrated EMG (IEMG), Mean Abso-315

lute Value (MAV), Willison Amplitude (WAMP), Variance316

(VAR), and Log Detector (LogD) [12], [27], [28], [29], [30].317

1) Root Mean Square: The RMS of the EMG signal is318

one of the most commonly used values in the TD.319

It represents the square root of the average power of320

the signal for the given time period.321

2) Waveform Length: WL measures the complexity of 322

the signal. It represents the waveform’s amplitude, fre- 323

quency, and duration in a single parameter. 324

3) Zero Crossings: ZC provides rough FD information 325

and represents the number of times the signal crosses 326

the zero value in a given time period. ZC can also be 327

used to estimate the fatigue in the muscles. 328

4) Integrated EMG: IEMG is the summation of the abso- 329

lute values of the EMG signal amplitude. It is generally 330

used as onset index to detect muscle activity. 331

5) MeanAbsolute Value:MAVcan be calculated by taking 332

the average of the absolute value of the EMG signal. 333

It is similar to IEMG, which detects the onset of muscle 334

activity. It also provides information regarding muscle 335

contraction levels. 336

6) Willison Amplitude: WAMP represents the number 337

of times that the difference between EMG signal 338

amplitude among two consecutive values exceed a pre- 339

defined threshold. WAMP is related to the firing of 340

motor unit action potentials (MUAP) and the muscle 341

contraction level. 342

7) Variance:VAR of the myoelectric activations measures 343

the power of the signal. Variance is the mean value of 344

the square of the deviation of that variable. 345
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TABLE 2. Average motion decoding correlation (C) and accuracy (A) across all subjects for RF-based models developed for specific objects using 1, 25, 50,
75, and 100 trees for each TD feature investigated in this study. For 1 tree, random forests behave like a classic decision tree. The highest accuracy for
each object and feature is highlighted in blue while the lowest in yellow.

8) Log Detector: LogD also provides an estimate of the346

muscle contraction force.347

A summary of all the different features that were calculated348

and examined in this study along with details regarding the349

calculation of each feature can be found in Table 1.350

B. MACHINE LEARNING METHODS351

To decode dexterous in-hand manipulation motions and hand352

gestures, we trained a series of regression and classifica-353

tion models using three different machine learning methods:354

RF, CNN, and TMC-T. For each learning method exam-355

ined, eight different decoding models were developed using356

each one of the extracted features at a time. The ability of357

the models to discriminate between the different grasping358

postures and gestures was evaluated employing the leave-359

one-out cross-validation method, testing on each subject at360

the time and training for the rest of them. The DL hyper-361

parameters were tuned by executing cross-validation with362

10% of the available training data for optimization by empir-363

ical evaluation. The DL classification and regression models364

share the same hyperparameters. The difference between DL365

classification and regression models is in the loss function366

used (as explained in Sections II-A2 and II-B2) and in the367

last layer: the classification models employ a softmax layer368

with six neurons (to discriminate between six gestures). The369

regression models employ a dense layer with linear activation370

and three neurons (to decode the three motions).371

1) RANDOM FOREST 372

RF is an ensemble regression method that is based on a 373

combination of multiple decision trees. This is a classic ML 374

technique in which the output is themost popular class among 375

the decisions of the individual trees for the classification case 376

or the average of the estimations of the individual trees in 377

the regression case [12], [31], [32]. RF models offer good 378

predictive performance and are extremely fast, at the cost of 379

not being as robust as most DL techniques. 380

2) CNN 381

CNN is a well-established DL technique, representing the 382

state-of-the-art in several tasks and application fields due to 383

its ability to identify patterns and extract spatial character- 384

istics of the data. In this work, we employed the CNN as 385

a DL benchmark model to be compared with the RF and 386

TMC-T models, since this technique is widely used for both 387

classification and regression using EMG signals as input [8], 388

[20], [33], [34]. The proposed CNN model is composed of 389

three convolutional blocks. Each convolution block contains a 390

convolutional layers, followed by a batch normalization [35] 391

and a 0.1 dropout layer [36]. The filters sizes are shown in 392

Fig. 3. A stride of (1,1)was used, and padding was applied so 393

the output has the same size as the input. After the convolu- 394

tional blocks, four dense layers employed with 256, 128, 64, 395

and 32 neurons. A final linear with three neurons performs 396

the motion decoding. The CNN model is shown in Fig. 3. 397
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TABLE 3. Pearson correlation (C) and accuracy (A) for tested models employing 8 TD features as input for the cube.

3) TEMPORAL MULTI-CHANNEL TRANSFORMERS398

The TMC-T [37] is a novel DL technique based on the399

Transformer architecture [38]. The TMC-T was adapted to400

use temporal signals with multiple channels as input, such401

as EMG. For this, convolution layers are used over the raw402

data to extract the embeddings supplied to the Transformer403

blocks. Along with convolution layers, max-pooling layers404

are employed to reduce the input data size. This step is405

of paramount importance since the attention mechanisms406

scale quadratically with the input length. The Transformer407

blocks are based only on attentionmechanisms, which creates408

attention-based representation for each element in the input409

sequence.410

Transformer-basedmodels are designed to process sequen-411

tial data without suffering from vanishing gradients like412

the recurrent neural networks and without presenting such 413

complexity as the Long-short term memory (LSTM) net- 414

works or the impossibility of parallelization inherent to these 415

recurrent techniques. Our TMC-T models benefit from the 416

ability of the convolution layers to learn the spatial and tem- 417

poral characteristics of the input data and the Transformer’s 418

ability to perform parallel computing and a faster training 419

time. The TMC-T model is shown in Fig. 2. 420

IV. RESULTS 421

In this section, we present the results of the three sets of exper- 422

iments conducted in this study. The three experiments are: 423

i) Decoding of Dexterous, In-Hand Manipulation Motions, 424

ii) Hand Gesture Classification, and iii) Robotic Telemanip- 425

ulation with the New Dexterity ARoA Humanoid Platform. 426

99668 VOLUME 10, 2022



R. V. Godoy et al.: On EMG Based Dexterous Robotic Telemanipulation

TABLE 4. Pearson correlation (C) and accuracy (A) of tested models employing 8 TD extracted features as input for the cylinder.

A. DECODING OF DEXTEROUS, IN-HAND427

MANIPULATION MOTIONS428

This subsection presents and discusses the results for decod-429

ing dexterous, in-hand manipulation motions. Results will be430

discussed focusing on accuracy (A), correlation (C), and time431

required to predict the output. To do this, two different DL432

methods and RF-based regression methods were compared.433

1) DL MODELS434

The two DL models compared in this experiment are CNNs435

and TMC-T. Details about these models are discussed in436

Section III-B2 and Section III-B3.437

2) RF MODELS438

Five models were developed to select the appropriate number439

of trees for the RF-based models, using a different number440

of trees for each subject, object, and one TD EMG feature 441

per model as input. The trees evaluated in this study are: 1, 442

25, 50, 75, and 100. For 1 tree, Random Forests behave like 443

a classic decision tree. The results obtained are presented in 444

Table 2. Due to a consistent performance by RF-basedmodels 445

developed using 50 trees across all the conditions, they were 446

selected to be compared with the DL models. 447

3) COMPARISON BETWEEN RF AND DL MODELS 448

Table 3, Table 4, and Table 5 present correlation and accu- 449

racy of the decoded motion with the actual motion for the 450

two DL models and the RF-based models developed using 451

50 trees. In most cases, the DL models perform better in 452

terms of correlation and accuracy than the RF model. The 453

model that presents the best correlation and accuracy was 454

the TMC-T. 455
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TABLE 5. Pearson correlation (C) and accuracy (A) for tested models using 8 TD features as input for the off-center object.

Table 6 presents the time taken (in ms) by the RF models456

and DL models to predict one sample. The RF-based models457

have a very high response rate (∼800 Hz), allowing them458

to function in real-time even in the presence of unaccounted459

time delays (e.g., un-optimized code, processing delays). The460

TMC-T model, despite having a better accuracy and correla-461

tion than the RF model, takes approximately 13 times longer462

to predict a sample.463

B. HAND GESTURE CLASSIFICATION464

In this subsection, we present the gesture decoding per-465

formance of TMC-T, CNN, and RF-based classifiers. This466

set of experiments develops the gesture decoding models467

TABLE 6. Time (in ms) for predicting one sample achieved by the
regression models.

using each extracted EMG feature. The gesture classes were 468

balanced for each gesture to avoid any biases due to an 469

imbalanced dataset. Therefore, it was ensured that the training 470

validation sets have the same number of data points for each 471
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FIGURE 6. Confusion matrices for the three assessed learning models. The TMC-T and CNN were trained using WL feature as input, whereas RF used VAR
feature as input.

grasp type. The presented results are the average values cal-472

culated using the 5-fold cross-validation. The accuracies of473

decoding the gestures are shown in Table 7. The best and the474

worst performing features are highlighted for each decoding475

model (which are trained for each subject using only one476

feature at a time). The performance of each feature was477

independently tested to isolate the ones with low performance478

to make informed decisions in the future regarding feature479

selection. It can be noticed that MAV and IEMG have similar480

performances for five of six tested subjects. This can be481

attributed to MAV being just a scaled version of IEMG. It can482

also be noticed that models developed using ZC as the input483

feature have the worst performance. The two features that484

presented the best average classification accuracy for the DL485

models are WL and WAMP. For the RF model, the best fea-486

tures were VAR and IEMG. In Fig. 6 we show the confusion487

matrices for each tested machine learning technique.488

Table 8 presents the time taken (in ms) by the RF models489

and DL models to predict one sample. Table 8 also show490

the accuracy-execution time trade-off metric σ . This metric491

was measured for the best model of each ML technique. The492

RF-based models have a very high response rate (∼800 Hz).493

The TMC-T model took approximately 13 times longer to494

predict a sample. The RF model achieved the highest σ ,495

followed by the CNN and TMC-T models. Even though the496

DL models showed better classification and regression accu-497

racy, by evaluating the trade-off metric, RF-based models498

were selected for real-time robotic telemanipulation experi-499

ments because of its combination of accuracy and speed of500

code execution that are of paramount importance for real-501

time applications. However, in applications where real-time502

requirements are not strict but accuracy of predictions is503

a key performance evaluation metric, then, TMC-T models504

should be employed. It must also be noted that a shared505

control scheme has the human operator in the loop who can506

compensate for any decoding errors. This has been tested for507

the hand gesture classification case. Futureworkwill focus on508

TABLE 7. Gesture classification accuracy for TMC-T, CNN, and RF using
each extracted feature. The best and worst performing features are
highlighted for each subject. Highest accuracy for each subject is bold
and highlighted in blue while the lowest accuracy is highlighted in yellow.

real-time EMG-based execution of dexterous manipulation 509

tasks with the ARoA platform. 510

C. TELEMANIPULATION WITH AN INTELLIGENT 511

ROBOT SYSTEM 512

In this experiment, we validate the performance of the 513

selected RF-based gesture classificationmodels in a real-time 514

shared control framework for the intuitive control of the 515

New Dexterity ARoA humanoid platform in the execution 516
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FIGURE 7. Task sequence from the shared task execution experiment. The experiments were conducted using the New Dexterity ARoA platform [21].
Subfigures a), b), and c) show the user controlling the motion of the robot platform to reach the object to be grasped. In subfigure d) we see the user
executing ‘‘Pinch’’ gesture to grasp the object. After the successful grasp the user executes ‘‘Power’’ gesture (subfigure e) to hand-over the control back to
the Autonomous Control Module to complete the task execution (subfigure f).

TABLE 8. Time (in ms) for predicting one sample achieved by the
classification models. The accuracy-execution time trade-off is shown for
the each model.

of complex telemanipulation tasks. The performance of the517

proposed framework was validated in five different scenarios.518

1) HEAD MOTION COMPENSATION AND ARM519

MOTION TRACKING520

In the first scenario, we show the effects of the user’s head521

motion on the motion of the robot’s end-effector. The motion522

of the head results in the shifting of the estimated marker523

poses in the image frame. This motion is compensated in524

practice by considering the relative pose between the shoulder525

and the wrist marker instead of taking an absolute pose of526

a marker. This experiment also demonstrates the robot arm527

teleoperation in one and two dimensions.528

2) ENABLING AND DISABLING ARM MOTION TRACKING529

In this scenario, we demonstrate the use of the muscle530

co-contraction action to enable and disable the teleoperation531

function of the robot arm.532

3) GRASP BASED RELINQUISHING OF MANUAL CONTROL533

For this scenario, the hand-over by the user from the manual534

teleoperation control of the robot system to an autonomous535

task execution is demonstrated. This is done by first dis-536

abling the manual teleoperation by executing the muscle537

co-contraction gesture, followed by a power grasp gesture538

to hand-over the control to the autonomous system. In this539

case, the robot finishes the task in a completely autonomous 540

manner without requiring any user intervention. 541

4) AUTONOMOUS TASK EXECUTION 542

In order to test the autonomous task execution capabilities of 543

the proposed framework and the employed platform, the robot 544

was given the task of tidying up a table, where the objective 545

was to grasp and move all the objects that were on the table 546

into a bin. 547

5) SHARED CONTROL BASED TASK EXECUTION 548

Finally, the complete shared control framework was tested in 549

the fifth scenario. In this case, the human and the robot con- 550

troller complete the task in a synergistic manner. To demon- 551

strate the capabilities of the proposed framework, a special 552

table cleaning task was considered where the perception of 553

the robot system fails due to a transparent or irregular object. 554

In such a case, the robot system is unable to execute the task 555

in an autonomous manner since it is not capable to identify 556

where the object is on the table or it is unable to find an 557

efficient grasping strategy to execute the task. Therefore, 558

assistance from a human-in-the-loop is required to help the 559

robot grasp the object and then pass the control back to the 560

robot for autonomous task execution. Fig. 7 shows instances 561

of the experiment to demonstrate the real-time teleoperation 562

performance of the proposed shared control framework. 563

6) VIDEO OF EXPERIMENTAL VALIDATION 564

All the experiments were recorded, and the compiled video is 565

available in HD quality at the following URL: 566

www.newdexterity.org/emgtelemanipulation 567

V. CONCLUSION 568

Wecompared variousmachine learning and feature extraction 569

methods for the creation of EMG-based telemanipulation 570

frameworks, and we showed that although TMC-T provided 571
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the best decoding performance, the RF model combined very572

good decoding performance with excellent speed of execu-573

tion that is needed for real-time applications.574

More precisely, eight time-domain features extracted from575

EMG were tested as input for the first experiment. The576

TMC-T presented the best correlation and accuracy results577

between the tested models, however taking approximately578

13 times more time to generate a sample output. The RF579

model presented consistently good results with a very high580

response rate (approximately 800 Hz). The TMC-T, CNN,581

and RF models performed human hand gesture decoding in582

the second set of experiments. The models were evaluated583

in terms of accuracy and execution time. We also defined584

an accuracy-execution time trade-off metric to further assess585

the models. Even though the TMC-T achieved the highest586

accuracy, based on the trade-off metric, the RF-based model587

was selected for real-time telemanipulation experiments exe-588

cuted with the New Dexterity ARoA humanoid platform.589

The discussed shared control framework allows the user to590

switch between manual and autonomous control of the robot591

system employing EMG-based gesture decoding and fiducial592

markers-based pose tracking. The efficiency of all different593

components was assessed, and the framework was experi-594

mentally validated in the execution of complex everyday life595

tasks.596

Regarding future work and directions, the same experi-597

ments could be performed using alternative MuMIs, such598

as wearable forcemyography and lightmyography armbands.599

Moreover, the TMC-T model can be optimized in order600

to reduce the prediction time, making it a good candidate601

method for real-time applications.602
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